|
1 /* |
|
2 ****************************************************************************** |
|
3 * |
|
4 * Copyright (C) 2000-2013, International Business Machines |
|
5 * Corporation and others. All Rights Reserved. |
|
6 * |
|
7 ****************************************************************************** |
|
8 * file name: ucnvmbcs.c |
|
9 * encoding: US-ASCII |
|
10 * tab size: 8 (not used) |
|
11 * indentation:4 |
|
12 * |
|
13 * created on: 2000jul03 |
|
14 * created by: Markus W. Scherer |
|
15 * |
|
16 * The current code in this file replaces the previous implementation |
|
17 * of conversion code from multi-byte codepages to Unicode and back. |
|
18 * This implementation supports the following: |
|
19 * - legacy variable-length codepages with up to 4 bytes per character |
|
20 * - all Unicode code points (up to 0x10ffff) |
|
21 * - efficient distinction of unassigned vs. illegal byte sequences |
|
22 * - it is possible in fromUnicode() to directly deal with simple |
|
23 * stateful encodings (used for EBCDIC_STATEFUL) |
|
24 * - it is possible to convert Unicode code points |
|
25 * to a single zero byte (but not as a fallback except for SBCS) |
|
26 * |
|
27 * Remaining limitations in fromUnicode: |
|
28 * - byte sequences must not have leading zero bytes |
|
29 * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte |
|
30 * - limitation to up to 4 bytes per character |
|
31 * |
|
32 * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these |
|
33 * limitations and adds m:n character mappings and other features. |
|
34 * See ucnv_ext.h for details. |
|
35 * |
|
36 * Change history: |
|
37 * |
|
38 * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, |
|
39 * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 |
|
40 * macros to ucnvmbcs.h file |
|
41 */ |
|
42 |
|
43 #include "unicode/utypes.h" |
|
44 |
|
45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION |
|
46 |
|
47 #include "unicode/ucnv.h" |
|
48 #include "unicode/ucnv_cb.h" |
|
49 #include "unicode/udata.h" |
|
50 #include "unicode/uset.h" |
|
51 #include "unicode/utf8.h" |
|
52 #include "unicode/utf16.h" |
|
53 #include "ucnv_bld.h" |
|
54 #include "ucnvmbcs.h" |
|
55 #include "ucnv_ext.h" |
|
56 #include "ucnv_cnv.h" |
|
57 #include "cmemory.h" |
|
58 #include "cstring.h" |
|
59 #include "cmutex.h" |
|
60 |
|
61 /* control optimizations according to the platform */ |
|
62 #define MBCS_UNROLL_SINGLE_TO_BMP 1 |
|
63 #define MBCS_UNROLL_SINGLE_FROM_BMP 0 |
|
64 |
|
65 /* |
|
66 * _MBCSHeader versions 5.3 & 4.3 |
|
67 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) |
|
68 * |
|
69 * This version is optional. Version 5 is used for incompatible data format changes. |
|
70 * makeconv will continue to generate version 4 files if possible. |
|
71 * |
|
72 * Changes from version 4: |
|
73 * |
|
74 * The main difference is an additional _MBCSHeader field with |
|
75 * - the length (number of uint32_t) of the _MBCSHeader |
|
76 * - flags for further incompatible data format changes |
|
77 * - flags for further, backward compatible data format changes |
|
78 * |
|
79 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from |
|
80 * the file and needs to be reconstituted at load time. |
|
81 * This requires a utf8Friendly format with an additional mbcsIndex table for fast |
|
82 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar. |
|
83 * (For details about these structures see below, and see ucnvmbcs.h.) |
|
84 * |
|
85 * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order |
|
86 * of the Unicode code points. (This requires that the .ucm file has the |0 etc. |
|
87 * precision markers for all mappings.) |
|
88 * |
|
89 * All fallbacks have been moved to the extension table, leaving only roundtrips in the |
|
90 * omitted data that can be reconstituted from the toUnicode data. |
|
91 * |
|
92 * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted. |
|
93 * With only roundtrip mappings in the base fromUnicode data, this part is fully |
|
94 * redundant with the mbcsIndex and will be reconstituted from that (also using the |
|
95 * stage 1 table which contains the information about how stage 2 was compacted). |
|
96 * |
|
97 * The rest of the stage 2 table, the part for code points above maxFastUChar, |
|
98 * is stored in the file and will be appended to the reconstituted part. |
|
99 * |
|
100 * The entire fromUBytes array is omitted from the file and will be reconstitued. |
|
101 * This is done by enumerating all toUnicode roundtrip mappings, performing |
|
102 * each mapping (using the stage 1 and reconstituted stage 2 tables) and |
|
103 * writing instead of reading the byte values. |
|
104 * |
|
105 * _MBCSHeader version 4.3 |
|
106 * |
|
107 * Change from version 4.2: |
|
108 * - Optional utf8Friendly data structures, with 64-entry stage 3 block |
|
109 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS |
|
110 * files which can be used instead of stages 1 & 2. |
|
111 * Faster lookups for roundtrips from most commonly used characters, |
|
112 * and lookups from UTF-8 byte sequences with a natural bit distribution. |
|
113 * See ucnvmbcs.h for more details. |
|
114 * |
|
115 * Change from version 4.1: |
|
116 * - Added an optional extension table structure at the end of the .cnv file. |
|
117 * It is present if the upper bits of the header flags field contains a non-zero |
|
118 * byte offset to it. |
|
119 * Files that contain only a conversion table and no base table |
|
120 * use the special outputType MBCS_OUTPUT_EXT_ONLY. |
|
121 * These contain the base table name between the MBCS header and the extension |
|
122 * data. |
|
123 * |
|
124 * Change from version 4.0: |
|
125 * - Replace header.reserved with header.fromUBytesLength so that all |
|
126 * fields in the data have length. |
|
127 * |
|
128 * Changes from version 3 (for performance improvements): |
|
129 * - new bit distribution for state table entries |
|
130 * - reordered action codes |
|
131 * - new data structure for single-byte fromUnicode |
|
132 * + stage 2 only contains indexes |
|
133 * + stage 3 stores 16 bits per character with classification bits 15..8 |
|
134 * - no multiplier for stage 1 entries |
|
135 * - stage 2 for non-single-byte codepages contains the index and the flags in |
|
136 * one 32-bit value |
|
137 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers |
|
138 * |
|
139 * For more details about old versions of the MBCS data structure, see |
|
140 * the corresponding versions of this file. |
|
141 * |
|
142 * Converting stateless codepage data ---------------------------------------*** |
|
143 * (or codepage data with simple states) to Unicode. |
|
144 * |
|
145 * Data structure and algorithm for converting from complex legacy codepages |
|
146 * to Unicode. (Designed before 2000-may-22.) |
|
147 * |
|
148 * The basic idea is that the structure of legacy codepages can be described |
|
149 * with state tables. |
|
150 * When reading a byte stream, each input byte causes a state transition. |
|
151 * Some transitions result in the output of a code point, some result in |
|
152 * "unassigned" or "illegal" output. |
|
153 * This is used here for character conversion. |
|
154 * |
|
155 * The data structure begins with a state table consisting of a row |
|
156 * per state, with 256 entries (columns) per row for each possible input |
|
157 * byte value. |
|
158 * Each entry is 32 bits wide, with two formats distinguished by |
|
159 * the sign bit (bit 31): |
|
160 * |
|
161 * One format for transitional entries (bit 31 not set) for non-final bytes, and |
|
162 * one format for final entries (bit 31 set). |
|
163 * Both formats contain the number of the next state in the same bit |
|
164 * positions. |
|
165 * State 0 is the initial state. |
|
166 * |
|
167 * Most of the time, the offset values of subsequent states are added |
|
168 * up to a scalar value. This value will eventually be the index of |
|
169 * the Unicode code point in a table that follows the state table. |
|
170 * The effect is that the code points for final state table rows |
|
171 * are contiguous. The code points of final state rows follow each other |
|
172 * in the order of the references to those final states by previous |
|
173 * states, etc. |
|
174 * |
|
175 * For some terminal states, the offset is itself the output Unicode |
|
176 * code point (16 bits for a BMP code point or 20 bits for a supplementary |
|
177 * code point (stored as code point minus 0x10000 so that 20 bits are enough). |
|
178 * For others, the code point in the Unicode table is stored with either |
|
179 * one or two code units: one for BMP code points, two for a pair of |
|
180 * surrogates. |
|
181 * All code points for a final state entry take up the same number of code |
|
182 * units, regardless of whether they all actually _use_ the same number |
|
183 * of code units. This is necessary for simple array access. |
|
184 * |
|
185 * An additional feature comes in with what in ICU is called "fallback" |
|
186 * mappings: |
|
187 * |
|
188 * In addition to round-trippable, precise, 1:1 mappings, there are often |
|
189 * mappings defined between similar, though not the same, characters. |
|
190 * Typically, such mappings occur only in fromUnicode mapping tables because |
|
191 * Unicode has a superset repertoire of most other codepages. However, it |
|
192 * is possible to provide such mappings in the toUnicode tables, too. |
|
193 * In this case, the fallback mappings are partly integrated into the |
|
194 * general state tables because the structure of the encoding includes their |
|
195 * byte sequences. |
|
196 * For final entries in an initial state, fallback mappings are stored in |
|
197 * the entry itself like with roundtrip mappings. |
|
198 * For other final entries, they are stored in the code units table if |
|
199 * the entry is for a pair of code units. |
|
200 * For single-unit results in the code units table, there is no space to |
|
201 * alternatively hold a fallback mapping; in this case, the code unit |
|
202 * is stored as U+fffe (unassigned), and the fallback mapping needs to |
|
203 * be looked up by the scalar offset value in a separate table. |
|
204 * |
|
205 * "Unassigned" state entries really mean "structurally unassigned", |
|
206 * i.e., such a byte sequence will never have a mapping result. |
|
207 * |
|
208 * The interpretation of the bits in each entry is as follows: |
|
209 * |
|
210 * Bit 31 not set, not a terminal entry ("transitional"): |
|
211 * 30..24 next state |
|
212 * 23..0 offset delta, to be added up |
|
213 * |
|
214 * Bit 31 set, terminal ("final") entry: |
|
215 * 30..24 next state (regardless of action code) |
|
216 * 23..20 action code: |
|
217 * action codes 0 and 1 result in precise-mapping Unicode code points |
|
218 * 0 valid byte sequence |
|
219 * 19..16 not used, 0 |
|
220 * 15..0 16-bit Unicode BMP code point |
|
221 * never U+fffe or U+ffff |
|
222 * 1 valid byte sequence |
|
223 * 19..0 20-bit Unicode supplementary code point |
|
224 * never U+fffe or U+ffff |
|
225 * |
|
226 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points |
|
227 * 2 valid byte sequence (fallback) |
|
228 * 19..16 not used, 0 |
|
229 * 15..0 16-bit Unicode BMP code point as fallback result |
|
230 * 3 valid byte sequence (fallback) |
|
231 * 19..0 20-bit Unicode supplementary code point as fallback result |
|
232 * |
|
233 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results |
|
234 * depending on the code units they result in |
|
235 * 4 valid byte sequence |
|
236 * 19..9 not used, 0 |
|
237 * 8..0 final offset delta |
|
238 * pointing to one 16-bit code unit which may be |
|
239 * fffe unassigned -- look for a fallback for this offset |
|
240 * ffff illegal |
|
241 * 5 valid byte sequence |
|
242 * 19..9 not used, 0 |
|
243 * 8..0 final offset delta |
|
244 * pointing to two 16-bit code units |
|
245 * (typically UTF-16 surrogates) |
|
246 * the result depends on the first code unit as follows: |
|
247 * 0000..d7ff roundtrip BMP code point (1st alone) |
|
248 * d800..dbff roundtrip surrogate pair (1st, 2nd) |
|
249 * dc00..dfff fallback surrogate pair (1st-400, 2nd) |
|
250 * e000 roundtrip BMP code point (2nd alone) |
|
251 * e001 fallback BMP code point (2nd alone) |
|
252 * fffe unassigned |
|
253 * ffff illegal |
|
254 * (the final offset deltas are at most 255 * 2, |
|
255 * times 2 because of storing code unit pairs) |
|
256 * |
|
257 * 6 unassigned byte sequence |
|
258 * 19..16 not used, 0 |
|
259 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) |
|
260 * this does not contain a final offset delta because the main |
|
261 * purpose of this action code is to save scalar offset values; |
|
262 * therefore, fallback values cannot be assigned to byte |
|
263 * sequences that result in this action code |
|
264 * 7 illegal byte sequence |
|
265 * 19..16 not used, 0 |
|
266 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) |
|
267 * 8 state change only |
|
268 * 19..0 not used, 0 |
|
