|
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
|
2 /* vim:set ts=4 sw=4 sts=4 et cin: */ |
|
3 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 // HttpLog.h should generally be included first |
|
8 #include "HttpLog.h" |
|
9 |
|
10 // Log on level :5, instead of default :4. |
|
11 #undef LOG |
|
12 #define LOG(args) LOG5(args) |
|
13 #undef LOG_ENABLED |
|
14 #define LOG_ENABLED() LOG5_ENABLED() |
|
15 |
|
16 #include "nsHttpConnection.h" |
|
17 #include "nsHttpRequestHead.h" |
|
18 #include "nsHttpResponseHead.h" |
|
19 #include "nsHttpHandler.h" |
|
20 #include "nsIOService.h" |
|
21 #include "nsISocketTransport.h" |
|
22 #include "nsSocketTransportService2.h" |
|
23 #include "nsISSLSocketControl.h" |
|
24 #include "sslt.h" |
|
25 #include "nsStringStream.h" |
|
26 #include "nsProxyRelease.h" |
|
27 #include "nsPreloadedStream.h" |
|
28 #include "ASpdySession.h" |
|
29 #include "mozilla/Telemetry.h" |
|
30 #include "nsISupportsPriority.h" |
|
31 #include "nsHttpPipeline.h" |
|
32 #include <algorithm> |
|
33 #include "mozilla/ChaosMode.h" |
|
34 |
|
35 #ifdef DEBUG |
|
36 // defined by the socket transport service while active |
|
37 extern PRThread *gSocketThread; |
|
38 #endif |
|
39 |
|
40 namespace mozilla { |
|
41 namespace net { |
|
42 |
|
43 //----------------------------------------------------------------------------- |
|
44 // nsHttpConnection <public> |
|
45 //----------------------------------------------------------------------------- |
|
46 |
|
47 nsHttpConnection::nsHttpConnection() |
|
48 : mTransaction(nullptr) |
|
49 , mHttpHandler(gHttpHandler) |
|
50 , mCallbacksLock("nsHttpConnection::mCallbacksLock") |
|
51 , mConsiderReusedAfterInterval(0) |
|
52 , mConsiderReusedAfterEpoch(0) |
|
53 , mCurrentBytesRead(0) |
|
54 , mMaxBytesRead(0) |
|
55 , mTotalBytesRead(0) |
|
56 , mTotalBytesWritten(0) |
|
57 , mKeepAlive(true) // assume to keep-alive by default |
|
58 , mKeepAliveMask(true) |
|
59 , mDontReuse(false) |
|
60 , mSupportsPipelining(false) // assume low-grade server |
|
61 , mIsReused(false) |
|
62 , mCompletedProxyConnect(false) |
|
63 , mLastTransactionExpectedNoContent(false) |
|
64 , mIdleMonitoring(false) |
|
65 , mProxyConnectInProgress(false) |
|
66 , mExperienced(false) |
|
67 , mHttp1xTransactionCount(0) |
|
68 , mRemainingConnectionUses(0xffffffff) |
|
69 , mClassification(nsAHttpTransaction::CLASS_GENERAL) |
|
70 , mNPNComplete(false) |
|
71 , mSetupSSLCalled(false) |
|
72 , mUsingSpdyVersion(0) |
|
73 , mPriority(nsISupportsPriority::PRIORITY_NORMAL) |
|
74 , mReportedSpdy(false) |
|
75 , mEverUsedSpdy(false) |
|
76 , mLastHttpResponseVersion(NS_HTTP_VERSION_1_1) |
|
77 , mTransactionCaps(0) |
|
78 , mResponseTimeoutEnabled(false) |
|
79 , mTCPKeepaliveConfig(kTCPKeepaliveDisabled) |
|
80 { |
|
81 LOG(("Creating nsHttpConnection @%x\n", this)); |
|
82 |
|
83 // the default timeout is for when this connection has not yet processed a |
|
84 // transaction |
|
85 static const PRIntervalTime k5Sec = PR_SecondsToInterval(5); |
|
86 mIdleTimeout = |
|
87 (k5Sec < gHttpHandler->IdleTimeout()) ? k5Sec : gHttpHandler->IdleTimeout(); |
|
88 } |
|
89 |
|
90 nsHttpConnection::~nsHttpConnection() |
|
91 { |
|
92 LOG(("Destroying nsHttpConnection @%x\n", this)); |
|
93 |
|
94 if (!mEverUsedSpdy) { |
|
95 LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n", |
|
96 this, mHttp1xTransactionCount)); |
|
97 Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN, |
|
98 mHttp1xTransactionCount); |
|
99 } |
|
100 |
|
101 if (mTotalBytesRead) { |
|
102 uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10); |
|
103 LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n", |
|
104 this, totalKBRead, mEverUsedSpdy)); |
|
105 Telemetry::Accumulate(mEverUsedSpdy ? |
|
106 Telemetry::SPDY_KBREAD_PER_CONN : |
|
107 Telemetry::HTTP_KBREAD_PER_CONN, |
|
108 totalKBRead); |
|
109 } |
|
110 } |
|
111 |
|
112 nsresult |
|
113 nsHttpConnection::Init(nsHttpConnectionInfo *info, |
|
114 uint16_t maxHangTime, |
|
115 nsISocketTransport *transport, |
|
116 nsIAsyncInputStream *instream, |
|
117 nsIAsyncOutputStream *outstream, |
|
118 nsIInterfaceRequestor *callbacks, |
|
119 PRIntervalTime rtt) |
|
120 { |
|
121 MOZ_ASSERT(transport && instream && outstream, |
|
122 "invalid socket information"); |
|
123 LOG(("nsHttpConnection::Init [this=%p " |
|
124 "transport=%p instream=%p outstream=%p rtt=%d]\n", |
|
125 this, transport, instream, outstream, |
|
126 PR_IntervalToMilliseconds(rtt))); |
|
127 |
|
128 NS_ENSURE_ARG_POINTER(info); |
|
129 NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED); |
|
130 |
|
131 mConnInfo = info; |
|
132 mLastWriteTime = mLastReadTime = PR_IntervalNow(); |
|
133 mSupportsPipelining = |
|
134 gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo); |
|
135 mRtt = rtt; |
|
136 mMaxHangTime = PR_SecondsToInterval(maxHangTime); |
|
137 |
|
138 mSocketTransport = transport; |
|
139 mSocketIn = instream; |
|
140 mSocketOut = outstream; |
|
141 nsresult rv = mSocketTransport->SetEventSink(this, nullptr); |
|
142 NS_ENSURE_SUCCESS(rv, rv); |
|
143 |
|
144 // See explanation for non-strictness of this operation in SetSecurityCallbacks. |
|
145 mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(callbacks, false); |
|
146 rv = mSocketTransport->SetSecurityCallbacks(this); |
|
147 NS_ENSURE_SUCCESS(rv, rv); |
|
148 |
|
149 return NS_OK; |
|
150 } |
|
151 |
|
152 void |
|
153 nsHttpConnection::StartSpdy(uint8_t spdyVersion) |
|
154 { |
|
155 LOG(("nsHttpConnection::StartSpdy [this=%p]\n", this)); |
|
156 |
|
157 MOZ_ASSERT(!mSpdySession); |
|
158 |
|
159 mUsingSpdyVersion = spdyVersion; |
|
160 mEverUsedSpdy = true; |
|
161 |
|
162 // Setting the connection as reused allows some transactions that fail |
|
163 // with NS_ERROR_NET_RESET to be restarted and SPDY uses that code |
|
164 // to handle clean rejections (such as those that arrived after |
|
165 // a server goaway was generated). |
|
166 mIsReused = true; |
|
167 |
|
168 // If mTransaction is a pipeline object it might represent |
|
169 // several requests. If so, we need to unpack that and |
|
170 // pack them all into a new spdy session. |
|
171 |
|
172 nsTArray<nsRefPtr<nsAHttpTransaction> > list; |
|
173 nsresult rv = mTransaction->TakeSubTransactions(list); |
|
174 |
|
175 if (rv == NS_ERROR_ALREADY_OPENED) { |
|
176 // Has the interface for TakeSubTransactions() changed? |
|
177 LOG(("TakeSubTranscations somehow called after " |
|
178 "nsAHttpTransaction began processing\n")); |
|
179 MOZ_ASSERT(false, |
|
180 "TakeSubTranscations somehow called after " |
|
181 "nsAHttpTransaction began processing"); |
|
182 mTransaction->Close(NS_ERROR_ABORT); |
|
183 return; |
|
184 } |
|
185 |
|
186 if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) { |
|
187 // Has the interface for TakeSubTransactions() changed? |
|
188 LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()")); |
|
189 MOZ_ASSERT(false, |
|
190 "unexpected result from " |
|
191 "nsAHttpTransaction::TakeSubTransactions()"); |
|
192 mTransaction->Close(NS_ERROR_ABORT); |
|
193 return; |
|
194 } |
|
195 |
|
196 if (NS_FAILED(rv)) { // includes NS_ERROR_NOT_IMPLEMENTED |
|
197 MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty"); |
|
198 |
|
199 // This is ok - treat mTransaction as a single real request. |
|
200 // Wrap the old http transaction into the new spdy session |
|
201 // as the first stream. |
|
202 mSpdySession = ASpdySession::NewSpdySession(spdyVersion, |
|
203 mTransaction, mSocketTransport, |
|
204 mPriority); |
|
205 LOG(("nsHttpConnection::StartSpdy moves single transaction %p " |
|
206 "into SpdySession %p\n", mTransaction.get(), mSpdySession.get())); |
|
207 } |
|
208 else { |
|
209 int32_t count = list.Length(); |
|
210 |
|
211 LOG(("nsHttpConnection::StartSpdy moving transaction list len=%d " |
|
212 "into SpdySession %p\n", count, mSpdySession.get())); |
|
213 |
|
214 if (!count) { |
|
215 mTransaction->Close(NS_ERROR_ABORT); |
|
216 return; |
|
217 } |
|
218 |
|
219 for (int32_t index = 0; index < count; ++index) { |
|
220 if (!mSpdySession) { |
|
221 mSpdySession = ASpdySession::NewSpdySession(spdyVersion, |
|
222 list[index], mSocketTransport, |
|
223 mPriority); |
|
224 } |
|
225 else { |
|
226 // AddStream() cannot fail |
|
227 if (!mSpdySession->AddStream(list[index], mPriority)) { |
|
228 MOZ_ASSERT(false, "SpdySession::AddStream failed"); |
|
229 LOG(("SpdySession::AddStream failed\n")); |
|
230 mTransaction->Close(NS_ERROR_ABORT); |
|
231 return; |
|
232 } |
|
233 } |
|
234 } |
|
235 } |
|
236 |
|
237 // Disable TCP Keepalives - use SPDY ping instead. |
|
238 rv = DisableTCPKeepalives(); |
|
239 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
