|
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
5 |
|
6 #include "nsISupports.h" |
|
7 #include "nsIDOMNodeList.h" |
|
8 #include "nsIContentIterator.h" |
|
9 #include "nsRange.h" |
|
10 #include "nsIContent.h" |
|
11 #include "nsCOMPtr.h" |
|
12 #include "nsTArray.h" |
|
13 #include "nsContentUtils.h" |
|
14 #include "nsINode.h" |
|
15 #include "nsCycleCollectionParticipant.h" |
|
16 |
|
17 // couple of utility static functs |
|
18 |
|
19 /////////////////////////////////////////////////////////////////////////// |
|
20 // NodeToParentOffset: returns the node's parent and offset. |
|
21 // |
|
22 |
|
23 static nsINode* |
|
24 NodeToParentOffset(nsINode* aNode, int32_t* aOffset) |
|
25 { |
|
26 *aOffset = 0; |
|
27 |
|
28 nsINode* parent = aNode->GetParentNode(); |
|
29 |
|
30 if (parent) { |
|
31 *aOffset = parent->IndexOf(aNode); |
|
32 } |
|
33 |
|
34 return parent; |
|
35 } |
|
36 |
|
37 /////////////////////////////////////////////////////////////////////////// |
|
38 // NodeIsInTraversalRange: returns true if content is visited during |
|
39 // the traversal of the range in the specified mode. |
|
40 // |
|
41 static bool |
|
42 NodeIsInTraversalRange(nsINode* aNode, bool aIsPreMode, |
|
43 nsINode* aStartNode, int32_t aStartOffset, |
|
44 nsINode* aEndNode, int32_t aEndOffset) |
|
45 { |
|
46 if (!aStartNode || !aEndNode || !aNode) { |
|
47 return false; |
|
48 } |
|
49 |
|
50 // If a chardata node contains an end point of the traversal range, it is |
|
51 // always in the traversal range. |
|
52 if (aNode->IsNodeOfType(nsINode::eDATA_NODE) && |
|
53 (aNode == aStartNode || aNode == aEndNode)) { |
|
54 return true; |
|
55 } |
|
56 |
|
57 nsINode* parent = aNode->GetParentNode(); |
|
58 if (!parent) { |
|
59 return false; |
|
60 } |
|
61 |
|
62 int32_t indx = parent->IndexOf(aNode); |
|
63 |
|
64 if (!aIsPreMode) { |
|
65 ++indx; |
|
66 } |
|
67 |
|
68 return nsContentUtils::ComparePoints(aStartNode, aStartOffset, |
|
69 parent, indx) <= 0 && |
|
70 nsContentUtils::ComparePoints(aEndNode, aEndOffset, |
|
71 parent, indx) >= 0; |
|
72 } |
|
73 |
|
74 |
|
75 |
|
76 /* |
|
77 * A simple iterator class for traversing the content in "close tag" order |
|
78 */ |
|
79 class nsContentIterator : public nsIContentIterator |
|
80 { |
|
81 public: |
|
82 NS_DECL_CYCLE_COLLECTING_ISUPPORTS |
|
83 NS_DECL_CYCLE_COLLECTION_CLASS(nsContentIterator) |
|
84 |
|
85 explicit nsContentIterator(bool aPre); |
|
86 virtual ~nsContentIterator(); |
|
87 |
|
88 // nsIContentIterator interface methods ------------------------------ |
|
89 |
|
90 virtual nsresult Init(nsINode* aRoot); |
|
91 |
|
92 virtual nsresult Init(nsIDOMRange* aRange); |
|
93 |
|
94 virtual void First(); |
|
95 |
|
96 virtual void Last(); |
|
97 |
|
98 virtual void Next(); |
|
99 |
|
100 virtual void Prev(); |
|
101 |
|
102 virtual nsINode* GetCurrentNode(); |
|
103 |
|
104 virtual bool IsDone(); |
|
105 |
|
106 virtual nsresult PositionAt(nsINode* aCurNode); |
|
107 |
|
108 protected: |
|
109 |
|
110 // Recursively get the deepest first/last child of aRoot. This will return |
|
111 // aRoot itself if it has no children. |
|
112 nsINode* GetDeepFirstChild(nsINode* aRoot, |
|
113 nsTArray<int32_t>* aIndexes = nullptr); |
|
114 nsIContent* GetDeepFirstChild(nsIContent* aRoot, |
|
115 nsTArray<int32_t>* aIndexes = nullptr); |
|
116 nsINode* GetDeepLastChild(nsINode* aRoot, |
|
117 nsTArray<int32_t>* aIndexes = nullptr); |
|
118 nsIContent* GetDeepLastChild(nsIContent* aRoot, |
|
119 nsTArray<int32_t>* aIndexes = nullptr); |
|
120 |
|
121 // Get the next/previous sibling of aNode, or its parent's, or grandparent's, |
|
122 // etc. Returns null if aNode and all its ancestors have no next/previous |
|
123 // sibling. |
|
124 nsIContent* GetNextSibling(nsINode* aNode, |
|
125 nsTArray<int32_t>* aIndexes = nullptr); |
|
126 nsIContent* GetPrevSibling(nsINode* aNode, |
|
127 nsTArray<int32_t>* aIndexes = nullptr); |
|
128 |
|
129 nsINode* NextNode(nsINode* aNode, nsTArray<int32_t>* aIndexes = nullptr); |
|
130 nsINode* PrevNode(nsINode* aNode, nsTArray<int32_t>* aIndexes = nullptr); |
|
131 |
|
132 // WARNING: This function is expensive |
|
133 nsresult RebuildIndexStack(); |
|
134 |
|
135 void MakeEmpty(); |
|
136 |
|
137 virtual void LastRelease(); |
|
138 |
|
139 nsCOMPtr<nsINode> mCurNode; |
|
140 nsCOMPtr<nsINode> mFirst; |
|
141 nsCOMPtr<nsINode> mLast; |
|
142 nsCOMPtr<nsINode> mCommonParent; |
|
143 |
|
144 // used by nsContentIterator to cache indices |
|
145 nsAutoTArray<int32_t, 8> mIndexes; |
|
146 |
|
147 // used by nsSubtreeIterator to cache indices. Why put them in the base |
|
148 // class? Because otherwise I have to duplicate the routines GetNextSibling |
|
149 // etc across both classes, with slight variations for caching. Or |
|
150 // alternately, create a base class for the cache itself and have all the |
|
151 // cache manipulation go through a vptr. I think this is the best space and |
|
152 // speed combo, even though it's ugly. |
|
153 int32_t mCachedIndex; |
|
154 // another note about mCachedIndex: why should the subtree iterator use a |
|
155 // trivial cached index instead of the mre robust array of indicies (which is |
|
156 // what the basic content iterator uses)? The reason is that subtree |
|
157 // iterators do not do much transitioning between parents and children. They |
|
158 // tend to stay at the same level. In fact, you can prove (though I won't |
|
159 // attempt it here) that they change levels at most n+m times, where n is the |
|
160 // height of the parent hierarchy from the range start to the common |
|
161 // ancestor, and m is the the height of the parent hierarchy from the range |
|
162 // end to the common ancestor. If we used the index array, we would pay the |
|
163 // price up front for n, and then pay the cost for m on the fly later on. |
|
164 // With the simple cache, we only "pay as we go". Either way, we call |
|