269 * useful for state changes in simple stateful encodings, |
|
270 * at Shift-In/Shift-Out codes |
|
271 * |
|
272 * |
|
273 * 9..15 reserved for future use |
|
274 * current implementations will only perform a state change |
|
275 * and ignore bits 19..0 |
|
276 * |
|
277 * An encoding with contiguous ranges of unassigned byte sequences, like |
|
278 * Shift-JIS and especially EUC-TW, can be stored efficiently by having |
|
279 * at least two states for the trail bytes: |
|
280 * One trail byte state that results in code points, and one that only |
|
281 * has "unassigned" and "illegal" terminal states. |
|
282 * |
|
283 * Note: partly by accident, this data structure supports simple stateful |
|
284 * encodings without any additional logic. |
|
285 * Currently, only simple Shift-In/Shift-Out schemes are handled with |
|
286 * appropriate state tables (especially EBCDIC_STATEFUL!). |
|
287 * |
|
288 * MBCS version 2 added: |
|
289 * unassigned and illegal action codes have U+fffe and U+ffff |
|
290 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() |
|
291 * |
|
292 * Converting from Unicode to codepage bytes --------------------------------*** |
|
293 * |
|
294 * The conversion data structure for fromUnicode is designed for the known |
|
295 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to |
|
296 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is |
|
297 * a roundtrip mapping. |
|
298 * |
|
299 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 |
|
300 * like in the character properties table. |
|
301 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 |
|
302 * with the resulting bytes is at offsetFromUBytes. |
|
303 * |
|
304 * Beginning with version 4, single-byte codepages have a significantly different |
|
305 * trie compared to other codepages. |
|
306 * In all cases, the entry in stage 1 is directly the index of the block of |
|
307 * 64 entries in stage 2. |
|
308 * |
|
309 * Single-byte lookup: |
|
310 * |
|
311 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. |
|
312 * Stage 3 contains one 16-bit word per result: |
|
313 * Bits 15..8 indicate the kind of result: |
|
314 * f roundtrip result |
|
315 * c fallback result from private-use code point |
|
316 * 8 fallback result from other code points |
|
317 * 0 unassigned |
|
318 * Bits 7..0 contain the codepage byte. A zero byte is always possible. |
|
319 * |
|
320 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly |
|
321 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup |
|
322 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
|
323 * ASCII code points can be looked up with a linear array access into stage 3. |
|
324 * See maxFastUChar and other details in ucnvmbcs.h. |
|
325 * |
|
326 * Multi-byte lookup: |
|
327 * |
|
328 * Stage 2 contains a 32-bit word for each 16-block in stage 3: |
|
329 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results |
|
330 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) |
|
331 * If this test is false, then a non-zero result will be interpreted as |
|
332 * a fallback mapping. |
|
333 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) |
|
334 * |
|
335 * Stage 3 contains 2, 3, or 4 bytes per result. |
|
336 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, |
|
337 * while 3 bytes are stored as bytes in big-endian order. |
|
338 * Leading zero bytes are ignored, and the number of bytes is counted. |
|
339 * A zero byte mapping result is possible as a roundtrip result. |
|
340 * For some output types, the actual result is processed from this; |
|
341 * see ucnv_MBCSFromUnicodeWithOffsets(). |
|
342 * |
|
343 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), |
|
344 * or (version 3 and up) for BMP-only codepages, it contains 64 entries. |
|
345 * |
|
346 * In version 4.3, a utf8Friendly file contains an mbcsIndex table. |
|
347 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup |
|
348 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
|
349 * ASCII code points can be looked up with a linear array access into stage 3. |
|
350 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. |
|
351 * |
|
352 * In version 3, stage 2 blocks may overlap by multiples of the multiplier |
|
353 * for compaction. |
|
354 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) |
|
355 * may overlap by any number of entries. |
|
356 * |
|
357 * MBCS version 2 added: |
|
358 * the converter checks for known output types, which allows |
|
359 * adding new ones without crashing an unaware converter |
|
360 */ |
|
361 |
|
362 static const UConverterImpl _SBCSUTF8Impl; |
|
363 static const UConverterImpl _DBCSUTF8Impl; |
|
364 |
|
365 /* GB 18030 data ------------------------------------------------------------ */ |
|
366 |
|
367 /* helper macros for linear values for GB 18030 four-byte sequences */ |
|
368 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) |
|
369 |
|
370 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) |
|
371 |
|
372 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) |
|
373 |
|
374 /* |
|
375 * Some ranges of GB 18030 where both the Unicode code points and the |
|
376 * GB four-byte sequences are contiguous and are handled algorithmically by |
|
377 * the special callback functions below. |
|
378 * The values are start & end of Unicode & GB codes. |
|
379 * |
|
380 * Note that single surrogates are not mapped by GB 18030 |
|
381 * as of the re-released mapping tables from 2000-nov-30. |
|
382 */ |
|
383 static const uint32_t |
|
384 gb18030Ranges[14][4]={ |
|
385 {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, |
|
386 {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, |
|
387 {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)}, |
|
388 {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)}, |
|
389 {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, |
|
390 {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, |
|
391 {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, |
|
392 {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, |
|
393 {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, |
|
394 {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, |
|
395 {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, |
|
396 {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, |
|
397 {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, |
|
398 {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} |
|
399 }; |
|
400 |
|
401 /* bit flag for UConverter.options indicating GB 18030 special handling */ |
|
402 #define _MBCS_OPTION_GB18030 0x8000 |
|
403 |
|
404 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ |
|
405 #define _MBCS_OPTION_KEIS 0x01000 |
|
406 #define _MBCS_OPTION_JEF 0x02000 |
|
407 #define _MBCS_OPTION_JIPS 0x04000 |
|
408 |
|
409 #define KEIS_SO_CHAR_1 0x0A |
|
410 #define KEIS_SO_CHAR_2 0x42 |
|
411 #define KEIS_SI_CHAR_1 0x0A |
|
412 #define KEIS_SI_CHAR_2 0x41 |
|
413 |
|
414 #define JEF_SO_CHAR 0x28 |
|
415 #define JEF_SI_CHAR 0x29 |
|
416 |
|
417 #define JIPS_SO_CHAR_1 0x1A |
|
418 #define JIPS_SO_CHAR_2 0x70 |
|
419 #define JIPS_SI_CHAR_1 0x1A |
|
420 #define JIPS_SI_CHAR_2 0x71 |
|
421 |
|
422 enum SISO_Option { |
|
423 SI, |
|
424 SO |
|
425 }; |
|
426 typedef enum SISO_Option SISO_Option; |
|
427 |
|
428 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) { |
|
429 int32_t SISOLength = 0; |
|
430 |
|
431 switch (option) { |
|
432 case SI: |
|
433 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
|
434 value[0] = KEIS_SI_CHAR_1; |
|
435 value[1] = KEIS_SI_CHAR_2; |
|
436 SISOLength = 2; |
|
437 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
|
438 value[0] = JEF_SI_CHAR; |
|
439 SISOLength = 1; |
|
440 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
|
441 value[0] = JIPS_SI_CHAR_1; |
|
442 value[1] = JIPS_SI_CHAR_2; |
|
443 SISOLength = 2; |
|
444 } else { |
|
445 value[0] = UCNV_SI; |
|
446 SISOLength = 1; |
|
447 } |
|
448 break; |
|
449 case SO: |
|
450 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
|
451 value[0] = KEIS_SO_CHAR_1; |
|
452 value[1] = KEIS_SO_CHAR_2; |
|
453 SISOLength = 2; |
|
454 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
|
455 value[0] = JEF_SO_CHAR; |
|
456 SISOLength = 1; |
|
457 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
|
458 value[0] = JIPS_SO_CHAR_1; |
|
459 value[1] = JIPS_SO_CHAR_2; |
|
460 SISOLength = 2; |
|
461 } else { |
|
462 value[0] = UCNV_SO; |
|
463 SISOLength = 1; |
|
464 } |
|
465 break; |
|
466 default: |
|
467 /* Should never happen. */ |
|
468 break; |
|
469 } |
|
470 |
|
471 return SISOLength; |
|
472 } |
|
473 |
|
474 /* Miscellaneous ------------------------------------------------------------ */ |
|
475 |
|
476 /** |
|
477 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from |
|
478 * consecutive sequences of bytes, starting from the one encoded in value, |
|
479 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.) |
|
480 * Does not currently support m:n mappings or reverse fallbacks. |
|
481 * This function will not be called for sequences of bytes with leading zeros. |
|
482 * |
|
483 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() |
|
484 * @param value contains 1..4 bytes of the first byte sequence, right-aligned |
|
485 * @param codePoints resulting Unicode code points, or negative if a byte sequence does |
|
486 * not map to anything |
|
487 * @return TRUE to continue enumeration, FALSE to stop |
|
488 */ |
|
489 typedef UBool U_CALLCONV |
|
490 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]); |
|
491 |
|
492 /* similar to ucnv_MBCSGetNextUChar() but recursive */ |
|
493 static UBool |
|
494 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], |
|
495 int32_t state, uint32_t offset, |
|
496 uint32_t value, |
|
497 UConverterEnumToUCallback *callback, const void *context, |
|
498 UErrorCode *pErrorCode) { |
|
499 UChar32 codePoints[32]; |
|
500 const int32_t *row; |
|
501 const uint16_t *unicodeCodeUnits; |
|
502 UChar32 anyCodePoints; |
|
503 int32_t b, limit; |
|
504 |
|
505 row=mbcsTable->stateTable[state]; |
|
506 unicodeCodeUnits=mbcsTable->unicodeCodeUnits; |
|
507 |
|
508 value<<=8; |
|
509 anyCodePoints=-1; /* becomes non-negative if there is a mapping */ |
|
510 |
|
511 b=(stateProps[state]&0x38)<<2; |
|
512 if(b==0 && stateProps[state]>=0x40) { |
|
513 /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */ |
|
514 codePoints[0]=U_SENTINEL; |
|
515 b=1; |
|
516 } |
|
517 limit=((stateProps[state]&7)+1)<<5; |
|
518 while(b<limit) { |
|
519 int32_t entry=row[b]; |
|
520 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
521 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); |
|
522 if(stateProps[nextState]>=0) { |
|
523 /* recurse to a state with non-ignorable actions */ |
|
524 if(!enumToU( |
|
525 mbcsTable, stateProps, nextState, |
|
526 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), |
|
527 value|(uint32_t)b, |
|
528 callback, context, |
|
529 pErrorCode)) { |
|
530 return FALSE; |
|
531 } |
|
532 } |
|
533 codePoints[b&0x1f]=U_SENTINEL; |
|
534 } else { |
|
535 UChar32 c; |
|
536 int32_t action; |
|
537 |
|
538 /* |
|
539 * An if-else-if chain provides more reliable performance for |
|
540 * the most common cases compared to a switch. |
|
541 */ |
|
542 action=MBCS_ENTRY_FINAL_ACTION(entry); |
|
543 if(action==MBCS_STATE_VALID_DIRECT_16) { |
|
544 /* output BMP code point */ |
|
545 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
546 } else if(action==MBCS_STATE_VALID_16) { |
|
547 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
548 c=unicodeCodeUnits[finalOffset]; |
|
549 if(c<0xfffe) { |
|
550 /* output BMP code point */ |
|
551 } else { |
|
552 c=U_SENTINEL; |
|
553 } |
|
554 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
|
555 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
556 c=unicodeCodeUnits[finalOffset++]; |
|
557 if(c<0xd800) { |
|
558 /* output BMP code point below 0xd800 */ |
|
559 } else if(c<=0xdbff) { |
|
560 /* output roundtrip or fallback supplementary code point */ |
|
561 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00); |
|
562 } else if(c==0xe000) { |
|
563 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
|
564 c=unicodeCodeUnits[finalOffset]; |
|
565 } else { |
|
566 c=U_SENTINEL; |
|
567 } |
|
568 } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
|
569 /* output supplementary code point */ |
|
570 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
|
571 } else { |
|
572 c=U_SENTINEL; |
|
573 } |
|
574 |
|
575 codePoints[b&0x1f]=c; |
|
576 anyCodePoints&=c; |
|
577 } |
|
578 if(((++b)&0x1f)==0) { |
|
579 if(anyCodePoints>=0) { |
|
580 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { |
|
581 return FALSE; |
|
582 } |
|
583 anyCodePoints=-1; |
|
584 } |
|
585 } |
|
586 } |
|
587 return TRUE; |
|
588 } |
|
589 |
|
590 /* |
|
591 * Only called if stateProps[state]==-1. |
|
592 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an |
|
593 * MBCS_STATE_CHANGE_ONLY. |
|
594 */ |
|
595 static int8_t |
|
