|
1 |
|
2 /* |
|
3 * Copyright 2006 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include "SkBuffer.h" |
|
11 #include "SkErrorInternals.h" |
|
12 #include "SkMath.h" |
|
13 #include "SkPath.h" |
|
14 #include "SkPathRef.h" |
|
15 #include "SkRRect.h" |
|
16 #include "SkThread.h" |
|
17 |
|
18 //////////////////////////////////////////////////////////////////////////// |
|
19 |
|
20 /** |
|
21 * Path.bounds is defined to be the bounds of all the control points. |
|
22 * If we called bounds.join(r) we would skip r if r was empty, which breaks |
|
23 * our promise. Hence we have a custom joiner that doesn't look at emptiness |
|
24 */ |
|
25 static void joinNoEmptyChecks(SkRect* dst, const SkRect& src) { |
|
26 dst->fLeft = SkMinScalar(dst->fLeft, src.fLeft); |
|
27 dst->fTop = SkMinScalar(dst->fTop, src.fTop); |
|
28 dst->fRight = SkMaxScalar(dst->fRight, src.fRight); |
|
29 dst->fBottom = SkMaxScalar(dst->fBottom, src.fBottom); |
|
30 } |
|
31 |
|
32 static bool is_degenerate(const SkPath& path) { |
|
33 SkPath::Iter iter(path, false); |
|
34 SkPoint pts[4]; |
|
35 return SkPath::kDone_Verb == iter.next(pts); |
|
36 } |
|
37 |
|
38 class SkAutoDisableDirectionCheck { |
|
39 public: |
|
40 SkAutoDisableDirectionCheck(SkPath* path) : fPath(path) { |
|
41 fSaved = static_cast<SkPath::Direction>(fPath->fDirection); |
|
42 } |
|
43 |
|
44 ~SkAutoDisableDirectionCheck() { |
|
45 fPath->fDirection = fSaved; |
|
46 } |
|
47 |
|
48 private: |
|
49 SkPath* fPath; |
|
50 SkPath::Direction fSaved; |
|
51 }; |
|
52 #define SkAutoDisableDirectionCheck(...) SK_REQUIRE_LOCAL_VAR(SkAutoDisableDirectionCheck) |
|
53 |
|
54 /* This guy's constructor/destructor bracket a path editing operation. It is |
|
55 used when we know the bounds of the amount we are going to add to the path |
|
56 (usually a new contour, but not required). |
|
57 |
|
58 It captures some state about the path up front (i.e. if it already has a |
|
59 cached bounds), and then if it can, it updates the cache bounds explicitly, |
|
60 avoiding the need to revisit all of the points in getBounds(). |
|
61 |
|
62 It also notes if the path was originally degenerate, and if so, sets |
|
63 isConvex to true. Thus it can only be used if the contour being added is |
|
64 convex. |
|
65 */ |
|
66 class SkAutoPathBoundsUpdate { |
|
67 public: |
|
68 SkAutoPathBoundsUpdate(SkPath* path, const SkRect& r) : fRect(r) { |
|
69 this->init(path); |
|
70 } |
|
71 |
|
72 SkAutoPathBoundsUpdate(SkPath* path, SkScalar left, SkScalar top, |
|
73 SkScalar right, SkScalar bottom) { |
|
74 fRect.set(left, top, right, bottom); |
|
75 this->init(path); |
|
76 } |
|
77 |
|
78 ~SkAutoPathBoundsUpdate() { |
|
79 fPath->setConvexity(fDegenerate ? SkPath::kConvex_Convexity |
|
80 : SkPath::kUnknown_Convexity); |
|
81 if (fEmpty || fHasValidBounds) { |
|
82 fPath->setBounds(fRect); |
|
83 } |
|
84 } |
|
85 |
|
86 private: |
|
87 SkPath* fPath; |
|
88 SkRect fRect; |
|
89 bool fHasValidBounds; |
|
90 bool fDegenerate; |
|
91 bool fEmpty; |
|
92 |
|
93 void init(SkPath* path) { |
|
94 // Cannot use fRect for our bounds unless we know it is sorted |
|
95 fRect.sort(); |
|
96 fPath = path; |
|
97 // Mark the path's bounds as dirty if (1) they are, or (2) the path |
|
98 // is non-finite, and therefore its bounds are not meaningful |
|
99 fHasValidBounds = path->hasComputedBounds() && path->isFinite(); |
|
100 fEmpty = path->isEmpty(); |
|
101 if (fHasValidBounds && !fEmpty) { |
|
102 joinNoEmptyChecks(&fRect, fPath->getBounds()); |
|
103 } |
|
104 fDegenerate = is_degenerate(*path); |
|
105 } |
|
106 }; |
|
107 #define SkAutoPathBoundsUpdate(...) SK_REQUIRE_LOCAL_VAR(SkAutoPathBoundsUpdate) |
|
108 |
|
109 //////////////////////////////////////////////////////////////////////////// |
|
110 |
|
111 /* |
|
112 Stores the verbs and points as they are given to us, with exceptions: |
|
113 - we only record "Close" if it was immediately preceeded by Move | Line | Quad | Cubic |
|
114 - we insert a Move(0,0) if Line | Quad | Cubic is our first command |
|
115 |
|
116 The iterator does more cleanup, especially if forceClose == true |
|
117 1. If we encounter degenerate segments, remove them |
|
118 2. if we encounter Close, return a cons'd up Line() first (if the curr-pt != start-pt) |
|
119 3. if we encounter Move without a preceeding Close, and forceClose is true, goto #2 |
|
120 4. if we encounter Line | Quad | Cubic after Close, cons up a Move |
|
121 */ |
|
122 |
|
123 //////////////////////////////////////////////////////////////////////////// |
|
124 |
|
125 // flag to require a moveTo if we begin with something else, like lineTo etc. |
|
126 #define INITIAL_LASTMOVETOINDEX_VALUE ~0 |
|
127 |
|
128 SkPath::SkPath() |
|
129 : fPathRef(SkPathRef::CreateEmpty()) |
|
130 #ifdef SK_BUILD_FOR_ANDROID |
|
131 , fSourcePath(NULL) |
|
132 #endif |
|
133 { |
|
134 this->resetFields(); |
|
135 } |
|
136 |
|
137 void SkPath::resetFields() { |
|
138 //fPathRef is assumed to have been emptied by the caller. |
|
139 fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; |
|
140 fFillType = kWinding_FillType; |
|
141 fConvexity = kUnknown_Convexity; |
|
142 fDirection = kUnknown_Direction; |
|
143 |
|
144 // We don't touch Android's fSourcePath. It's used to track texture garbage collection, so we |
|
145 // don't want to muck with it if it's been set to something non-NULL. |
|
146 } |
|
147 |
|
148 SkPath::SkPath(const SkPath& that) |
|
149 : fPathRef(SkRef(that.fPathRef.get())) { |
|
150 this->copyFields(that); |
|
151 #ifdef SK_BUILD_FOR_ANDROID |
|
152 fSourcePath = that.fSourcePath; |
|
153 #endif |
|
154 SkDEBUGCODE(that.validate();) |
|
155 } |
|
156 |
|
157 SkPath::~SkPath() { |
|
158 SkDEBUGCODE(this->validate();) |
|
159 } |
|
160 |
|
161 SkPath& SkPath::operator=(const SkPath& that) { |
|
162 SkDEBUGCODE(that.validate();) |
|
163 |
|
164 if (this != &that) { |
|
165 fPathRef.reset(SkRef(that.fPathRef.get())); |
|
166 this->copyFields(that); |
|
167 #ifdef SK_BUILD_FOR_ANDROID |
|
168 fSourcePath = that.fSourcePath; |
|
169 #endif |
|
170 } |
|
171 SkDEBUGCODE(this->validate();) |
|
172 return *this; |
|
173 } |
|
174 |
|
175 void SkPath::copyFields(const SkPath& that) { |
|
176 //fPathRef is assumed to have been set by the caller. |
|
177 fLastMoveToIndex = that.fLastMoveToIndex; |
|
178 fFillType = that.fFillType; |
|
179 fConvexity = that.fConvexity; |
|
180 fDirection = that.fDirection; |
|
181 } |
|
182 |
|
183 bool operator==(const SkPath& a, const SkPath& b) { |
|
184 // note: don't need to look at isConvex or bounds, since just comparing the |
|
185 // raw data is sufficient. |
|
186 return &a == &b || |
|
187 (a.fFillType == b.fFillType && *a.fPathRef.get() == *b.fPathRef.get()); |
|
188 } |
|
189 |
|
190 void SkPath::swap(SkPath& that) { |
|
191 SkASSERT(&that != NULL); |
|
192 |
|
193 if (this != &that) { |
|
194 fPathRef.swap(&that.fPathRef); |
|
195 SkTSwap<int>(fLastMoveToIndex, that.fLastMoveToIndex); |
|
196 SkTSwap<uint8_t>(fFillType, that.fFillType); |
|
197 SkTSwap<uint8_t>(fConvexity, that.fConvexity); |
|
198 SkTSwap<uint8_t>(fDirection, that.fDirection); |
|
199 #ifdef SK_BUILD_FOR_ANDROID |
|
200 SkTSwap<const SkPath*>(fSourcePath, that.fSourcePath); |
|
201 #endif |
|
202 } |
|
203 } |
|
204 |
|
205 static inline bool check_edge_against_rect(const SkPoint& p0, |
|
206 const SkPoint& p1, |
|
207 const SkRect& rect, |
|
208 SkPath::Direction dir) { |
|
209 const SkPoint* edgeBegin; |
|
210 SkVector v; |
|
211 if (SkPath::kCW_Direction == dir) { |
|
212 v = p1 - p0; |
|
213 edgeBegin = &p0; |
|
214 } else { |
|
215 v = p0 - p1; |
|
216 edgeBegin = &p1; |
|
217 } |
|
218 if (v.fX || v.fY) { |
|
219 // check the cross product of v with the vec from edgeBegin to each rect corner |
|
220 SkScalar yL = SkScalarMul(v.fY, rect.fLeft - edgeBegin->fX); |
|
221 SkScalar xT = SkScalarMul(v.fX, rect.fTop - edgeBegin->fY); |
|
222 SkScalar yR = SkScalarMul(v.fY, rect.fRight - edgeBegin->fX); |
|
223 SkScalar xB = SkScalarMul(v.fX, rect.fBottom - edgeBegin->fY); |
|
224 if ((xT < yL) || (xT < yR) || (xB < yL) || (xB < yR)) { |
|
225 return false; |
|
226 } |
|
227 } |
|
228 return true; |
|
229 } |
|
230 |
|
231 bool SkPath::conservativelyContainsRect(const SkRect& rect) const { |
|
232 // This only handles non-degenerate convex paths currently. |
|
233 if (kConvex_Convexity != this->getConvexity()) { |
|
234 return false; |
|
235 } |
|
236 |
|
237 Direction direction; |
|
238 if (!this->cheapComputeDirection(&direction)) { |
|
239 return false; |
|
240 } |
|
241 |
|
242 SkPoint firstPt; |
|
243 SkPoint prevPt; |
|
244 RawIter iter(*this); |
|
245 SkPath::Verb verb; |
|
246 SkPoint pts[4]; |
|
247 SkDEBUGCODE(int moveCnt = 0;) |
|
248 SkDEBUGCODE(int segmentCount = 0;) |
|
249 SkDEBUGCODE(int closeCount = 0;) |
|
250 |
|
251 while ((verb = iter.next(pts)) != kDone_Verb) { |
|
252 int nextPt = -1; |
|
253 switch (verb) { |
|
254 case kMove_Verb: |
|
255 SkASSERT(!segmentCount && !closeCount); |
|
256 SkDEBUGCODE(++moveCnt); |
|
257 firstPt = prevPt = pts[0]; |
|
258 break; |
|
259 case kLine_Verb: |
|
260 nextPt = 1; |
|
261 SkASSERT(moveCnt && !closeCount); |
|
262 SkDEBUGCODE(++segmentCount); |
|
263 break; |
|
264 case kQuad_Verb: |
|
265 case kConic_Verb: |
|
266 SkASSERT(moveCnt && !closeCount); |
|
267 SkDEBUGCODE(++segmentCount); |
|
268 nextPt = 2; |
|
269 break; |
|
270 case kCubic_Verb: |
|
271 SkASSERT(moveCnt && !closeCount); |
|
272 SkDEBUGCODE(++segmentCount); |
|
273 nextPt = 3; |
|
274 break; |
|
275 case kClose_Verb: |
|
276 SkDEBUGCODE(++closeCount;) |
|
277 break; |
|
278 default: |
|
279 SkDEBUGFAIL("unknown verb"); |
|
280 } |
|
281 if (-1 != nextPt) { |
|
282 if (!check_edge_against_rect(prevPt, pts[nextPt], rect, direction)) { |
|
283 return false; |
|
284 } |
|
285 prevPt = pts[nextPt]; |
|
286 } |
|
287 } |
|
288 |
|
289 return check_edge_against_rect(prevPt, firstPt, rect, direction); |
|
290 } |
|
291 |
|
292 uint32_t SkPath::getGenerationID() const { |
|
293 uint32_t genID = fPathRef->genID(); |
|
294 #ifdef SK_BUILD_FOR_ANDROID |
|
295 SkASSERT((unsigned)fFillType < (1 << (32 - kPathRefGenIDBitCnt))); |
|
296 genID |= static_cast<uint32_t>(fFillType) << kPathRefGenIDBitCnt; |
|
297 #endif |
|
298 return genID; |
|
299 } |
|
300 |
|
301 #ifdef SK_BUILD_FOR_ANDROID |
|
302 const SkPath* SkPath::getSourcePath() const { |
|
303 return fSourcePath; |
|
304 } |
|
305 |
|
306 void SkPath::setSourcePath(const SkPath* path) { |
|
307 fSourcePath = path; |
|
308 } |
|
309 #endif |
|
310 |
|
311 void SkPath::reset() { |
|
312 SkDEBUGCODE(this->validate();) |
|
313 |
|
314 fPathRef.reset(SkPathRef::CreateEmpty()); |
|
315 this->resetFields(); |
|
316 } |
|
317 |
|
318 void SkPath::rewind() { |
|
319 SkDEBUGCODE(this->validate();) |
|
320 |
|
321 SkPathRef::Rewind(&fPathRef); |
|
322 this->resetFields(); |
|
323 } |
|
324 |
|
325 bool SkPath::isLine(SkPoint line[2]) const { |
|
326 int verbCount = fPathRef->countVerbs(); |
|
327 |
|
328 if (2 == verbCount) { |
|
329 SkASSERT(kMove_Verb == fPathRef->atVerb(0)); |
|
330 if (kLine_Verb == fPathRef->atVerb(1)) { |
|
331 SkASSERT(2 == fPathRef->countPoints()); |
|
332 if (line) { |
|
333 const SkPoint* pts = fPathRef->points(); |
|
334 line[0] = pts[0]; |
|
335 line[1] = pts[1]; |
|
336 } |
|
337 return true; |
|
338 } |
|
339 } |
|
340 return false; |
|
341 } |
|
342 |
|
343 /* |
|
344 Determines if path is a rect by keeping track of changes in direction |
|
345 and looking for a loop either clockwise or counterclockwise. |
|
346 |
|
347 The direction is computed such that: |
|
348 0: vertical up |
|
349 1: horizontal left |
|
350 2: vertical down |
|
351 3: horizontal right |
|
352 |
|
353 A rectangle cycles up/right/down/left or up/left/down/right. |
|
354 |
|
355 The test fails if: |
|
356 The path is closed, and followed by a line. |
|
357 A second move creates a new endpoint. |
|
358 A diagonal line is parsed. |
|
359 There's more than four changes of direction. |
|