240 LOG(("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed " |
|
241 "rv[0x%x]", this, rv)); |
|
242 } |
|
243 |
|
244 mSupportsPipelining = false; // dont use http/1 pipelines with spdy |
|
245 mTransaction = mSpdySession; |
|
246 mIdleTimeout = gHttpHandler->SpdyTimeout(); |
|
247 } |
|
248 |
|
249 bool |
|
250 nsHttpConnection::EnsureNPNComplete() |
|
251 { |
|
252 // If for some reason the components to check on NPN aren't available, |
|
253 // this function will just return true to continue on and disable SPDY |
|
254 |
|
255 MOZ_ASSERT(mSocketTransport); |
|
256 if (!mSocketTransport) { |
|
257 // this cannot happen |
|
258 mNPNComplete = true; |
|
259 return true; |
|
260 } |
|
261 |
|
262 if (mNPNComplete) |
|
263 return true; |
|
264 |
|
265 nsresult rv; |
|
266 |
|
267 nsCOMPtr<nsISupports> securityInfo; |
|
268 nsCOMPtr<nsISSLSocketControl> ssl; |
|
269 nsAutoCString negotiatedNPN; |
|
270 |
|
271 rv = mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo)); |
|
272 if (NS_FAILED(rv)) |
|
273 goto npnComplete; |
|
274 |
|
275 ssl = do_QueryInterface(securityInfo, &rv); |
|
276 if (NS_FAILED(rv)) |
|
277 goto npnComplete; |
|
278 |
|
279 rv = ssl->GetNegotiatedNPN(negotiatedNPN); |
|
280 if (rv == NS_ERROR_NOT_CONNECTED) { |
|
281 |
|
282 // By writing 0 bytes to the socket the SSL handshake machine is |
|
283 // pushed forward. |
|
284 uint32_t count = 0; |
|
285 rv = mSocketOut->Write("", 0, &count); |
|
286 |
|
287 if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) |
|
288 goto npnComplete; |
|
289 return false; |
|
290 } |
|
291 |
|
292 if (NS_FAILED(rv)) |
|
293 goto npnComplete; |
|
294 |
|
295 LOG(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'\n", |
|
296 this, mConnInfo->Host(), negotiatedNPN.get())); |
|
297 |
|
298 uint8_t spdyVersion; |
|
299 rv = gHttpHandler->SpdyInfo()->GetNPNVersionIndex(negotiatedNPN, |
|
300 &spdyVersion); |
|
301 if (NS_SUCCEEDED(rv)) |
|
302 StartSpdy(spdyVersion); |
|
303 |
|
304 Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy()); |
|
305 |
|
306 npnComplete: |
|
307 LOG(("nsHttpConnection::EnsureNPNComplete setting complete to true")); |
|
308 mNPNComplete = true; |
|
309 return true; |
|
310 } |
|
311 |
|
312 // called on the socket thread |
|
313 nsresult |
|
314 nsHttpConnection::Activate(nsAHttpTransaction *trans, uint32_t caps, int32_t pri) |
|
315 { |
|
316 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
317 LOG(("nsHttpConnection::Activate [this=%p trans=%x caps=%x]\n", |
|
318 this, trans, caps)); |
|
319 |
|
320 if (!trans->IsNullTransaction()) |
|
321 mExperienced = true; |
|
322 |
|
323 mTransactionCaps = caps; |
|
324 mPriority = pri; |
|
325 if (mTransaction && mUsingSpdyVersion) |
|
326 return AddTransaction(trans, pri); |
|
327 |
|
328 NS_ENSURE_ARG_POINTER(trans); |
|
329 NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS); |
|
330 |
|
331 // reset the read timers to wash away any idle time |
|
332 mLastWriteTime = mLastReadTime = PR_IntervalNow(); |
|
333 |
|
334 // Update security callbacks |
|
335 nsCOMPtr<nsIInterfaceRequestor> callbacks; |
|
336 trans->GetSecurityCallbacks(getter_AddRefs(callbacks)); |
|
337 SetSecurityCallbacks(callbacks); |
|
338 |
|
339 SetupSSL(caps); |
|
340 |
|
341 // take ownership of the transaction |
|
342 mTransaction = trans; |
|
343 |
|
344 MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor"); |
|
345 mIdleMonitoring = false; |
|
346 |
|
347 // set mKeepAlive according to what will be requested |
|
348 mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE); |
|
349 |
|
350 // need to handle HTTP CONNECT tunnels if this is the first time if |
|
351 // we are tunneling through a proxy |
|
352 nsresult rv = NS_OK; |
|
353 if (mConnInfo->UsingConnect() && !mCompletedProxyConnect) { |
|
354 rv = SetupProxyConnect(); |
|
355 if (NS_FAILED(rv)) |
|
356 goto failed_activation; |
|
357 mProxyConnectInProgress = true; |
|
358 } |
|
359 |
|
360 // Clear the per activation counter |
|
361 mCurrentBytesRead = 0; |
|
362 |
|
363 // The overflow state is not needed between activations |
|
364 mInputOverflow = nullptr; |
|
365 |
|
366 mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() && |
|
367 mTransaction->ResponseTimeout() > 0 && |
|
368 mTransaction->ResponseTimeoutEnabled(); |
|
369 |
|
370 rv = StartShortLivedTCPKeepalives(); |
|
371 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
372 LOG(("nsHttpConnection::Activate [%p] " |
|
373 "StartShortLivedTCPKeepalives failed rv[0x%x]", |
|
374 this, rv)); |
|
375 } |
|
376 |
|
377 rv = OnOutputStreamReady(mSocketOut); |
|
378 |
|
379 failed_activation: |
|
380 if (NS_FAILED(rv)) { |
|
381 mTransaction = nullptr; |
|
382 } |
|
383 |
|
384 return rv; |
|
385 } |
|
386 |
|
387 void |
|
388 nsHttpConnection::SetupSSL(uint32_t caps) |
|
389 { |
|
390 LOG(("nsHttpConnection::SetupSSL %p caps=0x%X\n", this, caps)); |
|
391 |
|
392 if (mSetupSSLCalled) // do only once |
|
393 return; |
|
394 mSetupSSLCalled = true; |
|
395 |
|
396 if (mNPNComplete) |
|
397 return; |
|
398 |
|
399 // we flip this back to false if SetNPNList succeeds at the end |
|
400 // of this function |
|
401 mNPNComplete = true; |
|
402 |
|
403 if (!mConnInfo->UsingSSL()) |
|
404 return; |
|
405 |
|
406 LOG(("nsHttpConnection::SetupSSL Setting up " |
|
407 "Next Protocol Negotiation")); |
|
408 nsCOMPtr<nsISupports> securityInfo; |
|
409 nsresult rv = |
|
410 mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo)); |
|
411 if (NS_FAILED(rv)) |
|
412 return; |
|
413 |
|
414 nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv); |
|
415 if (NS_FAILED(rv)) |
|
416 return; |
|
417 |
|
418 if (caps & NS_HTTP_ALLOW_RSA_FALSESTART) { |
|
419 LOG(("nsHttpConnection::SetupSSL %p " |
|
420 ">= RSA Key Exchange Expected\n", this)); |
|
421 ssl->SetKEAExpected(ssl_kea_rsa); |
|
422 } |
|
423 |
|
424 nsTArray<nsCString> protocolArray; |
|
425 |
|
426 // The first protocol is used as the fallback if none of the |
|
427 // protocols supported overlap with the server's list. |
|
428 // In the case of overlap, matching priority is driven by |
|
429 // the order of the server's advertisement. |
|
430 protocolArray.AppendElement(NS_LITERAL_CSTRING("http/1.1")); |
|
431 |
|
432 if (gHttpHandler->IsSpdyEnabled() && |
|
433 !(caps & NS_HTTP_DISALLOW_SPDY)) { |
|
434 LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection")); |
|
435 for (uint32_t index = 0; index < SpdyInformation::kCount; ++index) { |
|
436 if (gHttpHandler->SpdyInfo()->ProtocolEnabled(index)) |
|
437 protocolArray.AppendElement( |
|
438 gHttpHandler->SpdyInfo()->VersionString[index]); |
|
439 } |
|
440 } |
|
441 |
|
442 if (NS_SUCCEEDED(ssl->SetNPNList(protocolArray))) { |
|
443 LOG(("nsHttpConnection::Init Setting up SPDY Negotiation OK")); |
|
444 mNPNComplete = false; |
|
445 } |
|
446 } |
|
447 |
|
448 nsresult |
|
449 nsHttpConnection::AddTransaction(nsAHttpTransaction *httpTransaction, |
|
450 int32_t priority) |
|
451 { |
|
452 LOG(("nsHttpConnection::AddTransaction for SPDY")); |
|
453 |
|
454 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
455 MOZ_ASSERT(mSpdySession && mUsingSpdyVersion, |
|
456 "AddTransaction to live http connection without spdy"); |
|
457 MOZ_ASSERT(mTransaction, |
|
458 "AddTransaction to idle http connection"); |
|
459 |
|
460 if (!mSpdySession->AddStream(httpTransaction, priority)) { |
|
461 MOZ_ASSERT(false, "AddStream should never fail due to" |
|
462 "RoomForMore() admission check"); |
|
463 return NS_ERROR_FAILURE; |
|
464 } |
|
465 |
|
466 ResumeSend(); |
|
467 |
|
468 return NS_OK; |
|
469 } |
|
470 |
|
471 void |
|
472 nsHttpConnection::Close(nsresult reason) |
|
473 { |
|
474 LOG(("nsHttpConnection::Close [this=%p reason=%x]\n", this, reason)); |
|
475 |
|
476 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
477 |
|
478 // Ensure TCP keepalive timer is stopped. |
|
479 if (mTCPKeepaliveTransitionTimer) { |
|
480 mTCPKeepaliveTransitionTimer->Cancel(); |
|
481 mTCPKeepaliveTransitionTimer = nullptr; |
|
482 } |
|
483 |
|
484 if (NS_FAILED(reason)) { |
|
485 if (mIdleMonitoring) |
|
486 EndIdleMonitoring(); |
|
487 |
|
488 if (mSocketTransport) { |
|
489 mSocketTransport->SetEventSink(nullptr, nullptr); |
|
490 |
|
491 // If there are bytes sitting in the input queue then read them |
|
492 // into a junk buffer to avoid generating a tcp rst by closing a |
|
493 // socket with data pending. TLS is a classic case of this where |
|
494 // a Alert record might be superfulous to a clean HTTP/SPDY shutdown. |
|
495 // Never block to do this and limit it to a small amount of data. |
|
496 if (mSocketIn) { |
|
497 char buffer[4000]; |
|
498 uint32_t count, total = 0; |
|
499 nsresult rv; |
|
500 do { |
|
501 rv = mSocketIn->Read(buffer, 4000, &count); |