596 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { |
|
597 const int32_t *row; |
|
598 int32_t min, max, entry, nextState; |
|
599 |
|
600 row=stateTable[state]; |
|
601 stateProps[state]=0; |
|
602 |
|
603 /* find first non-ignorable state */ |
|
604 for(min=0;; ++min) { |
|
605 entry=row[min]; |
|
606 nextState=MBCS_ENTRY_STATE(entry); |
|
607 if(stateProps[nextState]==-1) { |
|
608 getStateProp(stateTable, stateProps, nextState); |
|
609 } |
|
610 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
611 if(stateProps[nextState]>=0) { |
|
612 break; |
|
613 } |
|
614 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
|
615 break; |
|
616 } |
|
617 if(min==0xff) { |
|
618 stateProps[state]=-0x40; /* (int8_t)0xc0 */ |
|
619 return stateProps[state]; |
|
620 } |
|
621 } |
|
622 stateProps[state]|=(int8_t)((min>>5)<<3); |
|
623 |
|
624 /* find last non-ignorable state */ |
|
625 for(max=0xff; min<max; --max) { |
|
626 entry=row[max]; |
|
627 nextState=MBCS_ENTRY_STATE(entry); |
|
628 if(stateProps[nextState]==-1) { |
|
629 getStateProp(stateTable, stateProps, nextState); |
|
630 } |
|
631 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
632 if(stateProps[nextState]>=0) { |
|
633 break; |
|
634 } |
|
635 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
|
636 break; |
|
637 } |
|
638 } |
|
639 stateProps[state]|=(int8_t)(max>>5); |
|
640 |
|
641 /* recurse further and collect direct-state information */ |
|
642 while(min<=max) { |
|
643 entry=row[min]; |
|
644 nextState=MBCS_ENTRY_STATE(entry); |
|
645 if(stateProps[nextState]==-1) { |
|
646 getStateProp(stateTable, stateProps, nextState); |
|
647 } |
|
648 if(MBCS_ENTRY_IS_FINAL(entry)) { |
|
649 stateProps[nextState]|=0x40; |
|
650 if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { |
|
651 stateProps[state]|=0x40; |
|
652 } |
|
653 } |
|
654 ++min; |
|
655 } |
|
656 return stateProps[state]; |
|
657 } |
|
658 |
|
659 /* |
|
660 * Internal function enumerating the toUnicode data of an MBCS converter. |
|
661 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U |
|
662 * table, but could also be used for a future ucnv_getUnicodeSet() option |
|
663 * that includes reverse fallbacks (after updating this function's implementation). |
|
664 * Currently only handles roundtrip mappings. |
|
665 * Does not currently handle extensions. |
|
666 */ |
|
667 static void |
|
668 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, |
|
669 UConverterEnumToUCallback *callback, const void *context, |
|
670 UErrorCode *pErrorCode) { |
|
671 /* |
|
672 * Properties for each state, to speed up the enumeration. |
|
673 * Ignorable actions are unassigned/illegal/state-change-only: |
|
674 * They do not lead to mappings. |
|
675 * |
|
676 * Bits 7..6: |
|
677 * 1 direct/initial state (stateful converters have multiple) |
|
678 * 0 non-initial state with transitions or with non-ignorable result actions |
|
679 * -1 final state with only ignorable actions |
|
680 * |
|
681 * Bits 5..3: |
|
682 * The lowest byte value with non-ignorable actions is |
|
683 * value<<5 (rounded down). |
|
684 * |
|
685 * Bits 2..0: |
|
686 * The highest byte value with non-ignorable actions is |
|
687 * (value<<5)&0x1f (rounded up). |
|
688 */ |
|
689 int8_t stateProps[MBCS_MAX_STATE_COUNT]; |
|
690 int32_t state; |
|
691 |
|
692 uprv_memset(stateProps, -1, sizeof(stateProps)); |
|
693 |
|
694 /* recurse from state 0 and set all stateProps */ |
|
695 getStateProp(mbcsTable->stateTable, stateProps, 0); |
|
696 |
|
697 for(state=0; state<mbcsTable->countStates; ++state) { |
|
698 /*if(stateProps[state]==-1) { |
|
699 printf("unused/unreachable <icu:state> %d\n", state); |
|
700 }*/ |
|
701 if(stateProps[state]>=0x40) { |
|
702 /* start from each direct state */ |
|
703 enumToU( |
|
704 mbcsTable, stateProps, state, 0, 0, |
|
705 callback, context, |
|
706 pErrorCode); |
|
707 } |
|
708 } |
|
709 } |
|
710 |
|
711 U_CFUNC void |
|
712 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
|
713 const USetAdder *sa, |
|
714 UConverterUnicodeSet which, |
|
715 UConverterSetFilter filter, |
|
716 UErrorCode *pErrorCode) { |
|
717 const UConverterMBCSTable *mbcsTable; |
|
718 const uint16_t *table; |
|
719 |
|
720 uint32_t st3; |
|
721 uint16_t st1, maxStage1, st2; |
|
722 |
|
723 UChar32 c; |
|
724 |
|
725 /* enumerate the from-Unicode trie table */ |
|
726 mbcsTable=&sharedData->mbcs; |
|
727 table=mbcsTable->fromUnicodeTable; |
|
728 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
|
729 maxStage1=0x440; |
|
730 } else { |
|
731 maxStage1=0x40; |
|
732 } |
|
733 |
|
734 c=0; /* keep track of the current code point while enumerating */ |
|
735 |
|
736 if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
|
737 const uint16_t *stage2, *stage3, *results; |
|
738 uint16_t minValue; |
|
739 |
|
740 results=(const uint16_t *)mbcsTable->fromUnicodeBytes; |
|
741 |
|
742 /* |
|
743 * Set a threshold variable for selecting which mappings to use. |
|
744 * See ucnv_MBCSSingleFromBMPWithOffsets() and |
|
745 * MBCS_SINGLE_RESULT_FROM_U() for details. |
|
746 */ |
|
747 if(which==UCNV_ROUNDTRIP_SET) { |
|
748 /* use only roundtrips */ |
|
749 minValue=0xf00; |
|
750 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { |
|
751 /* use all roundtrip and fallback results */ |
|
752 minValue=0x800; |
|
753 } |
|
754 |
|
755 for(st1=0; st1<maxStage1; ++st1) { |
|
756 st2=table[st1]; |
|
757 if(st2>maxStage1) { |
|
758 stage2=table+st2; |
|
759 for(st2=0; st2<64; ++st2) { |
|
760 if((st3=stage2[st2])!=0) { |
|
761 /* read the stage 3 block */ |
|
762 stage3=results+st3; |
|
763 |
|
764 do { |
|
765 if(*stage3++>=minValue) { |
|
766 sa->add(sa->set, c); |
|
767 } |
|
768 } while((++c&0xf)!=0); |
|
769 } else { |
|
770 c+=16; /* empty stage 3 block */ |
|
771 } |
|
772 } |
|
773 } else { |
|
774 c+=1024; /* empty stage 2 block */ |
|
775 } |
|
776 } |
|
777 } else { |
|
778 const uint32_t *stage2; |
|
779 const uint8_t *stage3, *bytes; |
|
780 uint32_t st3Multiplier; |
|
781 uint32_t value; |
|
782 UBool useFallback; |
|
783 |
|
784 bytes=mbcsTable->fromUnicodeBytes; |
|
785 |
|
786 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); |
|
787 |
|
788 switch(mbcsTable->outputType) { |
|
789 case MBCS_OUTPUT_3: |
|
790 case MBCS_OUTPUT_4_EUC: |
|
791 st3Multiplier=3; |
|
792 break; |
|
793 case MBCS_OUTPUT_4: |
|
794 st3Multiplier=4; |
|
795 break; |
|
796 default: |
|
797 st3Multiplier=2; |
|
798 break; |
|
799 } |
|
800 |
|
801 for(st1=0; st1<maxStage1; ++st1) { |
|
802 st2=table[st1]; |
|
803 if(st2>(maxStage1>>1)) { |
|
804 stage2=(const uint32_t *)table+st2; |
|
805 for(st2=0; st2<64; ++st2) { |
|
806 if((st3=stage2[st2])!=0) { |
|
807 /* read the stage 3 block */ |
|
808 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; |
|
809 |
|
810 /* get the roundtrip flags for the stage 3 block */ |
|
811 st3>>=16; |
|
812 |
|
813 /* |
|
814 * Add code points for which the roundtrip flag is set, |
|
815 * or which map to non-zero bytes if we use fallbacks. |
|
816 * See ucnv_MBCSFromUnicodeWithOffsets() for details. |
|
817 */ |
|
818 switch(filter) { |
|
819 case UCNV_SET_FILTER_NONE: |
|
820 do { |
|
821 if(st3&1) { |
|
822 sa->add(sa->set, c); |
|
823 stage3+=st3Multiplier; |
|
824 } else if(useFallback) { |
|
825 uint8_t b=0; |
|
826 switch(st3Multiplier) { |
|
827 case 4: |
|
828 b|=*stage3++; |
|
829 case 3: /*fall through*/ |
|
830 b|=*stage3++; |
|
831 case 2: /*fall through*/ |
|
832 b|=stage3[0]|stage3[1]; |
|
833 stage3+=2; |
|
834 default: |
|
835 break; |
|
836 } |
|
837 if(b!=0) { |
|
838 sa->add(sa->set, c); |
|
839 } |
|
840 } |
|
841 st3>>=1; |
|
842 } while((++c&0xf)!=0); |
|
843 break; |
|
844 case UCNV_SET_FILTER_DBCS_ONLY: |
|
845 /* Ignore single-byte results (<0x100). */ |
|
846 do { |
|
847 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) { |
|
848 sa->add(sa->set, c); |
|
849 } |
|
850 st3>>=1; |
|
851 stage3+=2; /* +=st3Multiplier */ |
|
852 } while((++c&0xf)!=0); |
|
853 break; |
|
854 case UCNV_SET_FILTER_2022_CN: |
|
855 /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */ |
|
856 do { |
|
857 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) { |
|
858 sa->add(sa->set, c); |
|
859 } |
|
860 st3>>=1; |
|
861 stage3+=3; /* +=st3Multiplier */ |
|
862 } while((++c&0xf)!=0); |
|
863 break; |
|
864 case UCNV_SET_FILTER_SJIS: |
|
865 /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */ |
|
866 do { |
|
867 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) { |
|
868 sa->add(sa->set, c); |
|
869 } |
|
870 st3>>=1; |
|
871 stage3+=2; /* +=st3Multiplier */ |
|
872 } while((++c&0xf)!=0); |
|
873 break; |
|
874 case UCNV_SET_FILTER_GR94DBCS: |
|
875 /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */ |
|
876 do { |
|
877 if( ((st3&1)!=0 || useFallback) && |
|
878 (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) && |
|
879 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
|
880 ) { |
|
881 sa->add(sa->set, c); |
|
882 } |
|
883 st3>>=1; |
|
884 stage3+=2; /* +=st3Multiplier */ |
|
885 } while((++c&0xf)!=0); |
|
886 break; |
|
887 case UCNV_SET_FILTER_HZ: |
|
888 /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */ |
|
889 do { |
|
890 if( ((st3&1)!=0 || useFallback) && |
|
891 (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) && |
|
892 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
|
893 ) { |
|
894 sa->add(sa->set, c); |
|
895 } |
|
896 st3>>=1; |
|
897 stage3+=2; /* +=st3Multiplier */ |
|
898 } while((++c&0xf)!=0); |
|
899 break; |
|
900 default: |
|
901 *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
|
902 return; |
|
903 } |
|
904 } else { |
|
905 c+=16; /* empty stage 3 block */ |
|
906 } |
|
907 } |
|
908 } else { |
|
909 c+=1024; /* empty stage 2 block */ |
|
910 } |
|
911 } |
|
912 } |
|
913 |
|
914 ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); |
|
915 } |
|
916 |
|
917 U_CFUNC void |
|
918 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
|
919 const USetAdder *sa, |
|
920 UConverterUnicodeSet which, |
|
921 UErrorCode *pErrorCode) { |
|
922 ucnv_MBCSGetFilteredUnicodeSetForUnicode( |
|
923 sharedData, sa, which, |
|
924 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? |
|
925 UCNV_SET_FILTER_DBCS_ONLY : |
|
926 UCNV_SET_FILTER_NONE, |
|
927 pErrorCode); |
|
928 } |
|
929 |
|
930 static void |
|
931 ucnv_MBCSGetUnicodeSet(const UConverter *cnv, |
|
932 const USetAdder *sa, |
|
933 UConverterUnicodeSet which, |
|
934 UErrorCode *pErrorCode) { |
|
935 if(cnv->options&_MBCS_OPTION_GB18030) { |
|
936 sa->addRange(sa->set, 0, 0xd7ff); |
|
937 sa->addRange(sa->set, 0xe000, 0x10ffff); |
|
938 } else { |
|
939 ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode); |
|
940 } |
|
941 } |
|
942 |
|
943 /* conversion extensions for input not in the main table -------------------- */ |
|
944 |
|
945 /* |
|
946 * Hardcoded extension handling for GB 18030. |
|
947 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file. |
|
948 * |
|
949 * In the future, conversion extensions may handle m:n mappings and delta tables, |
|
950 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html |
|
951 * |
|
952 * If an input character cannot be mapped, then these functions set an error |
|
953 * code. The framework will then call the callback function. |
|
954 */ |
|
955 |
|
956 /* |
|
957 * @return if(U_FAILURE) return the code point for cnv->fromUChar32 |
|
958 * else return 0 after output has been written to the target |
|
959 */ |
|
960 static UChar32 |
|
961 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, |
|
962 UChar32 cp, |
|
963 const UChar **source, const UChar *sourceLimit, |
|
964 uint8_t **target, const uint8_t *targetLimit, |
|
965 int32_t **offsets, int32_t sourceIndex, |
|
966 UBool flush, |
|
967 UErrorCode *pErrorCode) { |
|
968 const int32_t *cx; |
|
969 |
|
970 cnv->useSubChar1=FALSE; |
|
971 |
|
972 if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
|
973 ucnv_extInitialMatchFromU( |
|
974 cnv, cx, |
|
975 cp, source, sourceLimit, |
|
976 (char **)target, (char *)targetLimit, |
|
977 offsets, sourceIndex, |
|
978 flush, |
|
979 pErrorCode) |
|
980 ) { |
|
981 return 0; /* an extension mapping handled the input */ |
|
982 } |
|
983 |
|
984 /* GB 18030 */ |
|
985 if((cnv->options&_MBCS_OPTION_GB18030)!=0) { |
|
986 const uint32_t *range; |
|
987 int32_t i; |
|
988 |
|
989 range=gb18030Ranges[0]; |
|
990 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) { |
|
991 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { |
|
992 /* found the Unicode code point, output the four-byte sequence for it */ |
|
993 uint32_t linear; |
|
994 char bytes[4]; |
|
995 |
|
996 /* get the linear value of the first GB 18030 code in this range */ |
|
997 linear=range[2]-LINEAR_18030_BASE; |
|
998 |
|
999 /* add the offset from the beginning of the range */ |
|
1000 linear+=((uint32_t)cp-range[0]); |
|
1001 |
|
1002 /* turn this into a four-byte sequence */ |
|
1003 bytes[3]=(char)(0x30+linear%10); linear/=10; |
|
1004 bytes[2]=(char)(0x81+linear%126); linear/=126; |
|
