|
1 /* adler32.c -- compute the Adler-32 checksum of a data stream |
|
2 * Copyright (C) 1995-2007 Mark Adler |
|
3 * For conditions of distribution and use, see copyright notice in zlib.h |
|
4 */ |
|
5 |
|
6 /* @(#) $Id$ */ |
|
7 |
|
8 #include "zutil.h" |
|
9 |
|
10 #define local static |
|
11 |
|
12 local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2); |
|
13 |
|
14 #define BASE 65521UL /* largest prime smaller than 65536 */ |
|
15 #define NMAX 5552 |
|
16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
|
17 |
|
18 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
|
19 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
|
20 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
|
21 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
|
22 #define DO16(buf) DO8(buf,0); DO8(buf,8); |
|
23 |
|
24 /* use NO_DIVIDE if your processor does not do division in hardware */ |
|
25 #ifdef NO_DIVIDE |
|
26 # define MOD(a) \ |
|
27 do { \ |
|
28 if (a >= (BASE << 16)) a -= (BASE << 16); \ |
|
29 if (a >= (BASE << 15)) a -= (BASE << 15); \ |
|
30 if (a >= (BASE << 14)) a -= (BASE << 14); \ |
|
31 if (a >= (BASE << 13)) a -= (BASE << 13); \ |
|
32 if (a >= (BASE << 12)) a -= (BASE << 12); \ |
|
33 if (a >= (BASE << 11)) a -= (BASE << 11); \ |
|
34 if (a >= (BASE << 10)) a -= (BASE << 10); \ |
|
35 if (a >= (BASE << 9)) a -= (BASE << 9); \ |
|
36 if (a >= (BASE << 8)) a -= (BASE << 8); \ |
|
37 if (a >= (BASE << 7)) a -= (BASE << 7); \ |
|
38 if (a >= (BASE << 6)) a -= (BASE << 6); \ |
|
39 if (a >= (BASE << 5)) a -= (BASE << 5); \ |
|
40 if (a >= (BASE << 4)) a -= (BASE << 4); \ |
|
41 if (a >= (BASE << 3)) a -= (BASE << 3); \ |
|
42 if (a >= (BASE << 2)) a -= (BASE << 2); \ |
|
43 if (a >= (BASE << 1)) a -= (BASE << 1); \ |
|
44 if (a >= BASE) a -= BASE; \ |
|
45 } while (0) |
|
46 # define MOD4(a) \ |
|
47 do { \ |
|
48 if (a >= (BASE << 4)) a -= (BASE << 4); \ |
|
49 if (a >= (BASE << 3)) a -= (BASE << 3); \ |
|
50 if (a >= (BASE << 2)) a -= (BASE << 2); \ |
|
51 if (a >= (BASE << 1)) a -= (BASE << 1); \ |
|
52 if (a >= BASE) a -= BASE; \ |
|
53 } while (0) |
|
54 #else |
|
55 # define MOD(a) a %= BASE |
|
56 # define MOD4(a) a %= BASE |
|
57 #endif |
|
58 |
|
59 /* ========================================================================= */ |
|
60 uLong ZEXPORT adler32(adler, buf, len) |
|
61 uLong adler; |
|
62 const Bytef *buf; |
|
63 uInt len; |
|
64 { |
|
65 unsigned long sum2; |
|
66 unsigned n; |
|
67 |
|
68 /* split Adler-32 into component sums */ |
|
69 sum2 = (adler >> 16) & 0xffff; |
|
70 adler &= 0xffff; |
|
71 |
|
72 /* in case user likes doing a byte at a time, keep it fast */ |
|
73 if (len == 1) { |
|
74 adler += buf[0]; |
|
75 if (adler >= BASE) |
|
76 adler -= BASE; |
|
77 sum2 += adler; |
|
78 if (sum2 >= BASE) |
|
79 sum2 -= BASE; |
|
80 return adler | (sum2 << 16); |
|
81 } |
|
82 |
|
83 /* initial Adler-32 value (deferred check for len == 1 speed) */ |
|
84 if (buf == Z_NULL) |
|
85 return 1L; |
|
86 |
|
87 /* in case short lengths are provided, keep it somewhat fast */ |
|
88 if (len < 16) { |
|
89 while (len--) { |
|
90 adler += *buf++; |
|
91 sum2 += adler; |
|
92 } |
|
93 if (adler >= BASE) |
|
94 adler -= BASE; |
|
95 MOD4(sum2); /* only added so many BASE's */ |
|
96 return adler | (sum2 << 16); |
|
97 } |
|
98 |
|
99 /* do length NMAX blocks -- requires just one modulo operation */ |
|
100 while (len >= NMAX) { |
|
101 len -= NMAX; |
|
102 n = NMAX / 16; /* NMAX is divisible by 16 */ |
|
103 do { |
|
104 DO16(buf); /* 16 sums unrolled */ |
|
105 buf += 16; |
|
106 } while (--n); |
|
107 MOD(adler); |
|
108 MOD(sum2); |
|
109 } |
|
110 |
|
111 /* do remaining bytes (less than NMAX, still just one modulo) */ |
|
112 if (len) { /* avoid modulos if none remaining */ |
|
113 while (len >= 16) { |
|
114 len -= 16; |
|
115 DO16(buf); |
|
116 buf += 16; |
|
117 } |
|
118 while (len--) { |
|
119 adler += *buf++; |
|
120 sum2 += adler; |
|
121 } |
|
122 MOD(adler); |
|
123 MOD(sum2); |
|
124 } |
|
125 |
|
126 /* return recombined sums */ |
|
127 return adler | (sum2 << 16); |
|
128 } |
|
129 |
|
130 /* ========================================================================= */ |
|
131 local uLong adler32_combine_(adler1, adler2, len2) |
|
132 uLong adler1; |
|
133 uLong adler2; |
|
134 z_off64_t len2; |
|
135 { |
|
136 unsigned long sum1; |
|
137 unsigned long sum2; |
|
138 unsigned rem; |
|
139 |
|
140 /* the derivation of this formula is left as an exercise for the reader */ |
|
141 rem = (unsigned)(len2 % BASE); |
|
142 sum1 = adler1 & 0xffff; |
|
143 sum2 = rem * sum1; |
|
144 MOD(sum2); |
|
145 sum1 += (adler2 & 0xffff) + BASE - 1; |
|
146 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
|
147 if (sum1 >= BASE) sum1 -= BASE; |
|
148 if (sum1 >= BASE) sum1 -= BASE; |
|
149 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); |
|
150 if (sum2 >= BASE) sum2 -= BASE; |
|
151 return sum1 | (sum2 << 16); |
|
152 } |
|
153 |
|
154 /* ========================================================================= */ |
|
155 uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
|
156 uLong adler1; |
|
157 uLong adler2; |
|
158 z_off_t len2; |
|
159 { |
|
160 return adler32_combine_(adler1, adler2, len2); |
|
161 } |
|
162 |
|
163 uLong ZEXPORT adler32_combine64(adler1, adler2, len2) |
|
164 uLong adler1; |
|
165 uLong adler2; |
|
166 z_off64_t len2; |
|
167 { |
|
168 return adler32_combine_(adler1, adler2, len2); |
|
169 } |