165 // IndexOf() once for each change of level in the hierarchy. Since a trivial |
|
166 // index is much simpler, we use it for the subtree iterator. |
|
167 |
|
168 bool mIsDone; |
|
169 bool mPre; |
|
170 |
|
171 private: |
|
172 |
|
173 // no copies or assigns FIX ME |
|
174 nsContentIterator(const nsContentIterator&); |
|
175 nsContentIterator& operator=(const nsContentIterator&); |
|
176 |
|
177 }; |
|
178 |
|
179 |
|
180 /****************************************************** |
|
181 * repository cruft |
|
182 ******************************************************/ |
|
183 |
|
184 already_AddRefed<nsIContentIterator> |
|
185 NS_NewContentIterator() |
|
186 { |
|
187 nsCOMPtr<nsIContentIterator> iter = new nsContentIterator(false); |
|
188 return iter.forget(); |
|
189 } |
|
190 |
|
191 |
|
192 already_AddRefed<nsIContentIterator> |
|
193 NS_NewPreContentIterator() |
|
194 { |
|
195 nsCOMPtr<nsIContentIterator> iter = new nsContentIterator(true); |
|
196 return iter.forget(); |
|
197 } |
|
198 |
|
199 |
|
200 /****************************************************** |
|
201 * XPCOM cruft |
|
202 ******************************************************/ |
|
203 |
|
204 NS_IMPL_CYCLE_COLLECTING_ADDREF(nsContentIterator) |
|
205 NS_IMPL_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(nsContentIterator, |
|
206 LastRelease()) |
|
207 |
|
208 NS_INTERFACE_MAP_BEGIN(nsContentIterator) |
|
209 NS_INTERFACE_MAP_ENTRY(nsIContentIterator) |
|
210 NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIContentIterator) |
|
211 NS_INTERFACE_MAP_ENTRIES_CYCLE_COLLECTION(nsContentIterator) |
|
212 NS_INTERFACE_MAP_END |
|
213 |
|
214 NS_IMPL_CYCLE_COLLECTION(nsContentIterator, |
|
215 mCurNode, |
|
216 mFirst, |
|
217 mLast, |
|
218 mCommonParent) |
|
219 |
|
220 void |
|
221 nsContentIterator::LastRelease() |
|
222 { |
|
223 mCurNode = nullptr; |
|
224 mFirst = nullptr; |
|
225 mLast = nullptr; |
|
226 mCommonParent = nullptr; |
|
227 } |
|
228 |
|
229 /****************************************************** |
|
230 * constructor/destructor |
|
231 ******************************************************/ |
|
232 |
|
233 nsContentIterator::nsContentIterator(bool aPre) : |
|
234 // don't need to explicitly initialize |nsCOMPtr|s, they will automatically |
|
235 // be nullptr |
|
236 mCachedIndex(0), mIsDone(false), mPre(aPre) |
|
237 { |
|
238 } |
|
239 |
|
240 |
|
241 nsContentIterator::~nsContentIterator() |
|
242 { |
|
243 } |
|
244 |
|
245 |
|
246 /****************************************************** |
|
247 * Init routines |
|
248 ******************************************************/ |
|
249 |
|
250 |
|
251 nsresult |
|
252 nsContentIterator::Init(nsINode* aRoot) |
|
253 { |
|
254 if (!aRoot) { |
|
255 return NS_ERROR_NULL_POINTER; |
|
256 } |
|
257 |
|
258 mIsDone = false; |
|
259 mIndexes.Clear(); |
|
260 |
|
261 if (mPre) { |
|
262 mFirst = aRoot; |
|
263 mLast = GetDeepLastChild(aRoot); |
|
264 } else { |
|
265 mFirst = GetDeepFirstChild(aRoot); |
|
266 mLast = aRoot; |
|
267 } |
|
268 |
|
269 mCommonParent = aRoot; |
|
270 mCurNode = mFirst; |
|
271 RebuildIndexStack(); |
|
272 return NS_OK; |
|
273 } |
|
274 |
|
275 nsresult |
|
276 nsContentIterator::Init(nsIDOMRange* aDOMRange) |
|
277 { |
|
278 NS_ENSURE_ARG_POINTER(aDOMRange); |
|
279 nsRange* range = static_cast<nsRange*>(aDOMRange); |
|
280 |
|
281 mIsDone = false; |
|
282 |
|
283 // get common content parent |
|
284 mCommonParent = range->GetCommonAncestor(); |
|
285 NS_ENSURE_TRUE(mCommonParent, NS_ERROR_FAILURE); |
|
286 |
|
287 // get the start node and offset |
|
288 int32_t startIndx = range->StartOffset(); |
|
289 nsINode* startNode = range->GetStartParent(); |
|
290 NS_ENSURE_TRUE(startNode, NS_ERROR_FAILURE); |
|
291 |
|
292 // get the end node and offset |
|
293 int32_t endIndx = range->EndOffset(); |
|
294 nsINode* endNode = range->GetEndParent(); |
|
295 NS_ENSURE_TRUE(endNode, NS_ERROR_FAILURE); |
|
296 |
|
297 bool startIsData = startNode->IsNodeOfType(nsINode::eDATA_NODE); |
|
298 |
|
299 // short circuit when start node == end node |
|
300 if (startNode == endNode) { |
|
301 // Check to see if we have a collapsed range, if so, there is nothing to |
|
302 // iterate over. |
|
303 // |
|
304 // XXX: CharacterDataNodes (text nodes) are currently an exception, since |
|
305 // we always want to be able to iterate text nodes at the end points |
|
306 // of a range. |
|
307 |
|
308 if (!startIsData && startIndx == endIndx) { |
|
309 MakeEmpty(); |
|
310 return NS_OK; |
|
311 } |
|
312 |
|
313 if (startIsData) { |
|
314 // It's a character data node. |
|
315 mFirst = startNode->AsContent(); |
|
316 mLast = mFirst; |
|
317 mCurNode = mFirst; |
|
318 |
|
319 RebuildIndexStack(); |
|
320 return NS_OK; |
|
321 } |
|
322 } |
|
323 |
|
324 // Find first node in range. |
|
325 |
|
326 nsIContent* cChild = nullptr; |
|
327 |
|
328 if (!startIsData && startNode->HasChildren()) { |
|
329 cChild = startNode->GetChildAt(startIndx); |
|
330 } |
|
331 |
|
332 if (!cChild) { |
|
333 // no children, must be a text node |
|
334 // |
|
335 // XXXbz no children might also just mean no children. So I'm not |
|
336 // sure what that comment above is talking about. |
|
337 |
|
338 if (mPre) { |
|
339 // XXX: In the future, if start offset is after the last |
|
340 // character in the cdata node, should we set mFirst to |
|
341 // the next sibling? |
|
342 |
|
343 if (!startIsData) { |
|
344 mFirst = GetNextSibling(startNode); |
|
345 |
|
346 // Does mFirst node really intersect the range? The range could be |
|
347 // 'degenerate', i.e., not collapsed but still contain no content. |
|
348 |
|
349 if (mFirst && !NodeIsInTraversalRange(mFirst, mPre, startNode, |
|
350 startIndx, endNode, endIndx)) { |
|
351 mFirst = nullptr; |
|
352 } |
|
353 } else { |
|
354 mFirst = startNode->AsContent(); |
|
355 } |
|
356 } else { |
|
357 // post-order |
|
358 if (startNode->IsContent()) { |
|