1005 bytes[1]=(char)(0x30+linear%10); linear/=10; |
|
1006 bytes[0]=(char)(0x81+linear); |
|
1007 |
|
1008 /* output this sequence */ |
|
1009 ucnv_fromUWriteBytes(cnv, |
|
1010 bytes, 4, (char **)target, (char *)targetLimit, |
|
1011 offsets, sourceIndex, pErrorCode); |
|
1012 return 0; |
|
1013 } |
|
1014 } |
|
1015 } |
|
1016 |
|
1017 /* no mapping */ |
|
1018 *pErrorCode=U_INVALID_CHAR_FOUND; |
|
1019 return cp; |
|
1020 } |
|
1021 |
|
1022 /* |
|
1023 * Input sequence: cnv->toUBytes[0..length[ |
|
1024 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input |
|
1025 * else return 0 after output has been written to the target |
|
1026 */ |
|
1027 static int8_t |
|
1028 _extToU(UConverter *cnv, const UConverterSharedData *sharedData, |
|
1029 int8_t length, |
|
1030 const uint8_t **source, const uint8_t *sourceLimit, |
|
1031 UChar **target, const UChar *targetLimit, |
|
1032 int32_t **offsets, int32_t sourceIndex, |
|
1033 UBool flush, |
|
1034 UErrorCode *pErrorCode) { |
|
1035 const int32_t *cx; |
|
1036 |
|
1037 if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
|
1038 ucnv_extInitialMatchToU( |
|
1039 cnv, cx, |
|
1040 length, (const char **)source, (const char *)sourceLimit, |
|
1041 target, targetLimit, |
|
1042 offsets, sourceIndex, |
|
1043 flush, |
|
1044 pErrorCode) |
|
1045 ) { |
|
1046 return 0; /* an extension mapping handled the input */ |
|
1047 } |
|
1048 |
|
1049 /* GB 18030 */ |
|
1050 if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { |
|
1051 const uint32_t *range; |
|
1052 uint32_t linear; |
|
1053 int32_t i; |
|
1054 |
|
1055 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]); |
|
1056 range=gb18030Ranges[0]; |
|
1057 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) { |
|
1058 if(range[2]<=linear && linear<=range[3]) { |
|
1059 /* found the sequence, output the Unicode code point for it */ |
|
1060 *pErrorCode=U_ZERO_ERROR; |
|
1061 |
|
1062 /* add the linear difference between the input and start sequences to the start code point */ |
|
1063 linear=range[0]+(linear-range[2]); |
|
1064 |
|
1065 /* output this code point */ |
|
1066 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode); |
|
1067 |
|
1068 return 0; |
|
1069 } |
|
1070 } |
|
1071 } |
|
1072 |
|
1073 /* no mapping */ |
|
1074 *pErrorCode=U_INVALID_CHAR_FOUND; |
|
1075 return length; |
|
1076 } |
|
1077 |
|
1078 /* EBCDIC swap LF<->NL ------------------------------------------------------ */ |
|
1079 |
|
1080 /* |
|
1081 * This code modifies a standard EBCDIC<->Unicode mapping table for |
|
1082 * OS/390 (z/OS) Unix System Services (Open Edition). |
|
1083 * The difference is in the mapping of Line Feed and New Line control codes: |
|
1084 * Standard EBCDIC maps |
|
1085 * |
|
1086 * <U000A> \x25 |0 |
|
1087 * <U0085> \x15 |0 |
|
1088 * |
|
1089 * but OS/390 USS EBCDIC swaps the control codes for LF and NL, |
|
1090 * mapping |
|
1091 * |
|
1092 * <U000A> \x15 |0 |
|
1093 * <U0085> \x25 |0 |
|
1094 * |
|
1095 * This code modifies a loaded standard EBCDIC<->Unicode mapping table |
|
1096 * by copying it into allocated memory and swapping the LF and NL values. |
|
1097 * It allows to support the same EBCDIC charset in both versions without |
|
1098 * duplicating the entire installed table. |
|
1099 */ |
|
1100 |
|
1101 /* standard EBCDIC codes */ |
|
1102 #define EBCDIC_LF 0x25 |
|
1103 #define EBCDIC_NL 0x15 |
|
1104 |
|
1105 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ |
|
1106 #define EBCDIC_RT_LF 0xf25 |
|
1107 #define EBCDIC_RT_NL 0xf15 |
|
1108 |
|
1109 /* Unicode code points */ |
|
1110 #define U_LF 0x0a |
|
1111 #define U_NL 0x85 |
|
1112 |
|
1113 static UBool |
|
1114 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { |
|
1115 UConverterMBCSTable *mbcsTable; |
|
1116 |
|
1117 const uint16_t *table, *results; |
|
1118 const uint8_t *bytes; |
|
1119 |
|
1120 int32_t (*newStateTable)[256]; |
|
1121 uint16_t *newResults; |
|
1122 uint8_t *p; |
|
1123 char *name; |
|
1124 |
|
1125 uint32_t stage2Entry; |
|
1126 uint32_t size, sizeofFromUBytes; |
|
1127 |
|
1128 mbcsTable=&sharedData->mbcs; |
|
1129 |
|
1130 table=mbcsTable->fromUnicodeTable; |
|
1131 bytes=mbcsTable->fromUnicodeBytes; |
|
1132 results=(const uint16_t *)bytes; |
|
1133 |
|
1134 /* |
|
1135 * Check that this is an EBCDIC table with SBCS portion - |
|
1136 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. |
|
1137 * |
|
1138 * If not, ignore the option. Options are always ignored if they do not apply. |
|
1139 */ |
|
1140 if(!( |
|
1141 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && |
|
1142 mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && |
|
1143 mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) |
|
1144 )) { |
|
1145 return FALSE; |
|
1146 } |
|
1147 |
|
1148 if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
|
1149 if(!( |
|
1150 EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && |
|
1151 EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) |
|
1152 )) { |
|
1153 return FALSE; |
|
1154 } |
|
1155 } else /* MBCS_OUTPUT_2_SISO */ { |
|
1156 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
|
1157 if(!( |
|
1158 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && |
|
1159 EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) |
|
1160 )) { |
|
1161 return FALSE; |
|
1162 } |
|
1163 |
|
1164 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
|
1165 if(!( |
|
1166 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && |
|
1167 EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) |
|
1168 )) { |
|
1169 return FALSE; |
|
1170 } |
|
1171 } |
|
1172 |
|
1173 if(mbcsTable->fromUBytesLength>0) { |
|
1174 /* |
|
1175 * We _know_ the number of bytes in the fromUnicodeBytes array |
|
1176 * starting with header.version 4.1. |
|
1177 */ |
|
1178 sizeofFromUBytes=mbcsTable->fromUBytesLength; |
|
1179 } else { |
|
1180 /* |
|
1181 * Otherwise: |
|
1182 * There used to be code to enumerate the fromUnicode |
|
1183 * trie and find the highest entry, but it was removed in ICU 3.2 |
|
1184 * because it was not tested and caused a low code coverage number. |
|
1185 * See Jitterbug 3674. |
|
1186 * This affects only some .cnv file formats with a header.version |
|
1187 * below 4.1, and only when swaplfnl is requested. |
|
1188 * |
|
1189 * ucnvmbcs.c revision 1.99 is the last one with the |
|
1190 * ucnv_MBCSSizeofFromUBytes() function. |
|
1191 */ |
|
1192 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
1193 return FALSE; |
|
1194 } |
|
1195 |
|
1196 /* |
|
1197 * The table has an appropriate format. |
|
1198 * Allocate and build |
|
1199 * - a modified to-Unicode state table |
|
1200 * - a modified from-Unicode output array |
|
1201 * - a converter name string with the swap option appended |
|
1202 */ |
|
1203 size= |
|
1204 mbcsTable->countStates*1024+ |
|
1205 sizeofFromUBytes+ |
|
1206 UCNV_MAX_CONVERTER_NAME_LENGTH+20; |
|
1207 p=(uint8_t *)uprv_malloc(size); |
|
1208 if(p==NULL) { |
|
1209 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
|
1210 return FALSE; |
|
1211 } |
|
1212 |
|
1213 /* copy and modify the to-Unicode state table */ |
|
1214 newStateTable=(int32_t (*)[256])p; |
|
1215 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); |
|
1216 |
|
1217 newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); |
|
1218 newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); |
|
1219 |
|
1220 /* copy and modify the from-Unicode result table */ |
|
1221 newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; |
|
1222 uprv_memcpy(newResults, bytes, sizeofFromUBytes); |
|
1223 |
|
1224 /* conveniently, the table access macros work on the left side of expressions */ |
|
1225 if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
|
1226 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; |
|
1227 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; |
|
1228 } else /* MBCS_OUTPUT_2_SISO */ { |
|
1229 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
|
1230 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; |
|
1231 |
|
1232 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
|
1233 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; |
|
1234 } |
|
1235 |
|
1236 /* set the canonical converter name */ |
|
1237 name=(char *)newResults+sizeofFromUBytes; |
|
1238 uprv_strcpy(name, sharedData->staticData->name); |
|
1239 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); |
|
1240 |
|
1241 /* set the pointers */ |
|
1242 umtx_lock(NULL); |
|
1243 if(mbcsTable->swapLFNLStateTable==NULL) { |
|
1244 mbcsTable->swapLFNLStateTable=newStateTable; |
|
1245 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; |
|
1246 mbcsTable->swapLFNLName=name; |
|
1247 |
|
1248 newStateTable=NULL; |
|
1249 } |
|
1250 umtx_unlock(NULL); |
|
1251 |
|
1252 /* release the allocated memory if another thread beat us to it */ |
|
1253 if(newStateTable!=NULL) { |
|
1254 uprv_free(newStateTable); |
|
1255 } |
|
1256 return TRUE; |
|
1257 } |
|
1258 |
|
1259 /* reconstitute omitted fromUnicode data ------------------------------------ */ |
|
1260 |
|
1261 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */ |
|
1262 static UBool U_CALLCONV |
|
1263 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) { |
|
1264 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; |
|
1265 const uint16_t *table; |
|
1266 uint32_t *stage2; |
|
1267 uint8_t *bytes, *p; |
|
1268 UChar32 c; |
|
1269 int32_t i, st3; |
|
1270 |
|
1271 table=mbcsTable->fromUnicodeTable; |
|
1272 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; |
|
1273 |
|
1274 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ |
|
1275 switch(mbcsTable->outputType) { |
|
1276 case MBCS_OUTPUT_3_EUC: |
|
1277 if(value<=0xffff) { |
|
1278 /* short sequences are stored directly */ |
|
1279 /* code set 0 or 1 */ |
|
1280 } else if(value<=0x8effff) { |
|
1281 /* code set 2 */ |
|
1282 value&=0x7fff; |
|
1283 } else /* first byte is 0x8f */ { |
|
1284 /* code set 3 */ |
|
1285 value&=0xff7f; |
|
1286 } |
|
1287 break; |
|
1288 case MBCS_OUTPUT_4_EUC: |
|
1289 if(value<=0xffffff) { |
|
1290 /* short sequences are stored directly */ |
|
1291 /* code set 0 or 1 */ |
|
1292 } else if(value<=0x8effffff) { |
|
1293 /* code set 2 */ |
|
1294 value&=0x7fffff; |
|
1295 } else /* first byte is 0x8f */ { |
|
1296 /* code set 3 */ |
|
1297 value&=0xff7fff; |
|
1298 } |
|
1299 break; |
|
1300 default: |
|
1301 break; |
|
1302 } |
|
1303 |
|
1304 for(i=0; i<=0x1f; ++value, ++i) { |
|
1305 c=codePoints[i]; |
|
1306 if(c<0) { |
|
1307 continue; |
|
1308 } |
|
1309 |
|
1310 /* locate the stage 2 & 3 data */ |
|
1311 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); |
|
1312 p=bytes; |
|
1313 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); |
|
1314 |
|
1315 /* write the codepage bytes into stage 3 */ |
|
1316 switch(mbcsTable->outputType) { |
|
1317 case MBCS_OUTPUT_3: |
|
1318 case MBCS_OUTPUT_4_EUC: |
|
1319 p+=st3*3; |
|
1320 p[0]=(uint8_t)(value>>16); |
|
1321 p[1]=(uint8_t)(value>>8); |
|
1322 p[2]=(uint8_t)value; |
|
1323 break; |
|
1324 case MBCS_OUTPUT_4: |
|
1325 ((uint32_t *)p)[st3]=value; |
|
1326 break; |
|
1327 default: |
|
1328 /* 2 bytes per character */ |
|
1329 ((uint16_t *)p)[st3]=(uint16_t)value; |
|
1330 break; |
|
1331 } |
|
1332 |
|
1333 /* set the roundtrip flag */ |
|
1334 *stage2|=(1UL<<(16+(c&0xf))); |
|
1335 } |
|
1336 return TRUE; |
|
1337 } |
|
1338 |
|
1339 static void |
|
1340 reconstituteData(UConverterMBCSTable *mbcsTable, |
|
1341 uint32_t stage1Length, uint32_t stage2Length, |
|
1342 uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */ |
|
1343 UErrorCode *pErrorCode) { |
|
1344 uint16_t *stage1; |
|
1345 uint32_t *stage2; |
|
1346 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength; |
|
1347 mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); |
|
1348 if(mbcsTable->reconstitutedData==NULL) { |
|
1349 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
|
1350 return; |
|
1351 } |
|
1352 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); |
|
1353 |
|
1354 /* copy existing data and reroute the pointers */ |
|
1355 stage1=(uint16_t *)mbcsTable->reconstitutedData; |
|
1356 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); |
|
1357 |
|
1358 stage2=(uint32_t *)(stage1+stage1Length); |
|
1359 uprv_memcpy(stage2+(fullStage2Length-stage2Length), |
|
1360 mbcsTable->fromUnicodeTable+stage1Length, |
|
1361 stage2Length*4); |
|
1362 |
|
1363 mbcsTable->fromUnicodeTable=stage1; |
|
1364 mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length); |
|
1365 |
|
1366 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ |
|
1367 stage2=(uint32_t *)stage1; |
|
1368 |
|
1369 /* reconstitute the initial part of stage 2 from the mbcsIndex */ |
|
1370 { |
|
1371 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; |
|
1372 int32_t stageUTF8Index=0; |
|
1373 int32_t st1, st2, st3, i; |
|
1374 |
|
1375 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { |
|
1376 st2=stage1[st1]; |
|
1377 if(st2!=stage1Length/2) { |
|
1378 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */ |
|
1379 for(i=0; i<16; ++i) { |
|
1380 st3=mbcsTable->mbcsIndex[stageUTF8Index++]; |
|
1381 if(st3!=0) { |
|
1382 /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */ |
|
1383 st3>>=4; |
|
1384 /* |
|
1385 * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are |
|
1386 * allocated together as a single 64-block for access from the mbcsIndex |
|
1387 */ |
|
1388 stage2[st2++]=st3++; |
|
1389 stage2[st2++]=st3++; |
|
1390 stage2[st2++]=st3++; |
|
1391 stage2[st2++]=st3; |
|
1392 } else { |
|
1393 /* no stage 3 block, skip */ |
|
1394 st2+=4; |
|
1395 } |
|
1396 } |
|
1397 } else { |
|
1398 /* no stage 2 block, skip */ |
|
1399 stageUTF8Index+=16; |
|
1400 } |
|
1401 } |
|
1402 } |
|
1403 |
|
1404 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ |
|
1405 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode); |
|
1406 } |
|
1407 |
|
1408 /* MBCS setup functions ----------------------------------------------------- */ |
|
1409 |
|
1410 static void |
|
1411 ucnv_MBCSLoad(UConverterSharedData *sharedData, |
|
1412 UConverterLoadArgs *pArgs, |
|
1413 const uint8_t *raw, |
|
1414 UErrorCode *pErrorCode) { |
|
1415 UDataInfo info; |
|
1416 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
|
1417 _MBCSHeader *header=(_MBCSHeader *)raw; |
|
1418 uint32_t offset; |
|
1419 uint32_t headerLength; |
|
1420 UBool noFromU=FALSE; |
|
1421 |
|
1422 if(header->version[0]==4) { |
|
1423 headerLength=MBCS_HEADER_V4_LENGTH; |
|
1424 } else if(header->version[0]==5 && header->version[1]>=3 && |
|
1425 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { |
|
1426 headerLength=header->options&MBCS_OPT_LENGTH_MASK; |
|
1427 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); |
|
1428 } else { |
|
1429 *pErrorCode=U_INVALID_TABLE_FORMAT; |
|
1430 return; |
|
1431 } |
|
1432 |
|
1433 mbcsTable->outputType=(uint8_t)header->flags; |
|
1434 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { |
|
1435 *pErrorCode=U_INVALID_TABLE_FORMAT; |
|
1436 return; |
|
1437 } |
|
1438 |
|
1439 /* extension data, header version 4.2 and higher */ |
|
1440 offset=header->flags>>8; |
|
1441 if(offset!=0) { |
|
1442 mbcsTable->extIndexes=(const int32_t *)(raw+offset); |
|
1443 } |
|
1444 |
|
1445 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { |
|
1446 UConverterLoadArgs args={ 0 }; |
|
1447 UConverterSharedData *baseSharedData; |
|
1448 const int32_t *extIndexes; |
|
1449 const char *baseName; |
|
1450 |
|
1451 /* extension-only file, load the base table and set values appropriately */ |
|
1452 if((extIndexes=mbcsTable->extIndexes)==NULL) { |
|
1453 /* extension-only file without extension */ |
|
1454 *pErrorCode=U_INVALID_TABLE_FORMAT; |
|
1455 return; |
|
1456 } |
|
1457 |
|
1458 if(pArgs->nestedLoads!=1) { |
|
1459 /* an extension table must not be loaded as a base table */ |
|
1460 *pErrorCode=U_INVALID_TABLE_FILE; |
|
1461 return; |
|
1462 } |
|
1463 |
|
1464 /* load the base table */ |
|
1465 baseName=(const char *)header+headerLength*4; |
|
1466 if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { |
|
1467 /* forbid loading this same extension-only file */ |
|
1468 *pErrorCode=U_INVALID_TABLE_FORMAT; |
|
1469 return; |
|
1470 } |
|
1471 |
|
1472 /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */ |
|
1473 args.size=sizeof(UConverterLoadArgs); |
|
1474 args.nestedLoads=2; |
|
1475 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; |
|
1476 args.reserved=pArgs->reserved; |
|
1477 args.options=pArgs->options; |
|
1478 args.pkg=pArgs->pkg; |
|
1479 args.name=baseName; |
|
1480 baseSharedData=ucnv_load(&args, pErrorCode); |
|
1481 if(U_FAILURE(*pErrorCode)) { |
|
1482 return; |
|
1483 } |
|
1484 if( baseSharedData->staticData->conversionType!=UCNV_MBCS || |
|
1485 baseSharedData->mbcs.baseSharedData!=NULL |
|
1486 ) { |
|
1487 ucnv_unload(baseSharedData); |
|
1488 *pErrorCode=U_INVALID_TABLE_FORMAT; |
|
1489 return; |
|
1490 } |
|
1491 if(pArgs->onlyTestIsLoadable) { |
|
1492 /* |
|
1493 * Exit as soon as we know that we can load the converter |
|
1494 * and the format is valid and supported. |
|
1495 * The worst that can happen in the following code is a memory |
|
1496 * allocation error. |
|
1497 */ |
|
1498 ucnv_unload(baseSharedData); |
|
1499 return; |
|
1500 } |
|
1501 |
|
1502 /* copy the base table data */ |
|
1503 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable)); |
|
1504 |
|
1505 /* overwrite values with relevant ones for the extension converter */ |
|
1506 mbcsTable->baseSharedData=baseSharedData; |
|
1507 mbcsTable->extIndexes=extIndexes; |
|
1508 |
|
1509 /* |
|
1510 * It would be possible to share the swapLFNL data with a base converter, |
|
1511 * but the generated name would have to be different, and the memory |
|
1512 * would have to be free'd only once. |
|
1513 * It is easier to just create the data for the extension converter |
|
1514 * separately when it is requested. |
|
1515 */ |
|
1516 mbcsTable->swapLFNLStateTable=NULL; |
|
1517 mbcsTable->swapLFNLFromUnicodeBytes=NULL; |
|
1518 mbcsTable->swapLFNLName=NULL; |
|
1519 |
|
1520 /* |
|
1521 * The reconstitutedData must be deleted only when the base converter |
|
1522 * is unloaded. |
|
1523 */ |
|
1524 mbcsTable->reconstitutedData=NULL; |
|
1525 |
|
1526 /* |
|
1527 * Set a special, runtime-only outputType if the extension converter |
|
1528 * is a DBCS version of a base converter that also maps single bytes. |
|
1529 */ |
|
1530 if( sharedData->staticData->conversionType==UCNV_DBCS || |
|
1531 (sharedData->staticData->conversionType==UCNV_MBCS && |
|
1532 sharedData->staticData->minBytesPerChar>=2) |
|
1533 ) { |
|
1534 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { |
|
1535 /* the base converter is SI/SO-stateful */ |
|
1536 int32_t entry; |
|
1537 |
|
1538 /* get the dbcs state from the state table entry for SO=0x0e */ |
|
1539 entry=mbcsTable->stateTable[0][0xe]; |
|
1540 if( MBCS_ENTRY_IS_FINAL(entry) && |
|
1541 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && |
|
1542 MBCS_ENTRY_FINAL_STATE(entry)!=0 |
|
1543 ) { |
|
1544 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); |
|
1545 |
|
1546 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
|
1547 } |
|
1548 } else if( |
|
1549 baseSharedData->staticData->conversionType==UCNV_MBCS && |
|
1550 baseSharedData->staticData->minBytesPerChar==1 && |
|
1551 baseSharedData->staticData->maxBytesPerChar==2 && |
|
1552 mbcsTable->countStates<=127 |
|
1553 ) { |
|
1554 /* non-stateful base converter, need to modify the state table */ |
|
1555 int32_t (*newStateTable)[256]; |
|
1556 int32_t *state; |
|
1557 int32_t i, count; |
|
1558 |
|
1559 /* allocate a new state table and copy the base state table contents */ |
|
1560 count=mbcsTable->countStates; |
|
1561 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); |
|
1562 if(newStateTable==NULL) { |
|
1563 ucnv_unload(baseSharedData); |
|
1564 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
|
1565 return; |
|
1566 } |
|
1567 |
|
1568 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); |
|
1569 |
|
1570 /* change all final single-byte entries to go to a new all-illegal state */ |
|
1571 state=newStateTable[0]; |
|
1572 for(i=0; i<256; ++i) { |
|
1573 if(MBCS_ENTRY_IS_FINAL(state[i])) { |
|
1574 state[i]=MBCS_ENTRY_TRANSITION(count, 0); |
|
1575 } |
|
1576 } |
|
1577 |
|
1578 /* build the new all-illegal state */ |
|
1579 state=newStateTable[count]; |
|
1580 for(i=0; i<256; ++i) { |
|
1581 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); |
|
1582 } |
|
1583 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; |
|
1584 mbcsTable->countStates=(uint8_t)(count+1); |
|
1585 mbcsTable->stateTableOwned=TRUE; |
|
1586 |
|
1587 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
|
1588 } |
|
1589 } |
|
1590 |
|
1591 /* |
|
1592 * unlike below for files with base tables, do not get the unicodeMask |
|
1593 * from the sharedData; instead, use the base table's unicodeMask, |
|
1594 * which we copied in the memcpy above; |
|
1595 * this is necessary because the static data unicodeMask, especially |
|
1596 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data |
|
1597 */ |
|
1598 } else { |
|
1599 /* conversion file with a base table; an additional extension table is optional */ |
|
1600 /* make sure that the output type is known */ |
|
1601 switch(mbcsTable->outputType) { |
|
1602 case MBCS_OUTPUT_1: |
|
1603 case MBCS_OUTPUT_2: |
|
1604 case MBCS_OUTPUT_3: |
|
1605 case MBCS_OUTPUT_4: |
|
1606 case MBCS_OUTPUT_3_EUC: |
|
1607 case MBCS_OUTPUT_4_EUC: |
|
1608 case MBCS_OUTPUT_2_SISO: |
|
1609 /* OK */ |
|
1610 break; |
|
1611 default: |
|
1612 *pErrorCode=U_INVALID_TABLE_FORMAT; |
|
1613 return; |
|
1614 } |
|
1615 if(pArgs->onlyTestIsLoadable) { |
|
1616 /* |
|
1617 * Exit as soon as we know that we can load the converter |
|
1618 * and the format is valid and supported. |
|
1619 * The worst that can happen in the following code is a memory |
|
1620 * allocation error. |
|
1621 */ |
|
1622 return; |
|
1623 } |
|
1624 |
|
1625 mbcsTable->countStates=(uint8_t)header->countStates; |
|
1626 mbcsTable->countToUFallbacks=header->countToUFallbacks; |
|
1627 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); |
|
1628 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); |
|
1629 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); |
|
1630 |
|
1631 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); |
|
1632 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); |
|
1633 mbcsTable->fromUBytesLength=header->fromUBytesLength; |
|
1634 |
|
1635 /* |
|
1636 * converter versions 6.1 and up contain a unicodeMask that is |
|
1637 * used here to select the most efficient function implementations |
|
1638 */ |
|
1639 info.size=sizeof(UDataInfo); |
|
1640 udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); |
|
1641 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { |
|
1642 /* mask off possible future extensions to be safe */ |
|
1643 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); |
|
1644 } else { |
|
1645 /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ |
|
1646 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; |
|
1647 } |
|
1648 |
|
1649 /* |
|
1650 * _MBCSHeader.version 4.3 adds utf8Friendly data structures. |
|
1651 * Check for the header version, SBCS vs. MBCS, and for whether the |
|
1652 * data structures are optimized for code points as high as what the |
|
1653 * runtime code is designed for. |
|
1654 * The implementation does not handle mapping tables with entries for |
|
1655 * unpaired surrogates. |
|
1656 */ |
|
1657 if( header->version[1]>=3 && |
|
1658 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && |
|
1659 (mbcsTable->countStates==1 ? |
|
1660 (header->version[2]>=(SBCS_FAST_MAX>>8)) : |
|
1661 (header->version[2]>=(MBCS_FAST_MAX>>8)) |
|
1662 ) |
|
1663 ) { |
|
1664 mbcsTable->utf8Friendly=TRUE; |
|
1665 |
|
1666 if(mbcsTable->countStates==1) { |
|
1667 /* |
|
1668 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher. |
|
1669 * Build a table with indexes to each block, to be used instead of |
|
1670 * the regular stage 1/2 table. |
|
1671 */ |
|
1672 int32_t i; |
|
1673 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { |
|
1674 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; |
|
1675 } |
|
1676 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */ |
|
1677 mbcsTable->maxFastUChar=SBCS_FAST_MAX; |
|
1678 } else { |
|
1679 /* |
|
1680 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher. |
|
1681 * The .cnv file is prebuilt with an additional stage table with indexes |
|
1682 * to each block. |
|
1683 */ |
|
1684 mbcsTable->mbcsIndex=(const uint16_t *) |
|
1685 (mbcsTable->fromUnicodeBytes+ |
|
1686 (noFromU ? 0 : mbcsTable->fromUBytesLength)); |
|
1687 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; |
|
1688 } |
|
1689 } |
|
1690 |
|
1691 /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */ |
|
1692 { |
|
1693 uint32_t asciiRoundtrips=0xffffffff; |
|
1694 int32_t i; |
|
1695 |
|
1696 for(i=0; i<0x80; ++i) { |
|
1697 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) { |
|
1698 asciiRoundtrips&=~((uint32_t)1<<(i>>2)); |
|
1699 } |
|
1700 } |
|
1701 mbcsTable->asciiRoundtrips=asciiRoundtrips; |
|
1702 } |
|
1703 |
|
1704 if(noFromU) { |
|
1705 uint32_t stage1Length= |
|
1706 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? |
|
1707 0x440 : 0x40; |
|
1708 uint32_t stage2Length= |
|
1709 (header->offsetFromUBytes-header->offsetFromUTable)/4- |
|
1710 stage1Length/2; |
|
1711 reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode); |
|
1712 } |
|
1713 } |
|
1714 |
|
1715 /* Set the impl pointer here so that it is set for both extension-only and base tables. */ |
|
1716 if(mbcsTable->utf8Friendly) { |
|
1717 if(mbcsTable->countStates==1) { |
|
1718 sharedData->impl=&_SBCSUTF8Impl; |
|
1719 } else { |
|
1720 if(mbcsTable->outputType==MBCS_OUTPUT_2) { |
|
1721 sharedData->impl=&_DBCSUTF8Impl; |
|
1722 } |
|
1723 } |
|
1724 } |
|
1725 |
|