|
502 if (NS_SUCCEEDED(rv)) |
|
503 total += count; |
|
504 } |
|
505 while (NS_SUCCEEDED(rv) && count > 0 && total < 64000); |
|
506 LOG(("nsHttpConnection::Close drained %d bytes\n", total)); |
|
507 } |
|
508 |
|
509 mSocketTransport->SetSecurityCallbacks(nullptr); |
|
510 mSocketTransport->Close(reason); |
|
511 if (mSocketOut) |
|
512 mSocketOut->AsyncWait(nullptr, 0, 0, nullptr); |
|
513 } |
|
514 mKeepAlive = false; |
|
515 } |
|
516 } |
|
517 |
|
518 // called on the socket thread |
|
519 nsresult |
|
520 nsHttpConnection::ProxyStartSSL() |
|
521 { |
|
522 LOG(("nsHttpConnection::ProxyStartSSL [this=%p]\n", this)); |
|
523 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
524 |
|
525 nsCOMPtr<nsISupports> securityInfo; |
|
526 nsresult rv = mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo)); |
|
527 if (NS_FAILED(rv)) return rv; |
|
528 |
|
529 nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv); |
|
530 if (NS_FAILED(rv)) return rv; |
|
531 |
|
532 return ssl->ProxyStartSSL(); |
|
533 } |
|
534 |
|
535 void |
|
536 nsHttpConnection::DontReuse() |
|
537 { |
|
538 mKeepAliveMask = false; |
|
539 mKeepAlive = false; |
|
540 mDontReuse = true; |
|
541 mIdleTimeout = 0; |
|
542 if (mSpdySession) |
|
543 mSpdySession->DontReuse(); |
|
544 } |
|
545 |
|
546 // Checked by the Connection Manager before scheduling a pipelined transaction |
|
547 bool |
|
548 nsHttpConnection::SupportsPipelining() |
|
549 { |
|
550 if (mTransaction && |
|
551 mTransaction->PipelineDepth() >= mRemainingConnectionUses) { |
|
552 LOG(("nsHttpConnection::SupportsPipelining this=%p deny pipeline " |
|
553 "because current depth %d exceeds max remaining uses %d\n", |
|
554 this, mTransaction->PipelineDepth(), mRemainingConnectionUses)); |
|
555 return false; |
|
556 } |
|
557 return mSupportsPipelining && IsKeepAlive() && !mDontReuse; |
|
558 } |
|
559 |
|
560 bool |
|
561 nsHttpConnection::CanReuse() |
|
562 { |
|
563 if (mDontReuse) |
|
564 return false; |
|
565 |
|
566 if ((mTransaction ? mTransaction->PipelineDepth() : 0) >= |
|
567 mRemainingConnectionUses) { |
|
568 return false; |
|
569 } |
|
570 |
|
571 bool canReuse; |
|
572 |
|
573 if (mSpdySession) |
|
574 canReuse = mSpdySession->CanReuse(); |
|
575 else |
|
576 canReuse = IsKeepAlive(); |
|
577 |
|
578 canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive(); |
|
579 |
|
580 // An idle persistent connection should not have data waiting to be read |
|
581 // before a request is sent. Data here is likely a 408 timeout response |
|
582 // which we would deal with later on through the restart logic, but that |
|
583 // path is more expensive than just closing the socket now. |
|
584 |
|
585 uint64_t dataSize; |
|
586 if (canReuse && mSocketIn && !mUsingSpdyVersion && mHttp1xTransactionCount && |
|
587 NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) { |
|
588 LOG(("nsHttpConnection::CanReuse %p %s" |
|
589 "Socket not reusable because read data pending (%llu) on it.\n", |
|
590 this, mConnInfo->Host(), dataSize)); |
|
591 canReuse = false; |
|
592 } |
|
593 return canReuse; |
|
594 } |
|
595 |
|
596 bool |
|
597 nsHttpConnection::CanDirectlyActivate() |
|
598 { |
|
599 // return true if a new transaction can be addded to ths connection at any |
|
600 // time through Activate(). In practice this means this is a healthy SPDY |
|
601 // connection with room for more concurrent streams. |
|
602 |
|
603 return UsingSpdy() && CanReuse() && |
|
604 mSpdySession && mSpdySession->RoomForMoreStreams(); |
|
605 } |
|
606 |
|
607 PRIntervalTime |
|
608 nsHttpConnection::IdleTime() |
|
609 { |
|
610 return mSpdySession ? |
|
611 mSpdySession->IdleTime() : (PR_IntervalNow() - mLastReadTime); |
|
612 } |
|
613 |
|
614 // returns the number of seconds left before the allowable idle period |
|
615 // expires, or 0 if the period has already expied. |
|
616 uint32_t |
|
617 nsHttpConnection::TimeToLive() |
|
618 { |
|
619 if (IdleTime() >= mIdleTimeout) |
|
620 return 0; |
|
621 uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime()); |
|
622 |
|
623 // a positive amount of time can be rounded to 0. Because 0 is used |
|
624 // as the expiration signal, round all values from 0 to 1 up to 1. |
|
625 if (!timeToLive) |
|
626 timeToLive = 1; |
|
627 return timeToLive; |
|
628 } |
|
629 |
|
630 bool |
|
631 nsHttpConnection::IsAlive() |
|
632 { |
|
633 if (!mSocketTransport) |
|
634 return false; |
|
635 |
|
636 // SocketTransport::IsAlive can run the SSL state machine, so make sure |
|
637 // the NPN options are set before that happens. |
|
638 SetupSSL(mTransactionCaps); |
|
639 |
|
640 bool alive; |
|
641 nsresult rv = mSocketTransport->IsAlive(&alive); |
|
642 if (NS_FAILED(rv)) |
|
643 alive = false; |
|
644 |
|
645 //#define TEST_RESTART_LOGIC |
|
646 #ifdef TEST_RESTART_LOGIC |
|
647 if (!alive) { |
|
648 LOG(("pretending socket is still alive to test restart logic\n")); |
|
649 alive = true; |
|
650 } |
|
651 #endif |
|
652 |
|
653 return alive; |
|
654 } |
|
655 |
|
656 bool |
|
657 nsHttpConnection::SupportsPipelining(nsHttpResponseHead *responseHead) |
|
658 { |
|
659 // SPDY supports infinite parallelism, so no need to pipeline. |
|
660 if (mUsingSpdyVersion) |
|
661 return false; |
|
662 |
|
663 // assuming connection is HTTP/1.1 with keep-alive enabled |
|
664 if (mConnInfo->UsingHttpProxy() && !mConnInfo->UsingConnect()) { |
|
665 // XXX check for bad proxy servers... |
|
666 return true; |
|
667 } |
|
668 |
|
669 // check for bad origin servers |
|
670 const char *val = responseHead->PeekHeader(nsHttp::Server); |
|
671 |
|
672 // If there is no server header we will assume it should not be banned |
|
673 // as facebook and some other prominent sites do this |
|
674 if (!val) |
|
675 return true; |
|
676 |
|
677 // The blacklist is indexed by the first character. All of these servers are |
|
678 // known to return their identifier as the first thing in the server string, |
|
679 // so we can do a leading match. |
|
680 |
|
681 static const char *bad_servers[26][6] = { |
|
682 { nullptr }, { nullptr }, { nullptr }, { nullptr }, // a - d |
|
683 { "EFAServer/", nullptr }, // e |
|
684 { nullptr }, { nullptr }, { nullptr }, { nullptr }, // f - i |
|
685 { nullptr }, { nullptr }, { nullptr }, // j - l |
|
686 { "Microsoft-IIS/4.", "Microsoft-IIS/5.", nullptr }, // m |
|
687 { "Netscape-Enterprise/3.", "Netscape-Enterprise/4.", |
|
688 "Netscape-Enterprise/5.", "Netscape-Enterprise/6.", nullptr }, // n |
|
689 { nullptr }, { nullptr }, { nullptr }, { nullptr }, // o - r |
|
690 { nullptr }, { nullptr }, { nullptr }, { nullptr }, // s - v |
|
691 { "WebLogic 3.", "WebLogic 4.","WebLogic 5.", "WebLogic 6.", |
|
692 "Winstone Servlet Engine v0.", nullptr }, // w |
|
693 { nullptr }, { nullptr }, { nullptr } // x - z |
|
694 }; |
|
695 |
|
696 int index = val[0] - 'A'; // the whole table begins with capital letters |
|
697 if ((index >= 0) && (index <= 25)) |
|
698 { |
|
699 for (int i = 0; bad_servers[index][i] != nullptr; i++) { |
|
700 if (!PL_strncmp (val, bad_servers[index][i], strlen (bad_servers[index][i]))) { |
|
701 LOG(("looks like this server does not support pipelining")); |
|
702 gHttpHandler->ConnMgr()->PipelineFeedbackInfo( |
|
703 mConnInfo, nsHttpConnectionMgr::RedBannedServer, this , 0); |
|
704 return false; |
|
705 } |
|
706 } |
|
707 } |
|
708 |
|
709 // ok, let's allow pipelining to this server |
|
710 return true; |
|
711 } |
|
712 |
|
713 //---------------------------------------------------------------------------- |
|
714 // nsHttpConnection::nsAHttpConnection compatible methods |
|
715 //---------------------------------------------------------------------------- |
|
716 |
|
717 nsresult |
|
718 nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction *trans, |
|
719 nsHttpRequestHead *requestHead, |
|
720 nsHttpResponseHead *responseHead, |
|
721 bool *reset) |
|
722 { |
|
723 LOG(("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p response-head=%p]\n", |
|
724 this, trans, responseHead)); |
|
725 |
|
726 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
727 NS_ENSURE_ARG_POINTER(trans); |
|
728 MOZ_ASSERT(responseHead, "No response head?"); |
|
729 |
|
730 // we won't change our keep-alive policy unless the server has explicitly |
|
731 // told us to do so. |
|
732 |
|
733 // inspect the connection headers for keep-alive info provided the |
|
734 // transaction completed successfully. In the case of a non-sensical close |
|
735 // and keep-alive favor the close out of conservatism. |
|
736 |
|
737 bool explicitKeepAlive = false; |
|
738 bool explicitClose = responseHead->HasHeaderValue(nsHttp::Connection, "close") || |
|
739 responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close"); |
