|
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
|
3 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #include "LulMain.h" |
|
8 |
|
9 #include <string.h> |
|
10 #include <stdlib.h> |
|
11 #include <stdio.h> |
|
12 |
|
13 #include <algorithm> // std::sort |
|
14 #include <string> |
|
15 |
|
16 #include "mozilla/Assertions.h" |
|
17 #include "mozilla/ArrayUtils.h" |
|
18 #include "mozilla/MemoryChecking.h" |
|
19 |
|
20 #include "LulCommonExt.h" |
|
21 #include "LulElfExt.h" |
|
22 |
|
23 #include "LulMainInt.h" |
|
24 |
|
25 // Set this to 1 for verbose logging |
|
26 #define DEBUG_MAIN 0 |
|
27 |
|
28 |
|
29 namespace lul { |
|
30 |
|
31 using std::string; |
|
32 using std::vector; |
|
33 |
|
34 |
|
35 //////////////////////////////////////////////////////////////// |
|
36 // AutoLulRWLocker // |
|
37 //////////////////////////////////////////////////////////////// |
|
38 |
|
39 // This is a simple RAII class that manages acquisition and release of |
|
40 // LulRWLock reader-writer locks. |
|
41 |
|
42 class AutoLulRWLocker { |
|
43 public: |
|
44 enum AcqMode { FOR_READING, FOR_WRITING }; |
|
45 AutoLulRWLocker(LulRWLock* aRWLock, AcqMode mode) |
|
46 : mRWLock(aRWLock) |
|
47 { |
|
48 if (mode == FOR_WRITING) { |
|
49 aRWLock->WrLock(); |
|
50 } else { |
|
51 aRWLock->RdLock(); |
|
52 } |
|
53 } |
|
54 ~AutoLulRWLocker() |
|
55 { |
|
56 mRWLock->Unlock(); |
|
57 } |
|
58 |
|
59 private: |
|
60 LulRWLock* mRWLock; |
|
61 }; |
|
62 |
|
63 |
|
64 //////////////////////////////////////////////////////////////// |
|
65 // RuleSet // |
|
66 //////////////////////////////////////////////////////////////// |
|
67 |
|
68 static const char* |
|
69 NameOf_DW_REG(int16_t aReg) |
|
70 { |
|
71 switch (aReg) { |
|
72 case DW_REG_CFA: return "cfa"; |
|
73 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
74 case DW_REG_INTEL_XBP: return "xbp"; |
|
75 case DW_REG_INTEL_XSP: return "xsp"; |
|
76 case DW_REG_INTEL_XIP: return "xip"; |
|
77 #elif defined(LUL_ARCH_arm) |
|
78 case DW_REG_ARM_R7: return "r7"; |
|
79 case DW_REG_ARM_R11: return "r11"; |
|
80 case DW_REG_ARM_R12: return "r12"; |
|
81 case DW_REG_ARM_R13: return "r13"; |
|
82 case DW_REG_ARM_R14: return "r14"; |
|
83 case DW_REG_ARM_R15: return "r15"; |
|
84 #else |
|
85 # error "Unsupported arch" |
|
86 #endif |
|
87 default: return "???"; |
|
88 } |
|
89 } |
|
90 |
|
91 static string |
|
92 ShowRule(const char* aNewReg, LExpr aExpr) |
|
93 { |
|
94 char buf[64]; |
|
95 string res = string(aNewReg) + "="; |
|
96 switch (aExpr.mHow) { |
|
97 case LExpr::UNKNOWN: |
|
98 res += "Unknown"; |
|
99 break; |
|
100 case LExpr::NODEREF: |
|
101 sprintf(buf, "%s+%d", NameOf_DW_REG(aExpr.mReg), (int)aExpr.mOffset); |
|
102 res += buf; |
|
103 break; |
|
104 case LExpr::DEREF: |
|
105 sprintf(buf, "*(%s+%d)", NameOf_DW_REG(aExpr.mReg), (int)aExpr.mOffset); |
|
106 res += buf; |
|
107 break; |
|
108 default: |
|
109 res += "???"; |
|
110 break; |
|
111 } |
|
112 return res; |
|
113 } |
|
114 |
|
115 void |
|
116 RuleSet::Print(void(*aLog)(const char*)) |
|
117 { |
|
118 char buf[96]; |
|
119 sprintf(buf, "[%llx .. %llx]: let ", |
|
120 (unsigned long long int)mAddr, |
|
121 (unsigned long long int)(mAddr + mLen - 1)); |
|
122 string res = string(buf); |
|
123 res += ShowRule("cfa", mCfaExpr); |
|
124 res += " in"; |
|
125 // For each reg we care about, print the recovery expression. |
|
126 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
127 res += ShowRule(" RA", mXipExpr); |
|
128 res += ShowRule(" SP", mXspExpr); |
|
129 res += ShowRule(" BP", mXbpExpr); |
|
130 #elif defined(LUL_ARCH_arm) |
|
131 res += ShowRule(" R15", mR15expr); |
|
132 res += ShowRule(" R7", mR7expr); |
|
133 res += ShowRule(" R11", mR11expr); |
|
134 res += ShowRule(" R12", mR12expr); |
|
135 res += ShowRule(" R13", mR13expr); |
|
136 res += ShowRule(" R14", mR14expr); |
|
137 #else |
|
138 # error "Unsupported arch" |
|
139 #endif |
|
140 aLog(res.c_str()); |
|
141 } |
|
142 |
|
143 LExpr* |
|
144 RuleSet::ExprForRegno(DW_REG_NUMBER aRegno) { |
|
145 switch (aRegno) { |
|
146 case DW_REG_CFA: return &mCfaExpr; |
|
147 # if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
148 case DW_REG_INTEL_XIP: return &mXipExpr; |
|
149 case DW_REG_INTEL_XSP: return &mXspExpr; |
|
150 case DW_REG_INTEL_XBP: return &mXbpExpr; |
|
151 # elif defined(LUL_ARCH_arm) |
|
152 case DW_REG_ARM_R15: return &mR15expr; |
|
153 case DW_REG_ARM_R14: return &mR14expr; |
|
154 case DW_REG_ARM_R13: return &mR13expr; |
|
155 case DW_REG_ARM_R12: return &mR12expr; |
|
156 case DW_REG_ARM_R11: return &mR11expr; |
|
157 case DW_REG_ARM_R7: return &mR7expr; |
|
158 # else |
|
159 # error "Unknown arch" |
|
160 # endif |
|
161 default: return nullptr; |
|
162 } |
|
163 } |
|
164 |
|
165 RuleSet::RuleSet() |
|
166 { |
|
167 mAddr = 0; |
|
168 mLen = 0; |
|
169 // The only other fields are of type LExpr and those are initialised |
|
170 // by LExpr::LExpr(). |
|
171 } |
|
172 |
|
173 |
|
174 //////////////////////////////////////////////////////////////// |
|
175 // SecMap // |
|
176 //////////////////////////////////////////////////////////////// |
|
177 |
|
178 // See header file LulMainInt.h for comments about invariants. |
|
179 |
|
180 SecMap::SecMap(void(*aLog)(const char*)) |
|
181 : mSummaryMinAddr(1) |
|
182 , mSummaryMaxAddr(0) |
|
183 , mUsable(true) |
|
184 , mLog(aLog) |
|
185 {} |
|
186 |
|
187 SecMap::~SecMap() { |
|
188 mRuleSets.clear(); |
|
189 } |
|
190 |
|
191 RuleSet* |
|
192 SecMap::FindRuleSet(uintptr_t ia) { |
|
193 // Binary search mRuleSets to find one that brackets |ia|. |
|
194 // lo and hi need to be signed, else the loop termination tests |
|
195 // don't work properly. Note that this works correctly even when |
|
196 // mRuleSets.size() == 0. |
|
197 |
|
198 // Can't do this until the array has been sorted and preened. |
|
199 MOZ_ASSERT(mUsable); |
|
200 |
|
201 long int lo = 0; |
|
202 long int hi = (long int)mRuleSets.size() - 1; |
|
203 while (true) { |
|
204 // current unsearched space is from lo to hi, inclusive. |
|
205 if (lo > hi) { |
|
206 // not found |
|
207 return nullptr; |
|
208 } |
|
209 long int mid = lo + ((hi - lo) / 2); |
|
210 RuleSet* mid_ruleSet = &mRuleSets[mid]; |
|
211 uintptr_t mid_minAddr = mid_ruleSet->mAddr; |
|
212 uintptr_t mid_maxAddr = mid_minAddr + mid_ruleSet->mLen - 1; |
|
213 if (ia < mid_minAddr) { hi = mid-1; continue; } |
|
214 if (ia > mid_maxAddr) { lo = mid+1; continue; } |
|
215 MOZ_ASSERT(mid_minAddr <= ia && ia <= mid_maxAddr); |
|
216 return mid_ruleSet; |
|
217 } |
|
218 // NOTREACHED |
|
219 } |
|
220 |
|
221 // Add a RuleSet to the collection. The rule is copied in. Calling |
|
222 // this makes the map non-searchable. |
|
223 void |
|
224 SecMap::AddRuleSet(RuleSet* rs) { |
|
225 mUsable = false; |
|
226 mRuleSets.push_back(*rs); |
|
227 } |
|
228 |
|
229 |
|
230 static bool |
|
231 CmpRuleSetsByAddrLE(const RuleSet& rs1, const RuleSet& rs2) { |
|
232 return rs1.mAddr < rs2.mAddr; |
|
233 } |
|
234 |
|
235 // Prepare the map for searching. Completely remove any which don't |
|
236 // fall inside the specified range [start, +len). |
|
237 void |
|
238 SecMap::PrepareRuleSets(uintptr_t aStart, size_t aLen) |
|
239 { |
|
240 if (mRuleSets.empty()) { |
|
241 return; |
|
242 } |
|
243 |
|
244 MOZ_ASSERT(aLen > 0); |
|
245 if (aLen == 0) { |
|
246 // This should never happen. |
|
247 mRuleSets.clear(); |
|
248 return; |
|
249 } |
|
250 |
|
251 // Sort by start addresses. |
|
252 std::sort(mRuleSets.begin(), mRuleSets.end(), CmpRuleSetsByAddrLE); |
|
253 |
|
254 // Detect any entry not completely contained within [start, +len). |
|
255 // Set its length to zero, so that the next pass will remove it. |
|
256 for (size_t i = 0; i < mRuleSets.size(); ++i) { |
|
257 RuleSet* rs = &mRuleSets[i]; |
|
258 if (rs->mLen > 0 && |
|
259 (rs->mAddr < aStart || rs->mAddr + rs->mLen > aStart + aLen)) { |
|
260 rs->mLen = 0; |
|
261 } |
|
262 } |
|
263 |
|
264 // Iteratively truncate any overlaps and remove any zero length |
|
265 // entries that might result, or that may have been present |
|
266 // initially. Unless the input is seriously screwy, this is |
|
267 // expected to iterate only once. |
|
268 while (true) { |
|
269 size_t i; |
|
270 size_t n = mRuleSets.size(); |
|
271 size_t nZeroLen = 0; |
|
272 |
|
273 if (n == 0) { |
|
274 break; |
|
275 } |
|
276 |
|
277 for (i = 1; i < n; ++i) { |
|
278 RuleSet* prev = &mRuleSets[i-1]; |
|
279 RuleSet* here = &mRuleSets[i]; |
|
280 MOZ_ASSERT(prev->mAddr <= here->mAddr); |
|
281 if (prev->mAddr + prev->mLen > here->mAddr) { |
|
282 prev->mLen = here->mAddr - prev->mAddr; |
|
283 } |
|