1726 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) { |
|
1727 /* |
|
1728 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip. |
|
1729 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly. |
|
1730 */ |
|
1731 mbcsTable->asciiRoundtrips=0; |
|
1732 } |
|
1733 } |
|
1734 |
|
1735 static void |
|
1736 ucnv_MBCSUnload(UConverterSharedData *sharedData) { |
|
1737 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
|
1738 |
|
1739 if(mbcsTable->swapLFNLStateTable!=NULL) { |
|
1740 uprv_free(mbcsTable->swapLFNLStateTable); |
|
1741 } |
|
1742 if(mbcsTable->stateTableOwned) { |
|
1743 uprv_free((void *)mbcsTable->stateTable); |
|
1744 } |
|
1745 if(mbcsTable->baseSharedData!=NULL) { |
|
1746 ucnv_unload(mbcsTable->baseSharedData); |
|
1747 } |
|
1748 if(mbcsTable->reconstitutedData!=NULL) { |
|
1749 uprv_free(mbcsTable->reconstitutedData); |
|
1750 } |
|
1751 } |
|
1752 |
|
1753 static void |
|
1754 ucnv_MBCSOpen(UConverter *cnv, |
|
1755 UConverterLoadArgs *pArgs, |
|
1756 UErrorCode *pErrorCode) { |
|
1757 UConverterMBCSTable *mbcsTable; |
|
1758 const int32_t *extIndexes; |
|
1759 uint8_t outputType; |
|
1760 int8_t maxBytesPerUChar; |
|
1761 |
|
1762 if(pArgs->onlyTestIsLoadable) { |
|
1763 return; |
|
1764 } |
|
1765 |
|
1766 mbcsTable=&cnv->sharedData->mbcs; |
|
1767 outputType=mbcsTable->outputType; |
|
1768 |
|
1769 if(outputType==MBCS_OUTPUT_DBCS_ONLY) { |
|
1770 /* the swaplfnl option does not apply, remove it */ |
|
1771 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
|
1772 } |
|
1773 |
|
1774 if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
1775 /* do this because double-checked locking is broken */ |
|
1776 UBool isCached; |
|
1777 |
|
1778 umtx_lock(NULL); |
|
1779 isCached=mbcsTable->swapLFNLStateTable!=NULL; |
|
1780 umtx_unlock(NULL); |
|
1781 |
|
1782 if(!isCached) { |
|
1783 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { |
|
1784 if(U_FAILURE(*pErrorCode)) { |
|
1785 return; /* something went wrong */ |
|
1786 } |
|
1787 |
|
1788 /* the option does not apply, remove it */ |
|
1789 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
|
1790 } |
|
1791 } |
|
1792 } |
|
1793 |
|
1794 if(uprv_strstr(pArgs->name, "18030")!=NULL) { |
|
1795 if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) { |
|
1796 /* set a flag for GB 18030 mode, which changes the callback behavior */ |
|
1797 cnv->options|=_MBCS_OPTION_GB18030; |
|
1798 } |
|
1799 } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) { |
|
1800 /* set a flag for KEIS converter, which changes the SI/SO character sequence */ |
|
1801 cnv->options|=_MBCS_OPTION_KEIS; |
|
1802 } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) { |
|
1803 /* set a flag for JEF converter, which changes the SI/SO character sequence */ |
|
1804 cnv->options|=_MBCS_OPTION_JEF; |
|
1805 } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) { |
|
1806 /* set a flag for JIPS converter, which changes the SI/SO character sequence */ |
|
1807 cnv->options|=_MBCS_OPTION_JIPS; |
|
1808 } |
|
1809 |
|
1810 /* fix maxBytesPerUChar depending on outputType and options etc. */ |
|
1811 if(outputType==MBCS_OUTPUT_2_SISO) { |
|
1812 cnv->maxBytesPerUChar=3; /* SO+DBCS */ |
|
1813 } |
|
1814 |
|
1815 extIndexes=mbcsTable->extIndexes; |
|
1816 if(extIndexes!=NULL) { |
|
1817 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); |
|
1818 if(outputType==MBCS_OUTPUT_2_SISO) { |
|
1819 ++maxBytesPerUChar; /* SO + multiple DBCS */ |
|
1820 } |
|
1821 |
|
1822 if(maxBytesPerUChar>cnv->maxBytesPerUChar) { |
|
1823 cnv->maxBytesPerUChar=maxBytesPerUChar; |
|
1824 } |
|
1825 } |
|
1826 |
|
1827 #if 0 |
|
1828 /* |
|
1829 * documentation of UConverter fields used for status |
|
1830 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() |
|
1831 */ |
|
1832 |
|
1833 /* toUnicode */ |
|
1834 cnv->toUnicodeStatus=0; /* offset */ |
|
1835 cnv->mode=0; /* state */ |
|
1836 cnv->toULength=0; /* byteIndex */ |
|
1837 |
|
1838 /* fromUnicode */ |
|
1839 cnv->fromUChar32=0; |
|
1840 cnv->fromUnicodeStatus=1; /* prevLength */ |
|
1841 #endif |
|
1842 } |
|
1843 |
|
1844 static const char * |
|
1845 ucnv_MBCSGetName(const UConverter *cnv) { |
|
1846 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) { |
|
1847 return cnv->sharedData->mbcs.swapLFNLName; |
|
1848 } else { |
|
1849 return cnv->sharedData->staticData->name; |
|
1850 } |
|
1851 } |
|
1852 |
|
1853 /* MBCS-to-Unicode conversion functions ------------------------------------- */ |
|
1854 |
|
1855 static UChar32 |
|
1856 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { |
|
1857 const _MBCSToUFallback *toUFallbacks; |
|
1858 uint32_t i, start, limit; |
|
1859 |
|
1860 limit=mbcsTable->countToUFallbacks; |
|
1861 if(limit>0) { |
|
1862 /* do a binary search for the fallback mapping */ |
|
1863 toUFallbacks=mbcsTable->toUFallbacks; |
|
1864 start=0; |
|
1865 while(start<limit-1) { |
|
1866 i=(start+limit)/2; |
|
1867 if(offset<toUFallbacks[i].offset) { |
|
1868 limit=i; |
|
1869 } else { |
|
1870 start=i; |
|
1871 } |
|
1872 } |
|
1873 |
|
1874 /* did we really find it? */ |
|
1875 if(offset==toUFallbacks[start].offset) { |
|
1876 return toUFallbacks[start].codePoint; |
|
1877 } |
|
1878 } |
|
1879 |
|
1880 return 0xfffe; |
|
1881 } |
|
1882 |
|
1883 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ |
|
1884 static void |
|
1885 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
|
1886 UErrorCode *pErrorCode) { |
|
1887 UConverter *cnv; |
|
1888 const uint8_t *source, *sourceLimit; |
|
1889 UChar *target; |
|
1890 const UChar *targetLimit; |
|
1891 int32_t *offsets; |
|
1892 |
|
1893 const int32_t (*stateTable)[256]; |
|
1894 |
|
1895 int32_t sourceIndex; |
|
1896 |
|
1897 int32_t entry; |
|
1898 UChar c; |
|
1899 uint8_t action; |
|
1900 |
|
1901 /* set up the local pointers */ |
|
1902 cnv=pArgs->converter; |
|
1903 source=(const uint8_t *)pArgs->source; |
|
1904 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
|
1905 target=pArgs->target; |
|
1906 targetLimit=pArgs->targetLimit; |
|
1907 offsets=pArgs->offsets; |
|
1908 |
|
1909 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
1910 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
|
1911 } else { |
|
1912 stateTable=cnv->sharedData->mbcs.stateTable; |
|
1913 } |
|
1914 |
|
1915 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
1916 sourceIndex=0; |
|
1917 |
|
1918 /* conversion loop */ |
|
1919 while(source<sourceLimit) { |
|
1920 /* |
|
1921 * This following test is to see if available input would overflow the output. |
|
1922 * It does not catch output of more than one code unit that |
|
1923 * overflows as a result of a surrogate pair or callback output |
|
1924 * from the last source byte. |
|
1925 * Therefore, those situations also test for overflows and will |
|
1926 * then break the loop, too. |
|
1927 */ |
|
1928 if(target>=targetLimit) { |
|
1929 /* target is full */ |
|
1930 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
1931 break; |
|
1932 } |
|
1933 |
|
1934 entry=stateTable[0][*source++]; |
|
1935 /* MBCS_ENTRY_IS_FINAL(entry) */ |
|
1936 |
|
1937 /* test the most common case first */ |
|
1938 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
|
1939 /* output BMP code point */ |
|
1940 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
1941 if(offsets!=NULL) { |
|
1942 *offsets++=sourceIndex; |
|
1943 } |
|
1944 |
|
1945 /* normal end of action codes: prepare for a new character */ |
|
1946 ++sourceIndex; |
|
1947 continue; |
|
1948 } |
|
1949 |
|
1950 /* |
|
1951 * An if-else-if chain provides more reliable performance for |
|
1952 * the most common cases compared to a switch. |
|
1953 */ |
|
1954 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
1955 if(action==MBCS_STATE_VALID_DIRECT_20 || |
|
1956 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
|
1957 ) { |
|
1958 entry=MBCS_ENTRY_FINAL_VALUE(entry); |
|
1959 /* output surrogate pair */ |
|
1960 *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
|
1961 if(offsets!=NULL) { |
|
1962 *offsets++=sourceIndex; |
|
1963 } |
|
1964 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
|
1965 if(target<targetLimit) { |
|
1966 *target++=c; |
|
1967 if(offsets!=NULL) { |
|
1968 *offsets++=sourceIndex; |
|
1969 } |
|
1970 } else { |
|
1971 /* target overflow */ |
|
1972 cnv->UCharErrorBuffer[0]=c; |
|
1973 cnv->UCharErrorBufferLength=1; |
|
1974 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
1975 break; |
|
1976 } |
|
1977 |
|
1978 ++sourceIndex; |
|
1979 continue; |
|
1980 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
1981 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
|
1982 /* output BMP code point */ |
|
1983 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
1984 if(offsets!=NULL) { |
|
1985 *offsets++=sourceIndex; |
|
1986 } |
|
1987 |
|
1988 ++sourceIndex; |
|
1989 continue; |
|
1990 } |
|
1991 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
1992 /* just fall through */ |
|
1993 } else if(action==MBCS_STATE_ILLEGAL) { |
|
1994 /* callback(illegal) */ |
|
1995 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
1996 } else { |
|
1997 /* reserved, must never occur */ |
|
1998 ++sourceIndex; |
|
1999 continue; |
|
2000 } |
|
2001 |
|
2002 if(U_FAILURE(*pErrorCode)) { |
|
2003 /* callback(illegal) */ |
|
2004 break; |
|
2005 } else /* unassigned sequences indicated with byteIndex>0 */ { |
|
2006 /* try an extension mapping */ |
|
2007 pArgs->source=(const char *)source; |
|
2008 cnv->toUBytes[0]=*(source-1); |
|
2009 cnv->toULength=_extToU(cnv, cnv->sharedData, |
|
2010 1, &source, sourceLimit, |
|
2011 &target, targetLimit, |
|
2012 &offsets, sourceIndex, |
|
2013 pArgs->flush, |
|
2014 pErrorCode); |
|
2015 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); |
|
2016 |
|
2017 if(U_FAILURE(*pErrorCode)) { |
|
2018 /* not mappable or buffer overflow */ |
|
2019 break; |
|
2020 } |
|
2021 } |
|
2022 } |
|
2023 |
|
2024 /* write back the updated pointers */ |
|
2025 pArgs->source=(const char *)source; |
|
2026 pArgs->target=target; |
|
2027 pArgs->offsets=offsets; |
|
2028 } |
|
2029 |
|
2030 /* |
|
2031 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages |
|
2032 * that only map to and from the BMP. |
|
2033 * In addition to single-byte optimizations, the offset calculations |
|
2034 * become much easier. |
|
2035 */ |
|
2036 static void |
|
2037 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, |
|
2038 UErrorCode *pErrorCode) { |
|
2039 UConverter *cnv; |
|
2040 const uint8_t *source, *sourceLimit, *lastSource; |
|
2041 UChar *target; |
|
2042 int32_t targetCapacity, length; |
|
2043 int32_t *offsets; |
|
2044 |
|
2045 const int32_t (*stateTable)[256]; |
|
2046 |
|
2047 int32_t sourceIndex; |
|
2048 |
|
2049 int32_t entry; |
|
2050 uint8_t action; |
|
2051 |
|
2052 /* set up the local pointers */ |
|
2053 cnv=pArgs->converter; |
|
2054 source=(const uint8_t *)pArgs->source; |
|
2055 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
|
2056 target=pArgs->target; |
|
2057 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
|
2058 offsets=pArgs->offsets; |
|
2059 |
|
2060 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
2061 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
|
2062 } else { |
|
2063 stateTable=cnv->sharedData->mbcs.stateTable; |
|
2064 } |
|
2065 |
|
2066 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
2067 sourceIndex=0; |
|
2068 lastSource=source; |
|
2069 |
|
2070 /* |
|
2071 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
|
2072 * for the minimum of the sourceLength and targetCapacity |
|
2073 */ |
|
2074 length=(int32_t)(sourceLimit-source); |
|
2075 if(length<targetCapacity) { |
|
2076 targetCapacity=length; |
|
2077 } |
|
2078 |
|
2079 #if MBCS_UNROLL_SINGLE_TO_BMP |
|
2080 /* unrolling makes it faster on Pentium III/Windows 2000 */ |
|
2081 /* unroll the loop with the most common case */ |
|
2082 unrolled: |
|
2083 if(targetCapacity>=16) { |
|
2084 int32_t count, loops, oredEntries; |
|
2085 |
|
2086 loops=count=targetCapacity>>4; |
|
2087 do { |
|
2088 oredEntries=entry=stateTable[0][*source++]; |
|
2089 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2090 oredEntries|=entry=stateTable[0][*source++]; |
|
2091 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2092 oredEntries|=entry=stateTable[0][*source++]; |
|
2093 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2094 oredEntries|=entry=stateTable[0][*source++]; |
|
2095 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2096 oredEntries|=entry=stateTable[0][*source++]; |
|
2097 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2098 oredEntries|=entry=stateTable[0][*source++]; |
|
2099 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2100 oredEntries|=entry=stateTable[0][*source++]; |
|
2101 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2102 oredEntries|=entry=stateTable[0][*source++]; |
|
2103 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2104 oredEntries|=entry=stateTable[0][*source++]; |
|