|
740 if (!explicitClose) |
|
741 explicitKeepAlive = responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") || |
|
742 responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive"); |
|
743 |
|
744 // deal with 408 Server Timeouts |
|
745 uint16_t responseStatus = responseHead->Status(); |
|
746 static const PRIntervalTime k1000ms = PR_MillisecondsToInterval(1000); |
|
747 if (responseStatus == 408) { |
|
748 // If this error could be due to a persistent connection reuse then |
|
749 // we pass an error code of NS_ERROR_NET_RESET to |
|
750 // trigger the transaction 'restart' mechanism. We tell it to reset its |
|
751 // response headers so that it will be ready to receive the new response. |
|
752 if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) { |
|
753 Close(NS_ERROR_NET_RESET); |
|
754 *reset = true; |
|
755 return NS_OK; |
|
756 } |
|
757 |
|
758 // timeouts that are not caused by persistent connection reuse should |
|
759 // not be retried for browser compatibility reasons. bug 907800. The |
|
760 // server driven close is implicit in the 408. |
|
761 explicitClose = true; |
|
762 explicitKeepAlive = false; |
|
763 } |
|
764 |
|
765 // reset to default (the server may have changed since we last checked) |
|
766 mSupportsPipelining = false; |
|
767 |
|
768 if ((responseHead->Version() < NS_HTTP_VERSION_1_1) || |
|
769 (requestHead->Version() < NS_HTTP_VERSION_1_1)) { |
|
770 // HTTP/1.0 connections are by default NOT persistent |
|
771 if (explicitKeepAlive) |
|
772 mKeepAlive = true; |
|
773 else |
|
774 mKeepAlive = false; |
|
775 |
|
776 // We need at least version 1.1 to use pipelines |
|
777 gHttpHandler->ConnMgr()->PipelineFeedbackInfo( |
|
778 mConnInfo, nsHttpConnectionMgr::RedVersionTooLow, this, 0); |
|
779 } |
|
780 else { |
|
781 // HTTP/1.1 connections are by default persistent |
|
782 if (explicitClose) { |
|
783 mKeepAlive = false; |
|
784 |
|
785 // persistent connections are required for pipelining to work - if |
|
786 // this close was not pre-announced then generate the negative |
|
787 // BadExplicitClose feedback |
|
788 if (mRemainingConnectionUses > 1) |
|
789 gHttpHandler->ConnMgr()->PipelineFeedbackInfo( |
|
790 mConnInfo, nsHttpConnectionMgr::BadExplicitClose, this, 0); |
|
791 } |
|
792 else { |
|
793 mKeepAlive = true; |
|
794 |
|
795 // Do not support pipelining when we are establishing |
|
796 // an SSL tunnel though an HTTP proxy. Pipelining support |
|
797 // determination must be based on comunication with the |
|
798 // target server in this case. See bug 422016 for futher |
|
799 // details. |
|
800 if (!mProxyConnectStream) |
|
801 mSupportsPipelining = SupportsPipelining(responseHead); |
|
802 } |
|
803 } |
|
804 mKeepAliveMask = mKeepAlive; |
|
805 |
|
806 // Update the pipelining status in the connection info object |
|
807 // and also read it back. It is possible the ci status is |
|
808 // locked to false if pipelining has been banned on this ci due to |
|
809 // some kind of observed flaky behavior |
|
810 if (mSupportsPipelining) { |
|
811 // report the pipelining-compatible header to the connection manager |
|
812 // as positive feedback. This will undo 1 penalty point the host |
|
813 // may have accumulated in the past. |
|
814 |
|
815 gHttpHandler->ConnMgr()->PipelineFeedbackInfo( |
|
816 mConnInfo, nsHttpConnectionMgr::NeutralExpectedOK, this, 0); |
|
817 |
|
818 mSupportsPipelining = |
|
819 gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo); |
|
820 } |
|
821 |
|
822 // If this connection is reserved for revalidations and we are |
|
823 // receiving a document that failed revalidation then switch the |
|
824 // classification to general to avoid pipelining more revalidations behind |
|
825 // it. |
|
826 if (mClassification == nsAHttpTransaction::CLASS_REVALIDATION && |
|
827 responseStatus != 304) { |
|
828 mClassification = nsAHttpTransaction::CLASS_GENERAL; |
|
829 } |
|
830 |
|
831 // if this connection is persistent, then the server may send a "Keep-Alive" |
|
832 // header specifying the maximum number of times the connection can be |
|
833 // reused as well as the maximum amount of time the connection can be idle |
|
834 // before the server will close it. we ignore the max reuse count, because |
|
835 // a "keep-alive" connection is by definition capable of being reused, and |
|
836 // we only care about being able to reuse it once. if a timeout is not |
|
837 // specified then we use our advertized timeout value. |
|
838 bool foundKeepAliveMax = false; |
|
839 if (mKeepAlive) { |
|
840 const char *val = responseHead->PeekHeader(nsHttp::Keep_Alive); |
|
841 |
|
842 if (!mUsingSpdyVersion) { |
|
843 const char *cp = PL_strcasestr(val, "timeout="); |
|
844 if (cp) |
|
845 mIdleTimeout = PR_SecondsToInterval((uint32_t) atoi(cp + 8)); |
|
846 else |
|
847 mIdleTimeout = gHttpHandler->IdleTimeout(); |
|
848 |
|
849 cp = PL_strcasestr(val, "max="); |
|
850 if (cp) { |
|
851 int val = atoi(cp + 4); |
|
852 if (val > 0) { |
|
853 foundKeepAliveMax = true; |
|
854 mRemainingConnectionUses = static_cast<uint32_t>(val); |
|
855 } |
|
856 } |
|
857 } |
|
858 else { |
|
859 mIdleTimeout = gHttpHandler->SpdyTimeout(); |
|
860 } |
|
861 |
|
862 LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n", |
|
863 this, PR_IntervalToSeconds(mIdleTimeout))); |
|
864 } |
|
865 |
|
866 if (!foundKeepAliveMax && mRemainingConnectionUses && !mUsingSpdyVersion) |
|
867 --mRemainingConnectionUses; |
|
868 |
|
869 // If we're doing a proxy connect, we need to check whether or not |
|
870 // it was successful. If so, we have to reset the transaction and step-up |
|
871 // the socket connection if using SSL. Finally, we have to wake up the |
|
872 // socket write request. |
|
873 if (mProxyConnectStream) { |
|
874 MOZ_ASSERT(!mUsingSpdyVersion, |
|
875 "SPDY NPN Complete while using proxy connect stream"); |
|
876 mProxyConnectStream = 0; |
|
877 if (responseStatus == 200) { |
|
878 LOG(("proxy CONNECT succeeded! ssl=%s\n", |
|
879 mConnInfo->UsingSSL() ? "true" :"false")); |
|
880 *reset = true; |
|
881 nsresult rv; |
|
882 if (mConnInfo->UsingSSL()) { |
|
883 rv = ProxyStartSSL(); |
|
884 if (NS_FAILED(rv)) // XXX need to handle this for real |
|
885 LOG(("ProxyStartSSL failed [rv=%x]\n", rv)); |
|
886 } |
|
887 mCompletedProxyConnect = true; |
|
888 mProxyConnectInProgress = false; |
|
889 rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); |
|
890 // XXX what if this fails -- need to handle this error |
|
891 MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed"); |
|
892 } |
|
893 else { |
|
894 LOG(("proxy CONNECT failed! ssl=%s\n", |
|
895 mConnInfo->UsingSSL() ? "true" :"false")); |
|
896 mTransaction->SetProxyConnectFailed(); |
|
897 } |
|
898 } |
|
899 |
|
900 const char *upgradeReq = requestHead->PeekHeader(nsHttp::Upgrade); |
|
901 // Don't use persistent connection for Upgrade unless there's an auth failure: |
|
902 // some proxies expect to see auth response on persistent connection. |
|
903 if (upgradeReq && responseStatus != 401 && responseStatus != 407) { |
|
904 LOG(("HTTP Upgrade in play - disable keepalive\n")); |
|
905 DontReuse(); |
|
906 } |
|
907 |
|
908 if (responseStatus == 101) { |
|
909 const char *upgradeResp = responseHead->PeekHeader(nsHttp::Upgrade); |
|
910 if (!upgradeReq || !upgradeResp || |
|
911 !nsHttp::FindToken(upgradeResp, upgradeReq, |
|
912 HTTP_HEADER_VALUE_SEPS)) { |
|
913 LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n", |
|
914 upgradeReq, upgradeResp)); |
|
915 Close(NS_ERROR_ABORT); |
|
916 } |
|
917 else { |
|
918 LOG(("HTTP Upgrade Response to %s\n", upgradeResp)); |
|
919 } |
|
920 } |
|
921 |
|
922 mLastHttpResponseVersion = responseHead->Version(); |
|
923 |
|
924 return NS_OK; |
|
925 } |
|
926 |
|
927 bool |
|
928 nsHttpConnection::IsReused() |
|
929 { |
|
930 if (mIsReused) |
|
931 return true; |
|
932 if (!mConsiderReusedAfterInterval) |
|
933 return false; |
|
934 |
|
935 // ReusedAfter allows a socket to be consider reused only after a certain |
|
936 // interval of time has passed |
|
937 return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >= |
|
938 mConsiderReusedAfterInterval; |
|
939 } |
|
940 |
|
941 void |
|
942 nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds) |
|
943 { |
|
944 mConsiderReusedAfterEpoch = PR_IntervalNow(); |
|
945 mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds); |
|
946 } |
|
947 |
|
948 nsresult |
|
949 nsHttpConnection::TakeTransport(nsISocketTransport **aTransport, |
|
950 nsIAsyncInputStream **aInputStream, |
|
951 nsIAsyncOutputStream **aOutputStream) |
|
952 { |
|
953 if (mUsingSpdyVersion) |
|
954 return NS_ERROR_FAILURE; |
|