284 if (prev->mLen == 0) |
|
285 nZeroLen++; |
|
286 } |
|
287 |
|
288 if (mRuleSets[n-1].mLen == 0) { |
|
289 nZeroLen++; |
|
290 } |
|
291 |
|
292 // At this point, the entries are in-order and non-overlapping. |
|
293 // If none of them are zero-length, we are done. |
|
294 if (nZeroLen == 0) { |
|
295 break; |
|
296 } |
|
297 |
|
298 // Slide back the entries to remove the zero length ones. |
|
299 size_t j = 0; // The write-point. |
|
300 for (i = 0; i < n; ++i) { |
|
301 if (mRuleSets[i].mLen == 0) { |
|
302 continue; |
|
303 } |
|
304 if (j != i) mRuleSets[j] = mRuleSets[i]; |
|
305 ++j; |
|
306 } |
|
307 MOZ_ASSERT(i == n); |
|
308 MOZ_ASSERT(nZeroLen <= n); |
|
309 MOZ_ASSERT(j == n - nZeroLen); |
|
310 while (nZeroLen > 0) { |
|
311 mRuleSets.pop_back(); |
|
312 nZeroLen--; |
|
313 } |
|
314 |
|
315 MOZ_ASSERT(mRuleSets.size() == j); |
|
316 } |
|
317 |
|
318 size_t n = mRuleSets.size(); |
|
319 |
|
320 #ifdef DEBUG |
|
321 // Do a final check on the rules: their address ranges must be |
|
322 // ascending, non overlapping, non zero sized. |
|
323 if (n > 0) { |
|
324 MOZ_ASSERT(mRuleSets[0].mLen > 0); |
|
325 for (size_t i = 1; i < n; ++i) { |
|
326 RuleSet* prev = &mRuleSets[i-1]; |
|
327 RuleSet* here = &mRuleSets[i]; |
|
328 MOZ_ASSERT(prev->mAddr < here->mAddr); |
|
329 MOZ_ASSERT(here->mLen > 0); |
|
330 MOZ_ASSERT(prev->mAddr + prev->mLen <= here->mAddr); |
|
331 } |
|
332 } |
|
333 #endif |
|
334 |
|
335 // Set the summary min and max address values. |
|
336 if (n == 0) { |
|
337 // Use the values defined in comments in the class declaration. |
|
338 mSummaryMinAddr = 1; |
|
339 mSummaryMaxAddr = 0; |
|
340 } else { |
|
341 mSummaryMinAddr = mRuleSets[0].mAddr; |
|
342 mSummaryMaxAddr = mRuleSets[n-1].mAddr + mRuleSets[n-1].mLen - 1; |
|
343 } |
|
344 char buf[150]; |
|
345 snprintf(buf, sizeof(buf), |
|
346 "PrepareRuleSets: %d entries, smin/smax 0x%llx, 0x%llx\n", |
|
347 (int)n, (unsigned long long int)mSummaryMinAddr, |
|
348 (unsigned long long int)mSummaryMaxAddr); |
|
349 buf[sizeof(buf)-1] = 0; |
|
350 mLog(buf); |
|
351 |
|
352 // Is now usable for binary search. |
|
353 mUsable = true; |
|
354 |
|
355 if (0) { |
|
356 mLog("\nRulesets after preening\n"); |
|
357 for (size_t i = 0; i < mRuleSets.size(); ++i) { |
|
358 mRuleSets[i].Print(mLog); |
|
359 mLog("\n"); |
|
360 } |
|
361 mLog("\n"); |
|
362 } |
|
363 } |
|
364 |
|
365 bool SecMap::IsEmpty() { |
|
366 return mRuleSets.empty(); |
|
367 } |
|
368 |
|
369 |
|
370 //////////////////////////////////////////////////////////////// |
|
371 // SegArray // |
|
372 //////////////////////////////////////////////////////////////// |
|
373 |
|
374 // A SegArray holds a set of address ranges that together exactly |
|
375 // cover an address range, with no overlaps or holes. Each range has |
|
376 // an associated value, which in this case has been specialised to be |
|
377 // a simple boolean. The representation is kept to minimal canonical |
|
378 // form in which adjacent ranges with the same associated value are |
|
379 // merged together. Each range is represented by a |struct Seg|. |
|
380 // |
|
381 // SegArrays are used to keep track of which parts of the address |
|
382 // space are known to contain instructions. |
|
383 class SegArray { |
|
384 |
|
385 public: |
|
386 void add(uintptr_t lo, uintptr_t hi, bool val) { |
|
387 if (lo > hi) { |
|
388 return; |
|
389 } |
|
390 split_at(lo); |
|
391 if (hi < UINTPTR_MAX) { |
|
392 split_at(hi+1); |
|
393 } |
|
394 std::vector<Seg>::size_type iLo, iHi, i; |
|
395 iLo = find(lo); |
|
396 iHi = find(hi); |
|
397 for (i = iLo; i <= iHi; ++i) { |
|
398 mSegs[i].val = val; |
|
399 } |
|
400 preen(); |
|
401 } |
|
402 |
|
403 bool getBoundingCodeSegment(/*OUT*/uintptr_t* rx_min, |
|
404 /*OUT*/uintptr_t* rx_max, uintptr_t addr) { |
|
405 std::vector<Seg>::size_type i = find(addr); |
|
406 if (!mSegs[i].val) { |
|
407 return false; |
|
408 } |
|
409 *rx_min = mSegs[i].lo; |
|
410 *rx_max = mSegs[i].hi; |
|
411 return true; |
|
412 } |
|
413 |
|
414 SegArray() { |
|
415 Seg s(0, UINTPTR_MAX, false); |
|
416 mSegs.push_back(s); |
|
417 } |
|
418 |
|
419 private: |
|
420 struct Seg { |
|
421 Seg(uintptr_t lo, uintptr_t hi, bool val) : lo(lo), hi(hi), val(val) {} |
|
422 uintptr_t lo; |
|
423 uintptr_t hi; |
|
424 bool val; |
|
425 }; |
|
426 |
|
427 void preen() { |
|
428 for (std::vector<Seg>::iterator iter = mSegs.begin(); |
|
429 iter < mSegs.end()-1; |
|
430 ++iter) { |
|
431 if (iter[0].val != iter[1].val) { |
|
432 continue; |
|
433 } |
|
434 iter[0].hi = iter[1].hi; |
|
435 mSegs.erase(iter+1); |
|
436 // Back up one, so as not to miss an opportunity to merge |
|
437 // with the entry after this one. |
|
438 --iter; |
|
439 } |
|
440 } |
|
441 |
|
442 std::vector<Seg>::size_type find(uintptr_t a) { |
|
443 long int lo = 0; |
|
444 long int hi = (long int)mSegs.size(); |
|
445 while (true) { |
|
446 // The unsearched space is lo .. hi inclusive. |
|
447 if (lo > hi) { |
|
448 // Not found. This can't happen. |
|
449 return (std::vector<Seg>::size_type)(-1); |
|
450 } |
|
451 long int mid = lo + ((hi - lo) / 2); |
|
452 uintptr_t mid_lo = mSegs[mid].lo; |
|
453 uintptr_t mid_hi = mSegs[mid].hi; |
|
454 if (a < mid_lo) { hi = mid-1; continue; } |
|
455 if (a > mid_hi) { lo = mid+1; continue; } |
|
456 return (std::vector<Seg>::size_type)mid; |
|
457 } |
|
458 } |
|
459 |
|
460 void split_at(uintptr_t a) { |
|
461 std::vector<Seg>::size_type i = find(a); |
|
462 if (mSegs[i].lo == a) { |
|
463 return; |
|
464 } |
|
465 mSegs.insert( mSegs.begin()+i+1, mSegs[i] ); |
|
466 mSegs[i].hi = a-1; |
|
467 mSegs[i+1].lo = a; |
|
468 } |
|
469 |
|
470 void show() { |
|
471 printf("<< %d entries:\n", (int)mSegs.size()); |
|
472 for (std::vector<Seg>::iterator iter = mSegs.begin(); |
|
473 iter < mSegs.end(); |
|
474 ++iter) { |
|
475 printf(" %016llx %016llx %s\n", |
|
476 (unsigned long long int)(*iter).lo, |
|
477 (unsigned long long int)(*iter).hi, |
|
478 (*iter).val ? "true" : "false"); |
|
479 } |
|
480 printf(">>\n"); |
|
481 } |
|
482 |
|
483 std::vector<Seg> mSegs; |
|
484 }; |
|
485 |
|
486 |
|
487 //////////////////////////////////////////////////////////////// |
|
488 // PriMap // |
|
489 //////////////////////////////////////////////////////////////// |
|
490 |
|
491 class PriMap { |
|
492 public: |
|
493 PriMap(void (*aLog)(const char*)) |
|
494 : mLog(aLog) |
|
495 {} |
|
496 |
|
497 ~PriMap() { |
|
498 for (std::vector<SecMap*>::iterator iter = mSecMaps.begin(); |
|
499 iter != mSecMaps.end(); |
|
500 ++iter) { |
|
501 delete *iter; |
|
502 } |
|
503 mSecMaps.clear(); |
|
504 } |
|
505 |
|
506 // This can happen with the global lock held for reading. |
|
507 RuleSet* Lookup(uintptr_t ia) { |
|
508 SecMap* sm = FindSecMap(ia); |
|
509 return sm ? sm->FindRuleSet(ia) : nullptr; |
|
510 } |
|
511 |
|
512 // Add a secondary map. No overlaps allowed w.r.t. existing |
|
513 // secondary maps. Global lock must be held for writing. |
|
514 void AddSecMap(SecMap* aSecMap) { |
|
515 // We can't add an empty SecMap to the PriMap. But that's OK |
|
516 // since we'd never be able to find anything in it anyway. |
|
517 if (aSecMap->IsEmpty()) { |
|
518 return; |
|
519 } |
|
520 |
|
521 // Iterate through the SecMaps and find the right place for this |
|
522 // one. At the same time, ensure that the in-order |
|
523 // non-overlapping invariant is preserved (and, generally, holds). |
|
524 // FIXME: this gives a cost that is O(N^2) in the total number of |
|
525 // shared objects in the system. ToDo: better. |
|
526 MOZ_ASSERT(aSecMap->mSummaryMinAddr <= aSecMap->mSummaryMaxAddr); |
|
527 |
|
528 size_t num_secMaps = mSecMaps.size(); |
|
529 uintptr_t i; |
|
530 for (i = 0; i < num_secMaps; ++i) { |
|
531 SecMap* sm_i = mSecMaps[i]; |
|
532 MOZ_ASSERT(sm_i->mSummaryMinAddr <= sm_i->mSummaryMaxAddr); |
|
533 if (aSecMap->mSummaryMinAddr < sm_i->mSummaryMaxAddr) { |
|
534 // |aSecMap| needs to be inserted immediately before mSecMaps[i]. |
|
535 break; |
|
536 } |
|
537 } |
|
538 MOZ_ASSERT(i <= num_secMaps); |
|
539 if (i == num_secMaps) { |
|
540 // It goes at the end. |
|
541 mSecMaps.push_back(aSecMap); |
|
542 } else { |
|
543 std::vector<SecMap*>::iterator iter = mSecMaps.begin() + i; |
|
544 mSecMaps.insert(iter, aSecMap); |
|
545 } |
|
546 char buf[100]; |
|
547 snprintf(buf, sizeof(buf), "AddSecMap: now have %d SecMaps\n", |
|
548 (int)mSecMaps.size()); |
|
549 buf[sizeof(buf)-1] = 0; |
|
550 mLog(buf); |
|
551 } |
|
552 |
|
553 // Remove and delete any SecMaps in the mapping, that intersect |
|
554 // with the specified address range. |
|
555 void RemoveSecMapsInRange(uintptr_t avma_min, uintptr_t avma_max) { |
