|
1 /* |
|
2 * Copyright 2014 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #include "SkDistanceFieldGen.h" |
|
9 #include "SkPoint.h" |
|
10 |
|
11 struct DFData { |
|
12 float fAlpha; // alpha value of source texel |
|
13 float fDistSq; // distance squared to nearest (so far) edge texel |
|
14 SkPoint fDistVector; // distance vector to nearest (so far) edge texel |
|
15 }; |
|
16 |
|
17 enum NeighborFlags { |
|
18 kLeft_NeighborFlag = 0x01, |
|
19 kRight_NeighborFlag = 0x02, |
|
20 kTopLeft_NeighborFlag = 0x04, |
|
21 kTop_NeighborFlag = 0x08, |
|
22 kTopRight_NeighborFlag = 0x10, |
|
23 kBottomLeft_NeighborFlag = 0x20, |
|
24 kBottom_NeighborFlag = 0x40, |
|
25 kBottomRight_NeighborFlag = 0x80, |
|
26 kAll_NeighborFlags = 0xff, |
|
27 |
|
28 kNeighborFlagCount = 8 |
|
29 }; |
|
30 |
|
31 // We treat an "edge" as a place where we cross from black to non-black, or vice versa. |
|
32 // 'neighborFlags' is used to limit the directions in which we test to avoid indexing |
|
33 // outside of the image |
|
34 static bool found_edge(const unsigned char* imagePtr, int width, int neighborFlags) { |
|
35 // the order of these should match the neighbor flags above |
|
36 const int kNum8ConnectedNeighbors = 8; |
|
37 const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 }; |
|
38 SkASSERT(kNum8ConnectedNeighbors == kNeighborFlagCount); |
|
39 |
|
40 // search for an edge |
|
41 bool currVal = (*imagePtr != 0); |
|
42 for (int i = 0; i < kNum8ConnectedNeighbors; ++i) { |
|
43 bool checkVal; |
|
44 if ((1 << i) & neighborFlags) { |
|
45 const unsigned char* checkPtr = imagePtr + offsets[i]; |
|
46 checkVal = (*checkPtr != 0); |
|
47 } else { |
|
48 checkVal = false; |
|
49 } |
|
50 SkASSERT(checkVal == 0 || checkVal == 1); |
|
51 SkASSERT(currVal == 0 || currVal == 1); |
|
52 if (checkVal != currVal) { |
|
53 return true; |
|
54 } |
|
55 } |
|
56 |
|
57 return false; |
|
58 } |
|
59 |
|
60 static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image, |
|
61 int dataWidth, int dataHeight, |
|
62 int imageWidth, int imageHeight, |
|
63 int pad) { |
|
64 data += pad*dataWidth; |
|
65 data += pad; |
|
66 edges += (pad*dataWidth + pad); |
|
67 |
|
68 for (int j = 0; j < imageHeight; ++j) { |
|
69 for (int i = 0; i < imageWidth; ++i) { |
|
70 if (255 == *image) { |
|
71 data->fAlpha = 1.0f; |
|
72 } else { |
|
73 data->fAlpha = (*image)*0.00392156862f; // 1/255 |
|
74 } |
|
75 int checkMask = kAll_NeighborFlags; |
|
76 if (i == 0) { |
|
77 checkMask &= ~(kLeft_NeighborFlag|kTopLeft_NeighborFlag|kBottomLeft_NeighborFlag); |
|
78 } |
|
79 if (i == imageWidth-1) { |
|
80 checkMask &= ~(kRight_NeighborFlag|kTopRight_NeighborFlag|kBottomRight_NeighborFlag); |
|
81 } |
|
82 if (j == 0) { |
|
83 checkMask &= ~(kTopLeft_NeighborFlag|kTop_NeighborFlag|kTopRight_NeighborFlag); |
|
84 } |
|
85 if (j == imageHeight-1) { |
|
86 checkMask &= ~(kBottomLeft_NeighborFlag|kBottom_NeighborFlag|kBottomRight_NeighborFlag); |
|
87 } |
|
88 if (found_edge(image, imageWidth, checkMask)) { |
|
89 *edges = 255; // using 255 makes for convenient debug rendering |
|
90 } |
|
91 ++data; |
|
92 ++image; |
|
93 ++edges; |
|
94 } |
|
95 data += 2*pad; |
|
96 edges += 2*pad; |
|
97 } |
|
98 } |
|
99 |
|
100 // from Gustavson (2011) |
|
101 // computes the distance to an edge given an edge normal vector and a pixel's alpha value |
|
102 // assumes that direction has been pre-normalized |
|
103 static float edge_distance(const SkPoint& direction, float alpha) { |
|
104 float dx = direction.fX; |
|
105 float dy = direction.fY; |
|
106 float distance; |
|
107 if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) { |
|
108 distance = 0.5f - alpha; |
|
109 } else { |
|
110 // this is easier if we treat the direction as being in the first octant |