955 if (mTransaction && !mTransaction->IsDone()) |
|
956 return NS_ERROR_IN_PROGRESS; |
|
957 if (!(mSocketTransport && mSocketIn && mSocketOut)) |
|
958 return NS_ERROR_NOT_INITIALIZED; |
|
959 |
|
960 if (mInputOverflow) |
|
961 mSocketIn = mInputOverflow.forget(); |
|
962 |
|
963 // Change TCP Keepalive frequency to long-lived if currently short-lived. |
|
964 if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) { |
|
965 if (mTCPKeepaliveTransitionTimer) { |
|
966 mTCPKeepaliveTransitionTimer->Cancel(); |
|
967 mTCPKeepaliveTransitionTimer = nullptr; |
|
968 } |
|
969 nsresult rv = StartLongLivedTCPKeepalives(); |
|
970 LOG(("nsHttpConnection::TakeTransport [%p] calling " |
|
971 "StartLongLivedTCPKeepalives", this)); |
|
972 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
973 LOG(("nsHttpConnection::TakeTransport [%p] " |
|
974 "StartLongLivedTCPKeepalives failed rv[0x%x]", this, rv)); |
|
975 } |
|
976 } |
|
977 |
|
978 NS_IF_ADDREF(*aTransport = mSocketTransport); |
|
979 NS_IF_ADDREF(*aInputStream = mSocketIn); |
|
980 NS_IF_ADDREF(*aOutputStream = mSocketOut); |
|
981 |
|
982 mSocketTransport->SetSecurityCallbacks(nullptr); |
|
983 mSocketTransport->SetEventSink(nullptr, nullptr); |
|
984 mSocketTransport = nullptr; |
|
985 mSocketIn = nullptr; |
|
986 mSocketOut = nullptr; |
|
987 |
|
988 return NS_OK; |
|
989 } |
|
990 |
|
991 uint32_t |
|
992 nsHttpConnection::ReadTimeoutTick(PRIntervalTime now) |
|
993 { |
|
994 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
995 |
|
996 // make sure timer didn't tick before Activate() |
|
997 if (!mTransaction) |
|
998 return UINT32_MAX; |
|
999 |
|
1000 // Spdy implements some timeout handling using the SPDY ping frame. |
|
1001 if (mSpdySession) { |
|
1002 return mSpdySession->ReadTimeoutTick(now); |
|
1003 } |
|
1004 |
|
1005 uint32_t nextTickAfter = UINT32_MAX; |
|
1006 // Timeout if the response is taking too long to arrive. |
|
1007 if (mResponseTimeoutEnabled) { |
|
1008 NS_WARN_IF_FALSE(gHttpHandler->ResponseTimeoutEnabled(), |
|
1009 "Timing out a response, but response timeout is disabled!"); |
|
1010 |
|
1011 PRIntervalTime initialResponseDelta = now - mLastWriteTime; |
|
1012 |
|
1013 if (initialResponseDelta > mTransaction->ResponseTimeout()) { |
|
1014 LOG(("canceling transaction: no response for %ums: timeout is %dms\n", |
|
1015 PR_IntervalToMilliseconds(initialResponseDelta), |
|
1016 PR_IntervalToMilliseconds(mTransaction->ResponseTimeout()))); |
|
1017 |
|
1018 mResponseTimeoutEnabled = false; |
|
1019 |
|
1020 // This will also close the connection |
|
1021 CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT); |
|
1022 return UINT32_MAX; |
|
1023 } |
|
1024 nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) - |
|
1025 PR_IntervalToSeconds(initialResponseDelta); |
|
1026 nextTickAfter = std::max(nextTickAfter, 1U); |
|
1027 } |
|
1028 |
|
1029 if (!gHttpHandler->GetPipelineRescheduleOnTimeout()) |
|
1030 return nextTickAfter; |
|
1031 |
|
1032 PRIntervalTime delta = now - mLastReadTime; |
|
1033 |
|
1034 // we replicate some of the checks both here and in OnSocketReadable() as |
|
1035 // they will be discovered under different conditions. The ones here |
|
1036 // will generally be discovered if we are totally hung and OSR does |
|
1037 // not get called at all, however OSR discovers them with lower latency |
|
1038 // if the issue is just very slow (but not stalled) reading. |
|
1039 // |
|
1040 // Right now we only take action if pipelining is involved, but this would |
|
1041 // be the place to add general read timeout handling if it is desired. |
|
1042 |
|
1043 uint32_t pipelineDepth = mTransaction->PipelineDepth(); |
|
1044 if (pipelineDepth > 1) { |
|
1045 // if we have pipelines outstanding (not just an idle connection) |
|
1046 // then get a fairly quick tick |
|
1047 nextTickAfter = 1; |
|
1048 } |
|
1049 |
|
1050 if (delta >= gHttpHandler->GetPipelineRescheduleTimeout() && |
|
1051 pipelineDepth > 1) { |
|
1052 |
|
1053 // this just reschedules blocked transactions. no transaction |
|
1054 // is aborted completely. |
|
1055 LOG(("cancelling pipeline due to a %ums stall - depth %d\n", |
|
1056 PR_IntervalToMilliseconds(delta), pipelineDepth)); |
|
1057 |
|
1058 nsHttpPipeline *pipeline = mTransaction->QueryPipeline(); |
|
1059 MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline"); |
|
1060 // code this defensively for the moment and check for null in opt build |
|
1061 // This will reschedule blocked members of the pipeline, but the |
|
1062 // blocking transaction (i.e. response 0) will not be changed. |
|
1063 if (pipeline) { |
|
1064 pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT); |
|
1065 LOG(("Rescheduling the head of line blocked members of a pipeline " |
|
1066 "because reschedule-timeout idle interval exceeded")); |
|
1067 } |
|
1068 } |
|
1069 |
|
1070 if (delta < gHttpHandler->GetPipelineTimeout()) |
|
1071 return nextTickAfter; |
|
1072 |
|
1073 if (pipelineDepth <= 1 && !mTransaction->PipelinePosition()) |
|
1074 return nextTickAfter; |
|
1075 |
|
1076 // nothing has transpired on this pipelined socket for many |
|
1077 // seconds. Call that a total stall and close the transaction. |
|
1078 // There is a chance the transaction will be restarted again |
|
1079 // depending on its state.. that will come back araound |
|
1080 // without pipelining on, so this won't loop. |
|
1081 |
|
1082 LOG(("canceling transaction stalled for %ums on a pipeline " |
|
1083 "of depth %d and scheduled originally at pos %d\n", |
|
1084 PR_IntervalToMilliseconds(delta), |
|
1085 pipelineDepth, mTransaction->PipelinePosition())); |
|
1086 |
|
1087 // This will also close the connection |
|
1088 CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT); |
|
1089 return UINT32_MAX; |
|
1090 } |
|
1091 |
|
1092 void |
|
1093 nsHttpConnection::UpdateTCPKeepalive(nsITimer *aTimer, void *aClosure) |
|
1094 { |
|
1095 MOZ_ASSERT(aTimer); |
|
1096 MOZ_ASSERT(aClosure); |
|
1097 |
|
1098 nsHttpConnection *self = static_cast<nsHttpConnection*>(aClosure); |
|
1099 |
|
1100 if (NS_WARN_IF(self->mUsingSpdyVersion)) { |
|
1101 return; |
|
1102 } |
|
1103 |
|
1104 // Do not reduce keepalive probe frequency for idle connections. |
|
1105 if (self->mIdleMonitoring) { |
|
1106 return; |
|
1107 } |
|
1108 |
|
1109 nsresult rv = self->StartLongLivedTCPKeepalives(); |
|
1110 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1111 LOG(("nsHttpConnection::UpdateTCPKeepalive [%p] " |
|
1112 "StartLongLivedTCPKeepalives failed rv[0x%x]", |
|
1113 self, rv)); |
|
1114 } |
|
1115 } |
|
1116 |
|
1117 void |
|
1118 nsHttpConnection::GetSecurityInfo(nsISupports **secinfo) |
|
1119 { |
|
1120 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1121 |
|
1122 if (mSocketTransport) { |
|
1123 if (NS_FAILED(mSocketTransport->GetSecurityInfo(secinfo))) |
|
1124 *secinfo = nullptr; |
|
1125 } |
|
1126 } |
|
1127 |
|
1128 void |
|
1129 nsHttpConnection::SetSecurityCallbacks(nsIInterfaceRequestor* aCallbacks) |
|
1130 { |
|
1131 MutexAutoLock lock(mCallbacksLock); |
|
1132 // This is called both on and off the main thread. For JS-implemented |
|
1133 // callbacks, we requires that the call happen on the main thread, but |
|
1134 // for C++-implemented callbacks we don't care. Use a pointer holder with |
|
1135 // strict checking disabled. |
|
1136 mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(aCallbacks, false); |
|
1137 } |
|
1138 |
|
1139 nsresult |
|
1140 nsHttpConnection::PushBack(const char *data, uint32_t length) |
|
1141 { |
|
1142 LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length)); |
|
1143 |
|
1144 if (mInputOverflow) { |
|
1145 NS_ERROR("nsHttpConnection::PushBack only one buffer supported"); |
|
1146 return NS_ERROR_UNEXPECTED; |
|
1147 } |
|
1148 |
|
1149 mInputOverflow = new nsPreloadedStream(mSocketIn, data, length); |
|
1150 return NS_OK; |
|
1151 } |
|
1152 |
|
1153 nsresult |
|
1154 nsHttpConnection::ResumeSend() |
|
1155 { |
|
1156 LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this)); |
|
1157 |
|
1158 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1159 |
|
1160 if (mSocketOut) |
|
1161 return mSocketOut->AsyncWait(this, 0, 0, nullptr); |
|
1162 |
|
1163 NS_NOTREACHED("no socket output stream"); |
|
1164 return NS_ERROR_UNEXPECTED; |
|
1165 } |
|
1166 |
|
1167 nsresult |
|
1168 nsHttpConnection::ResumeRecv() |
|
1169 { |
|
1170 LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this)); |
|
1171 |
|
1172 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1173 |
|
1174 // the mLastReadTime timestamp is used for finding slowish readers |
|
1175 // and can be pretty sensitive. For that reason we actually reset it |
|
1176 // when we ask to read (resume recv()) so that when we get called back |