|
556 MOZ_ASSERT(avma_min <= avma_max); |
|
557 size_t num_secMaps = mSecMaps.size(); |
|
558 if (num_secMaps > 0) { |
|
559 intptr_t i; |
|
560 // Iterate from end to start over the vector, so as to ensure |
|
561 // that the special case where |avma_min| and |avma_max| denote |
|
562 // the entire address space, can be completed in time proportional |
|
563 // to the number of elements in the map. |
|
564 for (i = (intptr_t)num_secMaps-1; i >= 0; i--) { |
|
565 SecMap* sm_i = mSecMaps[i]; |
|
566 if (sm_i->mSummaryMaxAddr < avma_min || |
|
567 avma_max < sm_i->mSummaryMinAddr) { |
|
568 // There's no overlap. Move on. |
|
569 continue; |
|
570 } |
|
571 // We need to remove mSecMaps[i] and slide all those above it |
|
572 // downwards to cover the hole. |
|
573 mSecMaps.erase(mSecMaps.begin() + i); |
|
574 delete sm_i; |
|
575 } |
|
576 } |
|
577 } |
|
578 |
|
579 // Return the number of currently contained SecMaps. |
|
580 size_t CountSecMaps() { |
|
581 return mSecMaps.size(); |
|
582 } |
|
583 |
|
584 // Assess heuristically whether the given address is an instruction |
|
585 // immediately following a call instruction. The caller is required |
|
586 // to hold the global lock for reading. |
|
587 bool MaybeIsReturnPoint(TaggedUWord aInstrAddr, SegArray* aSegArray) { |
|
588 if (!aInstrAddr.Valid()) { |
|
589 return false; |
|
590 } |
|
591 |
|
592 uintptr_t ia = aInstrAddr.Value(); |
|
593 |
|
594 // Assume that nobody would be crazy enough to put code in the |
|
595 // first or last page. |
|
596 if (ia < 4096 || ((uintptr_t)(-ia)) < 4096) { |
|
597 return false; |
|
598 } |
|
599 |
|
600 // See if it falls inside a known r-x mapped area. Poking around |
|
601 // outside such places risks segfaulting. |
|
602 uintptr_t insns_min, insns_max; |
|
603 bool b = aSegArray->getBoundingCodeSegment(&insns_min, &insns_max, ia); |
|
604 if (!b) { |
|
605 // no code (that we know about) at this address |
|
606 return false; |
|
607 } |
|
608 |
|
609 // |ia| falls within an r-x range. So we can |
|
610 // safely poke around in [insns_min, insns_max]. |
|
611 |
|
612 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
613 // Is the previous instruction recognisably a CALL? This is |
|
614 // common for the 32- and 64-bit versions, except for the |
|
615 // simm32(%rip) case, which is 64-bit only. |
|
616 // |
|
617 // For all other cases, the 64 bit versions are either identical |
|
618 // to the 32 bit versions, or have an optional extra leading REX.W |
|
619 // byte (0x41). Since the extra 0x41 is optional we have to |
|
620 // ignore it, with the convenient result that the same matching |
|
621 // logic works for both 32- and 64-bit cases. |
|
622 |
|
623 uint8_t* p = (uint8_t*)ia; |
|
624 # if defined(LUL_ARCH_x64) |
|
625 // CALL simm32(%rip) == FF15 simm32 |
|
626 if (ia - 6 >= insns_min && p[-6] == 0xFF && p[-5] == 0x15) { |
|
627 return true; |
|
628 } |
|
629 # endif |
|
630 // CALL rel32 == E8 rel32 (both 32- and 64-bit) |
|
631 if (ia - 5 >= insns_min && p[-5] == 0xE8) { |
|
632 return true; |
|
633 } |
|
634 // CALL *%eax .. CALL *%edi == FFD0 .. FFD7 (32-bit) |
|
635 // CALL *%rax .. CALL *%rdi == FFD0 .. FFD7 (64-bit) |
|
636 // CALL *%r8 .. CALL *%r15 == 41FFD0 .. 41FFD7 (64-bit) |
|
637 if (ia - 2 >= insns_min && |
|
638 p[-2] == 0xFF && p[-1] >= 0xD0 && p[-1] <= 0xD7) { |
|
639 return true; |
|
640 } |
|
641 // Almost all of the remaining cases that occur in practice are |
|
642 // of the form CALL *simm8(reg) or CALL *simm32(reg). |
|
643 // |
|
644 // 64 bit cases: |
|
645 // |
|
646 // call *simm8(%rax) FF50 simm8 |
|
647 // call *simm8(%rcx) FF51 simm8 |
|
648 // call *simm8(%rdx) FF52 simm8 |
|
649 // call *simm8(%rbx) FF53 simm8 |
|
650 // call *simm8(%rsp) FF5424 simm8 |
|
651 // call *simm8(%rbp) FF55 simm8 |
|
652 // call *simm8(%rsi) FF56 simm8 |
|
653 // call *simm8(%rdi) FF57 simm8 |
|
654 // |
|
655 // call *simm8(%r8) 41FF50 simm8 |
|
656 // call *simm8(%r9) 41FF51 simm8 |
|
657 // call *simm8(%r10) 41FF52 simm8 |
|
658 // call *simm8(%r11) 41FF53 simm8 |
|
659 // call *simm8(%r12) 41FF5424 simm8 |
|
660 // call *simm8(%r13) 41FF55 simm8 |
|
661 // call *simm8(%r14) 41FF56 simm8 |
|
662 // call *simm8(%r15) 41FF57 simm8 |
|
663 // |
|
664 // call *simm32(%rax) FF90 simm32 |
|
665 // call *simm32(%rcx) FF91 simm32 |
|
666 // call *simm32(%rdx) FF92 simm32 |
|
667 // call *simm32(%rbx) FF93 simm32 |
|
668 // call *simm32(%rsp) FF9424 simm32 |
|
669 // call *simm32(%rbp) FF95 simm32 |
|
670 // call *simm32(%rsi) FF96 simm32 |
|
671 // call *simm32(%rdi) FF97 simm32 |
|
672 // |
|
673 // call *simm32(%r8) 41FF90 simm32 |
|
674 // call *simm32(%r9) 41FF91 simm32 |
|
675 // call *simm32(%r10) 41FF92 simm32 |
|
676 // call *simm32(%r11) 41FF93 simm32 |
|
677 // call *simm32(%r12) 41FF9424 simm32 |
|
678 // call *simm32(%r13) 41FF95 simm32 |
|
679 // call *simm32(%r14) 41FF96 simm32 |
|
680 // call *simm32(%r15) 41FF97 simm32 |
|
681 // |
|
682 // 32 bit cases: |
|
683 // |
|
684 // call *simm8(%eax) FF50 simm8 |
|
685 // call *simm8(%ecx) FF51 simm8 |
|
686 // call *simm8(%edx) FF52 simm8 |
|
687 // call *simm8(%ebx) FF53 simm8 |
|
688 // call *simm8(%esp) FF5424 simm8 |
|
689 // call *simm8(%ebp) FF55 simm8 |
|
690 // call *simm8(%esi) FF56 simm8 |
|
691 // call *simm8(%edi) FF57 simm8 |
|
692 // |
|
693 // call *simm32(%eax) FF90 simm32 |
|
694 // call *simm32(%ecx) FF91 simm32 |
|
695 // call *simm32(%edx) FF92 simm32 |
|
696 // call *simm32(%ebx) FF93 simm32 |
|
697 // call *simm32(%esp) FF9424 simm32 |
|
698 // call *simm32(%ebp) FF95 simm32 |
|
699 // call *simm32(%esi) FF96 simm32 |
|
700 // call *simm32(%edi) FF97 simm32 |
|
701 if (ia - 3 >= insns_min && |
|
702 p[-3] == 0xFF && |
|
703 (p[-2] >= 0x50 && p[-2] <= 0x57 && p[-2] != 0x54)) { |
|
704 // imm8 case, not including %esp/%rsp |
|
705 return true; |
|
706 } |
|
707 if (ia - 4 >= insns_min && |
|
708 p[-4] == 0xFF && p[-3] == 0x54 && p[-2] == 0x24) { |
|
709 // imm8 case for %esp/%rsp |
|
710 return true; |
|
711 } |
|
712 if (ia - 6 >= insns_min && |
|
713 p[-6] == 0xFF && |
|
714 (p[-5] >= 0x90 && p[-5] <= 0x97 && p[-5] != 0x94)) { |
|
715 // imm32 case, not including %esp/%rsp |
|
716 return true; |
|
717 } |
|
718 if (ia - 7 >= insns_min && |
|
719 p[-7] == 0xFF && p[-6] == 0x94 && p[-5] == 0x24) { |
|
720 // imm32 case for %esp/%rsp |
|
721 return true; |
|
722 } |
|
723 |
|
724 #elif defined(LUL_ARCH_arm) |
|
725 if (ia & 1) { |
|
726 uint16_t w0 = 0, w1 = 0; |
|
727 // The return address has its lowest bit set, indicating a return |
|
728 // to Thumb code. |
|
729 ia &= ~(uintptr_t)1; |
|
730 if (ia - 2 >= insns_min && ia - 1 <= insns_max) { |
|
731 w1 = *(uint16_t*)(ia - 2); |
|
732 } |
|
733 if (ia - 4 >= insns_min && ia - 1 <= insns_max) { |
|
734 w0 = *(uint16_t*)(ia - 4); |
|
735 } |
|
736 // Is it a 32-bit Thumb call insn? |
|
737 // BL simm26 (Encoding T1) |
|
738 if ((w0 & 0xF800) == 0xF000 && (w1 & 0xC000) == 0xC000) { |
|
739 return true; |
|
740 } |
|
741 // BLX simm26 (Encoding T2) |
|
742 if ((w0 & 0xF800) == 0xF000 && (w1 & 0xC000) == 0xC000) { |
|
743 return true; |
|
744 } |
|
745 // Other possible cases: |
|
746 // (BLX Rm, Encoding T1). |
|
747 // BLX Rm (encoding T1, 16 bit, inspect w1 and ignore w0.) |
|
748 // 0100 0111 1 Rm 000 |
|
749 } else { |
|
750 // Returning to ARM code. |
|
751 uint32_t a0 = 0; |
|
752 if ((ia & 3) == 0 && ia - 4 >= insns_min && ia - 1 <= insns_max) { |
|
753 a0 = *(uint32_t*)(ia - 4); |
|
754 } |
|
755 // Leading E forces unconditional only -- fix. It could be |
|
756 // anything except F, which is the deprecated NV code. |
|
757 // BL simm26 (Encoding A1) |
|
758 if ((a0 & 0xFF000000) == 0xEB000000) { |
|
759 return true; |
|
760 } |
|
761 // Other possible cases: |
|
762 // BLX simm26 (Encoding A2) |
|
763 //if ((a0 & 0xFE000000) == 0xFA000000) |
|
764 // return true; |
|
765 // BLX (register) (A1): BLX <c> <Rm> |
|
766 // cond 0001 0010 1111 1111 1111 0011 Rm |
|
767 // again, cond can be anything except NV (0xF) |
|
768 } |
|
769 |
|
770 #else |
|
771 # error "Unsupported arch" |
|
772 #endif |
|
773 |
|
774 // Not an insn we recognise. |
|
775 return false; |
|
776 } |
|
777 |
|
778 private: |
|
779 // FindSecMap's caller must hold the global lock for reading or writing. |
|
780 SecMap* FindSecMap(uintptr_t ia) { |
|
781 // Binary search mSecMaps to find one that brackets |ia|. |
|
782 // lo and hi need to be signed, else the loop termination tests |
|
783 // don't work properly. |
|
784 long int lo = 0; |
|
785 long int hi = (long int)mSecMaps.size() - 1; |
|
786 while (true) { |
|
787 // current unsearched space is from lo to hi, inclusive. |