360 There's a discontinuity on the line (e.g., a move in the middle) |
|
361 The line reverses direction. |
|
362 The path contains a quadratic or cubic. |
|
363 The path contains fewer than four points. |
|
364 *The rectangle doesn't complete a cycle. |
|
365 *The final point isn't equal to the first point. |
|
366 |
|
367 *These last two conditions we relax if we have a 3-edge path that would |
|
368 form a rectangle if it were closed (as we do when we fill a path) |
|
369 |
|
370 It's OK if the path has: |
|
371 Several colinear line segments composing a rectangle side. |
|
372 Single points on the rectangle side. |
|
373 |
|
374 The direction takes advantage of the corners found since opposite sides |
|
375 must travel in opposite directions. |
|
376 |
|
377 FIXME: Allow colinear quads and cubics to be treated like lines. |
|
378 FIXME: If the API passes fill-only, return true if the filled stroke |
|
379 is a rectangle, though the caller failed to close the path. |
|
380 |
|
381 first,last,next direction state-machine: |
|
382 0x1 is set if the segment is horizontal |
|
383 0x2 is set if the segment is moving to the right or down |
|
384 thus: |
|
385 two directions are opposites iff (dirA ^ dirB) == 0x2 |
|
386 two directions are perpendicular iff (dirA ^ dirB) == 0x1 |
|
387 |
|
388 */ |
|
389 static int rect_make_dir(SkScalar dx, SkScalar dy) { |
|
390 return ((0 != dx) << 0) | ((dx > 0 || dy > 0) << 1); |
|
391 } |
|
392 bool SkPath::isRectContour(bool allowPartial, int* currVerb, const SkPoint** ptsPtr, |
|
393 bool* isClosed, Direction* direction) const { |
|
394 int corners = 0; |
|
395 SkPoint first, last; |
|
396 const SkPoint* pts = *ptsPtr; |
|
397 const SkPoint* savePts = NULL; |
|
398 first.set(0, 0); |
|
399 last.set(0, 0); |
|
400 int firstDirection = 0; |
|
401 int lastDirection = 0; |
|
402 int nextDirection = 0; |
|
403 bool closedOrMoved = false; |
|
404 bool autoClose = false; |
|
405 int verbCnt = fPathRef->countVerbs(); |
|
406 while (*currVerb < verbCnt && (!allowPartial || !autoClose)) { |
|
407 switch (fPathRef->atVerb(*currVerb)) { |
|
408 case kClose_Verb: |
|
409 savePts = pts; |
|
410 pts = *ptsPtr; |
|
411 autoClose = true; |
|
412 case kLine_Verb: { |
|
413 SkScalar left = last.fX; |
|
414 SkScalar top = last.fY; |
|
415 SkScalar right = pts->fX; |
|
416 SkScalar bottom = pts->fY; |
|
417 ++pts; |
|
418 if (left != right && top != bottom) { |
|
419 return false; // diagonal |
|
420 } |
|
421 if (left == right && top == bottom) { |
|
422 break; // single point on side OK |
|
423 } |
|
424 nextDirection = rect_make_dir(right - left, bottom - top); |
|
425 if (0 == corners) { |
|
426 firstDirection = nextDirection; |
|
427 first = last; |
|
428 last = pts[-1]; |
|
429 corners = 1; |
|
430 closedOrMoved = false; |
|
431 break; |
|
432 } |
|
433 if (closedOrMoved) { |
|
434 return false; // closed followed by a line |
|
435 } |
|
436 if (autoClose && nextDirection == firstDirection) { |
|
437 break; // colinear with first |
|
438 } |
|
439 closedOrMoved = autoClose; |
|
440 if (lastDirection != nextDirection) { |
|
441 if (++corners > 4) { |
|
442 return false; // too many direction changes |
|
443 } |
|
444 } |
|
445 last = pts[-1]; |
|
446 if (lastDirection == nextDirection) { |
|
447 break; // colinear segment |
|
448 } |
|
449 // Possible values for corners are 2, 3, and 4. |
|
450 // When corners == 3, nextDirection opposes firstDirection. |
|
451 // Otherwise, nextDirection at corner 2 opposes corner 4. |
|
452 int turn = firstDirection ^ (corners - 1); |
|
453 int directionCycle = 3 == corners ? 0 : nextDirection ^ turn; |
|
454 if ((directionCycle ^ turn) != nextDirection) { |
|
455 return false; // direction didn't follow cycle |
|
456 } |
|
457 break; |
|
458 } |
|
459 case kQuad_Verb: |
|
460 case kConic_Verb: |
|
461 case kCubic_Verb: |
|
462 return false; // quadratic, cubic not allowed |
|
463 case kMove_Verb: |
|
464 last = *pts++; |
|
465 closedOrMoved = true; |
|
466 break; |
|
467 default: |
|
468 SkDEBUGFAIL("unexpected verb"); |
|
469 break; |
|
470 } |
|
471 *currVerb += 1; |
|
472 lastDirection = nextDirection; |
|
473 } |
|
474 // Success if 4 corners and first point equals last |
|
475 bool result = 4 == corners && (first == last || autoClose); |
|
476 if (!result) { |
|
477 // check if we are just an incomplete rectangle, in which case we can |
|
478 // return true, but not claim to be closed. |
|
479 // e.g. |
|
480 // 3 sided rectangle |
|
481 // 4 sided but the last edge is not long enough to reach the start |
|
482 // |
|
483 SkScalar closeX = first.x() - last.x(); |
|
484 SkScalar closeY = first.y() - last.y(); |
|
485 if (closeX && closeY) { |
|
486 return false; // we're diagonal, abort (can we ever reach this?) |
|
487 } |
|
488 int closeDirection = rect_make_dir(closeX, closeY); |
|
489 // make sure the close-segment doesn't double-back on itself |
|
490 if (3 == corners || (4 == corners && closeDirection == lastDirection)) { |
|
491 result = true; |
|
492 autoClose = false; // we are not closed |
|
493 } |
|
494 } |
|
495 if (savePts) { |
|
496 *ptsPtr = savePts; |
|
497 } |
|
498 if (result && isClosed) { |
|
499 *isClosed = autoClose; |
|
500 } |
|
501 if (result && direction) { |
|
502 *direction = firstDirection == ((lastDirection + 1) & 3) ? kCCW_Direction : kCW_Direction; |
|
503 } |
|
504 return result; |
|
505 } |
|
506 |
|
507 SkPath::PathAsRect SkPath::asRect(Direction* direction) const { |
|
508 SK_COMPILE_ASSERT(0 == kNone_PathAsRect, path_as_rect_mismatch); |
|
509 SK_COMPILE_ASSERT(1 == kFill_PathAsRect, path_as_rect_mismatch); |
|
510 SK_COMPILE_ASSERT(2 == kStroke_PathAsRect, path_as_rect_mismatch); |
|
511 bool isClosed = false; |
|
512 return (PathAsRect) (isRect(&isClosed, direction) + isClosed); |
|
513 } |
|
514 |
|
515 bool SkPath::isRect(SkRect* rect) const { |
|
516 SkDEBUGCODE(this->validate();) |
|
517 int currVerb = 0; |
|
518 const SkPoint* pts = fPathRef->points(); |
|
519 bool result = isRectContour(false, &currVerb, &pts, NULL, NULL); |
|
520 if (result && rect) { |
|
521 *rect = getBounds(); |
|
522 } |
|
523 return result; |
|
524 } |
|
525 |
|
526 bool SkPath::isRect(bool* isClosed, Direction* direction) const { |
|
527 SkDEBUGCODE(this->validate();) |
|
528 int currVerb = 0; |
|
529 const SkPoint* pts = fPathRef->points(); |
|
530 return isRectContour(false, &currVerb, &pts, isClosed, direction); |
|
531 } |
|
532 |
|
533 bool SkPath::isNestedRects(SkRect rects[2], Direction dirs[2]) const { |
|
534 SkDEBUGCODE(this->validate();) |
|
535 int currVerb = 0; |
|
536 const SkPoint* pts = fPathRef->points(); |
|
537 const SkPoint* first = pts; |
|
538 Direction testDirs[2]; |
|
539 if (!isRectContour(true, &currVerb, &pts, NULL, &testDirs[0])) { |
|
540 return false; |
|
541 } |
|
542 const SkPoint* last = pts; |
|
543 SkRect testRects[2]; |
|
544 if (isRectContour(false, &currVerb, &pts, NULL, &testDirs[1])) { |
|
545 testRects[0].set(first, SkToS32(last - first)); |
|
546 testRects[1].set(last, SkToS32(pts - last)); |
|
547 if (testRects[0].contains(testRects[1])) { |
|
548 if (rects) { |
|
549 rects[0] = testRects[0]; |
|
550 rects[1] = testRects[1]; |
|
551 } |
|
552 if (dirs) { |
|
553 dirs[0] = testDirs[0]; |
|
554 dirs[1] = testDirs[1]; |
|
555 } |
|
556 return true; |
|
557 } |
|
558 if (testRects[1].contains(testRects[0])) { |
|
559 if (rects) { |
|
560 rects[0] = testRects[1]; |
|
561 rects[1] = testRects[0]; |
|
562 } |
|
563 if (dirs) { |
|
564 dirs[0] = testDirs[1]; |
|
565 dirs[1] = testDirs[0]; |
|
566 } |
|
567 return true; |
|
568 } |
|
569 } |
|
570 return false; |
|
571 } |
|
572 |
|
573 int SkPath::countPoints() const { |
|
574 return fPathRef->countPoints(); |
|
575 } |
|
576 |
|
577 int SkPath::getPoints(SkPoint dst[], int max) const { |
|
578 SkDEBUGCODE(this->validate();) |
|
579 |
|
580 SkASSERT(max >= 0); |
|
581 SkASSERT(!max || dst); |
|
582 int count = SkMin32(max, fPathRef->countPoints()); |
|
583 memcpy(dst, fPathRef->points(), count * sizeof(SkPoint)); |
|
584 return fPathRef->countPoints(); |
|
585 } |
|
586 |
|
587 SkPoint SkPath::getPoint(int index) const { |
|
588 if ((unsigned)index < (unsigned)fPathRef->countPoints()) { |
|
589 return fPathRef->atPoint(index); |
|
590 } |
|
591 return SkPoint::Make(0, 0); |
|
592 } |
|
593 |
|
594 int SkPath::countVerbs() const { |
|
595 return fPathRef->countVerbs(); |
|
596 } |
|
597 |
|
598 static inline void copy_verbs_reverse(uint8_t* inorderDst, |
|
599 const uint8_t* reversedSrc, |
|
600 int count) { |
|
601 for (int i = 0; i < count; ++i) { |
|
602 inorderDst[i] = reversedSrc[~i]; |
|
603 } |
|
604 } |
|
605 |
|
606 int SkPath::getVerbs(uint8_t dst[], int max) const { |
|
607 SkDEBUGCODE(this->validate();) |
|
608 |
|
609 SkASSERT(max >= 0); |
|
610 SkASSERT(!max || dst); |
|
611 int count = SkMin32(max, fPathRef->countVerbs()); |
|
612 copy_verbs_reverse(dst, fPathRef->verbs(), count); |
|
613 return fPathRef->countVerbs(); |
|
614 } |
|
615 |
|
616 bool SkPath::getLastPt(SkPoint* lastPt) const { |
|
617 SkDEBUGCODE(this->validate();) |
|
618 |
|
619 int count = fPathRef->countPoints(); |
|
620 if (count > 0) { |
|
621 if (lastPt) { |
|
622 *lastPt = fPathRef->atPoint(count - 1); |
|
623 } |
|
624 return true; |
|
625 } |
|
626 if (lastPt) { |
|
627 lastPt->set(0, 0); |
|
628 } |
|
629 return false; |
|
630 } |
|
631 |
|
632 void SkPath::setLastPt(SkScalar x, SkScalar y) { |
|
633 SkDEBUGCODE(this->validate();) |
|
634 |
|
635 int count = fPathRef->countPoints(); |
|
636 if (count == 0) { |
|
637 this->moveTo(x, y); |
|
638 } else { |
|
639 SkPathRef::Editor ed(&fPathRef); |
|
640 ed.atPoint(count-1)->set(x, y); |
|
641 } |
|
642 } |
|
643 |
|
644 void SkPath::setConvexity(Convexity c) { |
|
645 if (fConvexity != c) { |
|
646 fConvexity = c; |
|
647 } |
|
648 } |
|
649 |
|
650 ////////////////////////////////////////////////////////////////////////////// |
|
651 // Construction methods |
|
652 |
|
653 #define DIRTY_AFTER_EDIT \ |
|
654 do { \ |
|
655 fConvexity = kUnknown_Convexity; \ |
|
656 fDirection = kUnknown_Direction; \ |
|
657 } while (0) |
|
658 |
|
659 void SkPath::incReserve(U16CPU inc) { |
|
660 SkDEBUGCODE(this->validate();) |
|
661 SkPathRef::Editor(&fPathRef, inc, inc); |
|
662 SkDEBUGCODE(this->validate();) |
|
663 } |
|
664 |
|
665 void SkPath::moveTo(SkScalar x, SkScalar y) { |
|
666 SkDEBUGCODE(this->validate();) |
|
667 |
|
668 SkPathRef::Editor ed(&fPathRef); |
|
669 |
|
670 // remember our index |
|
671 fLastMoveToIndex = fPathRef->countPoints(); |
|
672 |
|
673 ed.growForVerb(kMove_Verb)->set(x, y); |
|
674 } |
|
675 |
|
676 void SkPath::rMoveTo(SkScalar x, SkScalar y) { |
|
677 SkPoint pt; |
|
678 this->getLastPt(&pt); |
|
679 this->moveTo(pt.fX + x, pt.fY + y); |
|
680 } |
|
681 |
|
682 void SkPath::injectMoveToIfNeeded() { |
|
683 if (fLastMoveToIndex < 0) { |
|
684 SkScalar x, y; |
|
685 if (fPathRef->countVerbs() == 0) { |
|
686 x = y = 0; |
|
687 } else { |
|
688 const SkPoint& pt = fPathRef->atPoint(~fLastMoveToIndex); |
|
689 x = pt.fX; |
|
690 y = pt.fY; |
|
691 } |
|
692 this->moveTo(x, y); |
|
693 } |
|
694 } |
|
695 |
|
696 void SkPath::lineTo(SkScalar x, SkScalar y) { |
|
697 SkDEBUGCODE(this->validate();) |
|
698 |
|
699 this->injectMoveToIfNeeded(); |
|
700 |
|
701 SkPathRef::Editor ed(&fPathRef); |
|
702 ed.growForVerb(kLine_Verb)->set(x, y); |
|
703 |
|
704 DIRTY_AFTER_EDIT; |
|
705 } |
|
706 |
|
707 void SkPath::rLineTo(SkScalar x, SkScalar y) { |
|
708 this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
|
709 SkPoint pt; |
|
710 this->getLastPt(&pt); |
|
711 this->lineTo(pt.fX + x, pt.fY + y); |
|
712 } |
|
713 |
|
714 void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
|
715 SkDEBUGCODE(this->validate();) |
|
716 |
|
717 this->injectMoveToIfNeeded(); |
|
718 |
|
719 SkPathRef::Editor ed(&fPathRef); |
|
720 SkPoint* pts = ed.growForVerb(kQuad_Verb); |
|
721 pts[0].set(x1, y1); |
|
722 pts[1].set(x2, y2); |
|
723 |
|
724 DIRTY_AFTER_EDIT; |
|
725 } |
|
726 |
|