|
1177 // with actual read data in OnSocketReadable() we are only measuring |
|
1178 // the latency between those two acts and not all the processing that |
|
1179 // may get done before the ResumeRecv() call |
|
1180 mLastReadTime = PR_IntervalNow(); |
|
1181 |
|
1182 if (mSocketIn) |
|
1183 return mSocketIn->AsyncWait(this, 0, 0, nullptr); |
|
1184 |
|
1185 NS_NOTREACHED("no socket input stream"); |
|
1186 return NS_ERROR_UNEXPECTED; |
|
1187 } |
|
1188 |
|
1189 |
|
1190 class nsHttpConnectionForceRecv : public nsRunnable |
|
1191 { |
|
1192 public: |
|
1193 nsHttpConnectionForceRecv(nsHttpConnection *aConn) |
|
1194 : mConn(aConn) {} |
|
1195 |
|
1196 NS_IMETHOD Run() |
|
1197 { |
|
1198 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1199 |
|
1200 if (!mConn->mSocketIn) |
|
1201 return NS_OK; |
|
1202 return mConn->OnInputStreamReady(mConn->mSocketIn); |
|
1203 } |
|
1204 private: |
|
1205 nsRefPtr<nsHttpConnection> mConn; |
|
1206 }; |
|
1207 |
|
1208 // trigger an asynchronous read |
|
1209 nsresult |
|
1210 nsHttpConnection::ForceRecv() |
|
1211 { |
|
1212 LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this)); |
|
1213 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1214 |
|
1215 return NS_DispatchToCurrentThread(new nsHttpConnectionForceRecv(this)); |
|
1216 } |
|
1217 |
|
1218 void |
|
1219 nsHttpConnection::BeginIdleMonitoring() |
|
1220 { |
|
1221 LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this)); |
|
1222 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1223 MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active"); |
|
1224 MOZ_ASSERT(!mUsingSpdyVersion, "Idle monitoring of spdy not allowed"); |
|
1225 |
|
1226 LOG(("Entering Idle Monitoring Mode [this=%p]", this)); |
|
1227 mIdleMonitoring = true; |
|
1228 if (mSocketIn) |
|
1229 mSocketIn->AsyncWait(this, 0, 0, nullptr); |
|
1230 } |
|
1231 |
|
1232 void |
|
1233 nsHttpConnection::EndIdleMonitoring() |
|
1234 { |
|
1235 LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this)); |
|
1236 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1237 MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active"); |
|
1238 |
|
1239 if (mIdleMonitoring) { |
|
1240 LOG(("Leaving Idle Monitoring Mode [this=%p]", this)); |
|
1241 mIdleMonitoring = false; |
|
1242 if (mSocketIn) |
|
1243 mSocketIn->AsyncWait(nullptr, 0, 0, nullptr); |
|
1244 } |
|
1245 } |
|
1246 |
|
1247 //----------------------------------------------------------------------------- |
|
1248 // nsHttpConnection <private> |
|
1249 //----------------------------------------------------------------------------- |
|
1250 |
|
1251 void |
|
1252 nsHttpConnection::CloseTransaction(nsAHttpTransaction *trans, nsresult reason) |
|
1253 { |
|
1254 LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%x reason=%x]\n", |
|
1255 this, trans, reason)); |
|
1256 |
|
1257 MOZ_ASSERT(trans == mTransaction, "wrong transaction"); |
|
1258 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1259 |
|
1260 if (mCurrentBytesRead > mMaxBytesRead) |
|
1261 mMaxBytesRead = mCurrentBytesRead; |
|
1262 |
|
1263 // mask this error code because its not a real error. |
|
1264 if (reason == NS_BASE_STREAM_CLOSED) |
|
1265 reason = NS_OK; |
|
1266 |
|
1267 if (mUsingSpdyVersion) { |
|
1268 DontReuse(); |
|
1269 // if !mSpdySession then mUsingSpdyVersion must be false for canreuse() |
|
1270 mUsingSpdyVersion = 0; |
|
1271 mSpdySession = nullptr; |
|
1272 } |
|
1273 |
|
1274 if (mTransaction) { |
|
1275 mHttp1xTransactionCount += mTransaction->Http1xTransactionCount(); |
|
1276 |
|
1277 mTransaction->Close(reason); |
|
1278 mTransaction = nullptr; |
|
1279 } |
|
1280 |
|
1281 { |
|
1282 MutexAutoLock lock(mCallbacksLock); |
|
1283 mCallbacks = nullptr; |
|
1284 } |
|
1285 |
|
1286 if (NS_FAILED(reason)) |
|
1287 Close(reason); |
|
1288 |
|
1289 // flag the connection as reused here for convenience sake. certainly |
|
1290 // it might be going away instead ;-) |
|
1291 mIsReused = true; |
|
1292 } |
|
1293 |
|
1294 NS_METHOD |
|
1295 nsHttpConnection::ReadFromStream(nsIInputStream *input, |
|
1296 void *closure, |
|
1297 const char *buf, |
|
1298 uint32_t offset, |
|
1299 uint32_t count, |
|
1300 uint32_t *countRead) |
|
1301 { |
|
1302 // thunk for nsIInputStream instance |
|
1303 nsHttpConnection *conn = (nsHttpConnection *) closure; |
|
1304 return conn->OnReadSegment(buf, count, countRead); |
|
1305 } |
|
1306 |
|
1307 nsresult |
|
1308 nsHttpConnection::OnReadSegment(const char *buf, |
|
1309 uint32_t count, |
|
1310 uint32_t *countRead) |
|
1311 { |
|
1312 if (count == 0) { |
|
1313 // some ReadSegments implementations will erroneously call the writer |
|
1314 // to consume 0 bytes worth of data. we must protect against this case |
|
1315 // or else we'd end up closing the socket prematurely. |
|
1316 NS_ERROR("bad ReadSegments implementation"); |
|
1317 return NS_ERROR_FAILURE; // stop iterating |
|
1318 } |
|
1319 |
|
1320 nsresult rv = mSocketOut->Write(buf, count, countRead); |
|
1321 if (NS_FAILED(rv)) |
|
1322 mSocketOutCondition = rv; |
|
1323 else if (*countRead == 0) |
|
1324 mSocketOutCondition = NS_BASE_STREAM_CLOSED; |
|
1325 else { |
|
1326 mLastWriteTime = PR_IntervalNow(); |
|
1327 mSocketOutCondition = NS_OK; // reset condition |
|
1328 if (!mProxyConnectInProgress) |
|
1329 mTotalBytesWritten += *countRead; |
|
1330 } |
|
1331 |
|
1332 return mSocketOutCondition; |
|
1333 } |
|
1334 |
|
1335 nsresult |
|
1336 nsHttpConnection::OnSocketWritable() |
|
1337 { |
|
1338 LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n", |
|
1339 this, mConnInfo->Host())); |
|
1340 |
|
1341 nsresult rv; |
|
1342 uint32_t n; |
|
1343 bool again = true; |
|
1344 |
|
1345 do { |
|
1346 mSocketOutCondition = NS_OK; |
|
1347 |
|
1348 // If we're doing a proxy connect, then we need to bypass calling into |
|
1349 // the transaction. |
|
1350 // |
|
1351 // NOTE: this code path can't be shared since the transaction doesn't |
|
1352 // implement nsIInputStream. doing so is not worth the added cost of |
|
1353 // extra indirections during normal reading. |
|
1354 // |
|
1355 if (mProxyConnectStream) { |
|
1356 LOG((" writing CONNECT request stream\n")); |
|
1357 rv = mProxyConnectStream->ReadSegments(ReadFromStream, this, |
|
1358 nsIOService::gDefaultSegmentSize, |
|
1359 &n); |
|
1360 } |
|
1361 else if (!EnsureNPNComplete()) { |
|
1362 // When SPDY is disabled this branch is not executed because Activate() |
|
1363 // sets mNPNComplete to true in that case. |
|
1364 |
|
1365 // We are ready to proceed with SSL but the handshake is not done. |
|
1366 // When using NPN to negotiate between HTTPS and SPDY, we need to |
|
1367 // see the results of the handshake to know what bytes to send, so |
|
1368 // we cannot proceed with the request headers. |
|
1369 |
|
1370 rv = NS_OK; |
|
1371 mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK; |
|
1372 n = 0; |
|
1373 } |
|
1374 else { |
|
1375 if (!mReportedSpdy) { |
|
1376 mReportedSpdy = true; |
|
1377 gHttpHandler->ConnMgr()->ReportSpdyConnection(this, mEverUsedSpdy); |
|
1378 } |
|
1379 |
|
1380 LOG((" writing transaction request stream\n")); |
|
1381 mProxyConnectInProgress = false; |
|
1382 rv = mTransaction->ReadSegments(this, nsIOService::gDefaultSegmentSize, &n); |
|
1383 } |
|
1384 |
|
1385 LOG((" ReadSegments returned [rv=%x read=%u sock-cond=%x]\n", |
|
1386 rv, n, mSocketOutCondition)); |
|
1387 |
|
1388 // XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF. |
|
1389 if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) { |
|
1390 rv = NS_OK; |
|
1391 n = 0; |
|
1392 } |
|
1393 |
|
1394 if (NS_FAILED(rv)) { |
|
1395 // if the transaction didn't want to write any more data, then |
|
1396 // wait for the transaction to call ResumeSend. |
|
1397 if (rv == NS_BASE_STREAM_WOULD_BLOCK) |
|
1398 rv = NS_OK; |
|
1399 again = false; |
|
1400 } |
|
1401 else if (NS_FAILED(mSocketOutCondition)) { |
|
1402 if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) |
|
1403 rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing |
|
1404 else |
|
1405 rv = mSocketOutCondition; |
|
1406 again = false; |
|
1407 } |
|
1408 else if (n == 0) { |
|
1409 rv = NS_OK; |
|
1410 |
|
1411 if (mTransaction) { // in case the ReadSegments stack called CloseTransaction() |
|
1412 // |
|
1413 // at this point we've written out the entire transaction, and now we |
|
1414 // must wait for the server's response. we manufacture a status message |
|
1415 // here to reflect the fact that we are waiting. this message will be |
|
1416 // trumped (overwritten) if the server responds quickly. |
|
1417 // |
|
1418 mTransaction->OnTransportStatus(mSocketTransport, |
|
1419 NS_NET_STATUS_WAITING_FOR, |