|
788 if (lo > hi) { |
|
789 // not found |
|
790 return nullptr; |
|
791 } |
|
792 long int mid = lo + ((hi - lo) / 2); |
|
793 SecMap* mid_secMap = mSecMaps[mid]; |
|
794 uintptr_t mid_minAddr = mid_secMap->mSummaryMinAddr; |
|
795 uintptr_t mid_maxAddr = mid_secMap->mSummaryMaxAddr; |
|
796 if (ia < mid_minAddr) { hi = mid-1; continue; } |
|
797 if (ia > mid_maxAddr) { lo = mid+1; continue; } |
|
798 MOZ_ASSERT(mid_minAddr <= ia && ia <= mid_maxAddr); |
|
799 return mid_secMap; |
|
800 } |
|
801 // NOTREACHED |
|
802 } |
|
803 |
|
804 private: |
|
805 // sorted array of per-object ranges, non overlapping, non empty |
|
806 std::vector<SecMap*> mSecMaps; |
|
807 |
|
808 // a logging sink, for debugging. |
|
809 void (*mLog)(const char*); |
|
810 }; |
|
811 |
|
812 |
|
813 //////////////////////////////////////////////////////////////// |
|
814 // CFICache // |
|
815 //////////////////////////////////////////////////////////////// |
|
816 |
|
817 // This is the thread-local cache. It maps individual insn AVMAs to |
|
818 // the associated CFI record, which live in LUL::mPriMap. |
|
819 // |
|
820 // The cache is a direct map hash table indexed by address. |
|
821 // It has to distinguish 3 cases: |
|
822 // |
|
823 // (1) .mRSet == (RuleSet*)0 ==> cache slot not in use |
|
824 // (2) .mRSet == (RuleSet*)1 ==> slot in use, no RuleSet avail |
|
825 // (3) .mRSet > (RuleSet*)1 ==> slot in use, RuleSet* available |
|
826 // |
|
827 // Distinguishing between (2) and (3) is important, because if we look |
|
828 // up an address in LUL::mPriMap and find there is no RuleSet, then |
|
829 // that fact needs to cached here, so as to avoid potentially |
|
830 // expensive repeat lookups. |
|
831 |
|
832 // A CFICacheEntry::mRSet value of zero indicates that the slot is not |
|
833 // in use, and a value of one indicates that the slot is in use but |
|
834 // there is no RuleSet available. |
|
835 #define ENTRY_NOT_IN_USE ((RuleSet*)0) |
|
836 #define NO_RULESET_AVAILABLE ((RuleSet*)1) |
|
837 |
|
838 class CFICache { |
|
839 public: |
|
840 |
|
841 CFICache(PriMap* aPriMap) { |
|
842 Invalidate(); |
|
843 mPriMap = aPriMap; |
|
844 } |
|
845 |
|
846 void Invalidate() { |
|
847 for (int i = 0; i < N_ENTRIES; ++i) { |
|
848 mCache[i].mAVMA = 0; |
|
849 mCache[i].mRSet = ENTRY_NOT_IN_USE; |
|
850 } |
|
851 } |
|
852 |
|
853 RuleSet* Lookup(uintptr_t ia) { |
|
854 uintptr_t hash = ia % (uintptr_t)N_ENTRIES; |
|
855 CFICacheEntry* ce = &mCache[hash]; |
|
856 if (ce->mAVMA == ia) { |
|
857 // The cache has an entry for |ia|. Interpret it. |
|
858 if (ce->mRSet > NO_RULESET_AVAILABLE) { |
|
859 // There's a RuleSet. So return it. |
|
860 return ce->mRSet; |
|
861 } |
|
862 if (ce->mRSet == NO_RULESET_AVAILABLE) { |
|
863 // There's no RuleSet for this address. Don't update |
|
864 // the cache, since we might get queried again. |
|
865 return nullptr; |
|
866 } |
|
867 // Otherwise, the slot is not in use. Fall through to |
|
868 // the 'miss' case. |
|
869 } |
|
870 |
|
871 // The cache entry is for some other address, or is not in use. |
|
872 // Update it. If it can be found in the priMap then install it |
|
873 // as-is. Else put NO_RULESET_AVAILABLE in, so as to indicate |
|
874 // there's no info for this address. |
|
875 RuleSet* fallback = mPriMap->Lookup(ia); |
|
876 mCache[hash].mAVMA = ia; |
|
877 mCache[hash].mRSet = fallback ? fallback : NO_RULESET_AVAILABLE; |
|
878 return fallback; |
|
879 } |
|
880 |
|
881 private: |
|
882 // This should be a prime number. |
|
883 static const int N_ENTRIES = 509; |
|
884 |
|
885 // See comment above for the meaning of these entries. |
|
886 struct CFICacheEntry { |
|
887 uintptr_t mAVMA; // AVMA of the associated instruction |
|
888 RuleSet* mRSet; // RuleSet* for the instruction |
|
889 }; |
|
890 CFICacheEntry mCache[N_ENTRIES]; |
|
891 |
|
892 // Need to have a pointer to the PriMap, so as to be able |
|
893 // to service misses. |
|
894 PriMap* mPriMap; |
|
895 }; |
|
896 |
|
897 #undef ENTRY_NOT_IN_USE |
|
898 #undef NO_RULESET_AVAILABLE |
|
899 |
|
900 |
|
901 //////////////////////////////////////////////////////////////// |
|
902 // LUL // |
|
903 //////////////////////////////////////////////////////////////// |
|
904 |
|
905 LUL::LUL(void (*aLog)(const char*)) |
|
906 { |
|
907 mRWlock = new LulRWLock(); |
|
908 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
909 mLog = aLog; |
|
910 mPriMap = new PriMap(aLog); |
|
911 mSegArray = new SegArray(); |
|
912 } |
|
913 |
|
914 |
|
915 LUL::~LUL() |
|
916 { |
|
917 // The auto-locked section must have its own scope, so that the |
|
918 // unlock is performed before the mRWLock is deleted. |
|
919 { |
|
920 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
921 for (std::map<pthread_t,CFICache*>::iterator iter = mCaches.begin(); |
|
922 iter != mCaches.end(); |
|
923 ++iter) { |
|
924 delete iter->second; |
|
925 } |
|
926 delete mPriMap; |
|
927 delete mSegArray; |
|
928 mLog = nullptr; |
|
929 } |
|
930 // Now we don't hold the lock. Hence it is safe to delete it. |
|
931 delete mRWlock; |
|
932 } |
|
933 |
|
934 |
|
935 void |
|
936 LUL::RegisterUnwinderThread() |
|
937 { |
|
938 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
939 |
|
940 pthread_t me = pthread_self(); |
|
941 CFICache* cache = new CFICache(mPriMap); |
|
942 |
|
943 std::pair<std::map<pthread_t,CFICache*>::iterator, bool> res |
|
944 = mCaches.insert(std::pair<pthread_t,CFICache*>(me, cache)); |
|
945 // "this thread is not already registered" |
|
946 MOZ_ASSERT(res.second); // "new element was inserted" |
|
947 // Using mozilla::DebugOnly to declare |res| leads to compilation error |
|
948 (void)res.second; |
|
949 } |
|
950 |
|
951 void |
|
952 LUL::NotifyAfterMap(uintptr_t aRXavma, size_t aSize, |
|
953 const char* aFileName, const void* aMappedImage) |
|
954 { |
|
955 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
956 |
|
957 mLog(":\n"); |
|
958 char buf[200]; |
|
959 snprintf(buf, sizeof(buf), "NotifyMap %llx %llu %s\n", |
|
960 (unsigned long long int)aRXavma, (unsigned long long int)aSize, |
|
961 aFileName); |
|
962 buf[sizeof(buf)-1] = 0; |
|
963 mLog(buf); |
|
964 |
|
965 InvalidateCFICaches(); |
|
966 |
|
967 // Ignore obviously-stupid notifications. |
|
968 if (aSize > 0) { |
|
969 |
|
970 // Here's a new mapping, for this object. |
|
971 SecMap* smap = new SecMap(mLog); |
|
972 |
|
973 // Read CFI or EXIDX unwind data into |smap|. |
|
974 if (!aMappedImage) { |
|
975 (void)lul::ReadSymbolData( |
|
976 string(aFileName), std::vector<string>(), smap, |
|
977 (void*)aRXavma, mLog); |
|
978 } else { |
|
979 (void)lul::ReadSymbolDataInternal( |
|
980 (const uint8_t*)aMappedImage, |
|
981 string(aFileName), std::vector<string>(), smap, |
|
982 (void*)aRXavma, mLog); |
|
983 } |
|
984 |
|
985 mLog("NotifyMap .. preparing entries\n"); |
|
986 |
|
987 smap->PrepareRuleSets(aRXavma, aSize); |
|
988 |
|
989 snprintf(buf, sizeof(buf), |
|
990 "NotifyMap got %lld entries\n", (long long int)smap->Size()); |
|
991 buf[sizeof(buf)-1] = 0; |
|
992 mLog(buf); |
|
993 |
|
994 // Add it to the primary map (the top level set of mapped objects). |
|
995 mPriMap->AddSecMap(smap); |
|
996 |
|
997 // Tell the segment array about the mapping, so that the stack |
|
998 // scan and __kernel_syscall mechanisms know where valid code is. |
|
999 mSegArray->add(aRXavma, aRXavma + aSize - 1, true); |
|
1000 } |
|
1001 } |
|
1002 |
|
1003 |
|
1004 void |
|
1005 LUL::NotifyExecutableArea(uintptr_t aRXavma, size_t aSize) |
|
1006 { |
|
1007 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
1008 |
|
1009 mLog(":\n"); |
|
1010 char buf[200]; |
|
1011 snprintf(buf, sizeof(buf), "NotifyExecutableArea %llx %llu\n", |
|
1012 (unsigned long long int)aRXavma, (unsigned long long int)aSize); |
|
1013 buf[sizeof(buf)-1] = 0; |
|
1014 mLog(buf); |
|
1015 |
|
1016 InvalidateCFICaches(); |
|
1017 |
|
1018 // Ignore obviously-stupid notifications. |
|
1019 if (aSize > 0) { |
|
1020 // Tell the segment array about the mapping, so that the stack |
|
1021 // scan and __kernel_syscall mechanisms know where valid code is. |
|
1022 mSegArray->add(aRXavma, aRXavma + aSize - 1, true); |
|
1023 } |
|
1024 } |
|
1025 |
|
1026 |
|
1027 void |
|
1028 LUL::NotifyBeforeUnmap(uintptr_t aRXavmaMin, uintptr_t aRXavmaMax) |
|
1029 { |
|
1030 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
1031 |
|
1032 mLog(":\n"); |
|
1033 char buf[100]; |
|
1034 snprintf(buf, sizeof(buf), "NotifyUnmap %016llx-%016llx\n", |
|
1035 (unsigned long long int)aRXavmaMin, |
|
1036 (unsigned long long int)aRXavmaMax); |
|
1037 buf[sizeof(buf)-1] = 0; |
|