2105 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2106 oredEntries|=entry=stateTable[0][*source++]; |
|
2107 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2108 oredEntries|=entry=stateTable[0][*source++]; |
|
2109 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2110 oredEntries|=entry=stateTable[0][*source++]; |
|
2111 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2112 oredEntries|=entry=stateTable[0][*source++]; |
|
2113 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2114 oredEntries|=entry=stateTable[0][*source++]; |
|
2115 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2116 oredEntries|=entry=stateTable[0][*source++]; |
|
2117 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2118 oredEntries|=entry=stateTable[0][*source++]; |
|
2119 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2120 |
|
2121 /* were all 16 entries really valid? */ |
|
2122 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { |
|
2123 /* no, return to the first of these 16 */ |
|
2124 source-=16; |
|
2125 target-=16; |
|
2126 break; |
|
2127 } |
|
2128 } while(--count>0); |
|
2129 count=loops-count; |
|
2130 targetCapacity-=16*count; |
|
2131 |
|
2132 if(offsets!=NULL) { |
|
2133 lastSource+=16*count; |
|
2134 while(count>0) { |
|
2135 *offsets++=sourceIndex++; |
|
2136 *offsets++=sourceIndex++; |
|
2137 *offsets++=sourceIndex++; |
|
2138 *offsets++=sourceIndex++; |
|
2139 *offsets++=sourceIndex++; |
|
2140 *offsets++=sourceIndex++; |
|
2141 *offsets++=sourceIndex++; |
|
2142 *offsets++=sourceIndex++; |
|
2143 *offsets++=sourceIndex++; |
|
2144 *offsets++=sourceIndex++; |
|
2145 *offsets++=sourceIndex++; |
|
2146 *offsets++=sourceIndex++; |
|
2147 *offsets++=sourceIndex++; |
|
2148 *offsets++=sourceIndex++; |
|
2149 *offsets++=sourceIndex++; |
|
2150 *offsets++=sourceIndex++; |
|
2151 --count; |
|
2152 } |
|
2153 } |
|
2154 } |
|
2155 #endif |
|
2156 |
|
2157 /* conversion loop */ |
|
2158 while(targetCapacity > 0 && source < sourceLimit) { |
|
2159 entry=stateTable[0][*source++]; |
|
2160 /* MBCS_ENTRY_IS_FINAL(entry) */ |
|
2161 |
|
2162 /* test the most common case first */ |
|
2163 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
|
2164 /* output BMP code point */ |
|
2165 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2166 --targetCapacity; |
|
2167 continue; |
|
2168 } |
|
2169 |
|
2170 /* |
|
2171 * An if-else-if chain provides more reliable performance for |
|
2172 * the most common cases compared to a switch. |
|
2173 */ |
|
2174 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
2175 if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
2176 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
|
2177 /* output BMP code point */ |
|
2178 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2179 --targetCapacity; |
|
2180 continue; |
|
2181 } |
|
2182 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
2183 /* just fall through */ |
|
2184 } else if(action==MBCS_STATE_ILLEGAL) { |
|
2185 /* callback(illegal) */ |
|
2186 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2187 } else { |
|
2188 /* reserved, must never occur */ |
|
2189 continue; |
|
2190 } |
|
2191 |
|
2192 /* set offsets since the start or the last extension */ |
|
2193 if(offsets!=NULL) { |
|
2194 int32_t count=(int32_t)(source-lastSource); |
|
2195 |
|
2196 /* predecrement: do not set the offset for the callback-causing character */ |
|
2197 while(--count>0) { |
|
2198 *offsets++=sourceIndex++; |
|
2199 } |
|
2200 /* offset and sourceIndex are now set for the current character */ |
|
2201 } |
|
2202 |
|
2203 if(U_FAILURE(*pErrorCode)) { |
|
2204 /* callback(illegal) */ |
|
2205 break; |
|
2206 } else /* unassigned sequences indicated with byteIndex>0 */ { |
|
2207 /* try an extension mapping */ |
|
2208 lastSource=source; |
|
2209 cnv->toUBytes[0]=*(source-1); |
|
2210 cnv->toULength=_extToU(cnv, cnv->sharedData, |
|
2211 1, &source, sourceLimit, |
|
2212 &target, pArgs->targetLimit, |
|
2213 &offsets, sourceIndex, |
|
2214 pArgs->flush, |
|
2215 pErrorCode); |
|
2216 sourceIndex+=1+(int32_t)(source-lastSource); |
|
2217 |
|
2218 if(U_FAILURE(*pErrorCode)) { |
|
2219 /* not mappable or buffer overflow */ |
|
2220 break; |
|
2221 } |
|
2222 |
|
2223 /* recalculate the targetCapacity after an extension mapping */ |
|
2224 targetCapacity=(int32_t)(pArgs->targetLimit-target); |
|
2225 length=(int32_t)(sourceLimit-source); |
|
2226 if(length<targetCapacity) { |
|
2227 targetCapacity=length; |
|
2228 } |
|
2229 } |
|
2230 |
|
2231 #if MBCS_UNROLL_SINGLE_TO_BMP |
|
2232 /* unrolling makes it faster on Pentium III/Windows 2000 */ |
|
2233 goto unrolled; |
|
2234 #endif |
|
2235 } |
|
2236 |
|
2237 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) { |
|
2238 /* target is full */ |
|
2239 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
2240 } |
|
2241 |
|
2242 /* set offsets since the start or the last callback */ |
|
2243 if(offsets!=NULL) { |
|
2244 size_t count=source-lastSource; |
|
2245 while(count>0) { |
|
2246 *offsets++=sourceIndex++; |
|
2247 --count; |
|
2248 } |
|
2249 } |
|
2250 |
|
2251 /* write back the updated pointers */ |
|
2252 pArgs->source=(const char *)source; |
|
2253 pArgs->target=target; |
|
2254 pArgs->offsets=offsets; |
|
2255 } |
|
2256 |
|
2257 static UBool |
|
2258 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { |
|
2259 const int32_t *row=stateTable[state]; |
|
2260 int32_t b, entry; |
|
2261 /* First test for final entries in this state for some commonly valid byte values. */ |
|
2262 entry=row[0xa1]; |
|
2263 if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
|
2264 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
|
2265 ) { |
|
2266 return TRUE; |
|
2267 } |
|
2268 entry=row[0x41]; |
|
2269 if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
|
2270 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
|
2271 ) { |
|
2272 return TRUE; |
|
2273 } |
|
2274 /* Then test for final entries in this state. */ |
|
2275 for(b=0; b<=0xff; ++b) { |
|
2276 entry=row[b]; |
|
2277 if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
|
2278 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
|
2279 ) { |
|
2280 return TRUE; |
|
2281 } |
|
2282 } |
|
2283 /* Then recurse for transition entries. */ |
|
2284 for(b=0; b<=0xff; ++b) { |
|
2285 entry=row[b]; |
|
2286 if( MBCS_ENTRY_IS_TRANSITION(entry) && |
|
2287 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)) |
|
2288 ) { |
|
2289 return TRUE; |
|
2290 } |
|
2291 } |
|
2292 return FALSE; |
|
2293 } |
|
2294 |
|
2295 /* |
|
2296 * Is byte b a single/lead byte in this state? |
|
2297 * Recurse for transition states, because here we don't want to say that |
|
2298 * b is a lead byte if all byte sequences that start with b are illegal. |
|
2299 */ |
|
2300 static UBool |
|
2301 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) { |
|
2302 const int32_t *row=stateTable[state]; |
|
2303 int32_t entry=row[b]; |
|
2304 if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ |
|
2305 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)); |
|
2306 } else { |
|
2307 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
2308 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { |
|
2309 return FALSE; /* SI/SO are illegal for DBCS-only conversion */ |
|
2310 } else { |
|
2311 return action!=MBCS_STATE_ILLEGAL; |
|
2312 } |
|
2313 } |
|
2314 } |
|
2315 |
|
2316 U_CFUNC void |
|
2317 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
|
2318 UErrorCode *pErrorCode) { |
|
2319 UConverter *cnv; |
|
2320 const uint8_t *source, *sourceLimit; |
|
2321 UChar *target; |
|
2322 const UChar *targetLimit; |
|
2323 int32_t *offsets; |
|
2324 |
|
2325 const int32_t (*stateTable)[256]; |
|
2326 const uint16_t *unicodeCodeUnits; |
|
2327 |
|
2328 uint32_t offset; |
|
2329 uint8_t state; |
|
2330 int8_t byteIndex; |
|
2331 uint8_t *bytes; |
|
2332 |
|
2333 int32_t sourceIndex, nextSourceIndex; |
|
2334 |
|
2335 int32_t entry; |
|
2336 UChar c; |
|
2337 uint8_t action; |
|
2338 |
|
2339 /* use optimized function if possible */ |
|
2340 cnv=pArgs->converter; |
|
2341 |
|
2342 if(cnv->preToULength>0) { |
|
2343 /* |
|
2344 * pass sourceIndex=-1 because we continue from an earlier buffer |
|
2345 * in the future, this may change with continuous offsets |
|
2346 */ |
|
2347 ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); |
|
2348 |
|
2349 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { |
|
2350 return; |
|
2351 } |
|
2352 } |
|
2353 |
|
2354 if(cnv->sharedData->mbcs.countStates==1) { |
|
2355 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
|
2356 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); |
|
2357 } else { |
|
2358 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); |
|
2359 } |
|
2360 return; |
|
2361 } |
|
2362 |
|
2363 /* set up the local pointers */ |
|
2364 source=(const uint8_t *)pArgs->source; |
|
2365 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
|
2366 target=pArgs->target; |
|
2367 targetLimit=pArgs->targetLimit; |
|
2368 offsets=pArgs->offsets; |
|
2369 |
|
2370 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
2371 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
|
2372 } else { |
|
2373 stateTable=cnv->sharedData->mbcs.stateTable; |
|
2374 } |
|
2375 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
|
2376 |
|
2377 /* get the converter state from UConverter */ |
|
2378 offset=cnv->toUnicodeStatus; |
|
2379 byteIndex=cnv->toULength; |
|
2380 bytes=cnv->toUBytes; |
|
2381 |
|
2382 /* |
|
2383 * if we are in the SBCS state for a DBCS-only converter, |
|
2384 * then load the DBCS state from the MBCS data |
|
2385 * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
|
2386 */ |
|
2387 if((state=(uint8_t)(cnv->mode))==0) { |
|
2388 state=cnv->sharedData->mbcs.dbcsOnlyState; |
|
2389 } |
|
2390 |
|
2391 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
2392 sourceIndex=byteIndex==0 ? 0 : -1; |
|
2393 nextSourceIndex=0; |
|
2394 |
|
2395 /* conversion loop */ |
|
2396 while(source<sourceLimit) { |
|
2397 /* |
|
2398 * This following test is to see if available input would overflow the output. |
|
2399 * It does not catch output of more than one code unit that |
|
2400 * overflows as a result of a surrogate pair or callback output |
|
2401 * from the last source byte. |
|
2402 * Therefore, those situations also test for overflows and will |
|
2403 * then break the loop, too. |
|
2404 */ |
|
2405 if(target>=targetLimit) { |
|
2406 /* target is full */ |
|
2407 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
2408 break; |
|
2409 } |
|
2410 |
|
2411 if(byteIndex==0) { |
|
2412 /* optimized loop for 1/2-byte input and BMP output */ |
|
2413 if(offsets==NULL) { |
|
2414 do { |
|
2415 entry=stateTable[state][*source]; |
|
2416 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
2417 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
|
2418 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
|
2419 |
|
2420 ++source; |
|
2421 if( source<sourceLimit && |
|
2422 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
|
2423 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
|
2424 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
|
2425 ) { |
|
2426 ++source; |
|
2427 *target++=c; |
|
2428 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2429 offset=0; |
|
2430 } else { |
|
2431 /* set the state and leave the optimized loop */ |
|
2432 bytes[0]=*(source-1); |
|
2433 byteIndex=1; |
|
2434 break; |
|
2435 } |
|
2436 } else { |
|
2437 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
|
2438 /* output BMP code point */ |
|
2439 ++source; |
|
2440 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2441 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2442 } else { |
|
2443 /* leave the optimized loop */ |
|
2444 break; |
|
2445 } |
|
2446 } |
|
2447 } while(source<sourceLimit && target<targetLimit); |
|
2448 } else /* offsets!=NULL */ { |
|
2449 do { |
|
2450 entry=stateTable[state][*source]; |
|
2451 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
2452 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
|
2453 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
|
2454 |
|
2455 ++source; |
|
2456 if( source<sourceLimit && |
|
2457 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
|
2458 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
|
2459 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
|
2460 ) { |
|
2461 ++source; |
|
2462 *target++=c; |
|
2463 if(offsets!=NULL) { |
|
2464 *offsets++=sourceIndex; |
|
2465 sourceIndex=(nextSourceIndex+=2); |
|
2466 } |
|
2467 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2468 offset=0; |
|
2469 } else { |
|
2470 /* set the state and leave the optimized loop */ |
|
2471 ++nextSourceIndex; |
|
2472 bytes[0]=*(source-1); |
|
2473 byteIndex=1; |
|
2474 break; |
|
2475 } |
|
2476 } else { |
|
2477 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
|
2478 /* output BMP code point */ |
|
2479 ++source; |
|
2480 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2481 if(offsets!=NULL) { |
|