|
1420 0); |
|
1421 |
|
1422 rv = ResumeRecv(); // start reading |
|
1423 } |
|
1424 again = false; |
|
1425 } |
|
1426 // write more to the socket until error or end-of-request... |
|
1427 } while (again); |
|
1428 |
|
1429 return rv; |
|
1430 } |
|
1431 |
|
1432 nsresult |
|
1433 nsHttpConnection::OnWriteSegment(char *buf, |
|
1434 uint32_t count, |
|
1435 uint32_t *countWritten) |
|
1436 { |
|
1437 if (count == 0) { |
|
1438 // some WriteSegments implementations will erroneously call the reader |
|
1439 // to provide 0 bytes worth of data. we must protect against this case |
|
1440 // or else we'd end up closing the socket prematurely. |
|
1441 NS_ERROR("bad WriteSegments implementation"); |
|
1442 return NS_ERROR_FAILURE; // stop iterating |
|
1443 } |
|
1444 |
|
1445 if (ChaosMode::isActive() && ChaosMode::randomUint32LessThan(2)) { |
|
1446 // read 1...count bytes |
|
1447 count = ChaosMode::randomUint32LessThan(count) + 1; |
|
1448 } |
|
1449 |
|
1450 nsresult rv = mSocketIn->Read(buf, count, countWritten); |
|
1451 if (NS_FAILED(rv)) |
|
1452 mSocketInCondition = rv; |
|
1453 else if (*countWritten == 0) |
|
1454 mSocketInCondition = NS_BASE_STREAM_CLOSED; |
|
1455 else |
|
1456 mSocketInCondition = NS_OK; // reset condition |
|
1457 |
|
1458 return mSocketInCondition; |
|
1459 } |
|
1460 |
|
1461 nsresult |
|
1462 nsHttpConnection::OnSocketReadable() |
|
1463 { |
|
1464 LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this)); |
|
1465 |
|
1466 PRIntervalTime now = PR_IntervalNow(); |
|
1467 PRIntervalTime delta = now - mLastReadTime; |
|
1468 |
|
1469 // Reset mResponseTimeoutEnabled to stop response timeout checks. |
|
1470 mResponseTimeoutEnabled = false; |
|
1471 |
|
1472 if (mKeepAliveMask && (delta >= mMaxHangTime)) { |
|
1473 LOG(("max hang time exceeded!\n")); |
|
1474 // give the handler a chance to create a new persistent connection to |
|
1475 // this host if we've been busy for too long. |
|
1476 mKeepAliveMask = false; |
|
1477 gHttpHandler->ProcessPendingQ(mConnInfo); |
|
1478 } |
|
1479 |
|
1480 // Look for data being sent in bursts with large pauses. If the pauses |
|
1481 // are caused by server bottlenecks such as think-time, disk i/o, or |
|
1482 // cpu exhaustion (as opposed to network latency) then we generate negative |
|
1483 // pipelining feedback to prevent head of line problems |
|
1484 |
|
1485 // Reduce the estimate of the time since last read by up to 1 RTT to |
|
1486 // accommodate exhausted sender TCP congestion windows or minor I/O delays. |
|
1487 |
|
1488 if (delta > mRtt) |
|
1489 delta -= mRtt; |
|
1490 else |
|
1491 delta = 0; |
|
1492 |
|
1493 static const PRIntervalTime k400ms = PR_MillisecondsToInterval(400); |
|
1494 |
|
1495 if (delta >= (mRtt + gHttpHandler->GetPipelineRescheduleTimeout())) { |
|
1496 LOG(("Read delta ms of %u causing slow read major " |
|
1497 "event and pipeline cancellation", |
|
1498 PR_IntervalToMilliseconds(delta))); |
|
1499 |
|
1500 gHttpHandler->ConnMgr()->PipelineFeedbackInfo( |
|
1501 mConnInfo, nsHttpConnectionMgr::BadSlowReadMajor, this, 0); |
|
1502 |
|
1503 if (gHttpHandler->GetPipelineRescheduleOnTimeout() && |
|
1504 mTransaction->PipelineDepth() > 1) { |
|
1505 nsHttpPipeline *pipeline = mTransaction->QueryPipeline(); |
|
1506 MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline"); |
|
1507 // code this defensively for the moment and check for null |
|
1508 // This will reschedule blocked members of the pipeline, but the |
|
1509 // blocking transaction (i.e. response 0) will not be changed. |
|
1510 if (pipeline) { |
|
1511 pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT); |
|
1512 LOG(("Rescheduling the head of line blocked members of a " |
|
1513 "pipeline because reschedule-timeout idle interval " |
|
1514 "exceeded")); |
|
1515 } |
|
1516 } |
|
1517 } |
|
1518 else if (delta > k400ms) { |
|
1519 gHttpHandler->ConnMgr()->PipelineFeedbackInfo( |
|
1520 mConnInfo, nsHttpConnectionMgr::BadSlowReadMinor, this, 0); |
|
1521 } |
|
1522 |
|
1523 mLastReadTime = now; |
|
1524 |
|
1525 nsresult rv; |
|
1526 uint32_t n; |
|
1527 bool again = true; |
|
1528 |
|
1529 do { |
|
1530 if (!mProxyConnectInProgress && !mNPNComplete) { |
|
1531 // Unless we are setting up a tunnel via CONNECT, prevent reading |
|
1532 // from the socket until the results of NPN |
|
1533 // negotiation are known (which is determined from the write path). |
|
1534 // If the server speaks SPDY it is likely the readable data here is |
|
1535 // a spdy settings frame and without NPN it would be misinterpreted |
|
1536 // as HTTP/* |
|
1537 |
|
1538 LOG(("nsHttpConnection::OnSocketReadable %p return due to inactive " |
|
1539 "tunnel setup but incomplete NPN state\n", this)); |
|
1540 rv = NS_OK; |
|
1541 break; |
|
1542 } |
|
1543 |
|
1544 rv = mTransaction->WriteSegments(this, nsIOService::gDefaultSegmentSize, &n); |
|
1545 if (NS_FAILED(rv)) { |
|
1546 // if the transaction didn't want to take any more data, then |
|
1547 // wait for the transaction to call ResumeRecv. |
|
1548 if (rv == NS_BASE_STREAM_WOULD_BLOCK) |
|
1549 rv = NS_OK; |
|
1550 again = false; |
|
1551 } |
|
1552 else { |
|
1553 mCurrentBytesRead += n; |
|
1554 mTotalBytesRead += n; |
|
1555 if (NS_FAILED(mSocketInCondition)) { |
|
1556 // continue waiting for the socket if necessary... |
|
1557 if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK) |
|
1558 rv = ResumeRecv(); |
|
1559 else |
|
1560 rv = mSocketInCondition; |
|
1561 again = false; |
|
1562 } |
|
1563 } |
|
1564 // read more from the socket until error... |
|
1565 } while (again); |
|
1566 |
|
1567 return rv; |
|
1568 } |
|
1569 |
|
1570 nsresult |
|
1571 nsHttpConnection::SetupProxyConnect() |
|
1572 { |
|
1573 const char *val; |
|
1574 |
|
1575 LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this)); |
|
1576 |
|
1577 NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED); |
|
1578 MOZ_ASSERT(!mUsingSpdyVersion, |
|
1579 "SPDY NPN Complete while using proxy connect stream"); |
|
1580 |
|
1581 nsAutoCString buf; |
|
1582 nsresult rv = nsHttpHandler::GenerateHostPort( |
|
1583 nsDependentCString(mConnInfo->Host()), mConnInfo->Port(), buf); |
|
1584 if (NS_FAILED(rv)) |
|
1585 return rv; |
|
1586 |
|
1587 // CONNECT host:port HTTP/1.1 |
|
1588 nsHttpRequestHead request; |
|
1589 request.SetMethod(NS_LITERAL_CSTRING("CONNECT")); |
|
1590 request.SetVersion(gHttpHandler->HttpVersion()); |
|
1591 request.SetRequestURI(buf); |
|
1592 request.SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent()); |
|
1593 |
|
1594 // a CONNECT is always persistent |
|
1595 request.SetHeader(nsHttp::Proxy_Connection, NS_LITERAL_CSTRING("keep-alive")); |
|
1596 request.SetHeader(nsHttp::Connection, NS_LITERAL_CSTRING("keep-alive")); |
|
1597 |
|
1598 // all HTTP/1.1 requests must include a Host header (even though it |
|
1599 // may seem redundant in this case; see bug 82388). |
|
1600 request.SetHeader(nsHttp::Host, buf); |
|
1601 |
|
1602 val = mTransaction->RequestHead()->PeekHeader(nsHttp::Proxy_Authorization); |
|
1603 if (val) { |
|
1604 // we don't know for sure if this authorization is intended for the |
|
1605 // SSL proxy, so we add it just in case. |
|
1606 request.SetHeader(nsHttp::Proxy_Authorization, nsDependentCString(val)); |
|
1607 } |
|
1608 |
|
1609 buf.Truncate(); |
|
1610 request.Flatten(buf, false); |
|
1611 buf.AppendLiteral("\r\n"); |
|
1612 |
|
1613 return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream), buf); |
|
1614 } |
|
1615 |
|
1616 nsresult |
|
1617 nsHttpConnection::StartShortLivedTCPKeepalives() |
|
1618 { |
|
1619 if (mUsingSpdyVersion) { |
|
1620 return NS_OK; |
|
1621 } |
|
1622 MOZ_ASSERT(mSocketTransport); |
|
1623 if (!mSocketTransport) { |
|
1624 return NS_ERROR_NOT_INITIALIZED; |
|
1625 } |
|
1626 |
|
1627 nsresult rv = NS_OK; |
|
1628 int32_t idleTimeS = -1; |
|
1629 int32_t retryIntervalS = -1; |
|
1630 if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) { |
|
1631 // Set the idle time. |
|
1632 idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime(); |
|
1633 LOG(("nsHttpConnection::StartShortLivedTCPKeepalives[%p] " |
|
1634 "idle time[%ds].", this, idleTimeS)); |
|
1635 |
|
1636 retryIntervalS = |
|
1637 std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1); |
|
1638 rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS); |
|
1639 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1640 return rv; |
|
1641 } |
|
1642 rv = mSocketTransport->SetKeepaliveEnabled(true); |
|
1643 mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig; |
|
1644 } else { |
|
1645 rv = mSocketTransport->SetKeepaliveEnabled(false); |
|
1646 mTCPKeepaliveConfig = kTCPKeepaliveDisabled; |
|
1647 } |
|