1038 mLog(buf); |
|
1039 |
|
1040 MOZ_ASSERT(aRXavmaMin <= aRXavmaMax); |
|
1041 |
|
1042 InvalidateCFICaches(); |
|
1043 |
|
1044 // Remove from the primary map, any secondary maps that intersect |
|
1045 // with the address range. Also delete the secondary maps. |
|
1046 mPriMap->RemoveSecMapsInRange(aRXavmaMin, aRXavmaMax); |
|
1047 |
|
1048 // Tell the segment array that the address range no longer |
|
1049 // contains valid code. |
|
1050 mSegArray->add(aRXavmaMin, aRXavmaMax, false); |
|
1051 |
|
1052 snprintf(buf, sizeof(buf), "NotifyUnmap: now have %d SecMaps\n", |
|
1053 (int)mPriMap->CountSecMaps()); |
|
1054 buf[sizeof(buf)-1] = 0; |
|
1055 mLog(buf); |
|
1056 } |
|
1057 |
|
1058 |
|
1059 size_t |
|
1060 LUL::CountMappings() |
|
1061 { |
|
1062 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_WRITING); |
|
1063 return mPriMap->CountSecMaps(); |
|
1064 } |
|
1065 |
|
1066 |
|
1067 static |
|
1068 TaggedUWord DerefTUW(TaggedUWord aAddr, StackImage* aStackImg) |
|
1069 { |
|
1070 if (!aAddr.Valid()) { |
|
1071 return TaggedUWord(); |
|
1072 } |
|
1073 if (aAddr.Value() < aStackImg->mStartAvma) { |
|
1074 return TaggedUWord(); |
|
1075 } |
|
1076 if (aAddr.Value() + sizeof(uintptr_t) > aStackImg->mStartAvma |
|
1077 + aStackImg->mLen) { |
|
1078 return TaggedUWord(); |
|
1079 } |
|
1080 return TaggedUWord(*(uintptr_t*)(aStackImg->mContents + aAddr.Value() |
|
1081 - aStackImg->mStartAvma)); |
|
1082 } |
|
1083 |
|
1084 static |
|
1085 TaggedUWord EvaluateReg(int16_t aReg, UnwindRegs* aOldRegs, TaggedUWord aCFA) |
|
1086 { |
|
1087 switch (aReg) { |
|
1088 case DW_REG_CFA: return aCFA; |
|
1089 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
1090 case DW_REG_INTEL_XBP: return aOldRegs->xbp; |
|
1091 case DW_REG_INTEL_XSP: return aOldRegs->xsp; |
|
1092 case DW_REG_INTEL_XIP: return aOldRegs->xip; |
|
1093 #elif defined(LUL_ARCH_arm) |
|
1094 case DW_REG_ARM_R7: return aOldRegs->r7; |
|
1095 case DW_REG_ARM_R11: return aOldRegs->r11; |
|
1096 case DW_REG_ARM_R12: return aOldRegs->r12; |
|
1097 case DW_REG_ARM_R13: return aOldRegs->r13; |
|
1098 case DW_REG_ARM_R14: return aOldRegs->r14; |
|
1099 case DW_REG_ARM_R15: return aOldRegs->r15; |
|
1100 #else |
|
1101 # error "Unsupported arch" |
|
1102 #endif |
|
1103 default: MOZ_ASSERT(0); return TaggedUWord(); |
|
1104 } |
|
1105 } |
|
1106 |
|
1107 static |
|
1108 TaggedUWord EvaluateExpr(LExpr aExpr, UnwindRegs* aOldRegs, |
|
1109 TaggedUWord aCFA, StackImage* aStackImg) |
|
1110 { |
|
1111 switch (aExpr.mHow) { |
|
1112 case LExpr::UNKNOWN: |
|
1113 return TaggedUWord(); |
|
1114 case LExpr::NODEREF: { |
|
1115 TaggedUWord tuw = EvaluateReg(aExpr.mReg, aOldRegs, aCFA); |
|
1116 tuw.Add(TaggedUWord((intptr_t)aExpr.mOffset)); |
|
1117 return tuw; |
|
1118 } |
|
1119 case LExpr::DEREF: { |
|
1120 TaggedUWord tuw = EvaluateReg(aExpr.mReg, aOldRegs, aCFA); |
|
1121 tuw.Add(TaggedUWord((intptr_t)aExpr.mOffset)); |
|
1122 return DerefTUW(tuw, aStackImg); |
|
1123 } |
|
1124 default: |
|
1125 MOZ_ASSERT(0); |
|
1126 return TaggedUWord(); |
|
1127 } |
|
1128 } |
|
1129 |
|
1130 static |
|
1131 void UseRuleSet(/*MOD*/UnwindRegs* aRegs, |
|
1132 StackImage* aStackImg, RuleSet* aRS) |
|
1133 { |
|
1134 // Take a copy of regs, since we'll need to refer to the old values |
|
1135 // whilst computing the new ones. |
|
1136 UnwindRegs old_regs = *aRegs; |
|
1137 |
|
1138 // Mark all the current register values as invalid, so that the |
|
1139 // caller can see, on our return, which ones have been computed |
|
1140 // anew. If we don't even manage to compute a new PC value, then |
|
1141 // the caller will have to abandon the unwind. |
|
1142 // FIXME: Create and use instead: aRegs->SetAllInvalid(); |
|
1143 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
1144 aRegs->xbp = TaggedUWord(); |
|
1145 aRegs->xsp = TaggedUWord(); |
|
1146 aRegs->xip = TaggedUWord(); |
|
1147 #elif defined(LUL_ARCH_arm) |
|
1148 aRegs->r7 = TaggedUWord(); |
|
1149 aRegs->r11 = TaggedUWord(); |
|
1150 aRegs->r12 = TaggedUWord(); |
|
1151 aRegs->r13 = TaggedUWord(); |
|
1152 aRegs->r14 = TaggedUWord(); |
|
1153 aRegs->r15 = TaggedUWord(); |
|
1154 #else |
|
1155 # error "Unsupported arch" |
|
1156 #endif |
|
1157 |
|
1158 // This is generally useful. |
|
1159 const TaggedUWord inval = TaggedUWord(); |
|
1160 |
|
1161 // First, compute the CFA. |
|
1162 TaggedUWord cfa = EvaluateExpr(aRS->mCfaExpr, &old_regs, |
|
1163 inval/*old cfa*/, aStackImg); |
|
1164 |
|
1165 // If we didn't manage to compute the CFA, well .. that's ungood, |
|
1166 // but keep going anyway. It'll be OK provided none of the register |
|
1167 // value rules mention the CFA. In any case, compute the new values |
|
1168 // for each register that we're tracking. |
|
1169 |
|
1170 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
1171 aRegs->xbp = EvaluateExpr(aRS->mXbpExpr, &old_regs, cfa, aStackImg); |
|
1172 aRegs->xsp = EvaluateExpr(aRS->mXspExpr, &old_regs, cfa, aStackImg); |
|
1173 aRegs->xip = EvaluateExpr(aRS->mXipExpr, &old_regs, cfa, aStackImg); |
|
1174 #elif defined(LUL_ARCH_arm) |
|
1175 aRegs->r7 = EvaluateExpr(aRS->mR7expr, &old_regs, cfa, aStackImg); |
|
1176 aRegs->r11 = EvaluateExpr(aRS->mR11expr, &old_regs, cfa, aStackImg); |
|
1177 aRegs->r12 = EvaluateExpr(aRS->mR12expr, &old_regs, cfa, aStackImg); |
|
1178 aRegs->r13 = EvaluateExpr(aRS->mR13expr, &old_regs, cfa, aStackImg); |
|
1179 aRegs->r14 = EvaluateExpr(aRS->mR14expr, &old_regs, cfa, aStackImg); |
|
1180 aRegs->r15 = EvaluateExpr(aRS->mR15expr, &old_regs, cfa, aStackImg); |
|
1181 #else |
|
1182 # error "Unsupported arch" |
|
1183 #endif |
|
1184 |
|
1185 // We're done. Any regs for which we didn't manage to compute a |
|
1186 // new value will now be marked as invalid. |
|
1187 } |
|
1188 |
|
1189 void |
|
1190 LUL::Unwind(/*OUT*/uintptr_t* aFramePCs, |
|
1191 /*OUT*/uintptr_t* aFrameSPs, |
|
1192 /*OUT*/size_t* aFramesUsed, |
|
1193 /*OUT*/size_t* aScannedFramesAcquired, |
|
1194 size_t aFramesAvail, |
|
1195 size_t aScannedFramesAllowed, |
|
1196 UnwindRegs* aStartRegs, StackImage* aStackImg) |
|
1197 { |
|
1198 AutoLulRWLocker lock(mRWlock, AutoLulRWLocker::FOR_READING); |
|
1199 |
|
1200 pthread_t me = pthread_self(); |
|
1201 std::map<pthread_t, CFICache*>::iterator iter = mCaches.find(me); |
|
1202 |
|
1203 if (iter == mCaches.end()) { |
|
1204 // The calling thread is not registered for unwinding. |
|
1205 MOZ_CRASH(); |
|
1206 return; |
|
1207 } |
|
1208 |
|
1209 CFICache* cache = iter->second; |
|
1210 MOZ_ASSERT(cache); |
|
1211 |
|
1212 // Do unwindery, possibly modifying |cache|. |
|
1213 |
|
1214 ///////////////////////////////////////////////////////// |
|
1215 // BEGIN UNWIND |
|
1216 |
|
1217 *aFramesUsed = 0; |
|
1218 |
|
1219 UnwindRegs regs = *aStartRegs; |
|
1220 TaggedUWord last_valid_sp = TaggedUWord(); |
|
1221 |
|
1222 // Stack-scan control |
|
1223 unsigned int n_scanned_frames = 0; // # s-s frames recovered so far |
|
1224 static const int NUM_SCANNED_WORDS = 50; // max allowed scan length |
|
1225 |
|
1226 while (true) { |
|
1227 |
|
1228 if (DEBUG_MAIN) { |
|
1229 char buf[300]; |
|
1230 mLog("\n"); |
|
1231 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
1232 snprintf(buf, sizeof(buf), |
|
1233 "LoopTop: rip %d/%llx rsp %d/%llx rbp %d/%llx\n", |
|
1234 (int)regs.xip.Valid(), (unsigned long long int)regs.xip.Value(), |
|
1235 (int)regs.xsp.Valid(), (unsigned long long int)regs.xsp.Value(), |
|
1236 (int)regs.xbp.Valid(), (unsigned long long int)regs.xbp.Value()); |
|
1237 buf[sizeof(buf)-1] = 0; |
|
1238 mLog(buf); |
|
1239 #elif defined(LUL_ARCH_arm) |
|
1240 snprintf(buf, sizeof(buf), |
|
1241 "LoopTop: r15 %d/%llx r7 %d/%llx r11 %d/%llx" |
|
1242 " r12 %d/%llx r13 %d/%llx r14 %d/%llx\n", |
|
1243 (int)regs.r15.Valid(), (unsigned long long int)regs.r15.Value(), |
|
1244 (int)regs.r7.Valid(), (unsigned long long int)regs.r7.Value(), |
|
1245 (int)regs.r11.Valid(), (unsigned long long int)regs.r11.Value(), |
|
1246 (int)regs.r12.Valid(), (unsigned long long int)regs.r12.Value(), |
|
1247 (int)regs.r13.Valid(), (unsigned long long int)regs.r13.Value(), |
|
1248 (int)regs.r14.Valid(), (unsigned long long int)regs.r14.Value()); |
|
1249 buf[sizeof(buf)-1] = 0; |
|
1250 mLog(buf); |
|
1251 #else |
|
1252 # error "Unsupported arch" |
|
1253 #endif |
|
1254 } |
|
1255 |
|
1256 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
1257 TaggedUWord ia = regs.xip; |
|
1258 TaggedUWord sp = regs.xsp; |
|
1259 #elif defined(LUL_ARCH_arm) |
|
1260 TaggedUWord ia = (*aFramesUsed == 0 ? regs.r15 : regs.r14); |
|
1261 TaggedUWord sp = regs.r13; |
|
1262 #else |
|
1263 # error "Unsupported arch" |
|