|
111 // (other octants are symmetrical) |
|
112 dx = SkScalarAbs(dx); |
|
113 dy = SkScalarAbs(dy); |
|
114 if (dx < dy) { |
|
115 SkTSwap(dx, dy); |
|
116 } |
|
117 |
|
118 // a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge |
|
119 // to avoid the divide, we just consider the numerator |
|
120 float a1num = 0.5f*dy; |
|
121 |
|
122 // we now compute the approximate distance, depending where the alpha falls |
|
123 // relative to the edge fractional area |
|
124 |
|
125 // if 0 <= alpha < a1 |
|
126 if (alpha*dx < a1num) { |
|
127 // TODO: find a way to do this without square roots? |
|
128 distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha); |
|
129 // if a1 <= alpha <= 1 - a1 |
|
130 } else if (alpha*dx < (dx - a1num)) { |
|
131 distance = (0.5f - alpha)*dx; |
|
132 // if 1 - a1 < alpha <= 1 |
|
133 } else { |
|
134 // TODO: find a way to do this without square roots? |
|
135 distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha)); |
|
136 } |
|
137 } |
|
138 |
|
139 return distance; |
|
140 } |
|
141 |
|
142 static void init_distances(DFData* data, unsigned char* edges, int width, int height) { |
|
143 // skip one pixel border |
|
144 DFData* currData = data; |
|
145 DFData* prevData = data - width; |
|
146 DFData* nextData = data + width; |
|
147 |
|
148 for (int j = 0; j < height; ++j) { |
|
149 for (int i = 0; i < width; ++i) { |
|
150 if (*edges) { |
|
151 // we should not be in the one-pixel outside band |
|
152 SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1); |
|
153 // gradient will point from low to high |
|
154 // +y is down in this case |
|
155 // i.e., if you're outside, gradient points towards edge |
|
156 // if you're inside, gradient points away from edge |
|
157 SkPoint currGrad; |
|
158 currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha |
|
159 + SK_ScalarSqrt2*(currData+1)->fAlpha |
|
160 - SK_ScalarSqrt2*(currData-1)->fAlpha |
|
161 + (nextData+1)->fAlpha - (nextData-1)->fAlpha; |
|
162 currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha |
|
163 + SK_ScalarSqrt2*nextData->fAlpha |
|
164 - SK_ScalarSqrt2*prevData->fAlpha |
|
165 + (nextData+1)->fAlpha - (prevData+1)->fAlpha; |
|
166 currGrad.setLengthFast(1.0f); |
|
167 |
|
168 // init squared distance to edge and distance vector |
|
169 float dist = edge_distance(currGrad, currData->fAlpha); |
|
170 currGrad.scale(dist, &currData->fDistVector); |
|
171 currData->fDistSq = dist*dist; |
|
172 } else { |
|
173 // init distance to "far away" |
|
174 currData->fDistSq = 2000000.f; |
|
175 currData->fDistVector.fX = 1000.f; |
|
176 currData->fDistVector.fY = 1000.f; |
|
177 } |
|
178 ++currData; |
|
179 ++prevData; |
|
180 ++nextData; |
|
181 ++edges; |
|
182 } |
|
183 } |
|
184 } |
|
185 |
|
186 // Danielsson's 8SSEDT |
|
187 |
|
188 // first stage forward pass |
|
189 // (forward in Y, forward in X) |
|
190 static void F1(DFData* curr, int width) { |
|
191 // upper left |
|
192 DFData* check = curr - width-1; |
|
193 SkPoint distVec = check->fDistVector; |
|
194 float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f); |
|
195 if (distSq < curr->fDistSq) { |
|
196 distVec.fX -= 1.0f; |
|
197 distVec.fY -= 1.0f; |
|
198 curr->fDistSq = distSq; |
|
199 curr->fDistVector = distVec; |
|
200 } |
|
201 |
|
202 // up |
|
203 check = curr - width; |
|
204 distVec = check->fDistVector; |
|
205 distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f; |
|
206 if (distSq < curr->fDistSq) { |
|
207 distVec.fY -= 1.0f; |
|
208 curr->fDistSq = distSq; |
|
209 curr->fDistVector = distVec; |
|
210 } |
|
211 |
|
212 // upper right |
|
213 check = curr - width+1; |
|
214 distVec = check->fDistVector; |
|
215 distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f); |
|