727 void SkPath::rQuadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
|
728 this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
|
729 SkPoint pt; |
|
730 this->getLastPt(&pt); |
|
731 this->quadTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2); |
|
732 } |
|
733 |
|
734 void SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
|
735 SkScalar w) { |
|
736 // check for <= 0 or NaN with this test |
|
737 if (!(w > 0)) { |
|
738 this->lineTo(x2, y2); |
|
739 } else if (!SkScalarIsFinite(w)) { |
|
740 this->lineTo(x1, y1); |
|
741 this->lineTo(x2, y2); |
|
742 } else if (SK_Scalar1 == w) { |
|
743 this->quadTo(x1, y1, x2, y2); |
|
744 } else { |
|
745 SkDEBUGCODE(this->validate();) |
|
746 |
|
747 this->injectMoveToIfNeeded(); |
|
748 |
|
749 SkPathRef::Editor ed(&fPathRef); |
|
750 SkPoint* pts = ed.growForVerb(kConic_Verb, w); |
|
751 pts[0].set(x1, y1); |
|
752 pts[1].set(x2, y2); |
|
753 |
|
754 DIRTY_AFTER_EDIT; |
|
755 } |
|
756 } |
|
757 |
|
758 void SkPath::rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2, |
|
759 SkScalar w) { |
|
760 this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
|
761 SkPoint pt; |
|
762 this->getLastPt(&pt); |
|
763 this->conicTo(pt.fX + dx1, pt.fY + dy1, pt.fX + dx2, pt.fY + dy2, w); |
|
764 } |
|
765 |
|
766 void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
|
767 SkScalar x3, SkScalar y3) { |
|
768 SkDEBUGCODE(this->validate();) |
|
769 |
|
770 this->injectMoveToIfNeeded(); |
|
771 |
|
772 SkPathRef::Editor ed(&fPathRef); |
|
773 SkPoint* pts = ed.growForVerb(kCubic_Verb); |
|
774 pts[0].set(x1, y1); |
|
775 pts[1].set(x2, y2); |
|
776 pts[2].set(x3, y3); |
|
777 |
|
778 DIRTY_AFTER_EDIT; |
|
779 } |
|
780 |
|
781 void SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
|
782 SkScalar x3, SkScalar y3) { |
|
783 this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
|
784 SkPoint pt; |
|
785 this->getLastPt(&pt); |
|
786 this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2, |
|
787 pt.fX + x3, pt.fY + y3); |
|
788 } |
|
789 |
|
790 void SkPath::close() { |
|
791 SkDEBUGCODE(this->validate();) |
|
792 |
|
793 int count = fPathRef->countVerbs(); |
|
794 if (count > 0) { |
|
795 switch (fPathRef->atVerb(count - 1)) { |
|
796 case kLine_Verb: |
|
797 case kQuad_Verb: |
|
798 case kConic_Verb: |
|
799 case kCubic_Verb: |
|
800 case kMove_Verb: { |
|
801 SkPathRef::Editor ed(&fPathRef); |
|
802 ed.growForVerb(kClose_Verb); |
|
803 break; |
|
804 } |
|
805 case kClose_Verb: |
|
806 // don't add a close if it's the first verb or a repeat |
|
807 break; |
|
808 default: |
|
809 SkDEBUGFAIL("unexpected verb"); |
|
810 break; |
|
811 } |
|
812 } |
|
813 |
|
814 // signal that we need a moveTo to follow us (unless we're done) |
|
815 #if 0 |
|
816 if (fLastMoveToIndex >= 0) { |
|
817 fLastMoveToIndex = ~fLastMoveToIndex; |
|
818 } |
|
819 #else |
|
820 fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1); |
|
821 #endif |
|
822 } |
|
823 |
|
824 /////////////////////////////////////////////////////////////////////////////// |
|
825 |
|
826 static void assert_known_direction(int dir) { |
|
827 SkASSERT(SkPath::kCW_Direction == dir || SkPath::kCCW_Direction == dir); |
|
828 } |
|
829 |
|
830 void SkPath::addRect(const SkRect& rect, Direction dir) { |
|
831 this->addRect(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, dir); |
|
832 } |
|
833 |
|
834 void SkPath::addRect(SkScalar left, SkScalar top, SkScalar right, |
|
835 SkScalar bottom, Direction dir) { |
|
836 assert_known_direction(dir); |
|
837 fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction; |
|
838 SkAutoDisableDirectionCheck addc(this); |
|
839 |
|
840 SkAutoPathBoundsUpdate apbu(this, left, top, right, bottom); |
|
841 |
|
842 this->incReserve(5); |
|
843 |
|
844 this->moveTo(left, top); |
|
845 if (dir == kCCW_Direction) { |
|
846 this->lineTo(left, bottom); |
|
847 this->lineTo(right, bottom); |
|
848 this->lineTo(right, top); |
|
849 } else { |
|
850 this->lineTo(right, top); |
|
851 this->lineTo(right, bottom); |
|
852 this->lineTo(left, bottom); |
|
853 } |
|
854 this->close(); |
|
855 } |
|
856 |
|
857 void SkPath::addPoly(const SkPoint pts[], int count, bool close) { |
|
858 SkDEBUGCODE(this->validate();) |
|
859 if (count <= 0) { |
|
860 return; |
|
861 } |
|
862 |
|
863 fLastMoveToIndex = fPathRef->countPoints(); |
|
864 |
|
865 // +close makes room for the extra kClose_Verb |
|
866 SkPathRef::Editor ed(&fPathRef, count+close, count); |
|
867 |
|
868 ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY); |
|
869 if (count > 1) { |
|
870 SkPoint* p = ed.growForRepeatedVerb(kLine_Verb, count - 1); |
|
871 memcpy(p, &pts[1], (count-1) * sizeof(SkPoint)); |
|
872 } |
|
873 |
|
874 if (close) { |
|
875 ed.growForVerb(kClose_Verb); |
|
876 } |
|
877 |
|
878 DIRTY_AFTER_EDIT; |
|
879 SkDEBUGCODE(this->validate();) |
|
880 } |
|
881 |
|
882 #include "SkGeometry.h" |
|
883 |
|
884 static int build_arc_points(const SkRect& oval, SkScalar startAngle, |
|
885 SkScalar sweepAngle, |
|
886 SkPoint pts[kSkBuildQuadArcStorage]) { |
|
887 |
|
888 if (0 == sweepAngle && |
|
889 (0 == startAngle || SkIntToScalar(360) == startAngle)) { |
|
890 // Chrome uses this path to move into and out of ovals. If not |
|
891 // treated as a special case the moves can distort the oval's |
|
892 // bounding box (and break the circle special case). |
|
893 pts[0].set(oval.fRight, oval.centerY()); |
|
894 return 1; |
|
895 } else if (0 == oval.width() && 0 == oval.height()) { |
|
896 // Chrome will sometimes create 0 radius round rects. Having degenerate |
|
897 // quad segments in the path prevents the path from being recognized as |
|
898 // a rect. |
|
899 // TODO: optimizing the case where only one of width or height is zero |
|
900 // should also be considered. This case, however, doesn't seem to be |
|
901 // as common as the single point case. |
|
902 pts[0].set(oval.fRight, oval.fTop); |
|
903 return 1; |
|
904 } |
|
905 |
|
906 SkVector start, stop; |
|
907 |
|
908 start.fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &start.fX); |
|
909 stop.fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), |
|
910 &stop.fX); |
|
911 |
|
912 /* If the sweep angle is nearly (but less than) 360, then due to precision |
|
913 loss in radians-conversion and/or sin/cos, we may end up with coincident |
|
914 vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead |
|
915 of drawing a nearly complete circle (good). |
|
916 e.g. canvas.drawArc(0, 359.99, ...) |
|
917 -vs- canvas.drawArc(0, 359.9, ...) |
|
918 We try to detect this edge case, and tweak the stop vector |
|
919 */ |
|
920 if (start == stop) { |
|
921 SkScalar sw = SkScalarAbs(sweepAngle); |
|
922 if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) { |
|
923 SkScalar stopRad = SkDegreesToRadians(startAngle + sweepAngle); |
|
924 // make a guess at a tiny angle (in radians) to tweak by |
|
925 SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle); |
|
926 // not sure how much will be enough, so we use a loop |
|
927 do { |
|
928 stopRad -= deltaRad; |
|
929 stop.fY = SkScalarSinCos(stopRad, &stop.fX); |
|
930 } while (start == stop); |
|
931 } |
|
932 } |
|
933 |
|
934 SkMatrix matrix; |
|
935 |
|
936 matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height())); |
|
937 matrix.postTranslate(oval.centerX(), oval.centerY()); |
|
938 |
|
939 return SkBuildQuadArc(start, stop, |
|
940 sweepAngle > 0 ? kCW_SkRotationDirection : |
|
941 kCCW_SkRotationDirection, |
|
942 &matrix, pts); |
|
943 } |
|
944 |
|
945 void SkPath::addRoundRect(const SkRect& rect, const SkScalar radii[], |
|
946 Direction dir) { |
|
947 SkRRect rrect; |
|
948 rrect.setRectRadii(rect, (const SkVector*) radii); |
|
949 this->addRRect(rrect, dir); |
|
950 } |
|
951 |
|
952 /* The inline clockwise and counterclockwise round rect quad approximations |
|
953 make it easier to see the symmetry patterns used by add corner quads. |
|
954 Clockwise corner value |
|
955 path->lineTo(rect.fLeft, rect.fTop + ry); 0 upper left |
|
956 path->quadTo(rect.fLeft, rect.fTop + offPtY, |
|
957 rect.fLeft + midPtX, rect.fTop + midPtY); |
|
958 path->quadTo(rect.fLeft + offPtX, rect.fTop, |
|
959 rect.fLeft + rx, rect.fTop); |
|
960 |
|
961 path->lineTo(rect.fRight - rx, rect.fTop); 1 upper right |
|
962 path->quadTo(rect.fRight - offPtX, rect.fTop, |
|
963 rect.fRight - midPtX, rect.fTop + midPtY); |
|
964 path->quadTo(rect.fRight, rect.fTop + offPtY, |
|
965 rect.fRight, rect.fTop + ry); |
|
966 |
|
967 path->lineTo(rect.fRight, rect.fBottom - ry); 2 lower right |
|
968 path->quadTo(rect.fRight, rect.fBottom - offPtY, |
|
969 rect.fRight - midPtX, rect.fBottom - midPtY); |
|
970 path->quadTo(rect.fRight - offPtX, rect.fBottom, |
|
971 rect.fRight - rx, rect.fBottom); |
|
972 |
|
973 path->lineTo(rect.fLeft + rx, rect.fBottom); 3 lower left |
|
974 path->quadTo(rect.fLeft + offPtX, rect.fBottom, |
|
975 rect.fLeft + midPtX, rect.fBottom - midPtY); |
|
976 path->quadTo(rect.fLeft, rect.fBottom - offPtY, |
|
977 rect.fLeft, rect.fBottom - ry); |
|
978 |
|
979 Counterclockwise |
|
980 path->lineTo(rect.fLeft, rect.fBottom - ry); 3 lower left |
|
981 path->quadTo(rect.fLeft, rect.fBottom - offPtY, |
|
982 rect.fLeft + midPtX, rect.fBottom - midPtY); |
|
983 path->quadTo(rect.fLeft + offPtX, rect.fBottom, |
|
984 rect.fLeft + rx, rect.fBottom); |
|
985 |
|
986 path->lineTo(rect.fRight - rx, rect.fBottom); 2 lower right |
|
987 path->quadTo(rect.fRight - offPtX, rect.fBottom, |
|
988 rect.fRight - midPtX, rect.fBottom - midPtY); |
|
989 path->quadTo(rect.fRight, rect.fBottom - offPtY, |
|
990 rect.fRight, rect.fBottom - ry); |
|
991 |
|
992 path->lineTo(rect.fRight, rect.fTop + ry); 1 upper right |
|
993 path->quadTo(rect.fRight, rect.fTop + offPtY, |
|
994 rect.fRight - midPtX, rect.fTop + midPtY); |
|
995 path->quadTo(rect.fRight - offPtX, rect.fTop, |
|
996 rect.fRight - rx, rect.fTop); |
|
997 |
|
998 path->lineTo(rect.fLeft + rx, rect.fTop); 0 upper left |
|
999 path->quadTo(rect.fLeft + offPtX, rect.fTop, |
|
1000 rect.fLeft + midPtX, rect.fTop + midPtY); |
|
1001 path->quadTo(rect.fLeft, rect.fTop + offPtY, |
|
1002 rect.fLeft, rect.fTop + ry); |
|
1003 */ |
|
1004 static void add_corner_quads(SkPath* path, const SkRRect& rrect, |
|
1005 SkRRect::Corner corner, SkPath::Direction dir) { |
|
1006 const SkRect& rect = rrect.rect(); |
|
1007 const SkVector& radii = rrect.radii(corner); |
|
1008 SkScalar rx = radii.fX; |
|
1009 SkScalar ry = radii.fY; |
|
1010 // The mid point of the quadratic arc approximation is half way between the two |
|
1011 // control points. |
|
1012 const SkScalar mid = 1 - (SK_Scalar1 + SK_ScalarTanPIOver8) / 2; |
|
1013 SkScalar midPtX = rx * mid; |
|
1014 SkScalar midPtY = ry * mid; |
|
1015 const SkScalar control = 1 - SK_ScalarTanPIOver8; |
|
1016 SkScalar offPtX = rx * control; |
|
1017 SkScalar offPtY = ry * control; |
|
1018 static const int kCornerPts = 5; |
|
1019 SkScalar xOff[kCornerPts]; |
|
1020 SkScalar yOff[kCornerPts]; |
|
1021 |
|
1022 if ((corner & 1) == (dir == SkPath::kCCW_Direction)) { // corners always alternate direction |
|
1023 SkASSERT(dir == SkPath::kCCW_Direction |
|
1024 ? corner == SkRRect::kLowerLeft_Corner || corner == SkRRect::kUpperRight_Corner |
|
1025 : corner == SkRRect::kUpperLeft_Corner || corner == SkRRect::kLowerRight_Corner); |
|
1026 xOff[0] = xOff[1] = 0; |
|
1027 xOff[2] = midPtX; |
|
1028 xOff[3] = offPtX; |
|
1029 xOff[4] = rx; |
|
1030 yOff[0] = ry; |
|
1031 yOff[1] = offPtY; |
|
1032 yOff[2] = midPtY; |
|
1033 yOff[3] = yOff[4] = 0; |
|
1034 } else { |
|
1035 xOff[0] = rx; |
|
1036 xOff[1] = offPtX; |
|
1037 xOff[2] = midPtX; |
|
1038 xOff[3] = xOff[4] = 0; |
|
1039 yOff[0] = yOff[1] = 0; |
|
1040 yOff[2] = midPtY; |
|
1041 yOff[3] = offPtY; |
|
1042 yOff[4] = ry; |
|
1043 } |
|
1044 if ((corner - 1) & 2) { |
|
1045 SkASSERT(corner == SkRRect::kLowerLeft_Corner || corner == SkRRect::kUpperLeft_Corner); |
|
1046 for (int i = 0; i < kCornerPts; ++i) { |
|
1047 xOff[i] = rect.fLeft + xOff[i]; |
|
1048 } |