359 mFirst = startNode->AsContent(); |
|
360 } else { |
|
361 // What else can we do? |
|
362 mFirst = nullptr; |
|
363 } |
|
364 } |
|
365 } else { |
|
366 if (mPre) { |
|
367 mFirst = cChild; |
|
368 } else { |
|
369 // post-order |
|
370 mFirst = GetDeepFirstChild(cChild); |
|
371 |
|
372 // Does mFirst node really intersect the range? The range could be |
|
373 // 'degenerate', i.e., not collapsed but still contain no content. |
|
374 |
|
375 if (mFirst && !NodeIsInTraversalRange(mFirst, mPre, startNode, startIndx, |
|
376 endNode, endIndx)) { |
|
377 mFirst = nullptr; |
|
378 } |
|
379 } |
|
380 } |
|
381 |
|
382 |
|
383 // Find last node in range. |
|
384 |
|
385 bool endIsData = endNode->IsNodeOfType(nsINode::eDATA_NODE); |
|
386 |
|
387 if (endIsData || !endNode->HasChildren() || endIndx == 0) { |
|
388 if (mPre) { |
|
389 if (endNode->IsContent()) { |
|
390 mLast = endNode->AsContent(); |
|
391 } else { |
|
392 // Not much else to do here... |
|
393 mLast = nullptr; |
|
394 } |
|
395 } else { |
|
396 // post-order |
|
397 // |
|
398 // XXX: In the future, if end offset is before the first character in the |
|
399 // cdata node, should we set mLast to the prev sibling? |
|
400 |
|
401 if (!endIsData) { |
|
402 mLast = GetPrevSibling(endNode); |
|
403 |
|
404 if (!NodeIsInTraversalRange(mLast, mPre, startNode, startIndx, |
|
405 endNode, endIndx)) { |
|
406 mLast = nullptr; |
|
407 } |
|
408 } else { |
|
409 mLast = endNode->AsContent(); |
|
410 } |
|
411 } |
|
412 } else { |
|
413 int32_t indx = endIndx; |
|
414 |
|
415 cChild = endNode->GetChildAt(--indx); |
|
416 |
|
417 if (!cChild) { |
|
418 // No child at offset! |
|
419 NS_NOTREACHED("nsContentIterator::nsContentIterator"); |
|
420 return NS_ERROR_FAILURE; |
|
421 } |
|
422 |
|
423 if (mPre) { |
|
424 mLast = GetDeepLastChild(cChild); |
|
425 |
|
426 if (!NodeIsInTraversalRange(mLast, mPre, startNode, startIndx, |
|
427 endNode, endIndx)) { |
|
428 mLast = nullptr; |
|
429 } |
|
430 } else { |
|
431 // post-order |
|
432 mLast = cChild; |
|
433 } |
|
434 } |
|
435 |
|
436 // If either first or last is null, they both have to be null! |
|
437 |
|
438 if (!mFirst || !mLast) { |
|
439 mFirst = nullptr; |
|
440 mLast = nullptr; |
|
441 } |
|
442 |
|
443 mCurNode = mFirst; |
|
444 mIsDone = !mCurNode; |
|
445 |
|
446 if (!mCurNode) { |
|
447 mIndexes.Clear(); |
|
448 } else { |
|
449 RebuildIndexStack(); |
|
450 } |
|
451 |
|
452 return NS_OK; |
|
453 } |
|
454 |
|
455 |
|
456 /****************************************************** |
|
457 * Helper routines |
|
458 ******************************************************/ |
|
459 // WARNING: This function is expensive |
|
460 nsresult |
|
461 nsContentIterator::RebuildIndexStack() |
|
462 { |
|
463 // Make sure we start at the right indexes on the stack! Build array up |
|
464 // to common parent of start and end. Perhaps it's too many entries, but |
|
465 // that's far better than too few. |
|
466 nsINode* parent; |
|
467 nsINode* current; |
|
468 |
|
469 mIndexes.Clear(); |
|
470 current = mCurNode; |
|
471 if (!current) { |
|
472 return NS_OK; |
|
473 } |
|
474 |
|
475 while (current != mCommonParent) { |
|
476 parent = current->GetParentNode(); |
|
477 |
|
478 if (!parent) { |
|
479 return NS_ERROR_FAILURE; |
|
480 } |
|
481 |
|
482 mIndexes.InsertElementAt(0, parent->IndexOf(current)); |
|
483 |
|
484 current = parent; |
|
485 } |
|
486 |
|
487 return NS_OK; |
|
488 } |
|
489 |
|
490 void |
|
491 nsContentIterator::MakeEmpty() |
|
492 { |
|
493 mCurNode = nullptr; |
|
494 mFirst = nullptr; |
|
495 mLast = nullptr; |
|
496 mCommonParent = nullptr; |
|
497 mIsDone = true; |
|
498 mIndexes.Clear(); |
|
499 } |
|
500 |
|
501 nsINode* |
|
502 nsContentIterator::GetDeepFirstChild(nsINode* aRoot, |
|
503 nsTArray<int32_t>* aIndexes) |
|
504 { |
|
505 if (!aRoot || !aRoot->HasChildren()) { |
|
506 return aRoot; |
|
507 } |
|
508 // We can't pass aRoot itself to the full GetDeepFirstChild, because that |
|
509 // will only take nsIContent and aRoot might be a document. Pass aRoot's |
|
510 // child, but be sure to preserve aIndexes. |
|
511 if (aIndexes) { |
|
512 aIndexes->AppendElement(0); |
|
513 } |
|
514 return GetDeepFirstChild(aRoot->GetFirstChild(), aIndexes); |
|
515 } |
|
516 |
|
517 nsIContent* |
|
518 nsContentIterator::GetDeepFirstChild(nsIContent* aRoot, |
|
519 nsTArray<int32_t>* aIndexes) |
|
520 { |
|
521 if (!aRoot) { |
|
522 return nullptr; |
|
523 } |
|
524 |
|
525 nsIContent* node = aRoot; |
|
526 nsIContent* child = node->GetFirstChild(); |
|
527 |
|
528 while (child) { |
|
529 if (aIndexes) { |
|
530 // Add this node to the stack of indexes |
|
531 aIndexes->AppendElement(0); |
|
532 } |
|
533 node = child; |
|
534 child = node->GetFirstChild(); |
|
535 } |
|
536 |
|
537 return node; |
|
538 } |
|
539 |
|
540 nsINode* |
|
541 nsContentIterator::GetDeepLastChild(nsINode* aRoot, |
|
542 nsTArray<int32_t>* aIndexes) |
|
543 { |
|
544 if (!aRoot || !aRoot->HasChildren()) { |
|
545 return aRoot; |
|
546 } |
|
547 // We can't pass aRoot itself to the full GetDeepLastChild, because that will |
|
548 // only take nsIContent and aRoot might be a document. Pass aRoot's child, |
|
549 // but be sure to preserve aIndexes. |
|
550 if (aIndexes) { |
|
551 aIndexes->AppendElement(aRoot->GetChildCount() - 1); |
|
552 } |
|
553 return GetDeepLastChild(aRoot->GetLastChild(), aIndexes); |
|
554 } |
|
555 |
|
556 nsIContent* |
|
557 nsContentIterator::GetDeepLastChild(nsIContent* aRoot, |
|
558 nsTArray<int32_t>* aIndexes) |
|
559 { |
|
560 if (!aRoot) { |
|
561 return nullptr; |
|
562 } |
|
563 |
|
564 nsIContent* node = aRoot; |
|
565 int32_t numChildren = node->GetChildCount(); |
|
566 |
|
567 while (numChildren) { |
|
568 nsIContent* child = node->GetChildAt(--numChildren); |
|
569 |
|
570 if (aIndexes) { |
|
571 // Add this node to the stack of indexes |
|
572 aIndexes->AppendElement(numChildren); |
|
573 } |
|