216 if (distSq < curr->fDistSq) { |
|
217 distVec.fX += 1.0f; |
|
218 distVec.fY -= 1.0f; |
|
219 curr->fDistSq = distSq; |
|
220 curr->fDistVector = distVec; |
|
221 } |
|
222 |
|
223 // left |
|
224 check = curr - 1; |
|
225 distVec = check->fDistVector; |
|
226 distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; |
|
227 if (distSq < curr->fDistSq) { |
|
228 distVec.fX -= 1.0f; |
|
229 curr->fDistSq = distSq; |
|
230 curr->fDistVector = distVec; |
|
231 } |
|
232 } |
|
233 |
|
234 // second stage forward pass |
|
235 // (forward in Y, backward in X) |
|
236 static void F2(DFData* curr, int width) { |
|
237 // right |
|
238 DFData* check = curr + 1; |
|
239 float distSq = check->fDistSq; |
|
240 SkPoint distVec = check->fDistVector; |
|
241 distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; |
|
242 if (distSq < curr->fDistSq) { |
|
243 distVec.fX += 1.0f; |
|
244 curr->fDistSq = distSq; |
|
245 curr->fDistVector = distVec; |
|
246 } |
|
247 } |
|
248 |
|
249 // first stage backward pass |
|
250 // (backward in Y, forward in X) |
|
251 static void B1(DFData* curr, int width) { |
|
252 // left |
|
253 DFData* check = curr - 1; |
|
254 SkPoint distVec = check->fDistVector; |
|
255 float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; |
|
256 if (distSq < curr->fDistSq) { |
|
257 distVec.fX -= 1.0f; |
|
258 curr->fDistSq = distSq; |
|
259 curr->fDistVector = distVec; |
|
260 } |
|
261 } |
|
262 |
|
263 // second stage backward pass |
|
264 // (backward in Y, backwards in X) |
|
265 static void B2(DFData* curr, int width) { |
|
266 // right |
|
267 DFData* check = curr + 1; |
|
268 SkPoint distVec = check->fDistVector; |
|
269 float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; |
|
270 if (distSq < curr->fDistSq) { |
|
271 distVec.fX += 1.0f; |
|
272 curr->fDistSq = distSq; |
|
273 curr->fDistVector = distVec; |
|
274 } |
|
275 |
|
276 // bottom left |
|
277 check = curr + width-1; |
|
278 distVec = check->fDistVector; |
|
279 distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f); |
|
280 if (distSq < curr->fDistSq) { |
|
281 distVec.fX -= 1.0f; |
|
282 distVec.fY += 1.0f; |
|
283 curr->fDistSq = distSq; |
|
284 curr->fDistVector = distVec; |
|
285 } |
|
286 |
|
287 // bottom |
|
288 check = curr + width; |
|
289 distVec = check->fDistVector; |
|
290 distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f; |
|
291 if (distSq < curr->fDistSq) { |
|
292 distVec.fY += 1.0f; |
|
293 curr->fDistSq = distSq; |
|
294 curr->fDistVector = distVec; |
|
295 } |
|
296 |
|
297 // bottom right |
|
298 check = curr + width+1; |
|
299 distVec = check->fDistVector; |
|
300 distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f); |
|
301 if (distSq < curr->fDistSq) { |
|
302 distVec.fX += 1.0f; |
|
303 distVec.fY += 1.0f; |
|
304 curr->fDistSq = distSq; |
|
305 curr->fDistVector = distVec; |
|
306 } |
|
307 } |
|
308 |
|
309 // enable this to output edge data rather than the distance field |
|
310 #define DUMP_EDGE 0 |
|
311 |
|
312 #if !DUMP_EDGE |
|
313 static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) { |
|
314 if (dist <= -distanceMagnitude) { |
|
315 return 255; |
|
316 } else if (dist > distanceMagnitude) { |
|
317 return 0; |
|
318 } else { |
|
319 return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude); |
|
320 } |
|
321 } |
|
322 #endif |
|
323 |
|
324 // assumes an 8-bit image and distance field |
|
325 bool SkGenerateDistanceFieldFromImage(unsigned char* distanceField, |
|
326 const unsigned char* image, |
|
327 int width, int height, |
|
328 int distanceMagnitude) { |
|
329 SkASSERT(NULL != distanceField); |
|
330 SkASSERT(NULL != image); |
|
331 |
|
332 // the final distance field will have additional texels on each side to handle |
|
333 // the maximum distance |
|