|
1049 } else { |
|
1050 SkASSERT(corner == SkRRect::kLowerRight_Corner || corner == SkRRect::kUpperRight_Corner); |
|
1051 for (int i = 0; i < kCornerPts; ++i) { |
|
1052 xOff[i] = rect.fRight - xOff[i]; |
|
1053 } |
|
1054 } |
|
1055 if (corner < SkRRect::kLowerRight_Corner) { |
|
1056 for (int i = 0; i < kCornerPts; ++i) { |
|
1057 yOff[i] = rect.fTop + yOff[i]; |
|
1058 } |
|
1059 } else { |
|
1060 for (int i = 0; i < kCornerPts; ++i) { |
|
1061 yOff[i] = rect.fBottom - yOff[i]; |
|
1062 } |
|
1063 } |
|
1064 |
|
1065 SkPoint lastPt; |
|
1066 SkAssertResult(path->getLastPt(&lastPt)); |
|
1067 if (lastPt.fX != xOff[0] || lastPt.fY != yOff[0]) { |
|
1068 path->lineTo(xOff[0], yOff[0]); |
|
1069 } |
|
1070 if (rx || ry) { |
|
1071 path->quadTo(xOff[1], yOff[1], xOff[2], yOff[2]); |
|
1072 path->quadTo(xOff[3], yOff[3], xOff[4], yOff[4]); |
|
1073 } else { |
|
1074 path->lineTo(xOff[2], yOff[2]); |
|
1075 path->lineTo(xOff[4], yOff[4]); |
|
1076 } |
|
1077 } |
|
1078 |
|
1079 void SkPath::addRRect(const SkRRect& rrect, Direction dir) { |
|
1080 assert_known_direction(dir); |
|
1081 |
|
1082 if (rrect.isEmpty()) { |
|
1083 return; |
|
1084 } |
|
1085 |
|
1086 const SkRect& bounds = rrect.getBounds(); |
|
1087 |
|
1088 if (rrect.isRect()) { |
|
1089 this->addRect(bounds, dir); |
|
1090 } else if (rrect.isOval()) { |
|
1091 this->addOval(bounds, dir); |
|
1092 #ifdef SK_IGNORE_QUAD_RR_CORNERS_OPT |
|
1093 } else if (rrect.isSimple()) { |
|
1094 const SkVector& rad = rrect.getSimpleRadii(); |
|
1095 this->addRoundRect(bounds, rad.x(), rad.y(), dir); |
|
1096 #endif |
|
1097 } else { |
|
1098 fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction; |
|
1099 |
|
1100 SkAutoPathBoundsUpdate apbu(this, bounds); |
|
1101 SkAutoDisableDirectionCheck addc(this); |
|
1102 |
|
1103 this->incReserve(21); |
|
1104 if (kCW_Direction == dir) { |
|
1105 this->moveTo(bounds.fLeft, |
|
1106 bounds.fBottom - rrect.fRadii[SkRRect::kLowerLeft_Corner].fY); |
|
1107 add_corner_quads(this, rrect, SkRRect::kUpperLeft_Corner, dir); |
|
1108 add_corner_quads(this, rrect, SkRRect::kUpperRight_Corner, dir); |
|
1109 add_corner_quads(this, rrect, SkRRect::kLowerRight_Corner, dir); |
|
1110 add_corner_quads(this, rrect, SkRRect::kLowerLeft_Corner, dir); |
|
1111 } else { |
|
1112 this->moveTo(bounds.fLeft, |
|
1113 bounds.fTop + rrect.fRadii[SkRRect::kUpperLeft_Corner].fY); |
|
1114 add_corner_quads(this, rrect, SkRRect::kLowerLeft_Corner, dir); |
|
1115 add_corner_quads(this, rrect, SkRRect::kLowerRight_Corner, dir); |
|
1116 add_corner_quads(this, rrect, SkRRect::kUpperRight_Corner, dir); |
|
1117 add_corner_quads(this, rrect, SkRRect::kUpperLeft_Corner, dir); |
|
1118 } |
|
1119 this->close(); |
|
1120 } |
|
1121 } |
|
1122 |
|
1123 bool SkPath::hasOnlyMoveTos() const { |
|
1124 int count = fPathRef->countVerbs(); |
|
1125 const uint8_t* verbs = const_cast<const SkPathRef*>(fPathRef.get())->verbsMemBegin(); |
|
1126 for (int i = 0; i < count; ++i) { |
|
1127 if (*verbs == kLine_Verb || |
|
1128 *verbs == kQuad_Verb || |
|
1129 *verbs == kConic_Verb || |
|
1130 *verbs == kCubic_Verb) { |
|
1131 return false; |
|
1132 } |
|
1133 ++verbs; |
|
1134 } |
|
1135 return true; |
|
1136 } |
|
1137 |
|
1138 #ifdef SK_IGNORE_QUAD_RR_CORNERS_OPT |
|
1139 #define CUBIC_ARC_FACTOR ((SK_ScalarSqrt2 - SK_Scalar1) * 4 / 3) |
|
1140 #endif |
|
1141 |
|
1142 void SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry, |
|
1143 Direction dir) { |
|
1144 assert_known_direction(dir); |
|
1145 |
|
1146 if (rx < 0 || ry < 0) { |
|
1147 SkErrorInternals::SetError( kInvalidArgument_SkError, |
|
1148 "I got %f and %f as radii to SkPath::AddRoundRect, " |
|
1149 "but negative radii are not allowed.", |
|
1150 SkScalarToDouble(rx), SkScalarToDouble(ry) ); |
|
1151 return; |
|
1152 } |
|
1153 |
|
1154 #ifdef SK_IGNORE_QUAD_RR_CORNERS_OPT |
|
1155 SkScalar w = rect.width(); |
|
1156 SkScalar halfW = SkScalarHalf(w); |
|
1157 SkScalar h = rect.height(); |
|
1158 SkScalar halfH = SkScalarHalf(h); |
|
1159 |
|
1160 if (halfW <= 0 || halfH <= 0) { |
|
1161 return; |
|
1162 } |
|
1163 |
|
1164 bool skip_hori = rx >= halfW; |
|
1165 bool skip_vert = ry >= halfH; |
|
1166 |
|
1167 if (skip_hori && skip_vert) { |
|
1168 this->addOval(rect, dir); |
|
1169 return; |
|
1170 } |
|
1171 |
|
1172 fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction; |
|
1173 |
|
1174 SkAutoPathBoundsUpdate apbu(this, rect); |
|
1175 SkAutoDisableDirectionCheck addc(this); |
|
1176 |
|
1177 if (skip_hori) { |
|
1178 rx = halfW; |
|
1179 } else if (skip_vert) { |
|
1180 ry = halfH; |
|
1181 } |
|
1182 SkScalar sx = SkScalarMul(rx, CUBIC_ARC_FACTOR); |
|
1183 SkScalar sy = SkScalarMul(ry, CUBIC_ARC_FACTOR); |
|
1184 |
|
1185 this->incReserve(17); |
|
1186 this->moveTo(rect.fRight - rx, rect.fTop); // top-right |
|
1187 if (dir == kCCW_Direction) { |
|
1188 if (!skip_hori) { |
|
1189 this->lineTo(rect.fLeft + rx, rect.fTop); // top |
|
1190 } |
|
1191 this->cubicTo(rect.fLeft + rx - sx, rect.fTop, |
|
1192 rect.fLeft, rect.fTop + ry - sy, |
|
1193 rect.fLeft, rect.fTop + ry); // top-left |
|
1194 if (!skip_vert) { |
|
1195 this->lineTo(rect.fLeft, rect.fBottom - ry); // left |
|
1196 } |
|
1197 this->cubicTo(rect.fLeft, rect.fBottom - ry + sy, |
|
1198 rect.fLeft + rx - sx, rect.fBottom, |
|
1199 rect.fLeft + rx, rect.fBottom); // bot-left |
|
1200 if (!skip_hori) { |
|
1201 this->lineTo(rect.fRight - rx, rect.fBottom); // bottom |
|
1202 } |
|
1203 this->cubicTo(rect.fRight - rx + sx, rect.fBottom, |
|
1204 rect.fRight, rect.fBottom - ry + sy, |
|
1205 rect.fRight, rect.fBottom - ry); // bot-right |
|
1206 if (!skip_vert) { |
|
1207 this->lineTo(rect.fRight, rect.fTop + ry); // right |
|
1208 } |
|
1209 this->cubicTo(rect.fRight, rect.fTop + ry - sy, |
|
1210 rect.fRight - rx + sx, rect.fTop, |
|
1211 rect.fRight - rx, rect.fTop); // top-right |
|
1212 } else { |
|
1213 this->cubicTo(rect.fRight - rx + sx, rect.fTop, |
|
1214 rect.fRight, rect.fTop + ry - sy, |
|
1215 rect.fRight, rect.fTop + ry); // top-right |
|
1216 if (!skip_vert) { |
|
1217 this->lineTo(rect.fRight, rect.fBottom - ry); // right |
|
1218 } |
|
1219 this->cubicTo(rect.fRight, rect.fBottom - ry + sy, |
|
1220 rect.fRight - rx + sx, rect.fBottom, |
|
1221 rect.fRight - rx, rect.fBottom); // bot-right |
|
1222 if (!skip_hori) { |
|
1223 this->lineTo(rect.fLeft + rx, rect.fBottom); // bottom |
|
1224 } |
|
1225 this->cubicTo(rect.fLeft + rx - sx, rect.fBottom, |
|
1226 rect.fLeft, rect.fBottom - ry + sy, |
|
1227 rect.fLeft, rect.fBottom - ry); // bot-left |
|
1228 if (!skip_vert) { |
|
1229 this->lineTo(rect.fLeft, rect.fTop + ry); // left |
|
1230 } |
|
1231 this->cubicTo(rect.fLeft, rect.fTop + ry - sy, |
|
1232 rect.fLeft + rx - sx, rect.fTop, |
|
1233 rect.fLeft + rx, rect.fTop); // top-left |
|
1234 if (!skip_hori) { |
|
1235 this->lineTo(rect.fRight - rx, rect.fTop); // top |
|
1236 } |
|
1237 } |
|
1238 this->close(); |
|
1239 #else |
|
1240 SkRRect rrect; |
|
1241 rrect.setRectXY(rect, rx, ry); |
|
1242 this->addRRect(rrect, dir); |
|
1243 #endif |
|
1244 } |
|
1245 |
|
1246 void SkPath::addOval(const SkRect& oval, Direction dir) { |
|
1247 assert_known_direction(dir); |
|
1248 |
|
1249 /* If addOval() is called after previous moveTo(), |
|
1250 this path is still marked as an oval. This is used to |
|
1251 fit into WebKit's calling sequences. |
|
1252 We can't simply check isEmpty() in this case, as additional |
|
1253 moveTo() would mark the path non empty. |
|
1254 */ |
|
1255 bool isOval = hasOnlyMoveTos(); |
|
1256 if (isOval) { |
|
1257 fDirection = dir; |
|
1258 } else { |
|
1259 fDirection = kUnknown_Direction; |
|
1260 } |
|
1261 |
|
1262 SkAutoDisableDirectionCheck addc(this); |
|
1263 |
|
1264 SkAutoPathBoundsUpdate apbu(this, oval); |
|
1265 |
|
1266 SkScalar cx = oval.centerX(); |
|
1267 SkScalar cy = oval.centerY(); |
|
1268 SkScalar rx = SkScalarHalf(oval.width()); |
|
1269 SkScalar ry = SkScalarHalf(oval.height()); |
|
1270 |
|
1271 SkScalar sx = SkScalarMul(rx, SK_ScalarTanPIOver8); |
|
1272 SkScalar sy = SkScalarMul(ry, SK_ScalarTanPIOver8); |
|
1273 SkScalar mx = SkScalarMul(rx, SK_ScalarRoot2Over2); |
|
1274 SkScalar my = SkScalarMul(ry, SK_ScalarRoot2Over2); |
|
1275 |
|
1276 /* |
|
1277 To handle imprecision in computing the center and radii, we revert to |
|
1278 the provided bounds when we can (i.e. use oval.fLeft instead of cx-rx) |
|
1279 to ensure that we don't exceed the oval's bounds *ever*, since we want |
|
1280 to use oval for our fast-bounds, rather than have to recompute it. |
|
1281 */ |
|
1282 const SkScalar L = oval.fLeft; // cx - rx |
|
1283 const SkScalar T = oval.fTop; // cy - ry |
|
1284 const SkScalar R = oval.fRight; // cx + rx |
|
1285 const SkScalar B = oval.fBottom; // cy + ry |
|
1286 |
|
1287 this->incReserve(17); // 8 quads + close |
|
1288 this->moveTo(R, cy); |
|
1289 if (dir == kCCW_Direction) { |
|
1290 this->quadTo( R, cy - sy, cx + mx, cy - my); |
|
1291 this->quadTo(cx + sx, T, cx , T); |
|
1292 this->quadTo(cx - sx, T, cx - mx, cy - my); |
|
1293 this->quadTo( L, cy - sy, L, cy ); |
|
1294 this->quadTo( L, cy + sy, cx - mx, cy + my); |
|
1295 this->quadTo(cx - sx, B, cx , B); |
|
1296 this->quadTo(cx + sx, B, cx + mx, cy + my); |
|
1297 this->quadTo( R, cy + sy, R, cy ); |
|
1298 } else { |
|
1299 this->quadTo( R, cy + sy, cx + mx, cy + my); |
|
1300 this->quadTo(cx + sx, B, cx , B); |
|
1301 this->quadTo(cx - sx, B, cx - mx, cy + my); |
|
1302 this->quadTo( L, cy + sy, L, cy ); |
|
1303 this->quadTo( L, cy - sy, cx - mx, cy - my); |
|
1304 this->quadTo(cx - sx, T, cx , T); |
|
1305 this->quadTo(cx + sx, T, cx + mx, cy - my); |
|
1306 this->quadTo( R, cy - sy, R, cy ); |
|
1307 } |
|
1308 this->close(); |
|
1309 |
|
1310 SkPathRef::Editor ed(&fPathRef); |
|
1311 |
|
1312 ed.setIsOval(isOval); |
|
1313 } |
|
1314 |
|
1315 void SkPath::addCircle(SkScalar x, SkScalar y, SkScalar r, Direction dir) { |
|
1316 if (r > 0) { |
|
1317 SkRect rect; |
|
1318 rect.set(x - r, y - r, x + r, y + r); |
|
1319 this->addOval(rect, dir); |
|
1320 } |
|
1321 } |
|
1322 |
|
1323 void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
|
1324 bool forceMoveTo) { |
|
1325 if (oval.width() < 0 || oval.height() < 0) { |
|
1326 return; |
|
1327 } |
|
1328 |
|
1329 SkPoint pts[kSkBuildQuadArcStorage]; |
|
1330 int count = build_arc_points(oval, startAngle, sweepAngle, pts); |
|
1331 SkASSERT((count & 1) == 1); |
|
1332 |
|
1333 if (fPathRef->countVerbs() == 0) { |
|
1334 forceMoveTo = true; |
|
1335 } |
|
1336 this->incReserve(count); |
|
1337 forceMoveTo ? this->moveTo(pts[0]) : this->lineTo(pts[0]); |
|
1338 for (int i = 1; i < count; i += 2) { |
|
1339 this->quadTo(pts[i], pts[i+1]); |
|
1340 } |
|
1341 } |
|
1342 |
|
1343 void SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) { |
|
1344 if (oval.isEmpty() || 0 == sweepAngle) { |
|
1345 return; |
|
1346 } |
|
1347 |
|
1348 const SkScalar kFullCircleAngle = SkIntToScalar(360); |
|
1349 |
|
1350 if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) { |
|
1351 this->addOval(oval, sweepAngle > 0 ? kCW_Direction : kCCW_Direction); |
|
1352 return; |
|
1353 } |
|
1354 |
|
1355 SkPoint pts[kSkBuildQuadArcStorage]; |
|
1356 int count = build_arc_points(oval, startAngle, sweepAngle, pts); |
|
1357 |
|
1358 SkDEBUGCODE(this->validate();) |
|
1359 SkASSERT(count & 1); |
|
1360 |
|
1361 fLastMoveToIndex = fPathRef->countPoints(); |
|
1362 |
|
1363 SkPathRef::Editor ed(&fPathRef, 1+(count-1)/2, count); |
|
1364 |
|
1365 ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY); |
|
1366 if (count > 1) { |
|
1367 SkPoint* p = ed.growForRepeatedVerb(kQuad_Verb, (count-1)/2); |
|
1368 memcpy(p, &pts[1], (count-1) * sizeof(SkPoint)); |
|
1369 } |
|
1370 |
|
1371 DIRTY_AFTER_EDIT; |
|
1372 SkDEBUGCODE(this->validate();) |
|
1373 } |
|
1374 |
|
1375 /* |
|
1376 Need to handle the case when the angle is sharp, and our computed end-points |
|
1377 for the arc go behind pt1 and/or p2... |
|
1378 */ |
|