574 numChildren = child->GetChildCount(); |
|
575 node = child; |
|
576 } |
|
577 |
|
578 return node; |
|
579 } |
|
580 |
|
581 // Get the next sibling, or parent's next sibling, or grandpa's next sibling... |
|
582 nsIContent* |
|
583 nsContentIterator::GetNextSibling(nsINode* aNode, |
|
584 nsTArray<int32_t>* aIndexes) |
|
585 { |
|
586 if (!aNode) { |
|
587 return nullptr; |
|
588 } |
|
589 |
|
590 nsINode* parent = aNode->GetParentNode(); |
|
591 if (!parent) { |
|
592 return nullptr; |
|
593 } |
|
594 |
|
595 int32_t indx = 0; |
|
596 |
|
597 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
|
598 "ContentIterator stack underflow"); |
|
599 if (aIndexes && !aIndexes->IsEmpty()) { |
|
600 // use the last entry on the Indexes array for the current index |
|
601 indx = (*aIndexes)[aIndexes->Length()-1]; |
|
602 } else { |
|
603 indx = mCachedIndex; |
|
604 } |
|
605 |
|
606 // reverify that the index of the current node hasn't changed. |
|
607 // not super cheap, but a lot cheaper than IndexOf(), and still O(1). |
|
608 // ignore result this time - the index may now be out of range. |
|
609 nsIContent* sib = parent->GetChildAt(indx); |
|
610 if (sib != aNode) { |
|
611 // someone changed our index - find the new index the painful way |
|
612 indx = parent->IndexOf(aNode); |
|
613 } |
|
614 |
|
615 // indx is now canonically correct |
|
616 if ((sib = parent->GetChildAt(++indx))) { |
|
617 // update index cache |
|
618 if (aIndexes && !aIndexes->IsEmpty()) { |
|
619 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
|
620 } else { |
|
621 mCachedIndex = indx; |
|
622 } |
|
623 } else { |
|
624 if (parent != mCommonParent) { |
|
625 if (aIndexes) { |
|
626 // pop node off the stack, go up one level and return parent or fail. |
|
627 // Don't leave the index empty, especially if we're |
|
628 // returning nullptr. This confuses other parts of the code. |
|
629 if (aIndexes->Length() > 1) { |
|
630 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
|
631 } |
|
632 } |
|
633 } |
|
634 |
|
635 // ok to leave cache out of date here if parent == mCommonParent? |
|
636 sib = GetNextSibling(parent, aIndexes); |
|
637 } |
|
638 |
|
639 return sib; |
|
640 } |
|
641 |
|
642 // Get the prev sibling, or parent's prev sibling, or grandpa's prev sibling... |
|
643 nsIContent* |
|
644 nsContentIterator::GetPrevSibling(nsINode* aNode, |
|
645 nsTArray<int32_t>* aIndexes) |
|
646 { |
|
647 if (!aNode) { |
|
648 return nullptr; |
|
649 } |
|
650 |
|
651 nsINode* parent = aNode->GetParentNode(); |
|
652 if (!parent) { |
|
653 return nullptr; |
|
654 } |
|
655 |
|
656 int32_t indx = 0; |
|
657 |
|
658 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
|
659 "ContentIterator stack underflow"); |
|
660 if (aIndexes && !aIndexes->IsEmpty()) { |
|
661 // use the last entry on the Indexes array for the current index |
|
662 indx = (*aIndexes)[aIndexes->Length()-1]; |
|
663 } else { |
|
664 indx = mCachedIndex; |
|
665 } |
|
666 |
|
667 // reverify that the index of the current node hasn't changed |
|
668 // ignore result this time - the index may now be out of range. |
|
669 nsIContent* sib = parent->GetChildAt(indx); |
|
670 if (sib != aNode) { |
|
671 // someone changed our index - find the new index the painful way |
|
672 indx = parent->IndexOf(aNode); |
|
673 } |
|
674 |
|
675 // indx is now canonically correct |
|
676 if (indx > 0 && (sib = parent->GetChildAt(--indx))) { |
|
677 // update index cache |
|
678 if (aIndexes && !aIndexes->IsEmpty()) { |
|
679 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
|
680 } else { |
|
681 mCachedIndex = indx; |
|
682 } |
|
683 } else if (parent != mCommonParent) { |
|
684 if (aIndexes && !aIndexes->IsEmpty()) { |
|
685 // pop node off the stack, go up one level and try again. |
|
686 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
|
687 } |
|
688 return GetPrevSibling(parent, aIndexes); |
|
689 } |
|
690 |
|
691 return sib; |
|
692 } |
|
693 |
|
694 nsINode* |
|
695 nsContentIterator::NextNode(nsINode* aNode, nsTArray<int32_t>* aIndexes) |
|
696 { |
|
697 nsINode* node = aNode; |
|
698 |
|
699 // if we are a Pre-order iterator, use pre-order |
|
700 if (mPre) { |
|
701 // if it has children then next node is first child |
|
702 if (node->HasChildren()) { |
|
703 nsIContent* firstChild = node->GetFirstChild(); |
|
704 |
|
705 // update cache |
|
706 if (aIndexes) { |
|
707 // push an entry on the index stack |
|
708 aIndexes->AppendElement(0); |
|
709 } else { |
|
710 mCachedIndex = 0; |
|
711 } |
|
712 |
|
713 return firstChild; |
|
714 } |
|
715 |
|
716 // else next sibling is next |
|
717 return GetNextSibling(node, aIndexes); |
|
718 } |
|
719 |
|
720 // post-order |
|
721 nsINode* parent = node->GetParentNode(); |
|
722 nsIContent* sibling = nullptr; |
|
723 int32_t indx = 0; |
|
724 |
|
725 // get the cached index |
|
726 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
|
727 "ContentIterator stack underflow"); |
|
728 if (aIndexes && !aIndexes->IsEmpty()) { |
|
729 // use the last entry on the Indexes array for the current index |
|
730 indx = (*aIndexes)[aIndexes->Length()-1]; |
|
731 } else { |
|
732 indx = mCachedIndex; |
|
733 } |
|
734 |
|
735 // reverify that the index of the current node hasn't changed. not super |
|
736 // cheap, but a lot cheaper than IndexOf(), and still O(1). ignore result |
|
737 // this time - the index may now be out of range. |
|
738 if (indx >= 0) { |
|
739 sibling = parent->GetChildAt(indx); |
|
740 } |
|
741 if (sibling != node) { |
|
742 // someone changed our index - find the new index the painful way |
|
743 indx = parent->IndexOf(node); |
|
744 } |
|
745 |
|
746 // indx is now canonically correct |
|
747 sibling = parent->GetChildAt(++indx); |
|
748 if (sibling) { |
|
749 // update cache |
|
750 if (aIndexes && !aIndexes->IsEmpty()) { |
|
751 // replace an entry on the index stack |
|
752 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
|