334 // we expand our temp data by one more on each side to simplify |
|
335 // the scanning code -- will always be treated as infinitely far away |
|
336 int pad = distanceMagnitude+1; |
|
337 |
|
338 // set params for distance field data |
|
339 int dataWidth = width + 2*pad; |
|
340 int dataHeight = height + 2*pad; |
|
341 |
|
342 // create temp data |
|
343 size_t dataSize = dataWidth*dataHeight*sizeof(DFData); |
|
344 SkAutoSMalloc<1024> dfStorage(dataSize); |
|
345 DFData* dataPtr = (DFData*) dfStorage.get(); |
|
346 sk_bzero(dataPtr, dataSize); |
|
347 |
|
348 SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char)); |
|
349 unsigned char* edgePtr = (unsigned char*) edgeStorage.get(); |
|
350 sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char)); |
|
351 |
|
352 // copy glyph into distance field storage |
|
353 init_glyph_data(dataPtr, edgePtr, image, |
|
354 dataWidth, dataHeight, |
|
355 width, height, pad); |
|
356 |
|
357 // create initial distance data, particularly at edges |
|
358 init_distances(dataPtr, edgePtr, dataWidth, dataHeight); |
|
359 |
|
360 // now perform Euclidean distance transform to propagate distances |
|
361 |
|
362 // forwards in y |
|
363 DFData* currData = dataPtr+dataWidth+1; // skip outer buffer |
|
364 unsigned char* currEdge = edgePtr+dataWidth+1; |
|
365 for (int j = 1; j < dataHeight-1; ++j) { |
|
366 // forwards in x |
|
367 for (int i = 1; i < dataWidth-1; ++i) { |
|
368 // don't need to calculate distance for edge pixels |
|
369 if (!*currEdge) { |
|
370 F1(currData, dataWidth); |
|
371 } |
|
372 ++currData; |
|
373 ++currEdge; |
|
374 } |
|
375 |
|
376 // backwards in x |
|
377 --currData; // reset to end |
|
378 --currEdge; |
|
379 for (int i = 1; i < dataWidth-1; ++i) { |
|
380 // don't need to calculate distance for edge pixels |
|
381 if (!*currEdge) { |
|
382 F2(currData, dataWidth); |
|
383 } |
|
384 --currData; |
|
385 --currEdge; |
|
386 } |
|
387 |
|
388 currData += dataWidth+1; |
|
389 currEdge += dataWidth+1; |
|
390 } |
|
391 |
|
392 // backwards in y |
|
393 currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer |
|
394 currEdge = edgePtr+dataWidth*(dataHeight-2) - 1; |
|
395 for (int j = 1; j < dataHeight-1; ++j) { |
|
396 // forwards in x |
|
397 for (int i = 1; i < dataWidth-1; ++i) { |
|
398 // don't need to calculate distance for edge pixels |
|
399 if (!*currEdge) { |
|
400 B1(currData, dataWidth); |
|
401 } |
|
402 ++currData; |
|
403 ++currEdge; |
|
404 } |
|
405 |
|
406 // backwards in x |
|
407 --currData; // reset to end |
|
408 --currEdge; |
|
409 for (int i = 1; i < dataWidth-1; ++i) { |
|
410 // don't need to calculate distance for edge pixels |
|
411 if (!*currEdge) { |
|
412 B2(currData, dataWidth); |
|
413 } |
|
414 --currData; |
|
415 --currEdge; |
|
416 } |
|
417 |
|
418 currData -= dataWidth-1; |
|
419 currEdge -= dataWidth-1; |
|
420 } |
|
421 |
|
422 // copy results to final distance field data |
|
423 currData = dataPtr + dataWidth+1; |
|
424 currEdge = edgePtr + dataWidth+1; |
|
425 unsigned char *dfPtr = distanceField; |
|
426 for (int j = 1; j < dataHeight-1; ++j) { |
|
427 for (int i = 1; i < dataWidth-1; ++i) { |
|
428 #if DUMP_EDGE |
|
429 unsigned char val = sk_float_round2int(255*currData->fAlpha); |
|
430 if (*currEdge) { |
|
431 val = 128; |
|
432 } |
|
433 *dfPtr++ = val; |
|
434 #else |
|
435 float dist; |
|
436 if (currData->fAlpha > 0.5f) { |
|
437 dist = -SkScalarSqrt(currData->fDistSq); |
|
438 } else { |
|
439 dist = SkScalarSqrt(currData->fDistSq); |
|
440 } |
|
441 *dfPtr++ = pack_distance_field_val(dist, (float)distanceMagnitude); |
|
442 #endif |
|
443 ++currData; |
|
444 ++currEdge; |
|
445 } |
|
446 currData += 2; |
|
447 currEdge += 2; |
|
448 } |
|
449 |
|
450 return true; |
|
451 } |