1379 void SkPath::arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
|
1380 SkScalar radius) { |
|
1381 SkVector before, after; |
|
1382 |
|
1383 // need to know our prev pt so we can construct tangent vectors |
|
1384 { |
|
1385 SkPoint start; |
|
1386 this->getLastPt(&start); |
|
1387 // Handle degenerate cases by adding a line to the first point and |
|
1388 // bailing out. |
|
1389 if ((x1 == start.fX && y1 == start.fY) || |
|
1390 (x1 == x2 && y1 == y2) || |
|
1391 radius == 0) { |
|
1392 this->lineTo(x1, y1); |
|
1393 return; |
|
1394 } |
|
1395 before.setNormalize(x1 - start.fX, y1 - start.fY); |
|
1396 after.setNormalize(x2 - x1, y2 - y1); |
|
1397 } |
|
1398 |
|
1399 SkScalar cosh = SkPoint::DotProduct(before, after); |
|
1400 SkScalar sinh = SkPoint::CrossProduct(before, after); |
|
1401 |
|
1402 if (SkScalarNearlyZero(sinh)) { // angle is too tight |
|
1403 this->lineTo(x1, y1); |
|
1404 return; |
|
1405 } |
|
1406 |
|
1407 SkScalar dist = SkScalarMulDiv(radius, SK_Scalar1 - cosh, sinh); |
|
1408 if (dist < 0) { |
|
1409 dist = -dist; |
|
1410 } |
|
1411 |
|
1412 SkScalar xx = x1 - SkScalarMul(dist, before.fX); |
|
1413 SkScalar yy = y1 - SkScalarMul(dist, before.fY); |
|
1414 SkRotationDirection arcDir; |
|
1415 |
|
1416 // now turn before/after into normals |
|
1417 if (sinh > 0) { |
|
1418 before.rotateCCW(); |
|
1419 after.rotateCCW(); |
|
1420 arcDir = kCW_SkRotationDirection; |
|
1421 } else { |
|
1422 before.rotateCW(); |
|
1423 after.rotateCW(); |
|
1424 arcDir = kCCW_SkRotationDirection; |
|
1425 } |
|
1426 |
|
1427 SkMatrix matrix; |
|
1428 SkPoint pts[kSkBuildQuadArcStorage]; |
|
1429 |
|
1430 matrix.setScale(radius, radius); |
|
1431 matrix.postTranslate(xx - SkScalarMul(radius, before.fX), |
|
1432 yy - SkScalarMul(radius, before.fY)); |
|
1433 |
|
1434 int count = SkBuildQuadArc(before, after, arcDir, &matrix, pts); |
|
1435 |
|
1436 this->incReserve(count); |
|
1437 // [xx,yy] == pts[0] |
|
1438 this->lineTo(xx, yy); |
|
1439 for (int i = 1; i < count; i += 2) { |
|
1440 this->quadTo(pts[i], pts[i+1]); |
|
1441 } |
|
1442 } |
|
1443 |
|
1444 /////////////////////////////////////////////////////////////////////////////// |
|
1445 |
|
1446 void SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy, AddPathMode mode) { |
|
1447 SkMatrix matrix; |
|
1448 |
|
1449 matrix.setTranslate(dx, dy); |
|
1450 this->addPath(path, matrix, mode); |
|
1451 } |
|
1452 |
|
1453 void SkPath::addPath(const SkPath& path, const SkMatrix& matrix, AddPathMode mode) { |
|
1454 SkPathRef::Editor(&fPathRef, path.countVerbs(), path.countPoints()); |
|
1455 |
|
1456 RawIter iter(path); |
|
1457 SkPoint pts[4]; |
|
1458 Verb verb; |
|
1459 |
|
1460 SkMatrix::MapPtsProc proc = matrix.getMapPtsProc(); |
|
1461 bool firstVerb = true; |
|
1462 while ((verb = iter.next(pts)) != kDone_Verb) { |
|
1463 switch (verb) { |
|
1464 case kMove_Verb: |
|
1465 proc(matrix, &pts[0], &pts[0], 1); |
|
1466 if (firstVerb && mode == kExtend_AddPathMode && !isEmpty()) { |
|
1467 injectMoveToIfNeeded(); // In case last contour is closed |
|
1468 this->lineTo(pts[0]); |
|
1469 } else { |
|
1470 this->moveTo(pts[0]); |
|
1471 } |
|
1472 break; |
|
1473 case kLine_Verb: |
|
1474 proc(matrix, &pts[1], &pts[1], 1); |
|
1475 this->lineTo(pts[1]); |
|
1476 break; |
|
1477 case kQuad_Verb: |
|
1478 proc(matrix, &pts[1], &pts[1], 2); |
|
1479 this->quadTo(pts[1], pts[2]); |
|
1480 break; |
|
1481 case kConic_Verb: |
|
1482 proc(matrix, &pts[1], &pts[1], 2); |
|
1483 this->conicTo(pts[1], pts[2], iter.conicWeight()); |
|
1484 break; |
|
1485 case kCubic_Verb: |
|
1486 proc(matrix, &pts[1], &pts[1], 3); |
|
1487 this->cubicTo(pts[1], pts[2], pts[3]); |
|
1488 break; |
|
1489 case kClose_Verb: |
|
1490 this->close(); |
|
1491 break; |
|
1492 default: |
|
1493 SkDEBUGFAIL("unknown verb"); |
|
1494 } |
|
1495 firstVerb = false; |
|
1496 } |
|
1497 } |
|
1498 |
|
1499 /////////////////////////////////////////////////////////////////////////////// |
|
1500 |
|
1501 static int pts_in_verb(unsigned verb) { |
|
1502 static const uint8_t gPtsInVerb[] = { |
|
1503 1, // kMove |
|
1504 1, // kLine |
|
1505 2, // kQuad |
|
1506 2, // kConic |
|
1507 3, // kCubic |
|
1508 0, // kClose |
|
1509 0 // kDone |
|
1510 }; |
|
1511 |
|
1512 SkASSERT(verb < SK_ARRAY_COUNT(gPtsInVerb)); |
|
1513 return gPtsInVerb[verb]; |
|
1514 } |
|
1515 |
|
1516 // ignore the last point of the 1st contour |
|
1517 void SkPath::reversePathTo(const SkPath& path) { |
|
1518 int i, vcount = path.fPathRef->countVerbs(); |
|
1519 // exit early if the path is empty, or just has a moveTo. |
|
1520 if (vcount < 2) { |
|
1521 return; |
|
1522 } |
|
1523 |
|
1524 SkPathRef::Editor(&fPathRef, vcount, path.countPoints()); |
|
1525 |
|
1526 const uint8_t* verbs = path.fPathRef->verbs(); |
|
1527 const SkPoint* pts = path.fPathRef->points(); |
|
1528 const SkScalar* conicWeights = path.fPathRef->conicWeights(); |
|
1529 |
|
1530 SkASSERT(verbs[~0] == kMove_Verb); |
|
1531 for (i = 1; i < vcount; ++i) { |
|
1532 unsigned v = verbs[~i]; |
|
1533 int n = pts_in_verb(v); |
|
1534 if (n == 0) { |
|
1535 break; |
|
1536 } |
|
1537 pts += n; |
|
1538 conicWeights += (SkPath::kConic_Verb == v); |
|
1539 } |
|
1540 |
|
1541 while (--i > 0) { |
|
1542 switch (verbs[~i]) { |
|
1543 case kLine_Verb: |
|
1544 this->lineTo(pts[-1].fX, pts[-1].fY); |
|
1545 break; |
|
1546 case kQuad_Verb: |
|
1547 this->quadTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY); |
|
1548 break; |
|
1549 case kConic_Verb: |
|
1550 this->conicTo(pts[-1], pts[-2], *--conicWeights); |
|
1551 break; |
|
1552 case kCubic_Verb: |
|
1553 this->cubicTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY, |
|
1554 pts[-3].fX, pts[-3].fY); |
|
1555 break; |
|
1556 default: |
|
1557 SkDEBUGFAIL("bad verb"); |
|
1558 break; |
|
1559 } |
|
1560 pts -= pts_in_verb(verbs[~i]); |
|
1561 } |
|
1562 } |
|
1563 |
|
1564 void SkPath::reverseAddPath(const SkPath& src) { |
|
1565 SkPathRef::Editor ed(&fPathRef, src.fPathRef->countPoints(), src.fPathRef->countVerbs()); |
|
1566 |
|
1567 const SkPoint* pts = src.fPathRef->pointsEnd(); |
|
1568 // we will iterator through src's verbs backwards |
|
1569 const uint8_t* verbs = src.fPathRef->verbsMemBegin(); // points at the last verb |
|
1570 const uint8_t* verbsEnd = src.fPathRef->verbs(); // points just past the first verb |
|
1571 const SkScalar* conicWeights = src.fPathRef->conicWeightsEnd(); |
|
1572 |
|
1573 bool needMove = true; |
|
1574 bool needClose = false; |
|
1575 while (verbs < verbsEnd) { |
|
1576 uint8_t v = *(verbs++); |
|
1577 int n = pts_in_verb(v); |
|
1578 |
|
1579 if (needMove) { |
|
1580 --pts; |
|
1581 this->moveTo(pts->fX, pts->fY); |
|
1582 needMove = false; |
|
1583 } |
|
1584 pts -= n; |
|
1585 switch (v) { |
|
1586 case kMove_Verb: |
|
1587 if (needClose) { |
|
1588 this->close(); |
|
1589 needClose = false; |
|
1590 } |
|
1591 needMove = true; |
|
1592 pts += 1; // so we see the point in "if (needMove)" above |
|
1593 break; |
|
1594 case kLine_Verb: |
|
1595 this->lineTo(pts[0]); |
|
1596 break; |
|
1597 case kQuad_Verb: |
|
1598 this->quadTo(pts[1], pts[0]); |
|
1599 break; |
|
1600 case kConic_Verb: |
|
1601 this->conicTo(pts[1], pts[0], *--conicWeights); |
|
1602 break; |
|
1603 case kCubic_Verb: |
|
1604 this->cubicTo(pts[2], pts[1], pts[0]); |
|
1605 break; |
|
1606 case kClose_Verb: |
|
1607 needClose = true; |
|
1608 break; |
|
1609 default: |
|
1610 SkDEBUGFAIL("unexpected verb"); |
|
1611 } |
|
1612 } |
|
1613 } |
|
1614 |
|
1615 /////////////////////////////////////////////////////////////////////////////// |
|
1616 |
|
1617 void SkPath::offset(SkScalar dx, SkScalar dy, SkPath* dst) const { |
|
1618 SkMatrix matrix; |
|
1619 |
|
1620 matrix.setTranslate(dx, dy); |
|
1621 this->transform(matrix, dst); |
|
1622 } |
|
1623 |
|
1624 #include "SkGeometry.h" |
|
1625 |
|
1626 static void subdivide_quad_to(SkPath* path, const SkPoint pts[3], |
|
1627 int level = 2) { |
|
1628 if (--level >= 0) { |
|
1629 SkPoint tmp[5]; |
|
1630 |
|
1631 SkChopQuadAtHalf(pts, tmp); |
|
1632 subdivide_quad_to(path, &tmp[0], level); |
|
1633 subdivide_quad_to(path, &tmp[2], level); |
|
1634 } else { |
|
1635 path->quadTo(pts[1], pts[2]); |
|
1636 } |
|
1637 } |
|
1638 |
|
1639 static void subdivide_cubic_to(SkPath* path, const SkPoint pts[4], |
|
1640 int level = 2) { |
|
1641 if (--level >= 0) { |
|
1642 SkPoint tmp[7]; |
|
1643 |
|
1644 SkChopCubicAtHalf(pts, tmp); |
|
1645 subdivide_cubic_to(path, &tmp[0], level); |
|
1646 subdivide_cubic_to(path, &tmp[3], level); |
|
1647 } else { |
|
1648 path->cubicTo(pts[1], pts[2], pts[3]); |
|
1649 } |
|
1650 } |
|
1651 |
|
1652 void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const { |
|
1653 SkDEBUGCODE(this->validate();) |
|
1654 if (dst == NULL) { |
|
1655 dst = (SkPath*)this; |
|
1656 } |
|
1657 |
|
1658 if (matrix.hasPerspective()) { |
|
1659 SkPath tmp; |
|
1660 tmp.fFillType = fFillType; |
|
1661 |
|
1662 SkPath::Iter iter(*this, false); |
|
1663 SkPoint pts[4]; |
|
1664 SkPath::Verb verb; |
|
1665 |
|
1666 while ((verb = iter.next(pts, false)) != kDone_Verb) { |
|
1667 switch (verb) { |
|
1668 case kMove_Verb: |
|
1669 tmp.moveTo(pts[0]); |
|
1670 break; |
|
1671 case kLine_Verb: |
|
1672 tmp.lineTo(pts[1]); |
|
1673 break; |
|
1674 case kQuad_Verb: |
|
1675 subdivide_quad_to(&tmp, pts); |
|
1676 break; |
|
1677 case kConic_Verb: |
|
1678 SkDEBUGFAIL("TODO: compute new weight"); |
|
1679 tmp.conicTo(pts[1], pts[2], iter.conicWeight()); |
|
1680 break; |
|
1681 case kCubic_Verb: |
|
1682 subdivide_cubic_to(&tmp, pts); |
|
1683 break; |
|
1684 case kClose_Verb: |
|
1685 tmp.close(); |
|
1686 break; |
|
1687 default: |
|
1688 SkDEBUGFAIL("unknown verb"); |
|
1689 break; |
|
1690 } |
|
1691 } |
|
1692 |
|
1693 dst->swap(tmp); |
|
1694 SkPathRef::Editor ed(&dst->fPathRef); |
|
1695 matrix.mapPoints(ed.points(), ed.pathRef()->countPoints()); |
|
1696 dst->fDirection = kUnknown_Direction; |
|
1697 } else { |
|
1698 SkPathRef::CreateTransformedCopy(&dst->fPathRef, *fPathRef.get(), matrix); |
|
1699 |
|
1700 if (this != dst) { |
|
1701 dst->fFillType = fFillType; |
|
1702 dst->fConvexity = fConvexity; |
|
1703 } |
|
1704 |
|
1705 if (kUnknown_Direction == fDirection) { |
|
1706 dst->fDirection = kUnknown_Direction; |
|
1707 } else { |
|
1708 SkScalar det2x2 = |
|
1709 SkScalarMul(matrix.get(SkMatrix::kMScaleX), matrix.get(SkMatrix::kMScaleY)) - |
|
1710 SkScalarMul(matrix.get(SkMatrix::kMSkewX), matrix.get(SkMatrix::kMSkewY)); |
|
1711 if (det2x2 < 0) { |
|
1712 dst->fDirection = SkPath::OppositeDirection(static_cast<Direction>(fDirection)); |
|
1713 } else if (det2x2 > 0) { |
|
1714 dst->fDirection = fDirection; |
|
1715 } else { |
|
1716 dst->fConvexity = kUnknown_Convexity; |
|
1717 dst->fDirection = kUnknown_Direction; |
|
1718 } |
|
1719 } |
|
1720 |
|
1721 SkDEBUGCODE(dst->validate();) |
|
1722 } |
|
1723 } |
|
1724 |
|
1725 /////////////////////////////////////////////////////////////////////////////// |
|
1726 /////////////////////////////////////////////////////////////////////////////// |
|
1727 |
|
1728 enum SegmentState { |
|
1729 kEmptyContour_SegmentState, // The current contour is empty. We may be |
|
1730 // starting processing or we may have just |
|
1731 // closed a contour. |
|
1732 kAfterMove_SegmentState, // We have seen a move, but nothing else. |
|
1733 kAfterPrimitive_SegmentState // We have seen a primitive but not yet |
|
1734 // closed the path. Also the initial state. |
|
1735 }; |
|
1736 |
|
1737 SkPath::Iter::Iter() { |
|
1738 #ifdef SK_DEBUG |
|
1739 fPts = NULL; |
|
1740 fConicWeights = NULL; |
|
1741 fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
|
1742 fForceClose = fCloseLine = false; |
|
1743 fSegmentState = kEmptyContour_SegmentState; |
|
1744 #endif |
|
1745 // need to init enough to make next() harmlessly return kDone_Verb |
|
1746 fVerbs = NULL; |
|
1747 fVerbStop = NULL; |
|
1748 fNeedClose = false; |
|
1749 } |
|
1750 |
|
1751 SkPath::Iter::Iter(const SkPath& path, bool forceClose) { |