753 } else { |
|
754 mCachedIndex = indx; |
|
755 } |
|
756 |
|
757 // next node is sibling's "deep left" child |
|
758 return GetDeepFirstChild(sibling, aIndexes); |
|
759 } |
|
760 |
|
761 // else it's the parent, update cache |
|
762 if (aIndexes) { |
|
763 // Pop an entry off the index stack. Don't leave the index empty, |
|
764 // especially if we're returning nullptr. This confuses other parts of the |
|
765 // code. |
|
766 if (aIndexes->Length() > 1) { |
|
767 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
|
768 } |
|
769 } else { |
|
770 // this might be wrong, but we are better off guessing |
|
771 mCachedIndex = 0; |
|
772 } |
|
773 |
|
774 return parent; |
|
775 } |
|
776 |
|
777 nsINode* |
|
778 nsContentIterator::PrevNode(nsINode* aNode, nsTArray<int32_t>* aIndexes) |
|
779 { |
|
780 nsINode* node = aNode; |
|
781 |
|
782 // if we are a Pre-order iterator, use pre-order |
|
783 if (mPre) { |
|
784 nsINode* parent = node->GetParentNode(); |
|
785 nsIContent* sibling = nullptr; |
|
786 int32_t indx = 0; |
|
787 |
|
788 // get the cached index |
|
789 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
|
790 "ContentIterator stack underflow"); |
|
791 if (aIndexes && !aIndexes->IsEmpty()) { |
|
792 // use the last entry on the Indexes array for the current index |
|
793 indx = (*aIndexes)[aIndexes->Length()-1]; |
|
794 } else { |
|
795 indx = mCachedIndex; |
|
796 } |
|
797 |
|
798 // reverify that the index of the current node hasn't changed. not super |
|
799 // cheap, but a lot cheaper than IndexOf(), and still O(1). ignore result |
|
800 // this time - the index may now be out of range. |
|
801 if (indx >= 0) { |
|
802 sibling = parent->GetChildAt(indx); |
|
803 } |
|
804 |
|
805 if (sibling != node) { |
|
806 // someone changed our index - find the new index the painful way |
|
807 indx = parent->IndexOf(node); |
|
808 } |
|
809 |
|
810 // indx is now canonically correct |
|
811 if (indx && (sibling = parent->GetChildAt(--indx))) { |
|
812 // update cache |
|
813 if (aIndexes && !aIndexes->IsEmpty()) { |
|
814 // replace an entry on the index stack |
|
815 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
|
816 } else { |
|
817 mCachedIndex = indx; |
|
818 } |
|
819 |
|
820 // prev node is sibling's "deep right" child |
|
821 return GetDeepLastChild(sibling, aIndexes); |
|
822 } |
|
823 |
|
824 // else it's the parent, update cache |
|
825 if (aIndexes && !aIndexes->IsEmpty()) { |
|
826 // pop an entry off the index stack |
|
827 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
|
828 } else { |
|
829 // this might be wrong, but we are better off guessing |
|
830 mCachedIndex = 0; |
|
831 } |
|
832 return parent; |
|
833 } |
|
834 |
|
835 // post-order |
|
836 int32_t numChildren = node->GetChildCount(); |
|
837 |
|
838 // if it has children then prev node is last child |
|
839 if (numChildren) { |
|
840 nsIContent* lastChild = node->GetLastChild(); |
|
841 numChildren--; |
|
842 |
|
843 // update cache |
|
844 if (aIndexes) { |
|
845 // push an entry on the index stack |
|
846 aIndexes->AppendElement(numChildren); |
|
847 } else { |
|
848 mCachedIndex = numChildren; |
|
849 } |
|
850 |
|
851 return lastChild; |
|
852 } |
|
853 |
|
854 // else prev sibling is previous |
|
855 return GetPrevSibling(node, aIndexes); |
|
856 } |
|
857 |
|
858 /****************************************************** |
|
859 * ContentIterator routines |
|
860 ******************************************************/ |
|
861 |
|
862 void |
|
863 nsContentIterator::First() |
|
864 { |
|
865 if (mFirst) { |
|
866 #ifdef DEBUG |
|
867 nsresult rv = |
|
868 #endif |
|
869 PositionAt(mFirst); |
|
870 |
|
871 NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to position iterator!"); |
|
872 } |
|
873 |
|
874 mIsDone = mFirst == nullptr; |
|
875 } |
|
876 |
|
877 |
|
878 void |
|
879 nsContentIterator::Last() |
|
880 { |
|
881 NS_ASSERTION(mLast, "No last node!"); |
|
882 |
|
883 if (mLast) { |
|
884 #ifdef DEBUG |
|
885 nsresult rv = |
|
886 #endif |
|
887 PositionAt(mLast); |
|
888 |
|
889 NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to position iterator!"); |
|
890 } |
|
891 |
|
892 mIsDone = mLast == nullptr; |
|
893 } |
|
894 |
|
895 |
|
896 void |
|
897 nsContentIterator::Next() |
|
898 { |
|
899 if (mIsDone || !mCurNode) { |
|
900 return; |
|
901 } |
|
902 |
|
903 if (mCurNode == mLast) { |
|
904 mIsDone = true; |
|
905 return; |
|
906 } |
|
907 |
|
908 mCurNode = NextNode(mCurNode, &mIndexes); |
|
909 } |
|
910 |
|
911 |
|
912 void |
|
913 nsContentIterator::Prev() |
|
914 { |
|
915 if (mIsDone || !mCurNode) { |
|
916 return; |
|
917 } |
|
918 |
|
919 if (mCurNode == mFirst) { |
|
920 mIsDone = true; |
|
921 return; |
|
922 } |
|
923 |
|
924 mCurNode = PrevNode(mCurNode, &mIndexes); |
|
925 } |
|
926 |
|
927 |
|
928 bool |
|
929 nsContentIterator::IsDone() |
|
930 { |
|
931 return mIsDone; |
|
932 } |
|
933 |
|
934 |
|
935 // Keeping arrays of indexes for the stack of nodes makes PositionAt |
|
936 // interesting... |
|
937 nsresult |
|
938 nsContentIterator::PositionAt(nsINode* aCurNode) |
|
939 { |
|
940 if (!aCurNode) { |
|
941 return NS_ERROR_NULL_POINTER; |
|
942 } |
|
943 |
|
944 nsINode* newCurNode = aCurNode; |
|
945 nsINode* tempNode = mCurNode; |
|
946 |
|
947 mCurNode = aCurNode; |
|
948 // take an early out if this doesn't actually change the position |
|
949 if (mCurNode == tempNode) { |
|
950 mIsDone = false; // paranoia |
|
951 return NS_OK; |
|
952 } |
|
953 |
|
954 // Check to see if the node falls within the traversal range. |
|
955 |
|
956 nsINode* firstNode = mFirst; |
|
957 nsINode* lastNode = mLast; |
|
958 int32_t firstOffset = 0, lastOffset = 0; |
|
959 |
|
960 if (firstNode && lastNode) { |
|
961 if (mPre) { |
|
962 firstNode = NodeToParentOffset(mFirst, &firstOffset); |
|
963 |
|
964 if (lastNode->GetChildCount()) { |
|
965 lastOffset = 0; |
|
966 } else { |
|