1264 #endif |
|
1265 |
|
1266 if (*aFramesUsed >= aFramesAvail) { |
|
1267 break; |
|
1268 } |
|
1269 |
|
1270 // If we don't have a valid value for the PC, give up. |
|
1271 if (!ia.Valid()) { |
|
1272 break; |
|
1273 } |
|
1274 |
|
1275 // If this is the innermost frame, record the SP value, which |
|
1276 // presumably is valid. If this isn't the innermost frame, and we |
|
1277 // have a valid SP value, check that its SP value isn't less that |
|
1278 // the one we've seen so far, so as to catch potential SP value |
|
1279 // cycles. |
|
1280 if (*aFramesUsed == 0) { |
|
1281 last_valid_sp = sp; |
|
1282 } else { |
|
1283 MOZ_ASSERT(last_valid_sp.Valid()); |
|
1284 if (sp.Valid()) { |
|
1285 if (sp.Value() < last_valid_sp.Value()) { |
|
1286 // Hmm, SP going in the wrong direction. Let's stop. |
|
1287 break; |
|
1288 } |
|
1289 // Remember where we got to. |
|
1290 last_valid_sp = sp; |
|
1291 } |
|
1292 } |
|
1293 |
|
1294 // For the innermost frame, the IA value is what we need. For all |
|
1295 // other frames, it's actually the return address, so back up one |
|
1296 // byte so as to get it into the calling instruction. |
|
1297 aFramePCs[*aFramesUsed] = ia.Value() - (*aFramesUsed == 0 ? 0 : 1); |
|
1298 aFrameSPs[*aFramesUsed] = sp.Valid() ? sp.Value() : 0; |
|
1299 (*aFramesUsed)++; |
|
1300 |
|
1301 // Find the RuleSet for the current IA, if any. This will also |
|
1302 // query the backing (secondary) maps if it isn't found in the |
|
1303 // thread-local cache. |
|
1304 |
|
1305 // If this isn't the innermost frame, back up into the calling insn. |
|
1306 if (*aFramesUsed > 1) { |
|
1307 ia.Add(TaggedUWord((uintptr_t)(-1))); |
|
1308 } |
|
1309 |
|
1310 RuleSet* ruleset = cache->Lookup(ia.Value()); |
|
1311 if (DEBUG_MAIN) { |
|
1312 char buf[100]; |
|
1313 snprintf(buf, sizeof(buf), "ruleset for 0x%llx = %p\n", |
|
1314 (unsigned long long int)ia.Value(), ruleset); |
|
1315 buf[sizeof(buf)-1] = 0; |
|
1316 mLog(buf); |
|
1317 } |
|
1318 |
|
1319 ///////////////////////////////////////////// |
|
1320 //// |
|
1321 // On 32 bit x86-linux, syscalls are often done via the VDSO |
|
1322 // function __kernel_vsyscall, which doesn't have a corresponding |
|
1323 // object that we can read debuginfo from. That effectively kills |
|
1324 // off all stack traces for threads blocked in syscalls. Hence |
|
1325 // special-case by looking at the code surrounding the program |
|
1326 // counter. |
|
1327 // |
|
1328 // 0xf7757420 <__kernel_vsyscall+0>: push %ecx |
|
1329 // 0xf7757421 <__kernel_vsyscall+1>: push %edx |
|
1330 // 0xf7757422 <__kernel_vsyscall+2>: push %ebp |
|
1331 // 0xf7757423 <__kernel_vsyscall+3>: mov %esp,%ebp |
|
1332 // 0xf7757425 <__kernel_vsyscall+5>: sysenter |
|
1333 // 0xf7757427 <__kernel_vsyscall+7>: nop |
|
1334 // 0xf7757428 <__kernel_vsyscall+8>: nop |
|
1335 // 0xf7757429 <__kernel_vsyscall+9>: nop |
|
1336 // 0xf775742a <__kernel_vsyscall+10>: nop |
|
1337 // 0xf775742b <__kernel_vsyscall+11>: nop |
|
1338 // 0xf775742c <__kernel_vsyscall+12>: nop |
|
1339 // 0xf775742d <__kernel_vsyscall+13>: nop |
|
1340 // 0xf775742e <__kernel_vsyscall+14>: int $0x80 |
|
1341 // 0xf7757430 <__kernel_vsyscall+16>: pop %ebp |
|
1342 // 0xf7757431 <__kernel_vsyscall+17>: pop %edx |
|
1343 // 0xf7757432 <__kernel_vsyscall+18>: pop %ecx |
|
1344 // 0xf7757433 <__kernel_vsyscall+19>: ret |
|
1345 // |
|
1346 // In cases where the sampled thread is blocked in a syscall, its |
|
1347 // program counter will point at "pop %ebp". Hence we look for |
|
1348 // the sequence "int $0x80; pop %ebp; pop %edx; pop %ecx; ret", and |
|
1349 // the corresponding register-recovery actions are: |
|
1350 // new_ebp = *(old_esp + 0) |
|
1351 // new eip = *(old_esp + 12) |
|
1352 // new_esp = old_esp + 16 |
|
1353 // |
|
1354 // It may also be the case that the program counter points two |
|
1355 // nops before the "int $0x80", viz, is __kernel_vsyscall+12, in |
|
1356 // the case where the syscall has been restarted but the thread |
|
1357 // hasn't been rescheduled. The code below doesn't handle that; |
|
1358 // it could easily be made to. |
|
1359 // |
|
1360 #if defined(LUL_PLAT_x86_android) || defined(LUL_PLAT_x86_linux) |
|
1361 if (!ruleset && *aFramesUsed == 1 && ia.Valid() && sp.Valid()) { |
|
1362 uintptr_t insns_min, insns_max; |
|
1363 uintptr_t eip = ia.Value(); |
|
1364 bool b = mSegArray->getBoundingCodeSegment(&insns_min, &insns_max, eip); |
|
1365 if (b && eip - 2 >= insns_min && eip + 3 <= insns_max) { |
|
1366 uint8_t* eipC = (uint8_t*)eip; |
|
1367 if (eipC[-2] == 0xCD && eipC[-1] == 0x80 && eipC[0] == 0x5D && |
|
1368 eipC[1] == 0x5A && eipC[2] == 0x59 && eipC[3] == 0xC3) { |
|
1369 TaggedUWord sp_plus_0 = sp; |
|
1370 TaggedUWord sp_plus_12 = sp; |
|
1371 TaggedUWord sp_plus_16 = sp; |
|
1372 sp_plus_12.Add(TaggedUWord(12)); |
|
1373 sp_plus_16.Add(TaggedUWord(16)); |
|
1374 TaggedUWord new_ebp = DerefTUW(sp_plus_0, aStackImg); |
|
1375 TaggedUWord new_eip = DerefTUW(sp_plus_12, aStackImg); |
|
1376 TaggedUWord new_esp = sp_plus_16; |
|
1377 if (new_ebp.Valid() && new_eip.Valid() && new_esp.Valid()) { |
|
1378 regs.xbp = new_ebp; |
|
1379 regs.xip = new_eip; |
|
1380 regs.xsp = new_esp; |
|
1381 continue; |
|
1382 } |
|
1383 } |
|
1384 } |
|
1385 } |
|
1386 #endif |
|
1387 //// |
|
1388 ///////////////////////////////////////////// |
|
1389 |
|
1390 // So, do we have a ruleset for this address? If so, use it now. |
|
1391 if (ruleset) { |
|
1392 |
|
1393 if (DEBUG_MAIN) { |
|
1394 ruleset->Print(mLog); mLog("\n"); |
|
1395 } |
|
1396 // Use the RuleSet to compute the registers for the previous |
|
1397 // frame. |regs| is modified in-place. |
|
1398 UseRuleSet(®s, aStackImg, ruleset); |
|
1399 |
|
1400 } else { |
|
1401 |
|
1402 // There's no RuleSet for the specified address, so see if |
|
1403 // it's possible to get anywhere by stack-scanning. |
|
1404 |
|
1405 // Use stack scanning frugally. |
|
1406 if (n_scanned_frames++ >= aScannedFramesAllowed) { |
|
1407 break; |
|
1408 } |
|
1409 |
|
1410 // We can't scan the stack without a valid, aligned stack pointer. |
|
1411 if (!sp.IsAligned()) { |
|
1412 break; |
|
1413 } |
|
1414 |
|
1415 bool scan_succeeded = false; |
|
1416 for (int i = 0; i < NUM_SCANNED_WORDS; ++i) { |
|
1417 TaggedUWord aWord = DerefTUW(sp, aStackImg); |
|
1418 // aWord is something we fished off the stack. It should be |
|
1419 // valid, unless we overran the stack bounds. |
|
1420 if (!aWord.Valid()) { |
|
1421 break; |
|
1422 } |
|
1423 |
|
1424 // Now, does aWord point inside a text section and immediately |
|
1425 // after something that looks like a call instruction? |
|
1426 if (mPriMap->MaybeIsReturnPoint(aWord, mSegArray)) { |
|
1427 // Yes it does. Update the unwound registers heuristically, |
|
1428 // using the same schemes as Breakpad does. |
|
1429 scan_succeeded = true; |
|
1430 (*aScannedFramesAcquired)++; |
|
1431 |
|
1432 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
1433 // The same logic applies for the 32- and 64-bit cases. |
|
1434 // Register names of the form xsp etc refer to (eg) esp in |
|
1435 // the 32-bit case and rsp in the 64-bit case. |
|
1436 # if defined(LUL_ARCH_x64) |
|
1437 const int wordSize = 8; |
|
1438 # else |
|
1439 const int wordSize = 4; |
|
1440 # endif |
|
1441 // The return address -- at XSP -- will have been pushed by |
|
1442 // the CALL instruction. So the caller's XSP value |
|
1443 // immediately before and after that CALL instruction is the |
|
1444 // word above XSP. |
|
1445 regs.xsp = sp; |
|
1446 regs.xsp.Add(TaggedUWord(wordSize)); |
|
1447 |
|
1448 // aWord points at the return point, so back up one byte |
|
1449 // to put it in the calling instruction. |
|
1450 regs.xip = aWord; |
|
1451 regs.xip.Add(TaggedUWord((uintptr_t)(-1))); |
|
1452 |
|
1453 // Computing a new value from the frame pointer is more tricky. |
|
1454 if (regs.xbp.Valid() && |
|
1455 sp.Valid() && regs.xbp.Value() == sp.Value() - wordSize) { |
|
1456 // One possibility is that the callee begins with the standard |
|
1457 // preamble "push %xbp; mov %xsp, %xbp". In which case, the |
|
1458 // (1) caller's XBP value will be at the word below XSP, and |
|
1459 // (2) the current (callee's) XBP will point at that word: |
|
1460 regs.xbp = DerefTUW(regs.xbp, aStackImg); |
|
1461 } else if (regs.xbp.Valid() && |
|
1462 sp.Valid() && regs.xbp.Value() >= sp.Value() + wordSize) { |
|
1463 // If that didn't work out, maybe the callee didn't change |
|
1464 // XBP, so it still holds the caller's value. For that to |
|
1465 // be plausible, XBP will need to have a value at least |
|
1466 // higher than XSP since that holds the purported return |