|
1752 this->setPath(path, forceClose); |
|
1753 } |
|
1754 |
|
1755 void SkPath::Iter::setPath(const SkPath& path, bool forceClose) { |
|
1756 fPts = path.fPathRef->points(); |
|
1757 fVerbs = path.fPathRef->verbs(); |
|
1758 fVerbStop = path.fPathRef->verbsMemBegin(); |
|
1759 fConicWeights = path.fPathRef->conicWeights() - 1; // begin one behind |
|
1760 fLastPt.fX = fLastPt.fY = 0; |
|
1761 fMoveTo.fX = fMoveTo.fY = 0; |
|
1762 fForceClose = SkToU8(forceClose); |
|
1763 fNeedClose = false; |
|
1764 fSegmentState = kEmptyContour_SegmentState; |
|
1765 } |
|
1766 |
|
1767 bool SkPath::Iter::isClosedContour() const { |
|
1768 if (fVerbs == NULL || fVerbs == fVerbStop) { |
|
1769 return false; |
|
1770 } |
|
1771 if (fForceClose) { |
|
1772 return true; |
|
1773 } |
|
1774 |
|
1775 const uint8_t* verbs = fVerbs; |
|
1776 const uint8_t* stop = fVerbStop; |
|
1777 |
|
1778 if (kMove_Verb == *(verbs - 1)) { |
|
1779 verbs -= 1; // skip the initial moveto |
|
1780 } |
|
1781 |
|
1782 while (verbs > stop) { |
|
1783 // verbs points one beyond the current verb, decrement first. |
|
1784 unsigned v = *(--verbs); |
|
1785 if (kMove_Verb == v) { |
|
1786 break; |
|
1787 } |
|
1788 if (kClose_Verb == v) { |
|
1789 return true; |
|
1790 } |
|
1791 } |
|
1792 return false; |
|
1793 } |
|
1794 |
|
1795 SkPath::Verb SkPath::Iter::autoClose(SkPoint pts[2]) { |
|
1796 SkASSERT(pts); |
|
1797 if (fLastPt != fMoveTo) { |
|
1798 // A special case: if both points are NaN, SkPoint::operation== returns |
|
1799 // false, but the iterator expects that they are treated as the same. |
|
1800 // (consider SkPoint is a 2-dimension float point). |
|
1801 if (SkScalarIsNaN(fLastPt.fX) || SkScalarIsNaN(fLastPt.fY) || |
|
1802 SkScalarIsNaN(fMoveTo.fX) || SkScalarIsNaN(fMoveTo.fY)) { |
|
1803 return kClose_Verb; |
|
1804 } |
|
1805 |
|
1806 pts[0] = fLastPt; |
|
1807 pts[1] = fMoveTo; |
|
1808 fLastPt = fMoveTo; |
|
1809 fCloseLine = true; |
|
1810 return kLine_Verb; |
|
1811 } else { |
|
1812 pts[0] = fMoveTo; |
|
1813 return kClose_Verb; |
|
1814 } |
|
1815 } |
|
1816 |
|
1817 const SkPoint& SkPath::Iter::cons_moveTo() { |
|
1818 if (fSegmentState == kAfterMove_SegmentState) { |
|
1819 // Set the first return pt to the move pt |
|
1820 fSegmentState = kAfterPrimitive_SegmentState; |
|
1821 return fMoveTo; |
|
1822 } else { |
|
1823 SkASSERT(fSegmentState == kAfterPrimitive_SegmentState); |
|
1824 // Set the first return pt to the last pt of the previous primitive. |
|
1825 return fPts[-1]; |
|
1826 } |
|
1827 } |
|
1828 |
|
1829 void SkPath::Iter::consumeDegenerateSegments() { |
|
1830 // We need to step over anything that will not move the current draw point |
|
1831 // forward before the next move is seen |
|
1832 const uint8_t* lastMoveVerb = 0; |
|
1833 const SkPoint* lastMovePt = 0; |
|
1834 SkPoint lastPt = fLastPt; |
|
1835 while (fVerbs != fVerbStop) { |
|
1836 unsigned verb = *(fVerbs - 1); // fVerbs is one beyond the current verb |
|
1837 switch (verb) { |
|
1838 case kMove_Verb: |
|
1839 // Keep a record of this most recent move |
|
1840 lastMoveVerb = fVerbs; |
|
1841 lastMovePt = fPts; |
|
1842 lastPt = fPts[0]; |
|
1843 fVerbs--; |
|
1844 fPts++; |
|
1845 break; |
|
1846 |
|
1847 case kClose_Verb: |
|
1848 // A close when we are in a segment is always valid except when it |
|
1849 // follows a move which follows a segment. |
|
1850 if (fSegmentState == kAfterPrimitive_SegmentState && !lastMoveVerb) { |
|
1851 return; |
|
1852 } |
|
1853 // A close at any other time must be ignored |
|
1854 fVerbs--; |
|
1855 break; |
|
1856 |
|
1857 case kLine_Verb: |
|
1858 if (!IsLineDegenerate(lastPt, fPts[0])) { |
|
1859 if (lastMoveVerb) { |
|
1860 fVerbs = lastMoveVerb; |
|
1861 fPts = lastMovePt; |
|
1862 return; |
|
1863 } |
|
1864 return; |
|
1865 } |
|
1866 // Ignore this line and continue |
|
1867 fVerbs--; |
|
1868 fPts++; |
|
1869 break; |
|
1870 |
|
1871 case kConic_Verb: |
|
1872 case kQuad_Verb: |
|
1873 if (!IsQuadDegenerate(lastPt, fPts[0], fPts[1])) { |
|
1874 if (lastMoveVerb) { |
|
1875 fVerbs = lastMoveVerb; |
|
1876 fPts = lastMovePt; |
|
1877 return; |
|
1878 } |
|
1879 return; |
|
1880 } |
|
1881 // Ignore this line and continue |
|
1882 fVerbs--; |
|
1883 fPts += 2; |
|
1884 fConicWeights += (kConic_Verb == verb); |
|
1885 break; |
|
1886 |
|
1887 case kCubic_Verb: |
|
1888 if (!IsCubicDegenerate(lastPt, fPts[0], fPts[1], fPts[2])) { |
|
1889 if (lastMoveVerb) { |
|
1890 fVerbs = lastMoveVerb; |
|
1891 fPts = lastMovePt; |
|
1892 return; |
|
1893 } |
|
1894 return; |
|
1895 } |
|
1896 // Ignore this line and continue |
|
1897 fVerbs--; |
|
1898 fPts += 3; |
|
1899 break; |
|
1900 |
|
1901 default: |
|
1902 SkDEBUGFAIL("Should never see kDone_Verb"); |
|
1903 } |
|
1904 } |
|
1905 } |
|
1906 |
|
1907 SkPath::Verb SkPath::Iter::doNext(SkPoint ptsParam[4]) { |
|
1908 SkASSERT(ptsParam); |
|
1909 |
|
1910 if (fVerbs == fVerbStop) { |
|
1911 // Close the curve if requested and if there is some curve to close |
|
1912 if (fNeedClose && fSegmentState == kAfterPrimitive_SegmentState) { |
|
1913 if (kLine_Verb == this->autoClose(ptsParam)) { |
|
1914 return kLine_Verb; |
|
1915 } |
|
1916 fNeedClose = false; |
|
1917 return kClose_Verb; |
|
1918 } |
|
1919 return kDone_Verb; |
|
1920 } |
|
1921 |
|
1922 // fVerbs is one beyond the current verb, decrement first |
|
1923 unsigned verb = *(--fVerbs); |
|
1924 const SkPoint* SK_RESTRICT srcPts = fPts; |
|
1925 SkPoint* SK_RESTRICT pts = ptsParam; |
|
1926 |
|
1927 switch (verb) { |
|
1928 case kMove_Verb: |
|
1929 if (fNeedClose) { |
|
1930 fVerbs++; // move back one verb |
|
1931 verb = this->autoClose(pts); |
|
1932 if (verb == kClose_Verb) { |
|
1933 fNeedClose = false; |
|
1934 } |
|
1935 return (Verb)verb; |
|
1936 } |
|
1937 if (fVerbs == fVerbStop) { // might be a trailing moveto |
|
1938 return kDone_Verb; |
|
1939 } |
|
1940 fMoveTo = *srcPts; |
|
1941 pts[0] = *srcPts; |
|
1942 srcPts += 1; |
|
1943 fSegmentState = kAfterMove_SegmentState; |
|
1944 fLastPt = fMoveTo; |
|
1945 fNeedClose = fForceClose; |
|
1946 break; |
|
1947 case kLine_Verb: |
|
1948 pts[0] = this->cons_moveTo(); |
|
1949 pts[1] = srcPts[0]; |
|
1950 fLastPt = srcPts[0]; |
|
1951 fCloseLine = false; |
|
1952 srcPts += 1; |
|
1953 break; |
|
1954 case kConic_Verb: |
|
1955 fConicWeights += 1; |
|
1956 // fall-through |
|
1957 case kQuad_Verb: |
|
1958 pts[0] = this->cons_moveTo(); |
|
1959 memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
|
1960 fLastPt = srcPts[1]; |
|
1961 srcPts += 2; |
|
1962 break; |
|
1963 case kCubic_Verb: |
|
1964 pts[0] = this->cons_moveTo(); |
|
1965 memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
|
1966 fLastPt = srcPts[2]; |
|
1967 srcPts += 3; |
|
1968 break; |
|
1969 case kClose_Verb: |
|
1970 verb = this->autoClose(pts); |
|
1971 if (verb == kLine_Verb) { |
|
1972 fVerbs++; // move back one verb |
|
1973 } else { |
|
1974 fNeedClose = false; |
|
1975 fSegmentState = kEmptyContour_SegmentState; |
|
1976 } |
|
1977 fLastPt = fMoveTo; |
|
1978 break; |
|
1979 } |
|
1980 fPts = srcPts; |
|
1981 return (Verb)verb; |
|
1982 } |
|
1983 |
|
1984 /////////////////////////////////////////////////////////////////////////////// |
|
1985 |
|
1986 SkPath::RawIter::RawIter() { |
|
1987 #ifdef SK_DEBUG |
|
1988 fPts = NULL; |
|
1989 fConicWeights = NULL; |
|
1990 fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
|
1991 #endif |
|
1992 // need to init enough to make next() harmlessly return kDone_Verb |
|
1993 fVerbs = NULL; |
|
1994 fVerbStop = NULL; |
|
1995 } |
|
1996 |
|
1997 SkPath::RawIter::RawIter(const SkPath& path) { |
|
1998 this->setPath(path); |
|
1999 } |
|
2000 |
|
2001 void SkPath::RawIter::setPath(const SkPath& path) { |
|
2002 fPts = path.fPathRef->points(); |
|
2003 fVerbs = path.fPathRef->verbs(); |
|
2004 fVerbStop = path.fPathRef->verbsMemBegin(); |
|
2005 fConicWeights = path.fPathRef->conicWeights() - 1; // begin one behind |
|
2006 fMoveTo.fX = fMoveTo.fY = 0; |
|
2007 fLastPt.fX = fLastPt.fY = 0; |
|
2008 } |
|
2009 |
|
2010 SkPath::Verb SkPath::RawIter::next(SkPoint pts[4]) { |
|
2011 SkASSERT(NULL != pts); |
|
2012 if (fVerbs == fVerbStop) { |
|
2013 return kDone_Verb; |
|
2014 } |
|
2015 |
|
2016 // fVerbs points one beyond next verb so decrement first. |
|
2017 unsigned verb = *(--fVerbs); |
|
2018 const SkPoint* srcPts = fPts; |
|
2019 |
|
2020 switch (verb) { |
|
2021 case kMove_Verb: |
|
2022 pts[0] = *srcPts; |
|
2023 fMoveTo = srcPts[0]; |
|
2024 fLastPt = fMoveTo; |
|
2025 srcPts += 1; |
|
2026 break; |
|
2027 case kLine_Verb: |
|
2028 pts[0] = fLastPt; |
|
2029 pts[1] = srcPts[0]; |
|
2030 fLastPt = srcPts[0]; |
|
2031 srcPts += 1; |
|
2032 break; |
|
2033 case kConic_Verb: |
|
2034 fConicWeights += 1; |
|
2035 // fall-through |
|
2036 case kQuad_Verb: |
|
2037 pts[0] = fLastPt; |
|
2038 memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
|
2039 fLastPt = srcPts[1]; |
|
2040 srcPts += 2; |
|
2041 break; |
|
2042 case kCubic_Verb: |
|
2043 pts[0] = fLastPt; |
|
2044 memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
|
2045 fLastPt = srcPts[2]; |
|
2046 srcPts += 3; |
|
2047 break; |
|
2048 case kClose_Verb: |
|
2049 fLastPt = fMoveTo; |
|
2050 pts[0] = fMoveTo; |
|
2051 break; |
|
2052 } |
|
2053 fPts = srcPts; |
|
2054 return (Verb)verb; |
|
2055 } |
|
2056 |
|
2057 /////////////////////////////////////////////////////////////////////////////// |
|
2058 |
|
2059 /* |
|
2060 Format in compressed buffer: [ptCount, verbCount, pts[], verbs[]] |
|
2061 */ |
|
2062 |
|
2063 size_t SkPath::writeToMemory(void* storage) const { |
|
2064 SkDEBUGCODE(this->validate();) |
|
2065 |
|
2066 if (NULL == storage) { |
|
2067 const int byteCount = sizeof(int32_t) + fPathRef->writeSize(); |
|
2068 return SkAlign4(byteCount); |
|
2069 } |
|
2070 |
|
2071 SkWBuffer buffer(storage); |
|
2072 |
|
2073 int32_t packed = (fConvexity << kConvexity_SerializationShift) | |
|
2074 (fFillType << kFillType_SerializationShift) | |
|
2075 (fDirection << kDirection_SerializationShift); |
|
2076 |
|
2077 buffer.write32(packed); |
|
2078 |
|
2079 fPathRef->writeToBuffer(&buffer); |
|
2080 |
|
2081 buffer.padToAlign4(); |
|
2082 return buffer.pos(); |
|
2083 } |
|
2084 |
|
2085 size_t SkPath::readFromMemory(const void* storage, size_t length) { |
|
2086 SkRBufferWithSizeCheck buffer(storage, length); |
|
2087 |
|
2088 int32_t packed; |
|
2089 if (!buffer.readS32(&packed)) { |
|
2090 return 0; |
|
2091 } |
|
2092 |
|
2093 fConvexity = (packed >> kConvexity_SerializationShift) & 0xFF; |
|
2094 fFillType = (packed >> kFillType_SerializationShift) & 0xFF; |
|
2095 fDirection = (packed >> kDirection_SerializationShift) & 0x3; |
|
2096 SkPathRef* pathRef = SkPathRef::CreateFromBuffer(&buffer); |
|
2097 |
|
2098 size_t sizeRead = 0; |
|
2099 if (buffer.isValid()) { |
|
2100 fPathRef.reset(pathRef); |
|
2101 SkDEBUGCODE(this->validate();) |
|
2102 buffer.skipToAlign4(); |
|
2103 sizeRead = buffer.pos(); |
|
2104 } else if (NULL != pathRef) { |
|
2105 // If the buffer is not valid, pathRef should be NULL |
|
2106 sk_throw(); |
|
2107 } |
|
2108 return sizeRead; |
|
2109 } |
|
2110 |
|
2111 /////////////////////////////////////////////////////////////////////////////// |
|
2112 |
|
2113 #include "SkString.h" |
|
2114 |
|
2115 static void append_scalar(SkString* str, SkScalar value) { |
|
2116 SkString tmp; |
|
2117 tmp.printf("%g", value); |
|
2118 if (tmp.contains('.')) { |
|
2119 tmp.appendUnichar('f'); |
|
2120 } |
|
2121 str->append(tmp); |
|
2122 } |
|
2123 |
|
2124 static void append_params(SkString* str, const char label[], const SkPoint pts[], |
|
2125 int count, SkScalar conicWeight = -1) { |
|
2126 str->append(label); |
|
2127 str->append("("); |
|
2128 |
|
2129 const SkScalar* values = &pts[0].fX; |
|
2130 count *= 2; |
|
2131 |
|
2132 for (int i = 0; i < count; ++i) { |
|
2133 append_scalar(str, values[i]); |
|
2134 if (i < count - 1) { |
|
2135 str->append(", "); |
|
2136 } |
|
2137 } |
|
2138 if (conicWeight >= 0) { |
|