967 lastNode = NodeToParentOffset(mLast, &lastOffset); |
|
968 ++lastOffset; |
|
969 } |
|
970 } else { |
|
971 uint32_t numChildren = firstNode->GetChildCount(); |
|
972 |
|
973 if (numChildren) { |
|
974 firstOffset = numChildren; |
|
975 } else { |
|
976 firstNode = NodeToParentOffset(mFirst, &firstOffset); |
|
977 } |
|
978 |
|
979 lastNode = NodeToParentOffset(mLast, &lastOffset); |
|
980 ++lastOffset; |
|
981 } |
|
982 } |
|
983 |
|
984 // The end positions are always in the range even if it has no parent. We |
|
985 // need to allow that or 'iter->Init(root)' would assert in Last() or First() |
|
986 // for example, bug 327694. |
|
987 if (mFirst != mCurNode && mLast != mCurNode && |
|
988 (!firstNode || !lastNode || |
|
989 !NodeIsInTraversalRange(mCurNode, mPre, firstNode, firstOffset, |
|
990 lastNode, lastOffset))) { |
|
991 mIsDone = true; |
|
992 return NS_ERROR_FAILURE; |
|
993 } |
|
994 |
|
995 // We can be at ANY node in the sequence. Need to regenerate the array of |
|
996 // indexes back to the root or common parent! |
|
997 nsAutoTArray<nsINode*, 8> oldParentStack; |
|
998 nsAutoTArray<int32_t, 8> newIndexes; |
|
999 |
|
1000 // Get a list of the parents up to the root, then compare the new node with |
|
1001 // entries in that array until we find a match (lowest common ancestor). If |
|
1002 // no match, use IndexOf, take the parent, and repeat. This avoids using |
|
1003 // IndexOf() N times on possibly large arrays. We still end up doing it a |
|
1004 // fair bit. It's better to use Clone() if possible. |
|
1005 |
|
1006 // we know the depth we're down (though we may not have started at the top). |
|
1007 oldParentStack.SetCapacity(mIndexes.Length() + 1); |
|
1008 |
|
1009 // We want to loop mIndexes.Length() + 1 times here, because we want to make |
|
1010 // sure we include mCommonParent in the oldParentStack, for use in the next |
|
1011 // for loop, and mIndexes only has entries for nodes from tempNode up through |
|
1012 // an ancestor of tempNode that's a child of mCommonParent. |
|
1013 for (int32_t i = mIndexes.Length() + 1; i > 0 && tempNode; i--) { |
|
1014 // Insert at head since we're walking up |
|
1015 oldParentStack.InsertElementAt(0, tempNode); |
|
1016 |
|
1017 nsINode* parent = tempNode->GetParentNode(); |
|
1018 |
|
1019 if (!parent) { |
|
1020 // this node has no parent, and thus no index |
|
1021 break; |
|
1022 } |
|
1023 |
|
1024 if (parent == mCurNode) { |
|
1025 // The position was moved to a parent of the current position. All we |
|
1026 // need to do is drop some indexes. Shortcut here. |
|
1027 mIndexes.RemoveElementsAt(mIndexes.Length() - oldParentStack.Length(), |
|
1028 oldParentStack.Length()); |
|
1029 mIsDone = false; |
|
1030 return NS_OK; |
|
1031 } |
|
1032 tempNode = parent; |
|
1033 } |
|
1034 |
|
1035 // Ok. We have the array of old parents. Look for a match. |
|
1036 while (newCurNode) { |
|
1037 nsINode* parent = newCurNode->GetParentNode(); |
|
1038 |
|
1039 if (!parent) { |
|
1040 // this node has no parent, and thus no index |
|
1041 break; |
|
1042 } |
|
1043 |
|
1044 int32_t indx = parent->IndexOf(newCurNode); |
|
1045 |
|
1046 // insert at the head! |
|
1047 newIndexes.InsertElementAt(0, indx); |
|
1048 |
|
1049 // look to see if the parent is in the stack |
|
1050 indx = oldParentStack.IndexOf(parent); |
|
1051 if (indx >= 0) { |
|
1052 // ok, the parent IS on the old stack! Rework things. We want |
|
1053 // newIndexes to replace all nodes equal to or below the match. Note |
|
1054 // that index oldParentStack.Length() - 1 is the last node, which is one |
|
1055 // BELOW the last index in the mIndexes stack. In other words, we want |
|
1056 // to remove elements starting at index (indx + 1). |
|
1057 int32_t numToDrop = oldParentStack.Length() - (1 + indx); |
|
1058 if (numToDrop > 0) { |
|
1059 mIndexes.RemoveElementsAt(mIndexes.Length() - numToDrop, numToDrop); |
|
1060 } |
|
1061 mIndexes.AppendElements(newIndexes); |
|
1062 |
|
1063 break; |
|
1064 } |
|
1065 newCurNode = parent; |
|
1066 } |
|
1067 |
|
1068 // phew! |
|
1069 |
|
1070 mIsDone = false; |
|
1071 return NS_OK; |
|
1072 } |
|
1073 |
|
1074 nsINode* |
|
1075 nsContentIterator::GetCurrentNode() |
|
1076 { |
|
1077 if (mIsDone) { |
|
1078 return nullptr; |
|
1079 } |
|
1080 |
|
1081 NS_ASSERTION(mCurNode, "Null current node in an iterator that's not done!"); |
|
1082 |
|
1083 return mCurNode; |
|
1084 } |
|
1085 |
|
1086 |
|
1087 |
|
1088 |
|
1089 |
|
1090 /*====================================================================================*/ |
|
1091 /*====================================================================================*/ |
|
1092 |
|
1093 |
|
1094 |
|
1095 |
|
1096 |
|
1097 |
|
1098 /****************************************************** |
|
1099 * nsContentSubtreeIterator |
|
1100 ******************************************************/ |
|
1101 |
|
1102 |
|
1103 /* |
|
1104 * A simple iterator class for traversing the content in "top subtree" order |
|
1105 */ |
|
1106 class nsContentSubtreeIterator : public nsContentIterator |
|
1107 { |
|
1108 public: |
|
1109 nsContentSubtreeIterator() : nsContentIterator(false) {} |
|
1110 virtual ~nsContentSubtreeIterator() {} |
|
1111 |
|
1112 NS_DECL_ISUPPORTS_INHERITED |
|
1113 NS_DECL_CYCLE_COLLECTION_CLASS_INHERITED(nsContentSubtreeIterator, nsContentIterator) |
|
1114 |
|
1115 // nsContentIterator overrides ------------------------------ |
|
1116 |
|
1117 virtual nsresult Init(nsINode* aRoot); |
|
1118 |
|
1119 virtual nsresult Init(nsIDOMRange* aRange); |
|
1120 |
|
1121 virtual void Next(); |
|
1122 |
|
1123 virtual void Prev(); |
|
1124 |
|
1125 virtual nsresult PositionAt(nsINode* aCurNode); |
|
1126 |
|
1127 // Must override these because we don't do PositionAt |
|
1128 virtual void First(); |
|
1129 |
|
1130 // Must override these because we don't do PositionAt |
|
1131 virtual void Last(); |
|
1132 |
|
1133 protected: |
|
1134 |
|