1648 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1649 return rv; |
|
1650 } |
|
1651 |
|
1652 // Start a timer to move to long-lived keepalive config. |
|
1653 if(!mTCPKeepaliveTransitionTimer) { |
|
1654 mTCPKeepaliveTransitionTimer = |
|
1655 do_CreateInstance("@mozilla.org/timer;1"); |
|
1656 } |
|
1657 |
|
1658 if (mTCPKeepaliveTransitionTimer) { |
|
1659 int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime(); |
|
1660 |
|
1661 // Adjust |time| to ensure a full set of keepalive probes can be sent |
|
1662 // at the end of the short-lived phase. |
|
1663 if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) { |
|
1664 if (NS_WARN_IF(!gSocketTransportService)) { |
|
1665 return NS_ERROR_NOT_INITIALIZED; |
|
1666 } |
|
1667 int32_t probeCount = -1; |
|
1668 rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount); |
|
1669 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1670 return rv; |
|
1671 } |
|
1672 if (NS_WARN_IF(probeCount <= 0)) { |
|
1673 return NS_ERROR_UNEXPECTED; |
|
1674 } |
|
1675 // Add time for final keepalive probes, and 2 seconds for a buffer. |
|
1676 time += ((probeCount) * retryIntervalS) - (time % idleTimeS) + 2; |
|
1677 } |
|
1678 mTCPKeepaliveTransitionTimer->InitWithFuncCallback( |
|
1679 nsHttpConnection::UpdateTCPKeepalive, |
|
1680 this, |
|
1681 (uint32_t)time*1000, |
|
1682 nsITimer::TYPE_ONE_SHOT); |
|
1683 } else { |
|
1684 NS_WARNING("nsHttpConnection::StartShortLivedTCPKeepalives failed to " |
|
1685 "create timer."); |
|
1686 } |
|
1687 |
|
1688 return NS_OK; |
|
1689 } |
|
1690 |
|
1691 nsresult |
|
1692 nsHttpConnection::StartLongLivedTCPKeepalives() |
|
1693 { |
|
1694 MOZ_ASSERT(!mUsingSpdyVersion, "Don't use TCP Keepalive with SPDY!"); |
|
1695 if (NS_WARN_IF(mUsingSpdyVersion)) { |
|
1696 return NS_OK; |
|
1697 } |
|
1698 MOZ_ASSERT(mSocketTransport); |
|
1699 if (!mSocketTransport) { |
|
1700 return NS_ERROR_NOT_INITIALIZED; |
|
1701 } |
|
1702 |
|
1703 nsresult rv = NS_OK; |
|
1704 if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) { |
|
1705 // Increase the idle time. |
|
1706 int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime(); |
|
1707 LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]", |
|
1708 this, idleTimeS)); |
|
1709 |
|
1710 int32_t retryIntervalS = |
|
1711 std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1); |
|
1712 rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS); |
|
1713 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1714 return rv; |
|
1715 } |
|
1716 |
|
1717 // Ensure keepalive is enabled, if current status is disabled. |
|
1718 if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) { |
|
1719 rv = mSocketTransport->SetKeepaliveEnabled(true); |
|
1720 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1721 return rv; |
|
1722 } |
|
1723 } |
|
1724 mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig; |
|
1725 } else { |
|
1726 rv = mSocketTransport->SetKeepaliveEnabled(false); |
|
1727 mTCPKeepaliveConfig = kTCPKeepaliveDisabled; |
|
1728 } |
|
1729 |
|
1730 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1731 return rv; |
|
1732 } |
|
1733 return NS_OK; |
|
1734 } |
|
1735 |
|
1736 nsresult |
|
1737 nsHttpConnection::DisableTCPKeepalives() |
|
1738 { |
|
1739 MOZ_ASSERT(mSocketTransport); |
|
1740 if (!mSocketTransport) { |
|
1741 return NS_ERROR_NOT_INITIALIZED; |
|
1742 } |
|
1743 LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this)); |
|
1744 if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) { |
|
1745 nsresult rv = mSocketTransport->SetKeepaliveEnabled(false); |
|
1746 if (NS_WARN_IF(NS_FAILED(rv))) { |
|
1747 return rv; |
|
1748 } |
|
1749 mTCPKeepaliveConfig = kTCPKeepaliveDisabled; |
|
1750 } |
|
1751 if (mTCPKeepaliveTransitionTimer) { |
|
1752 mTCPKeepaliveTransitionTimer->Cancel(); |
|
1753 mTCPKeepaliveTransitionTimer = nullptr; |
|
1754 } |
|
1755 return NS_OK; |
|
1756 } |
|
1757 |
|
1758 //----------------------------------------------------------------------------- |
|
1759 // nsHttpConnection::nsISupports |
|
1760 //----------------------------------------------------------------------------- |
|
1761 |
|
1762 NS_IMPL_ISUPPORTS(nsHttpConnection, |
|
1763 nsIInputStreamCallback, |
|
1764 nsIOutputStreamCallback, |
|
1765 nsITransportEventSink, |
|
1766 nsIInterfaceRequestor) |
|
1767 |
|
1768 //----------------------------------------------------------------------------- |
|
1769 // nsHttpConnection::nsIInputStreamCallback |
|
1770 //----------------------------------------------------------------------------- |
|
1771 |
|
1772 // called on the socket transport thread |
|
1773 NS_IMETHODIMP |
|
1774 nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream *in) |
|
1775 { |
|
1776 MOZ_ASSERT(in == mSocketIn, "unexpected stream"); |
|
1777 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1778 |
|
1779 if (mIdleMonitoring) { |
|
1780 MOZ_ASSERT(!mTransaction, "Idle Input Event While Active"); |
|
1781 |
|
1782 // The only read event that is protocol compliant for an idle connection |
|
1783 // is an EOF, which we check for with CanReuse(). If the data is |
|
1784 // something else then just ignore it and suspend checking for EOF - |
|
1785 // our normal timers or protocol stack are the place to deal with |
|
1786 // any exception logic. |
|
1787 |
|
1788 if (!CanReuse()) { |
|
1789 LOG(("Server initiated close of idle conn %p\n", this)); |
|
1790 gHttpHandler->ConnMgr()->CloseIdleConnection(this); |
|
1791 return NS_OK; |
|
1792 } |
|
1793 |
|
1794 LOG(("Input data on idle conn %p, but not closing yet\n", this)); |
|
1795 return NS_OK; |
|
1796 } |
|
1797 |
|
1798 // if the transaction was dropped... |
|
1799 if (!mTransaction) { |
|
1800 LOG((" no transaction; ignoring event\n")); |
|
1801 return NS_OK; |
|
1802 } |
|
1803 |
|
1804 nsresult rv = OnSocketReadable(); |
|
1805 if (NS_FAILED(rv)) |
|
1806 CloseTransaction(mTransaction, rv); |
|
1807 |
|
1808 return NS_OK; |
|
1809 } |
|
1810 |
|
1811 //----------------------------------------------------------------------------- |
|
1812 // nsHttpConnection::nsIOutputStreamCallback |
|
1813 //----------------------------------------------------------------------------- |
|
1814 |
|
1815 NS_IMETHODIMP |
|
1816 nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream *out) |
|
1817 { |
|
1818 MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); |
|
1819 MOZ_ASSERT(out == mSocketOut, "unexpected socket"); |
|
1820 |
|
1821 // if the transaction was dropped... |
|
1822 if (!mTransaction) { |
|
1823 LOG((" no transaction; ignoring event\n")); |
|
1824 return NS_OK; |
|
1825 } |
|
1826 |
|
1827 nsresult rv = OnSocketWritable(); |
|
1828 if (NS_FAILED(rv)) |
|
1829 CloseTransaction(mTransaction, rv); |
|
1830 |
|
1831 return NS_OK; |
|
1832 } |
|
1833 |
|
1834 //----------------------------------------------------------------------------- |
|
1835 // nsHttpConnection::nsITransportEventSink |
|
1836 //----------------------------------------------------------------------------- |
|
1837 |
|
1838 NS_IMETHODIMP |
|
1839 nsHttpConnection::OnTransportStatus(nsITransport *trans, |
|
1840 nsresult status, |
|
1841 uint64_t progress, |
|
1842 uint64_t progressMax) |
|
1843 { |
|
1844 if (mTransaction) |
|
1845 mTransaction->OnTransportStatus(trans, status, progress); |
|
1846 return NS_OK; |
|
1847 } |
|
1848 |
|
1849 //----------------------------------------------------------------------------- |
|
1850 // nsHttpConnection::nsIInterfaceRequestor |
|
1851 //----------------------------------------------------------------------------- |
|
1852 |
|
1853 // not called on the socket transport thread |
|
1854 NS_IMETHODIMP |
|
1855 nsHttpConnection::GetInterface(const nsIID &iid, void **result) |
|
1856 { |
|
1857 // NOTE: This function is only called on the UI thread via sync proxy from |
|
1858 // the socket transport thread. If that weren't the case, then we'd |
|
1859 // have to worry about the possibility of mTransaction going away |
|
1860 // part-way through this function call. See CloseTransaction. |
|
1861 |
|
1862 // NOTE - there is a bug here, the call to getinterface is proxied off the |
|
1863 // nss thread, not the ui thread as the above comment says. So there is |
|
1864 // indeed a chance of mTransaction going away. bug 615342 |
|
1865 |
|
1866 MOZ_ASSERT(PR_GetCurrentThread() != gSocketThread); |
|
1867 |
|
1868 nsCOMPtr<nsIInterfaceRequestor> callbacks; |
|
1869 { |
|
1870 MutexAutoLock lock(mCallbacksLock); |
|
1871 callbacks = mCallbacks; |
|
1872 } |
|
1873 if (callbacks) |
|
1874 return callbacks->GetInterface(iid, result); |
|
1875 return NS_ERROR_NO_INTERFACE; |
|
1876 } |
|
1877 |
|
1878 } // namespace mozilla::net |
|
1879 } // namespace mozilla |