|
1467 // address. In which case do nothing, since XBP already |
|
1468 // holds the "right" value. |
|
1469 } else { |
|
1470 // Mark XBP as invalid, so that subsequent unwind iterations |
|
1471 // don't assume it holds valid data. |
|
1472 regs.xbp = TaggedUWord(); |
|
1473 } |
|
1474 |
|
1475 // Move on to the next word up the stack |
|
1476 sp.Add(TaggedUWord(wordSize)); |
|
1477 |
|
1478 #elif defined(LUL_ARCH_arm) |
|
1479 // Set all registers to be undefined, except for SP(R13) and |
|
1480 // PC(R15). |
|
1481 |
|
1482 // aWord points either at the return point, if returning to |
|
1483 // ARM code, or one insn past the return point if returning |
|
1484 // to Thumb code. In both cases, aWord-2 is guaranteed to |
|
1485 // fall within the calling instruction. |
|
1486 regs.r15 = aWord; |
|
1487 regs.r15.Add(TaggedUWord((uintptr_t)(-2))); |
|
1488 |
|
1489 // Make SP be the word above the location where the return |
|
1490 // address was found. |
|
1491 regs.r13 = sp; |
|
1492 regs.r13.Add(TaggedUWord(4)); |
|
1493 |
|
1494 // All other regs are undefined. |
|
1495 regs.r7 = regs.r11 = regs.r12 = regs.r14 = TaggedUWord(); |
|
1496 |
|
1497 // Move on to the next word up the stack |
|
1498 sp.Add(TaggedUWord(4)); |
|
1499 |
|
1500 #else |
|
1501 # error "Unknown plat" |
|
1502 #endif |
|
1503 |
|
1504 break; |
|
1505 } |
|
1506 |
|
1507 } // for (int i = 0; i < NUM_SCANNED_WORDS; i++) |
|
1508 |
|
1509 // We tried to make progress by scanning the stack, but failed. |
|
1510 // So give up -- fall out of the top level unwind loop. |
|
1511 if (!scan_succeeded) { |
|
1512 break; |
|
1513 } |
|
1514 } |
|
1515 |
|
1516 } // top level unwind loop |
|
1517 |
|
1518 // END UNWIND |
|
1519 ///////////////////////////////////////////////////////// |
|
1520 } |
|
1521 |
|
1522 |
|
1523 void |
|
1524 LUL::InvalidateCFICaches() |
|
1525 { |
|
1526 // NB: the caller must hold m_rwl for writing. |
|
1527 |
|
1528 // FIXME: this could get expensive. Use a bool to remember when the |
|
1529 // caches have been invalidated and hence avoid duplicate invalidations. |
|
1530 for (std::map<pthread_t,CFICache*>::iterator iter = mCaches.begin(); |
|
1531 iter != mCaches.end(); |
|
1532 ++iter) { |
|
1533 iter->second->Invalidate(); |
|
1534 } |
|
1535 } |
|
1536 |
|
1537 |
|
1538 //////////////////////////////////////////////////////////////// |
|
1539 // LUL Unit Testing // |
|
1540 //////////////////////////////////////////////////////////////// |
|
1541 |
|
1542 static const int LUL_UNIT_TEST_STACK_SIZE = 16384; |
|
1543 |
|
1544 // This function is innermost in the test call sequence. It uses LUL |
|
1545 // to unwind, and compares the result with the sequence specified in |
|
1546 // the director string. These need to agree in order for the test to |
|
1547 // pass. In order not to screw up the results, this function needs |
|
1548 // to have a not-very big stack frame, since we're only presenting |
|
1549 // the innermost LUL_UNIT_TEST_STACK_SIZE bytes of stack to LUL, and |
|
1550 // that chunk unavoidably includes the frame for this function. |
|
1551 // |
|
1552 // This function must not be inlined into its callers. Doing so will |
|
1553 // cause the expected-vs-actual backtrace consistency checking to |
|
1554 // fail. Prints summary results to |aLUL|'s logging sink and also |
|
1555 // returns a boolean indicating whether or not the test passed. |
|
1556 static __attribute__((noinline)) |
|
1557 bool GetAndCheckStackTrace(LUL* aLUL, const char* dstring) |
|
1558 { |
|
1559 // Get hold of the current unwind-start registers. |
|
1560 UnwindRegs startRegs; |
|
1561 memset(&startRegs, 0, sizeof(startRegs)); |
|
1562 #if defined(LUL_PLAT_x64_linux) |
|
1563 volatile uintptr_t block[3]; |
|
1564 MOZ_ASSERT(sizeof(block) == 24); |
|
1565 __asm__ __volatile__( |
|
1566 "leaq 0(%%rip), %%r15" "\n\t" |
|
1567 "movq %%r15, 0(%0)" "\n\t" |
|
1568 "movq %%rsp, 8(%0)" "\n\t" |
|
1569 "movq %%rbp, 16(%0)" "\n" |
|
1570 : : "r"(&block[0]) : "memory", "r15" |
|
1571 ); |
|
1572 startRegs.xip = TaggedUWord(block[0]); |
|
1573 startRegs.xsp = TaggedUWord(block[1]); |
|
1574 startRegs.xbp = TaggedUWord(block[2]); |
|
1575 const uintptr_t REDZONE_SIZE = 128; |
|
1576 uintptr_t start = block[1] - REDZONE_SIZE; |
|
1577 #elif defined(LUL_PLAT_x86_linux) || defined(LUL_PLAT_x86_android) |
|
1578 volatile uintptr_t block[3]; |
|
1579 MOZ_ASSERT(sizeof(block) == 12); |
|
1580 __asm__ __volatile__( |
|
1581 ".byte 0xE8,0x00,0x00,0x00,0x00"/*call next insn*/ "\n\t" |
|
1582 "popl %%edi" "\n\t" |
|
1583 "movl %%edi, 0(%0)" "\n\t" |
|
1584 "movl %%esp, 4(%0)" "\n\t" |
|
1585 "movl %%ebp, 8(%0)" "\n" |
|
1586 : : "r"(&block[0]) : "memory", "edi" |
|
1587 ); |
|
1588 startRegs.xip = TaggedUWord(block[0]); |
|
1589 startRegs.xsp = TaggedUWord(block[1]); |
|
1590 startRegs.xbp = TaggedUWord(block[2]); |
|
1591 const uintptr_t REDZONE_SIZE = 0; |
|
1592 uintptr_t start = block[1] - REDZONE_SIZE; |
|
1593 #elif defined(LUL_PLAT_arm_android) |
|
1594 volatile uintptr_t block[6]; |
|
1595 MOZ_ASSERT(sizeof(block) == 24); |
|
1596 __asm__ __volatile__( |
|
1597 "mov r0, r15" "\n\t" |
|
1598 "str r0, [%0, #0]" "\n\t" |
|
1599 "str r14, [%0, #4]" "\n\t" |
|
1600 "str r13, [%0, #8]" "\n\t" |
|
1601 "str r12, [%0, #12]" "\n\t" |
|
1602 "str r11, [%0, #16]" "\n\t" |
|
1603 "str r7, [%0, #20]" "\n" |
|
1604 : : "r"(&block[0]) : "memory", "r0" |
|
1605 ); |
|
1606 startRegs.r15 = TaggedUWord(block[0]); |
|
1607 startRegs.r14 = TaggedUWord(block[1]); |
|
1608 startRegs.r13 = TaggedUWord(block[2]); |
|
1609 startRegs.r12 = TaggedUWord(block[3]); |
|
1610 startRegs.r11 = TaggedUWord(block[4]); |
|
1611 startRegs.r7 = TaggedUWord(block[5]); |
|
1612 const uintptr_t REDZONE_SIZE = 0; |
|
1613 uintptr_t start = block[1] - REDZONE_SIZE; |
|
1614 #else |
|
1615 # error "Unsupported platform" |
|
1616 #endif |
|
1617 |
|
1618 // Get hold of the innermost LUL_UNIT_TEST_STACK_SIZE bytes of the |
|
1619 // stack. |
|
1620 uintptr_t end = start + LUL_UNIT_TEST_STACK_SIZE; |
|
1621 uintptr_t ws = sizeof(void*); |
|
1622 start &= ~(ws-1); |
|
1623 end &= ~(ws-1); |
|
1624 uintptr_t nToCopy = end - start; |
|
1625 if (nToCopy > lul::N_STACK_BYTES) { |
|
1626 nToCopy = lul::N_STACK_BYTES; |
|
1627 } |
|
1628 MOZ_ASSERT(nToCopy <= lul::N_STACK_BYTES); |
|
1629 StackImage* stackImg = new StackImage(); |
|
1630 stackImg->mLen = nToCopy; |
|
1631 stackImg->mStartAvma = start; |
|
1632 if (nToCopy > 0) { |
|
1633 MOZ_MAKE_MEM_DEFINED((void*)start, nToCopy); |
|
1634 memcpy(&stackImg->mContents[0], (void*)start, nToCopy); |
|
1635 } |
|
1636 |
|
1637 // Unwind it. |
|
1638 const int MAX_TEST_FRAMES = 64; |
|
1639 uintptr_t framePCs[MAX_TEST_FRAMES]; |
|
1640 uintptr_t frameSPs[MAX_TEST_FRAMES]; |
|
1641 size_t framesAvail = mozilla::ArrayLength(framePCs); |
|
1642 size_t framesUsed = 0; |
|
1643 size_t scannedFramesAllowed = 0; |
|
1644 size_t scannedFramesAcquired = 0; |
|
1645 aLUL->Unwind( &framePCs[0], &frameSPs[0], |
|
1646 &framesUsed, &scannedFramesAcquired, |
|
1647 framesAvail, scannedFramesAllowed, |
|
1648 &startRegs, stackImg ); |
|
1649 |
|
1650 delete stackImg; |
|
1651 |
|
1652 //if (0) { |
|
1653 // // Show what we have. |
|
1654 // fprintf(stderr, "Got %d frames:\n", (int)framesUsed); |
|
1655 // for (size_t i = 0; i < framesUsed; i++) { |
|
1656 // fprintf(stderr, " [%2d] SP %p PC %p\n", |
|
1657 // (int)i, (void*)frameSPs[i], (void*)framePCs[i]); |
|
1658 // } |
|
1659 // fprintf(stderr, "\n"); |
|
1660 //} |
|
1661 |
|
1662 // Check to see if there's a consistent binding between digits in |
|
1663 // the director string ('1' .. '8') and the PC values acquired by |
|
1664 // the unwind. If there isn't, the unwinding has failed somehow. |
|
1665 uintptr_t binding[8]; // binding for '1' .. binding for '8' |
|
1666 memset((void*)binding, 0, sizeof(binding)); |
|
1667 |
|
1668 // The general plan is to work backwards along the director string |
|
1669 // and forwards along the framePCs array. Doing so corresponds to |
|
1670 // working outwards from the innermost frame of the recursive test set. |
|
1671 const char* cursor = dstring; |
|
1672 |
|
1673 // Find the end. This leaves |cursor| two bytes past the first |
|
1674 // character we want to look at -- see comment below. |
|
1675 while (*cursor) cursor++; |
|
1676 |
|
1677 // Counts the number of consistent frames. |
|
1678 size_t nConsistent = 0; |
|
1679 |
|
1680 // Iterate back to the start of the director string. The starting |
|
1681 // points are a bit complex. We can't use framePCs[0] because that |
|
1682 // contains the PC in this frame (above). We can't use framePCs[1] |
|