1135 // Returns the highest inclusive ancestor of aNode that's in the range |
|
1136 // (possibly aNode itself). Returns null if aNode is null, or is not itself |
|
1137 // in the range. A node is in the range if (node, 0) comes strictly after |
|
1138 // the range endpoint, and (node, node.length) comes strictly before it, so |
|
1139 // the range's start and end nodes will never be considered "in" it. |
|
1140 nsIContent* GetTopAncestorInRange(nsINode* aNode); |
|
1141 |
|
1142 // no copy's or assigns FIX ME |
|
1143 nsContentSubtreeIterator(const nsContentSubtreeIterator&); |
|
1144 nsContentSubtreeIterator& operator=(const nsContentSubtreeIterator&); |
|
1145 |
|
1146 virtual void LastRelease() MOZ_OVERRIDE; |
|
1147 |
|
1148 nsRefPtr<nsRange> mRange; |
|
1149 |
|
1150 // these arrays all typically are used and have elements |
|
1151 nsAutoTArray<nsIContent*, 8> mEndNodes; |
|
1152 nsAutoTArray<int32_t, 8> mEndOffsets; |
|
1153 }; |
|
1154 |
|
1155 NS_IMPL_ADDREF_INHERITED(nsContentSubtreeIterator, nsContentIterator) |
|
1156 NS_IMPL_RELEASE_INHERITED(nsContentSubtreeIterator, nsContentIterator) |
|
1157 |
|
1158 NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(nsContentSubtreeIterator) |
|
1159 NS_INTERFACE_MAP_END_INHERITING(nsContentIterator) |
|
1160 |
|
1161 NS_IMPL_CYCLE_COLLECTION_INHERITED(nsContentSubtreeIterator, nsContentIterator, |
|
1162 mRange) |
|
1163 |
|
1164 void |
|
1165 nsContentSubtreeIterator::LastRelease() |
|
1166 { |
|
1167 mRange = nullptr; |
|
1168 nsContentIterator::LastRelease(); |
|
1169 } |
|
1170 |
|
1171 /****************************************************** |
|
1172 * repository cruft |
|
1173 ******************************************************/ |
|
1174 |
|
1175 already_AddRefed<nsIContentIterator> |
|
1176 NS_NewContentSubtreeIterator() |
|
1177 { |
|
1178 nsCOMPtr<nsIContentIterator> iter = new nsContentSubtreeIterator(); |
|
1179 return iter.forget(); |
|
1180 } |
|
1181 |
|
1182 |
|
1183 |
|
1184 /****************************************************** |
|
1185 * Init routines |
|
1186 ******************************************************/ |
|
1187 |
|
1188 |
|
1189 nsresult |
|
1190 nsContentSubtreeIterator::Init(nsINode* aRoot) |
|
1191 { |
|
1192 return NS_ERROR_NOT_IMPLEMENTED; |
|
1193 } |
|
1194 |
|
1195 |
|
1196 nsresult |
|
1197 nsContentSubtreeIterator::Init(nsIDOMRange* aRange) |
|
1198 { |
|
1199 MOZ_ASSERT(aRange); |
|
1200 |
|
1201 mIsDone = false; |
|
1202 |
|
1203 mRange = static_cast<nsRange*>(aRange); |
|
1204 |
|
1205 // get the start node and offset, convert to nsINode |
|
1206 mCommonParent = mRange->GetCommonAncestor(); |
|
1207 nsINode* startParent = mRange->GetStartParent(); |
|
1208 int32_t startOffset = mRange->StartOffset(); |
|
1209 nsINode* endParent = mRange->GetEndParent(); |
|
1210 int32_t endOffset = mRange->EndOffset(); |
|
1211 MOZ_ASSERT(mCommonParent && startParent && endParent); |
|
1212 // Bug 767169 |
|
1213 MOZ_ASSERT(uint32_t(startOffset) <= startParent->Length() && |
|
1214 uint32_t(endOffset) <= endParent->Length()); |
|
1215 |
|
1216 // short circuit when start node == end node |
|
1217 if (startParent == endParent) { |
|
1218 nsINode* child = startParent->GetFirstChild(); |
|
1219 |
|
1220 if (!child || startOffset == endOffset) { |
|
1221 // Text node, empty container, or collapsed |
|
1222 MakeEmpty(); |
|
1223 return NS_OK; |
|
1224 } |
|
1225 } |
|
1226 |
|
1227 // cache ancestors |
|
1228 nsContentUtils::GetAncestorsAndOffsets(endParent->AsDOMNode(), endOffset, |
|
1229 &mEndNodes, &mEndOffsets); |
|
1230 |
|
1231 nsIContent* firstCandidate = nullptr; |
|
1232 nsIContent* lastCandidate = nullptr; |
|
1233 |
|
1234 // find first node in range |
|
1235 int32_t offset = mRange->StartOffset(); |
|
1236 |
|
1237 nsINode* node; |
|
1238 if (!startParent->GetChildCount()) { |
|
1239 // no children, start at the node itself |
|
1240 node = startParent; |
|
1241 } else { |
|
1242 nsIContent* child = startParent->GetChildAt(offset); |
|
1243 if (!child) { |
|
1244 // offset after last child |
|
1245 node = startParent; |
|
1246 } else { |
|
1247 firstCandidate = child; |
|
1248 } |
|
1249 } |
|
1250 |
|
1251 if (!firstCandidate) { |
|
1252 // then firstCandidate is next node after node |
|
1253 firstCandidate = GetNextSibling(node); |
|
1254 |
|
1255 if (!firstCandidate) { |
|
1256 MakeEmpty(); |
|
1257 return NS_OK; |
|
1258 } |
|
1259 } |
|
1260 |
|
1261 firstCandidate = GetDeepFirstChild(firstCandidate); |
|
1262 |
|
1263 // confirm that this first possible contained node is indeed contained. Else |
|
1264 // we have a range that does not fully contain any node. |
|
1265 |
|
1266 bool nodeBefore, nodeAfter; |
|
1267 MOZ_ALWAYS_TRUE(NS_SUCCEEDED( |
|
1268 nsRange::CompareNodeToRange(firstCandidate, mRange, &nodeBefore, &nodeAfter))); |
|
1269 |
|
1270 if (nodeBefore || nodeAfter) { |
|
1271 MakeEmpty(); |
|
1272 return NS_OK; |
|
1273 } |
|
1274 |
|
1275 // cool, we have the first node in the range. Now we walk up its ancestors |
|
1276 // to find the most senior that is still in the range. That's the real first |
|
1277 // node. |
|
1278 mFirst = GetTopAncestorInRange(firstCandidate); |
|
1279 |
|
1280 // now to find the last node |
|
1281 offset = mRange->EndOffset(); |
|
1282 int32_t numChildren = endParent->GetChildCount(); |
|
1283 |
|
1284 if (offset > numChildren) { |
|
1285 // Can happen for text nodes |
|
1286 offset = numChildren; |
|
1287 } |
|
1288 if (!offset || !numChildren) { |
|
1289 node = endParent; |
|
1290 } else { |
|
1291 lastCandidate = endParent->GetChildAt(--offset); |
|
1292 NS_ASSERTION(lastCandidate, |
|
1293 "tree traversal trouble in nsContentSubtreeIterator::Init"); |
|
1294 } |
|
1295 |
|
1296 if (!lastCandidate) { |
|
1297 // then lastCandidate is prev node before node |
|
1298 lastCandidate = GetPrevSibling(node); |
|
1299 } |
|
1300 |
|
1301 if (!lastCandidate) { |
|
1302 MakeEmpty(); |
|
1303 return NS_OK; |
|
1304 } |