2139 str->append(", "); |
|
2140 append_scalar(str, conicWeight); |
|
2141 } |
|
2142 str->append(");\n"); |
|
2143 } |
|
2144 |
|
2145 void SkPath::dump(bool forceClose, const char title[]) const { |
|
2146 Iter iter(*this, forceClose); |
|
2147 SkPoint pts[4]; |
|
2148 Verb verb; |
|
2149 |
|
2150 SkDebugf("path: forceClose=%s %s\n", forceClose ? "true" : "false", |
|
2151 title ? title : ""); |
|
2152 |
|
2153 SkString builder; |
|
2154 |
|
2155 while ((verb = iter.next(pts, false)) != kDone_Verb) { |
|
2156 switch (verb) { |
|
2157 case kMove_Verb: |
|
2158 append_params(&builder, "path.moveTo", &pts[0], 1); |
|
2159 break; |
|
2160 case kLine_Verb: |
|
2161 append_params(&builder, "path.lineTo", &pts[1], 1); |
|
2162 break; |
|
2163 case kQuad_Verb: |
|
2164 append_params(&builder, "path.quadTo", &pts[1], 2); |
|
2165 break; |
|
2166 case kConic_Verb: |
|
2167 append_params(&builder, "path.conicTo", &pts[1], 2, iter.conicWeight()); |
|
2168 break; |
|
2169 case kCubic_Verb: |
|
2170 append_params(&builder, "path.cubicTo", &pts[1], 3); |
|
2171 break; |
|
2172 case kClose_Verb: |
|
2173 builder.append("path.close();\n"); |
|
2174 break; |
|
2175 default: |
|
2176 SkDebugf(" path: UNKNOWN VERB %d, aborting dump...\n", verb); |
|
2177 verb = kDone_Verb; // stop the loop |
|
2178 break; |
|
2179 } |
|
2180 } |
|
2181 SkDebugf("%s\n", builder.c_str()); |
|
2182 } |
|
2183 |
|
2184 void SkPath::dump() const { |
|
2185 this->dump(false); |
|
2186 } |
|
2187 |
|
2188 #ifdef SK_DEBUG |
|
2189 void SkPath::validate() const { |
|
2190 SkASSERT(this != NULL); |
|
2191 SkASSERT((fFillType & ~3) == 0); |
|
2192 |
|
2193 #ifdef SK_DEBUG_PATH |
|
2194 if (!fBoundsIsDirty) { |
|
2195 SkRect bounds; |
|
2196 |
|
2197 bool isFinite = compute_pt_bounds(&bounds, *fPathRef.get()); |
|
2198 SkASSERT(SkToBool(fIsFinite) == isFinite); |
|
2199 |
|
2200 if (fPathRef->countPoints() <= 1) { |
|
2201 // if we're empty, fBounds may be empty but translated, so we can't |
|
2202 // necessarily compare to bounds directly |
|
2203 // try path.addOval(2, 2, 2, 2) which is empty, but the bounds will |
|
2204 // be [2, 2, 2, 2] |
|
2205 SkASSERT(bounds.isEmpty()); |
|
2206 SkASSERT(fBounds.isEmpty()); |
|
2207 } else { |
|
2208 if (bounds.isEmpty()) { |
|
2209 SkASSERT(fBounds.isEmpty()); |
|
2210 } else { |
|
2211 if (!fBounds.isEmpty()) { |
|
2212 SkASSERT(fBounds.contains(bounds)); |
|
2213 } |
|
2214 } |
|
2215 } |
|
2216 } |
|
2217 #endif // SK_DEBUG_PATH |
|
2218 } |
|
2219 #endif // SK_DEBUG |
|
2220 |
|
2221 /////////////////////////////////////////////////////////////////////////////// |
|
2222 |
|
2223 static int sign(SkScalar x) { return x < 0; } |
|
2224 #define kValueNeverReturnedBySign 2 |
|
2225 |
|
2226 static bool AlmostEqual(SkScalar compA, SkScalar compB) { |
|
2227 // The error epsilon was empirically derived; worse case round rects |
|
2228 // with a mid point outset by 2x float epsilon in tests had an error |
|
2229 // of 12. |
|
2230 const int epsilon = 16; |
|
2231 if (!SkScalarIsFinite(compA) || !SkScalarIsFinite(compB)) { |
|
2232 return false; |
|
2233 } |
|
2234 // no need to check for small numbers because SkPath::Iter has removed degenerate values |
|
2235 int aBits = SkFloatAs2sCompliment(compA); |
|
2236 int bBits = SkFloatAs2sCompliment(compB); |
|
2237 return aBits < bBits + epsilon && bBits < aBits + epsilon; |
|
2238 } |
|
2239 |
|
2240 // only valid for a single contour |
|
2241 struct Convexicator { |
|
2242 Convexicator() |
|
2243 : fPtCount(0) |
|
2244 , fConvexity(SkPath::kConvex_Convexity) |
|
2245 , fDirection(SkPath::kUnknown_Direction) { |
|
2246 fSign = 0; |
|
2247 // warnings |
|
2248 fLastPt.set(0, 0); |
|
2249 fCurrPt.set(0, 0); |
|
2250 fVec0.set(0, 0); |
|
2251 fVec1.set(0, 0); |
|
2252 fFirstVec.set(0, 0); |
|
2253 |
|
2254 fDx = fDy = 0; |
|
2255 fSx = fSy = kValueNeverReturnedBySign; |
|
2256 } |
|
2257 |
|
2258 SkPath::Convexity getConvexity() const { return fConvexity; } |
|
2259 |
|
2260 /** The direction returned is only valid if the path is determined convex */ |
|
2261 SkPath::Direction getDirection() const { return fDirection; } |
|
2262 |
|
2263 void addPt(const SkPoint& pt) { |
|
2264 if (SkPath::kConcave_Convexity == fConvexity) { |
|
2265 return; |
|
2266 } |
|
2267 |
|
2268 if (0 == fPtCount) { |
|
2269 fCurrPt = pt; |
|
2270 ++fPtCount; |
|
2271 } else { |
|
2272 SkVector vec = pt - fCurrPt; |
|
2273 if (vec.fX || vec.fY) { |
|
2274 fLastPt = fCurrPt; |
|
2275 fCurrPt = pt; |
|
2276 if (++fPtCount == 2) { |
|
2277 fFirstVec = fVec1 = vec; |
|
2278 } else { |
|
2279 SkASSERT(fPtCount > 2); |
|
2280 this->addVec(vec); |
|
2281 } |
|
2282 |
|
2283 int sx = sign(vec.fX); |
|
2284 int sy = sign(vec.fY); |
|
2285 fDx += (sx != fSx); |
|
2286 fDy += (sy != fSy); |
|
2287 fSx = sx; |
|
2288 fSy = sy; |
|
2289 |
|
2290 if (fDx > 3 || fDy > 3) { |
|
2291 fConvexity = SkPath::kConcave_Convexity; |
|
2292 } |
|
2293 } |
|
2294 } |
|
2295 } |
|
2296 |
|
2297 void close() { |
|
2298 if (fPtCount > 2) { |
|
2299 this->addVec(fFirstVec); |
|
2300 } |
|
2301 } |
|
2302 |
|
2303 private: |
|
2304 void addVec(const SkVector& vec) { |
|
2305 SkASSERT(vec.fX || vec.fY); |
|
2306 fVec0 = fVec1; |
|
2307 fVec1 = vec; |
|
2308 SkScalar cross = SkPoint::CrossProduct(fVec0, fVec1); |
|
2309 SkScalar smallest = SkTMin(fCurrPt.fX, SkTMin(fCurrPt.fY, SkTMin(fLastPt.fX, fLastPt.fY))); |
|
2310 SkScalar largest = SkTMax(fCurrPt.fX, SkTMax(fCurrPt.fY, SkTMax(fLastPt.fX, fLastPt.fY))); |
|
2311 largest = SkTMax(largest, -smallest); |
|
2312 int sign = AlmostEqual(largest, largest + cross) ? 0 : SkScalarSignAsInt(cross); |
|
2313 if (0 == fSign) { |
|
2314 fSign = sign; |
|
2315 if (1 == sign) { |
|
2316 fDirection = SkPath::kCW_Direction; |
|
2317 } else if (-1 == sign) { |
|
2318 fDirection = SkPath::kCCW_Direction; |
|
2319 } |
|
2320 } else if (sign) { |
|
2321 if (fSign != sign) { |
|
2322 fConvexity = SkPath::kConcave_Convexity; |
|
2323 fDirection = SkPath::kUnknown_Direction; |
|
2324 } |
|
2325 } |
|
2326 } |
|
2327 |
|
2328 SkPoint fLastPt; |
|
2329 SkPoint fCurrPt; |
|
2330 SkVector fVec0, fVec1, fFirstVec; |
|
2331 int fPtCount; // non-degenerate points |
|
2332 int fSign; |
|
2333 SkPath::Convexity fConvexity; |
|
2334 SkPath::Direction fDirection; |
|
2335 int fDx, fDy, fSx, fSy; |
|
2336 }; |
|
2337 |
|
2338 SkPath::Convexity SkPath::internalGetConvexity() const { |
|
2339 SkASSERT(kUnknown_Convexity == fConvexity); |
|
2340 SkPoint pts[4]; |
|
2341 SkPath::Verb verb; |
|
2342 SkPath::Iter iter(*this, true); |
|
2343 |
|
2344 int contourCount = 0; |
|
2345 int count; |
|
2346 Convexicator state; |
|
2347 |
|
2348 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
|
2349 switch (verb) { |
|
2350 case kMove_Verb: |
|
2351 if (++contourCount > 1) { |
|
2352 fConvexity = kConcave_Convexity; |
|
2353 return kConcave_Convexity; |
|
2354 } |
|
2355 pts[1] = pts[0]; |
|
2356 count = 1; |
|
2357 break; |
|
2358 case kLine_Verb: count = 1; break; |
|
2359 case kQuad_Verb: count = 2; break; |
|
2360 case kConic_Verb: count = 2; break; |
|
2361 case kCubic_Verb: count = 3; break; |
|
2362 case kClose_Verb: |
|
2363 state.close(); |
|
2364 count = 0; |
|
2365 break; |
|
2366 default: |
|
2367 SkDEBUGFAIL("bad verb"); |
|
2368 fConvexity = kConcave_Convexity; |
|
2369 return kConcave_Convexity; |
|
2370 } |
|
2371 |
|
2372 for (int i = 1; i <= count; i++) { |
|
2373 state.addPt(pts[i]); |
|
2374 } |
|
2375 // early exit |
|
2376 if (kConcave_Convexity == state.getConvexity()) { |
|
2377 fConvexity = kConcave_Convexity; |
|
2378 return kConcave_Convexity; |
|
2379 } |
|
2380 } |
|
2381 fConvexity = state.getConvexity(); |
|
2382 if (kConvex_Convexity == fConvexity && kUnknown_Direction == fDirection) { |
|
2383 fDirection = state.getDirection(); |
|
2384 } |
|
2385 return static_cast<Convexity>(fConvexity); |
|
2386 } |
|
2387 |
|
2388 /////////////////////////////////////////////////////////////////////////////// |
|
2389 |
|
2390 class ContourIter { |
|
2391 public: |
|
2392 ContourIter(const SkPathRef& pathRef); |
|
2393 |
|
2394 bool done() const { return fDone; } |
|
2395 // if !done() then these may be called |
|
2396 int count() const { return fCurrPtCount; } |
|
2397 const SkPoint* pts() const { return fCurrPt; } |
|
2398 void next(); |
|
2399 |
|
2400 private: |
|
2401 int fCurrPtCount; |
|
2402 const SkPoint* fCurrPt; |
|
2403 const uint8_t* fCurrVerb; |
|
2404 const uint8_t* fStopVerbs; |
|
2405 const SkScalar* fCurrConicWeight; |
|
2406 bool fDone; |
|
2407 SkDEBUGCODE(int fContourCounter;) |
|
2408 }; |
|
2409 |
|
2410 ContourIter::ContourIter(const SkPathRef& pathRef) { |
|
2411 fStopVerbs = pathRef.verbsMemBegin(); |
|
2412 fDone = false; |
|
2413 fCurrPt = pathRef.points(); |
|
2414 fCurrVerb = pathRef.verbs(); |
|
2415 fCurrConicWeight = pathRef.conicWeights(); |
|
2416 fCurrPtCount = 0; |
|
2417 SkDEBUGCODE(fContourCounter = 0;) |
|
2418 this->next(); |
|
2419 } |
|
2420 |
|
2421 void ContourIter::next() { |
|
2422 if (fCurrVerb <= fStopVerbs) { |
|
2423 fDone = true; |
|
2424 } |
|
2425 if (fDone) { |
|
2426 return; |
|
2427 } |
|
2428 |
|
2429 // skip pts of prev contour |
|
2430 fCurrPt += fCurrPtCount; |
|
2431 |
|
2432 SkASSERT(SkPath::kMove_Verb == fCurrVerb[~0]); |
|
2433 int ptCount = 1; // moveTo |
|
2434 const uint8_t* verbs = fCurrVerb; |
|
2435 |
|
2436 for (--verbs; verbs > fStopVerbs; --verbs) { |
|
2437 switch (verbs[~0]) { |
|
2438 case SkPath::kMove_Verb: |
|
2439 goto CONTOUR_END; |
|
2440 case SkPath::kLine_Verb: |
|
2441 ptCount += 1; |
|
2442 break; |
|
2443 case SkPath::kConic_Verb: |
|
2444 fCurrConicWeight += 1; |
|
2445 // fall-through |
|
2446 case SkPath::kQuad_Verb: |
|
2447 ptCount += 2; |
|
2448 break; |
|
2449 case SkPath::kCubic_Verb: |
|
2450 ptCount += 3; |
|
2451 break; |
|
2452 case SkPath::kClose_Verb: |
|
2453 break; |
|
2454 default: |
|
2455 SkDEBUGFAIL("unexpected verb"); |
|
2456 break; |
|
2457 } |
|
2458 } |
|
2459 CONTOUR_END: |
|
2460 fCurrPtCount = ptCount; |
|
2461 fCurrVerb = verbs; |
|
2462 SkDEBUGCODE(++fContourCounter;) |
|
2463 } |
|
2464 |
|
2465 // returns cross product of (p1 - p0) and (p2 - p0) |
|
2466 static SkScalar cross_prod(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
|
2467 SkScalar cross = SkPoint::CrossProduct(p1 - p0, p2 - p0); |
|
2468 // We may get 0 when the above subtracts underflow. We expect this to be |
|
2469 // very rare and lazily promote to double. |
|
2470 if (0 == cross) { |
|
2471 double p0x = SkScalarToDouble(p0.fX); |
|
2472 double p0y = SkScalarToDouble(p0.fY); |
|
2473 |
|
2474 double p1x = SkScalarToDouble(p1.fX); |
|
2475 double p1y = SkScalarToDouble(p1.fY); |
|
2476 |
|
2477 double p2x = SkScalarToDouble(p2.fX); |
|
2478 double p2y = SkScalarToDouble(p2.fY); |
|
2479 |
|
2480 cross = SkDoubleToScalar((p1x - p0x) * (p2y - p0y) - |
|
2481 (p1y - p0y) * (p2x - p0x)); |
|
2482 |
|
2483 } |
|
2484 return cross; |
|
2485 } |
|
2486 |
|
2487 // Returns the first pt with the maximum Y coordinate |
|
2488 static int find_max_y(const SkPoint pts[], int count) { |
|
2489 SkASSERT(count > 0); |
|
2490 SkScalar max = pts[0].fY; |
|
2491 int firstIndex = 0; |
|
2492 for (int i = 1; i < count; ++i) { |
|
2493 SkScalar y = pts[i].fY; |
|
2494 if (y > max) { |
|
2495 max = y; |
|
2496 firstIndex = i; |
|
2497 } |
|
2498 } |
|
2499 return firstIndex; |
|
2500 } |
|
2501 |
|
2502 static int find_diff_pt(const SkPoint pts[], int index, int n, int inc) { |
|
2503 int i = index; |
|
2504 for (;;) { |
|
2505 i = (i + inc) % n; |
|
2506 if (i == index) { // we wrapped around, so abort |
|
2507 break; |
|
2508 } |
|
2509 if (pts[index] != pts[i]) { // found a different point, success! |
|
2510 break; |
|
2511 } |
|
2512 } |
|
2513 return i; |
|
2514 } |
|
2515 |
|
2516 /** |
|
2517 * Starting at index, and moving forward (incrementing), find the xmin and |
|
2518 * xmax of the contiguous points that have the same Y. |
|
2519 */ |
|
2520 static int find_min_max_x_at_y(const SkPoint pts[], int index, int n, |