1683 // because that will contain the PC at return point in the recursive |
|
1684 // test group (TestFn[1-8]) for their call "out" to this function, |
|
1685 // GetAndCheckStackTrace. Although LUL will compute a correct |
|
1686 // return address, that will not be the same return address as for a |
|
1687 // recursive call out of the the function to another function in the |
|
1688 // group. Hence we can only start consistency checking at |
|
1689 // framePCs[2]. |
|
1690 // |
|
1691 // To be consistent, then, we must ignore the last element in the |
|
1692 // director string as that corresponds to framePCs[1]. Hence the |
|
1693 // start points are: framePCs[2] and the director string 2 bytes |
|
1694 // before the terminating zero. |
|
1695 // |
|
1696 // Also as a result of this, the number of consistent frames counted |
|
1697 // will always be one less than the length of the director string |
|
1698 // (not including its terminating zero). |
|
1699 size_t frameIx; |
|
1700 for (cursor = cursor-2, frameIx = 2; |
|
1701 cursor >= dstring && frameIx < framesUsed; |
|
1702 cursor--, frameIx++) { |
|
1703 char c = *cursor; |
|
1704 uintptr_t pc = framePCs[frameIx]; |
|
1705 // If this doesn't hold, the director string is ill-formed. |
|
1706 MOZ_ASSERT(c >= '1' && c <= '8'); |
|
1707 int n = ((int)c) - ((int)'1'); |
|
1708 if (binding[n] == 0) { |
|
1709 // There's no binding for |c| yet, so install |pc| and carry on. |
|
1710 binding[n] = pc; |
|
1711 nConsistent++; |
|
1712 continue; |
|
1713 } |
|
1714 // There's a pre-existing binding for |c|. Check it's consistent. |
|
1715 if (binding[n] != pc) { |
|
1716 // Not consistent. Give up now. |
|
1717 break; |
|
1718 } |
|
1719 // Consistent. Keep going. |
|
1720 nConsistent++; |
|
1721 } |
|
1722 |
|
1723 // So, did we succeed? |
|
1724 bool passed = nConsistent+1 == strlen(dstring); |
|
1725 |
|
1726 // Show the results. |
|
1727 char buf[200]; |
|
1728 snprintf(buf, sizeof(buf), "LULUnitTest: dstring = %s\n", dstring); |
|
1729 buf[sizeof(buf)-1] = 0; |
|
1730 aLUL->mLog(buf); |
|
1731 snprintf(buf, sizeof(buf), |
|
1732 "LULUnitTest: %d consistent, %d in dstring: %s\n", |
|
1733 (int)nConsistent, (int)strlen(dstring), |
|
1734 passed ? "PASS" : "FAIL"); |
|
1735 buf[sizeof(buf)-1] = 0; |
|
1736 aLUL->mLog(buf); |
|
1737 |
|
1738 return passed; |
|
1739 } |
|
1740 |
|
1741 |
|
1742 // Macro magic to create a set of 8 mutually recursive functions with |
|
1743 // varying frame sizes. These will recurse amongst themselves as |
|
1744 // specified by |strP|, the directory string, and call |
|
1745 // GetAndCheckStackTrace when the string becomes empty, passing it the |
|
1746 // original value of the string. This checks the result, printing |
|
1747 // results on |aLUL|'s logging sink, and also returns a boolean |
|
1748 // indicating whether or not the results are acceptable (correct). |
|
1749 |
|
1750 #define DECL_TEST_FN(NAME) \ |
|
1751 bool NAME(LUL* aLUL, const char* strPorig, const char* strP); |
|
1752 |
|
1753 #define GEN_TEST_FN(NAME, FRAMESIZE) \ |
|
1754 bool NAME(LUL* aLUL, const char* strPorig, const char* strP) { \ |
|
1755 volatile char space[FRAMESIZE]; \ |
|
1756 memset((char*)&space[0], 0, sizeof(space)); \ |
|
1757 if (*strP == '\0') { \ |
|
1758 /* We've come to the end of the director string. */ \ |
|
1759 /* Take a stack snapshot. */ \ |
|
1760 return GetAndCheckStackTrace(aLUL, strPorig); \ |
|
1761 } else { \ |
|
1762 /* Recurse onwards. This is a bit subtle. The obvious */ \ |
|
1763 /* thing to do here is call onwards directly, from within the */ \ |
|
1764 /* arms of the case statement. That gives a problem in that */ \ |
|
1765 /* there will be multiple return points inside each function when */ \ |
|
1766 /* unwinding, so it will be difficult to check for consistency */ \ |
|
1767 /* against the director string. Instead, we make an indirect */ \ |
|
1768 /* call, so as to guarantee that there is only one call site */ \ |
|
1769 /* within each function. This does assume that the compiler */ \ |
|
1770 /* won't transform it back to the simple direct-call form. */ \ |
|
1771 /* To discourage it from doing so, the call is bracketed with */ \ |
|
1772 /* __asm__ __volatile__ sections so as to make it not-movable. */ \ |
|
1773 bool (*nextFn)(LUL*, const char*, const char*) = NULL; \ |
|
1774 switch (*strP) { \ |
|
1775 case '1': nextFn = TestFn1; break; \ |
|
1776 case '2': nextFn = TestFn2; break; \ |
|
1777 case '3': nextFn = TestFn3; break; \ |
|
1778 case '4': nextFn = TestFn4; break; \ |
|
1779 case '5': nextFn = TestFn5; break; \ |
|
1780 case '6': nextFn = TestFn6; break; \ |
|
1781 case '7': nextFn = TestFn7; break; \ |
|
1782 case '8': nextFn = TestFn8; break; \ |
|
1783 default: nextFn = TestFn8; break; \ |
|
1784 } \ |
|
1785 __asm__ __volatile__("":::"cc","memory"); \ |
|
1786 bool passed = nextFn(aLUL, strPorig, strP+1); \ |
|
1787 __asm__ __volatile__("":::"cc","memory"); \ |
|
1788 return passed; \ |
|
1789 } \ |
|
1790 } |
|
1791 |
|
1792 // The test functions are mutually recursive, so it is necessary to |
|
1793 // declare them before defining them. |
|
1794 DECL_TEST_FN(TestFn1) |
|
1795 DECL_TEST_FN(TestFn2) |
|
1796 DECL_TEST_FN(TestFn3) |
|
1797 DECL_TEST_FN(TestFn4) |
|
1798 DECL_TEST_FN(TestFn5) |
|
1799 DECL_TEST_FN(TestFn6) |
|
1800 DECL_TEST_FN(TestFn7) |
|
1801 DECL_TEST_FN(TestFn8) |
|
1802 |
|
1803 GEN_TEST_FN(TestFn1, 123) |
|
1804 GEN_TEST_FN(TestFn2, 456) |
|
1805 GEN_TEST_FN(TestFn3, 789) |
|
1806 GEN_TEST_FN(TestFn4, 23) |
|
1807 GEN_TEST_FN(TestFn5, 47) |
|
1808 GEN_TEST_FN(TestFn6, 117) |
|
1809 GEN_TEST_FN(TestFn7, 1) |
|
1810 GEN_TEST_FN(TestFn8, 99) |
|
1811 |
|
1812 |
|
1813 // This starts the test sequence going. Call here to generate a |
|
1814 // sequence of calls as directed by the string |dstring|. The call |
|
1815 // sequence will, from its innermost frame, finish by calling |
|
1816 // GetAndCheckStackTrace() and passing it |dstring|. |
|
1817 // GetAndCheckStackTrace() will unwind the stack, check consistency |
|
1818 // of those results against |dstring|, and print a pass/fail message |
|
1819 // to aLUL's logging sink. It also updates the counters in *aNTests |
|
1820 // and aNTestsPassed. |
|
1821 __attribute__((noinline)) void |
|
1822 TestUnw(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed, |
|
1823 LUL* aLUL, const char* dstring) |
|
1824 { |
|
1825 // Ensure that the stack has at least this much space on it. This |
|
1826 // makes it safe to saw off the top LUL_UNIT_TEST_STACK_SIZE bytes |
|
1827 // and hand it to LUL. Safe in the sense that no segfault can |
|
1828 // happen because the stack is at least this big. This is all |
|
1829 // somewhat dubious in the sense that a sufficiently clever compiler |
|
1830 // (clang, for one) can figure out that space[] is unused and delete |
|
1831 // it from the frame. Hence the somewhat elaborate hoop jumping to |
|
1832 // fill it up before the call and to at least appear to use the |
|
1833 // value afterwards. |
|
1834 int i; |
|
1835 volatile char space[LUL_UNIT_TEST_STACK_SIZE]; |
|
1836 for (i = 0; i < LUL_UNIT_TEST_STACK_SIZE; i++) { |
|
1837 space[i] = (char)(i & 0x7F); |
|
1838 } |
|
1839 |
|
1840 // Really run the test. |
|
1841 bool passed = TestFn1(aLUL, dstring, dstring); |
|
1842 |
|
1843 // Appear to use space[], by visiting the value to compute some kind |
|
1844 // of checksum, and then (apparently) using the checksum. |
|
1845 int sum = 0; |
|
1846 for (i = 0; i < LUL_UNIT_TEST_STACK_SIZE; i++) { |
|
1847 // If this doesn't fool LLVM, I don't know what will. |
|
1848 sum += space[i] - 3*i; |
|
1849 } |
|
1850 __asm__ __volatile__("" : : "r"(sum)); |
|
1851 |
|
1852 // Update the counters. |
|
1853 (*aNTests)++; |
|
1854 if (passed) { |
|
1855 (*aNTestsPassed)++; |
|
1856 } |
|
1857 } |
|
1858 |
|
1859 |
|
1860 void |
|
1861 RunLulUnitTests(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed, LUL* aLUL) |
|
1862 { |
|
1863 aLUL->mLog(":\n"); |
|
1864 aLUL->mLog("LULUnitTest: BEGIN\n"); |
|
1865 *aNTests = *aNTestsPassed = 0; |
|
1866 TestUnw(aNTests, aNTestsPassed, aLUL, "11111111"); |
|
1867 TestUnw(aNTests, aNTestsPassed, aLUL, "11222211"); |
|
1868 TestUnw(aNTests, aNTestsPassed, aLUL, "111222333"); |
|
1869 TestUnw(aNTests, aNTestsPassed, aLUL, "1212121231212331212121212121212"); |
|
1870 TestUnw(aNTests, aNTestsPassed, aLUL, "31415827271828325332173258"); |
|
1871 TestUnw(aNTests, aNTestsPassed, aLUL, |
|
1872 "123456781122334455667788777777777777777777777"); |
|
1873 aLUL->mLog("LULUnitTest: END\n"); |
|
1874 aLUL->mLog(":\n"); |
|
1875 } |
|
1876 |
|
1877 |
|
1878 } // namespace lul |