|
1305 |
|
1306 lastCandidate = GetDeepLastChild(lastCandidate); |
|
1307 |
|
1308 // confirm that this last possible contained node is indeed contained. Else |
|
1309 // we have a range that does not fully contain any node. |
|
1310 |
|
1311 MOZ_ALWAYS_TRUE(NS_SUCCEEDED( |
|
1312 nsRange::CompareNodeToRange(lastCandidate, mRange, &nodeBefore, &nodeAfter))); |
|
1313 |
|
1314 if (nodeBefore || nodeAfter) { |
|
1315 MakeEmpty(); |
|
1316 return NS_OK; |
|
1317 } |
|
1318 |
|
1319 // cool, we have the last node in the range. Now we walk up its ancestors to |
|
1320 // find the most senior that is still in the range. That's the real first |
|
1321 // node. |
|
1322 mLast = GetTopAncestorInRange(lastCandidate); |
|
1323 |
|
1324 mCurNode = mFirst; |
|
1325 |
|
1326 return NS_OK; |
|
1327 } |
|
1328 |
|
1329 /**************************************************************** |
|
1330 * nsContentSubtreeIterator overrides of ContentIterator routines |
|
1331 ****************************************************************/ |
|
1332 |
|
1333 // we can't call PositionAt in a subtree iterator... |
|
1334 void |
|
1335 nsContentSubtreeIterator::First() |
|
1336 { |
|
1337 mIsDone = mFirst == nullptr; |
|
1338 |
|
1339 mCurNode = mFirst; |
|
1340 } |
|
1341 |
|
1342 // we can't call PositionAt in a subtree iterator... |
|
1343 void |
|
1344 nsContentSubtreeIterator::Last() |
|
1345 { |
|
1346 mIsDone = mLast == nullptr; |
|
1347 |
|
1348 mCurNode = mLast; |
|
1349 } |
|
1350 |
|
1351 |
|
1352 void |
|
1353 nsContentSubtreeIterator::Next() |
|
1354 { |
|
1355 if (mIsDone || !mCurNode) { |
|
1356 return; |
|
1357 } |
|
1358 |
|
1359 if (mCurNode == mLast) { |
|
1360 mIsDone = true; |
|
1361 return; |
|
1362 } |
|
1363 |
|
1364 nsINode* nextNode = GetNextSibling(mCurNode); |
|
1365 NS_ASSERTION(nextNode, "No next sibling!?! This could mean deadlock!"); |
|
1366 |
|
1367 int32_t i = mEndNodes.IndexOf(nextNode); |
|
1368 while (i != -1) { |
|
1369 // as long as we are finding ancestors of the endpoint of the range, |
|
1370 // dive down into their children |
|
1371 nextNode = nextNode->GetFirstChild(); |
|
1372 NS_ASSERTION(nextNode, "Iterator error, expected a child node!"); |
|
1373 |
|
1374 // should be impossible to get a null pointer. If we went all the way |
|
1375 // down the child chain to the bottom without finding an interior node, |
|
1376 // then the previous node should have been the last, which was |
|
1377 // was tested at top of routine. |
|
1378 i = mEndNodes.IndexOf(nextNode); |
|
1379 } |
|
1380 |
|
1381 mCurNode = nextNode; |
|
1382 |
|
1383 // This shouldn't be needed, but since our selection code can put us |
|
1384 // in a situation where mLast is in generated content, we need this |
|
1385 // to stop the iterator when we've walked past past the last node! |
|
1386 mIsDone = mCurNode == nullptr; |
|
1387 } |
|
1388 |
|
1389 |
|
1390 void |
|
1391 nsContentSubtreeIterator::Prev() |
|
1392 { |
|
1393 // Prev should be optimized to use the mStartNodes, just as Next |
|
1394 // uses mEndNodes. |
|
1395 if (mIsDone || !mCurNode) { |
|
1396 return; |
|
1397 } |
|
1398 |
|
1399 if (mCurNode == mFirst) { |
|
1400 mIsDone = true; |
|
1401 return; |
|
1402 } |
|
1403 |
|
1404 // If any of these function calls return null, so will all succeeding ones, |
|
1405 // so mCurNode will wind up set to null. |
|
1406 nsINode* prevNode = GetDeepFirstChild(mCurNode); |
|
1407 |
|
1408 prevNode = PrevNode(prevNode); |
|
1409 |
|
1410 prevNode = GetDeepLastChild(prevNode); |
|
1411 |
|
1412 mCurNode = GetTopAncestorInRange(prevNode); |
|
1413 |
|
1414 // This shouldn't be needed, but since our selection code can put us |
|
1415 // in a situation where mFirst is in generated content, we need this |
|
1416 // to stop the iterator when we've walked past past the first node! |
|
1417 mIsDone = mCurNode == nullptr; |
|
1418 } |
|
1419 |
|
1420 |
|
1421 nsresult |
|
1422 nsContentSubtreeIterator::PositionAt(nsINode* aCurNode) |
|
1423 { |
|
1424 NS_ERROR("Not implemented!"); |
|
1425 |
|
1426 return NS_ERROR_NOT_IMPLEMENTED; |
|
1427 } |
|
1428 |
|
1429 /**************************************************************** |
|
1430 * nsContentSubtreeIterator helper routines |
|
1431 ****************************************************************/ |
|
1432 |
|
1433 nsIContent* |
|
1434 nsContentSubtreeIterator::GetTopAncestorInRange(nsINode* aNode) |
|
1435 { |
|
1436 if (!aNode || !aNode->GetParentNode()) { |
|
1437 return nullptr; |
|
1438 } |
|
1439 |
|
1440 // aNode has a parent, so it must be content. |
|
1441 nsIContent* content = aNode->AsContent(); |
|
1442 |
|
1443 // sanity check: aNode is itself in the range |
|
1444 bool nodeBefore, nodeAfter; |
|
1445 nsresult res = nsRange::CompareNodeToRange(aNode, mRange, |
|
1446 &nodeBefore, &nodeAfter); |
|
1447 NS_ASSERTION(NS_SUCCEEDED(res) && !nodeBefore && !nodeAfter, |
|
1448 "aNode isn't in mRange, or something else weird happened"); |
|
1449 if (NS_FAILED(res) || nodeBefore || nodeAfter) { |
|
1450 return nullptr; |
|
1451 } |
|
1452 |
|
1453 while (content) { |
|
1454 nsIContent* parent = content->GetParent(); |
|
1455 // content always has a parent. If its parent is the root, however -- |
|
1456 // i.e., either it's not content, or it is content but its own parent is |
|
1457 // null -- then we're finished, since we don't go up to the root. |
|
1458 // |
|
1459 // We have to special-case this because CompareNodeToRange treats the root |
|
1460 // node differently -- see bug 765205. |
|
1461 if (!parent || !parent->GetParentNode()) { |
|
1462 return content; |
|
1463 } |
|
1464 MOZ_ALWAYS_TRUE(NS_SUCCEEDED( |
|
1465 nsRange::CompareNodeToRange(parent, mRange, &nodeBefore, &nodeAfter))); |
|
1466 |
|
1467 if (nodeBefore || nodeAfter) { |
|
1468 return content; |
|
1469 } |
|
1470 content = parent; |
|
1471 } |
|
1472 |
|
1473 MOZ_CRASH("This should only be possible if aNode was null"); |
|
1474 } |