|
2521 int* maxIndexPtr) { |
|
2522 const SkScalar y = pts[index].fY; |
|
2523 SkScalar min = pts[index].fX; |
|
2524 SkScalar max = min; |
|
2525 int minIndex = index; |
|
2526 int maxIndex = index; |
|
2527 for (int i = index + 1; i < n; ++i) { |
|
2528 if (pts[i].fY != y) { |
|
2529 break; |
|
2530 } |
|
2531 SkScalar x = pts[i].fX; |
|
2532 if (x < min) { |
|
2533 min = x; |
|
2534 minIndex = i; |
|
2535 } else if (x > max) { |
|
2536 max = x; |
|
2537 maxIndex = i; |
|
2538 } |
|
2539 } |
|
2540 *maxIndexPtr = maxIndex; |
|
2541 return minIndex; |
|
2542 } |
|
2543 |
|
2544 static void crossToDir(SkScalar cross, SkPath::Direction* dir) { |
|
2545 *dir = cross > 0 ? SkPath::kCW_Direction : SkPath::kCCW_Direction; |
|
2546 } |
|
2547 |
|
2548 /* |
|
2549 * We loop through all contours, and keep the computed cross-product of the |
|
2550 * contour that contained the global y-max. If we just look at the first |
|
2551 * contour, we may find one that is wound the opposite way (correctly) since |
|
2552 * it is the interior of a hole (e.g. 'o'). Thus we must find the contour |
|
2553 * that is outer most (or at least has the global y-max) before we can consider |
|
2554 * its cross product. |
|
2555 */ |
|
2556 bool SkPath::cheapComputeDirection(Direction* dir) const { |
|
2557 if (kUnknown_Direction != fDirection) { |
|
2558 *dir = static_cast<Direction>(fDirection); |
|
2559 return true; |
|
2560 } |
|
2561 |
|
2562 // don't want to pay the cost for computing this if it |
|
2563 // is unknown, so we don't call isConvex() |
|
2564 if (kConvex_Convexity == this->getConvexityOrUnknown()) { |
|
2565 SkASSERT(kUnknown_Direction == fDirection); |
|
2566 *dir = static_cast<Direction>(fDirection); |
|
2567 return false; |
|
2568 } |
|
2569 |
|
2570 ContourIter iter(*fPathRef.get()); |
|
2571 |
|
2572 // initialize with our logical y-min |
|
2573 SkScalar ymax = this->getBounds().fTop; |
|
2574 SkScalar ymaxCross = 0; |
|
2575 |
|
2576 for (; !iter.done(); iter.next()) { |
|
2577 int n = iter.count(); |
|
2578 if (n < 3) { |
|
2579 continue; |
|
2580 } |
|
2581 |
|
2582 const SkPoint* pts = iter.pts(); |
|
2583 SkScalar cross = 0; |
|
2584 int index = find_max_y(pts, n); |
|
2585 if (pts[index].fY < ymax) { |
|
2586 continue; |
|
2587 } |
|
2588 |
|
2589 // If there is more than 1 distinct point at the y-max, we take the |
|
2590 // x-min and x-max of them and just subtract to compute the dir. |
|
2591 if (pts[(index + 1) % n].fY == pts[index].fY) { |
|
2592 int maxIndex; |
|
2593 int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex); |
|
2594 if (minIndex == maxIndex) { |
|
2595 goto TRY_CROSSPROD; |
|
2596 } |
|
2597 SkASSERT(pts[minIndex].fY == pts[index].fY); |
|
2598 SkASSERT(pts[maxIndex].fY == pts[index].fY); |
|
2599 SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX); |
|
2600 // we just subtract the indices, and let that auto-convert to |
|
2601 // SkScalar, since we just want - or + to signal the direction. |
|
2602 cross = minIndex - maxIndex; |
|
2603 } else { |
|
2604 TRY_CROSSPROD: |
|
2605 // Find a next and prev index to use for the cross-product test, |
|
2606 // but we try to find pts that form non-zero vectors from pts[index] |
|
2607 // |
|
2608 // Its possible that we can't find two non-degenerate vectors, so |
|
2609 // we have to guard our search (e.g. all the pts could be in the |
|
2610 // same place). |
|
2611 |
|
2612 // we pass n - 1 instead of -1 so we don't foul up % operator by |
|
2613 // passing it a negative LH argument. |
|
2614 int prev = find_diff_pt(pts, index, n, n - 1); |
|
2615 if (prev == index) { |
|
2616 // completely degenerate, skip to next contour |
|
2617 continue; |
|
2618 } |
|
2619 int next = find_diff_pt(pts, index, n, 1); |
|
2620 SkASSERT(next != index); |
|
2621 cross = cross_prod(pts[prev], pts[index], pts[next]); |
|
2622 // if we get a zero and the points are horizontal, then we look at the spread in |
|
2623 // x-direction. We really should continue to walk away from the degeneracy until |
|
2624 // there is a divergence. |
|
2625 if (0 == cross && pts[prev].fY == pts[index].fY && pts[next].fY == pts[index].fY) { |
|
2626 // construct the subtract so we get the correct Direction below |
|
2627 cross = pts[index].fX - pts[next].fX; |
|
2628 } |
|
2629 } |
|
2630 |
|
2631 if (cross) { |
|
2632 // record our best guess so far |
|
2633 ymax = pts[index].fY; |
|
2634 ymaxCross = cross; |
|
2635 } |
|
2636 } |
|
2637 if (ymaxCross) { |
|
2638 crossToDir(ymaxCross, dir); |
|
2639 fDirection = *dir; |
|
2640 return true; |
|
2641 } else { |
|
2642 return false; |
|
2643 } |
|
2644 } |
|
2645 |
|
2646 /////////////////////////////////////////////////////////////////////////////// |
|
2647 |
|
2648 static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, |
|
2649 SkScalar D, SkScalar t) { |
|
2650 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); |
|
2651 } |
|
2652 |
|
2653 static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
|
2654 SkScalar t) { |
|
2655 SkScalar A = c3 + 3*(c1 - c2) - c0; |
|
2656 SkScalar B = 3*(c2 - c1 - c1 + c0); |
|
2657 SkScalar C = 3*(c1 - c0); |
|
2658 SkScalar D = c0; |
|
2659 return eval_cubic_coeff(A, B, C, D, t); |
|
2660 } |
|
2661 |
|
2662 /* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the |
|
2663 t value such that cubic(t) = target |
|
2664 */ |
|
2665 static void chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
|
2666 SkScalar target, SkScalar* t) { |
|
2667 // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); |
|
2668 SkASSERT(c0 < target && target < c3); |
|
2669 |
|
2670 SkScalar D = c0 - target; |
|
2671 SkScalar A = c3 + 3*(c1 - c2) - c0; |
|
2672 SkScalar B = 3*(c2 - c1 - c1 + c0); |
|
2673 SkScalar C = 3*(c1 - c0); |
|
2674 |
|
2675 const SkScalar TOLERANCE = SK_Scalar1 / 4096; |
|
2676 SkScalar minT = 0; |
|
2677 SkScalar maxT = SK_Scalar1; |
|
2678 SkScalar mid; |
|
2679 int i; |
|
2680 for (i = 0; i < 16; i++) { |
|
2681 mid = SkScalarAve(minT, maxT); |
|
2682 SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); |
|
2683 if (delta < 0) { |
|
2684 minT = mid; |
|
2685 delta = -delta; |
|
2686 } else { |
|
2687 maxT = mid; |
|
2688 } |
|
2689 if (delta < TOLERANCE) { |
|
2690 break; |
|
2691 } |
|
2692 } |
|
2693 *t = mid; |
|
2694 } |
|
2695 |
|
2696 template <size_t N> static void find_minmax(const SkPoint pts[], |
|
2697 SkScalar* minPtr, SkScalar* maxPtr) { |
|
2698 SkScalar min, max; |
|
2699 min = max = pts[0].fX; |
|
2700 for (size_t i = 1; i < N; ++i) { |
|
2701 min = SkMinScalar(min, pts[i].fX); |
|
2702 max = SkMaxScalar(max, pts[i].fX); |
|
2703 } |
|
2704 *minPtr = min; |
|
2705 *maxPtr = max; |
|
2706 } |
|
2707 |
|
2708 static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
|
2709 SkPoint storage[4]; |
|
2710 |
|
2711 int dir = 1; |
|
2712 if (pts[0].fY > pts[3].fY) { |
|
2713 storage[0] = pts[3]; |
|
2714 storage[1] = pts[2]; |
|
2715 storage[2] = pts[1]; |
|
2716 storage[3] = pts[0]; |
|
2717 pts = storage; |
|
2718 dir = -1; |
|
2719 } |
|
2720 if (y < pts[0].fY || y >= pts[3].fY) { |
|
2721 return 0; |
|
2722 } |
|
2723 |
|
2724 // quickreject or quickaccept |
|
2725 SkScalar min, max; |
|
2726 find_minmax<4>(pts, &min, &max); |
|
2727 if (x < min) { |
|
2728 return 0; |
|
2729 } |
|
2730 if (x > max) { |
|
2731 return dir; |
|
2732 } |
|
2733 |
|
2734 // compute the actual x(t) value |
|
2735 SkScalar t; |
|
2736 chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t); |
|
2737 SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t); |
|
2738 return xt < x ? dir : 0; |
|
2739 } |
|
2740 |
|
2741 static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
|
2742 SkPoint dst[10]; |
|
2743 int n = SkChopCubicAtYExtrema(pts, dst); |
|
2744 int w = 0; |
|
2745 for (int i = 0; i <= n; ++i) { |
|
2746 w += winding_mono_cubic(&dst[i * 3], x, y); |
|
2747 } |
|
2748 return w; |
|
2749 } |
|
2750 |
|
2751 static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
|
2752 SkScalar y0 = pts[0].fY; |
|
2753 SkScalar y2 = pts[2].fY; |
|
2754 |
|
2755 int dir = 1; |
|
2756 if (y0 > y2) { |
|
2757 SkTSwap(y0, y2); |
|
2758 dir = -1; |
|
2759 } |
|
2760 if (y < y0 || y >= y2) { |
|
2761 return 0; |
|
2762 } |
|
2763 |
|
2764 // bounds check on X (not required. is it faster?) |
|
2765 #if 0 |
|
2766 if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) { |
|
2767 return 0; |
|
2768 } |
|
2769 #endif |
|
2770 |
|
2771 SkScalar roots[2]; |
|
2772 int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
|
2773 2 * (pts[1].fY - pts[0].fY), |
|
2774 pts[0].fY - y, |
|
2775 roots); |
|
2776 SkASSERT(n <= 1); |
|
2777 SkScalar xt; |
|
2778 if (0 == n) { |
|
2779 SkScalar mid = SkScalarAve(y0, y2); |
|
2780 // Need [0] and [2] if dir == 1 |
|
2781 // and [2] and [0] if dir == -1 |
|
2782 xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX; |
|
2783 } else { |
|
2784 SkScalar t = roots[0]; |
|
2785 SkScalar C = pts[0].fX; |
|
2786 SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
|
2787 SkScalar B = 2 * (pts[1].fX - C); |
|
2788 xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
|
2789 } |
|
2790 return xt < x ? dir : 0; |
|
2791 } |
|
2792 |
|
2793 static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { |
|
2794 // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; |
|
2795 if (y0 == y1) { |
|
2796 return true; |
|
2797 } |
|
2798 if (y0 < y1) { |
|
2799 return y1 <= y2; |
|
2800 } else { |
|
2801 return y1 >= y2; |
|
2802 } |
|
2803 } |
|
2804 |
|
2805 static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
|
2806 SkPoint dst[5]; |
|
2807 int n = 0; |
|
2808 |
|
2809 if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { |
|
2810 n = SkChopQuadAtYExtrema(pts, dst); |
|
2811 pts = dst; |
|
2812 } |
|
2813 int w = winding_mono_quad(pts, x, y); |
|
2814 if (n > 0) { |
|
2815 w += winding_mono_quad(&pts[2], x, y); |
|
2816 } |
|
2817 return w; |
|
2818 } |
|
2819 |
|
2820 static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) { |
|
2821 SkScalar x0 = pts[0].fX; |
|
2822 SkScalar y0 = pts[0].fY; |
|
2823 SkScalar x1 = pts[1].fX; |
|
2824 SkScalar y1 = pts[1].fY; |
|
2825 |
|
2826 SkScalar dy = y1 - y0; |
|
2827 |
|
2828 int dir = 1; |
|
2829 if (y0 > y1) { |
|
2830 SkTSwap(y0, y1); |
|
2831 dir = -1; |
|
2832 } |
|
2833 if (y < y0 || y >= y1) { |
|
2834 return 0; |
|
2835 } |
|
2836 |
|
2837 SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - |
|
2838 SkScalarMul(dy, x - pts[0].fX); |
|
2839 |
|
2840 if (SkScalarSignAsInt(cross) == dir) { |
|
2841 dir = 0; |
|
2842 } |
|
2843 return dir; |
|
2844 } |
|
2845 |
|
2846 static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) { |
|
2847 return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom; |
|
2848 } |
|
2849 |
|
2850 bool SkPath::contains(SkScalar x, SkScalar y) const { |
|
2851 bool isInverse = this->isInverseFillType(); |
|
2852 if (this->isEmpty()) { |
|
2853 return isInverse; |
|
2854 } |
|
2855 |
|
2856 if (!contains_inclusive(this->getBounds(), x, y)) { |
|
2857 return isInverse; |
|
2858 } |
|
2859 |
|
2860 SkPath::Iter iter(*this, true); |
|
2861 bool done = false; |
|
2862 int w = 0; |
|
2863 do { |
|
2864 SkPoint pts[4]; |
|
2865 switch (iter.next(pts, false)) { |
|
2866 case SkPath::kMove_Verb: |
|
2867 case SkPath::kClose_Verb: |
|
2868 break; |
|
2869 case SkPath::kLine_Verb: |
|
2870 w += winding_line(pts, x, y); |
|
2871 break; |
|
2872 case SkPath::kQuad_Verb: |
|
2873 w += winding_quad(pts, x, y); |
|
2874 break; |
|
2875 case SkPath::kConic_Verb: |
|
2876 SkASSERT(0); |
|
2877 break; |
|
2878 case SkPath::kCubic_Verb: |
|
2879 w += winding_cubic(pts, x, y); |
|
2880 break; |
|
2881 case SkPath::kDone_Verb: |
|
2882 done = true; |
|
2883 break; |
|
2884 } |
|
2885 } while (!done); |
|
2886 |
|
2887 switch (this->getFillType()) { |
|
2888 case SkPath::kEvenOdd_FillType: |
|
2889 case SkPath::kInverseEvenOdd_FillType: |
|
2890 w &= 1; |
|
2891 break; |
|
2892 default: |
|
2893 break; |
|
2894 } |
|
2895 return SkToBool(w); |
|
2896 } |