2482 *offsets++=sourceIndex; |
|
2483 sourceIndex=++nextSourceIndex; |
|
2484 } |
|
2485 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2486 } else { |
|
2487 /* leave the optimized loop */ |
|
2488 break; |
|
2489 } |
|
2490 } |
|
2491 } while(source<sourceLimit && target<targetLimit); |
|
2492 } |
|
2493 |
|
2494 /* |
|
2495 * these tests and break statements could be put inside the loop |
|
2496 * if C had "break outerLoop" like Java |
|
2497 */ |
|
2498 if(source>=sourceLimit) { |
|
2499 break; |
|
2500 } |
|
2501 if(target>=targetLimit) { |
|
2502 /* target is full */ |
|
2503 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
2504 break; |
|
2505 } |
|
2506 |
|
2507 ++nextSourceIndex; |
|
2508 bytes[byteIndex++]=*source++; |
|
2509 } else /* byteIndex>0 */ { |
|
2510 ++nextSourceIndex; |
|
2511 entry=stateTable[state][bytes[byteIndex++]=*source++]; |
|
2512 } |
|
2513 |
|
2514 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
2515 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
|
2516 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
|
2517 continue; |
|
2518 } |
|
2519 |
|
2520 /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
|
2521 cnv->mode=state; |
|
2522 |
|
2523 /* set the next state early so that we can reuse the entry variable */ |
|
2524 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2525 |
|
2526 /* |
|
2527 * An if-else-if chain provides more reliable performance for |
|
2528 * the most common cases compared to a switch. |
|
2529 */ |
|
2530 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
2531 if(action==MBCS_STATE_VALID_16) { |
|
2532 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2533 c=unicodeCodeUnits[offset]; |
|
2534 if(c<0xfffe) { |
|
2535 /* output BMP code point */ |
|
2536 *target++=c; |
|
2537 if(offsets!=NULL) { |
|
2538 *offsets++=sourceIndex; |
|
2539 } |
|
2540 byteIndex=0; |
|
2541 } else if(c==0xfffe) { |
|
2542 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
|
2543 /* output fallback BMP code point */ |
|
2544 *target++=(UChar)entry; |
|
2545 if(offsets!=NULL) { |
|
2546 *offsets++=sourceIndex; |
|
2547 } |
|
2548 byteIndex=0; |
|
2549 } |
|
2550 } else { |
|
2551 /* callback(illegal) */ |
|
2552 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2553 } |
|
2554 } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
|
2555 /* output BMP code point */ |
|
2556 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2557 if(offsets!=NULL) { |
|
2558 *offsets++=sourceIndex; |
|
2559 } |
|
2560 byteIndex=0; |
|
2561 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
|
2562 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2563 c=unicodeCodeUnits[offset++]; |
|
2564 if(c<0xd800) { |
|
2565 /* output BMP code point below 0xd800 */ |
|
2566 *target++=c; |
|
2567 if(offsets!=NULL) { |
|
2568 *offsets++=sourceIndex; |
|
2569 } |
|
2570 byteIndex=0; |
|
2571 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
|
2572 /* output roundtrip or fallback surrogate pair */ |
|
2573 *target++=(UChar)(c&0xdbff); |
|
2574 if(offsets!=NULL) { |
|
2575 *offsets++=sourceIndex; |
|
2576 } |
|
2577 byteIndex=0; |
|
2578 if(target<targetLimit) { |
|
2579 *target++=unicodeCodeUnits[offset]; |
|
2580 if(offsets!=NULL) { |
|
2581 *offsets++=sourceIndex; |
|
2582 } |
|
2583 } else { |
|
2584 /* target overflow */ |
|
2585 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; |
|
2586 cnv->UCharErrorBufferLength=1; |
|
2587 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
2588 |
|
2589 offset=0; |
|
2590 break; |
|
2591 } |
|
2592 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
|
2593 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
|
2594 *target++=unicodeCodeUnits[offset]; |
|
2595 if(offsets!=NULL) { |
|
2596 *offsets++=sourceIndex; |
|
2597 } |
|
2598 byteIndex=0; |
|
2599 } else if(c==0xffff) { |
|
2600 /* callback(illegal) */ |
|
2601 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2602 } |
|
2603 } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
|
2604 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
|
2605 ) { |
|
2606 entry=MBCS_ENTRY_FINAL_VALUE(entry); |
|
2607 /* output surrogate pair */ |
|
2608 *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
|
2609 if(offsets!=NULL) { |
|
2610 *offsets++=sourceIndex; |
|
2611 } |
|
2612 byteIndex=0; |
|
2613 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
|
2614 if(target<targetLimit) { |
|
2615 *target++=c; |
|
2616 if(offsets!=NULL) { |
|
2617 *offsets++=sourceIndex; |
|
2618 } |
|
2619 } else { |
|
2620 /* target overflow */ |
|
2621 cnv->UCharErrorBuffer[0]=c; |
|
2622 cnv->UCharErrorBufferLength=1; |
|
2623 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
2624 |
|
2625 offset=0; |
|
2626 break; |
|
2627 } |
|
2628 } else if(action==MBCS_STATE_CHANGE_ONLY) { |
|
2629 /* |
|
2630 * This serves as a state change without any output. |
|
2631 * It is useful for reading simple stateful encodings, |
|
2632 * for example using just Shift-In/Shift-Out codes. |
|
2633 * The 21 unused bits may later be used for more sophisticated |
|
2634 * state transitions. |
|
2635 */ |
|
2636 if(cnv->sharedData->mbcs.dbcsOnlyState==0) { |
|
2637 byteIndex=0; |
|
2638 } else { |
|
2639 /* SI/SO are illegal for DBCS-only conversion */ |
|
2640 state=(uint8_t)(cnv->mode); /* restore the previous state */ |
|
2641 |
|
2642 /* callback(illegal) */ |
|
2643 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2644 } |
|
2645 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
2646 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
|
2647 /* output BMP code point */ |
|
2648 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2649 if(offsets!=NULL) { |
|
2650 *offsets++=sourceIndex; |
|
2651 } |
|
2652 byteIndex=0; |
|
2653 } |
|
2654 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
2655 /* just fall through */ |
|
2656 } else if(action==MBCS_STATE_ILLEGAL) { |
|
2657 /* callback(illegal) */ |
|
2658 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2659 } else { |
|
2660 /* reserved, must never occur */ |
|
2661 byteIndex=0; |
|
2662 } |
|
2663 |
|
2664 /* end of action codes: prepare for a new character */ |
|
2665 offset=0; |
|
2666 |
|
2667 if(byteIndex==0) { |
|
2668 sourceIndex=nextSourceIndex; |
|
2669 } else if(U_FAILURE(*pErrorCode)) { |
|
2670 /* callback(illegal) */ |
|
2671 if(byteIndex>1) { |
|
2672 /* |
|
2673 * Ticket 5691: consistent illegal sequences: |
|
2674 * - We include at least the first byte in the illegal sequence. |
|
2675 * - If any of the non-initial bytes could be the start of a character, |
|
2676 * we stop the illegal sequence before the first one of those. |
|
2677 */ |
|
2678 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); |
|
2679 int8_t i; |
|
2680 for(i=1; |
|
2681 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]); |
|
2682 ++i) {} |
|
2683 if(i<byteIndex) { |
|
2684 /* Back out some bytes. */ |
|
2685 int8_t backOutDistance=byteIndex-i; |
|
2686 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source); |
|
2687 byteIndex=i; /* length of reported illegal byte sequence */ |
|
2688 if(backOutDistance<=bytesFromThisBuffer) { |
|
2689 source-=backOutDistance; |
|
2690 } else { |
|
2691 /* Back out bytes from the previous buffer: Need to replay them. */ |
|
2692 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); |
|
2693 /* preToULength is negative! */ |
|
2694 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); |
|
2695 source=(const uint8_t *)pArgs->source; |
|
2696 } |
|
2697 } |
|
2698 } |
|
2699 break; |
|
2700 } else /* unassigned sequences indicated with byteIndex>0 */ { |
|
2701 /* try an extension mapping */ |
|
2702 pArgs->source=(const char *)source; |
|
2703 byteIndex=_extToU(cnv, cnv->sharedData, |
|
2704 byteIndex, &source, sourceLimit, |
|
2705 &target, targetLimit, |
|
2706 &offsets, sourceIndex, |
|
2707 pArgs->flush, |
|
2708 pErrorCode); |
|
2709 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source); |
|
2710 |
|
2711 if(U_FAILURE(*pErrorCode)) { |
|
2712 /* not mappable or buffer overflow */ |
|
2713 break; |
|
2714 } |
|
2715 } |
|
2716 } |
|
2717 |
|
2718 /* set the converter state back into UConverter */ |
|
2719 cnv->toUnicodeStatus=offset; |
|
2720 cnv->mode=state; |
|
2721 cnv->toULength=byteIndex; |
|
2722 |
|
2723 /* write back the updated pointers */ |
|
2724 pArgs->source=(const char *)source; |
|
2725 pArgs->target=target; |
|
2726 pArgs->offsets=offsets; |
|
2727 } |
|
2728 |
|
2729 /* |
|
2730 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages. |
|
2731 * We still need a conversion loop in case we find reserved action codes, which are to be ignored. |
|
2732 */ |
|
2733 static UChar32 |
|
2734 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, |
|
2735 UErrorCode *pErrorCode) { |
|
2736 UConverter *cnv; |
|
2737 const int32_t (*stateTable)[256]; |
|
2738 const uint8_t *source, *sourceLimit; |
|
2739 |
|
2740 int32_t entry; |
|
2741 uint8_t action; |
|
2742 |
|
2743 /* set up the local pointers */ |
|
2744 cnv=pArgs->converter; |
|
2745 source=(const uint8_t *)pArgs->source; |
|
2746 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
|
2747 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
2748 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
|
2749 } else { |
|
2750 stateTable=cnv->sharedData->mbcs.stateTable; |
|
2751 } |
|
2752 |
|
2753 /* conversion loop */ |
|
2754 while(source<sourceLimit) { |
|
2755 entry=stateTable[0][*source++]; |
|
2756 /* MBCS_ENTRY_IS_FINAL(entry) */ |
|
2757 |
|
2758 /* write back the updated pointer early so that we can return directly */ |
|
2759 pArgs->source=(const char *)source; |
|
2760 |
|
2761 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
|
2762 /* output BMP code point */ |
|
2763 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2764 } |
|
2765 |
|
2766 /* |
|
2767 * An if-else-if chain provides more reliable performance for |
|
2768 * the most common cases compared to a switch. |
|
2769 */ |
|
2770 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
2771 if( action==MBCS_STATE_VALID_DIRECT_20 || |
|
2772 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
|
2773 ) { |
|
2774 /* output supplementary code point */ |
|
2775 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
|
2776 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
2777 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
|
2778 /* output BMP code point */ |
|
2779 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2780 } |
|
2781 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
2782 /* just fall through */ |
|
2783 } else if(action==MBCS_STATE_ILLEGAL) { |
|
2784 /* callback(illegal) */ |
|
2785 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2786 } else { |
|
2787 /* reserved, must never occur */ |
|
2788 continue; |
|
2789 } |
|
2790 |
|
2791 if(U_FAILURE(*pErrorCode)) { |
|
2792 /* callback(illegal) */ |
|
2793 break; |
|
2794 } else /* unassigned sequence */ { |
|
2795 /* defer to the generic implementation */ |
|
2796 pArgs->source=(const char *)source-1; |
|
2797 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
|
2798 } |
|
2799 } |
|
2800 |
|
2801 /* no output because of empty input or only state changes */ |
|
2802 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
2803 return 0xffff; |
|
2804 } |
|
2805 |
|
2806 /* |
|
2807 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character |
|
2808 * conversion without offset handling. |
|
2809 * |
|
2810 * When a character does not have a mapping to Unicode, then we return to the |
|
2811 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback |
|
2812 * handling. |
|
2813 * We also defer to the generic code in other complicated cases and have them |
|
2814 * ultimately handled by _MBCSToUnicodeWithOffsets() itself. |
|
2815 * |
|
2816 * All normal mappings and errors are handled here. |
|
2817 */ |
|
2818 static UChar32 |
|
2819 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
|
2820 UErrorCode *pErrorCode) { |
|
2821 UConverter *cnv; |
|
2822 const uint8_t *source, *sourceLimit, *lastSource; |
|
2823 |
|
2824 const int32_t (*stateTable)[256]; |
|
2825 const uint16_t *unicodeCodeUnits; |
|
2826 |
|
2827 uint32_t offset; |
|
2828 uint8_t state; |
|
2829 |
|
2830 int32_t entry; |
|
2831 UChar32 c; |
|
2832 uint8_t action; |
|
2833 |
|
2834 /* use optimized function if possible */ |
|
2835 cnv=pArgs->converter; |
|
2836 |
|
2837 if(cnv->preToULength>0) { |
|
2838 /* use the generic code in ucnv_getNextUChar() to continue with a partial match */ |
|
2839 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
|
2840 } |
|
2841 |
|
2842 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { |
|
2843 /* |
|
2844 * Using the generic ucnv_getNextUChar() code lets us deal correctly |
|
2845 * with the rare case of a codepage that maps single surrogates |
|
2846 * without adding the complexity to this already complicated function here. |
|
2847 */ |
|
2848 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
|
2849 } else if(cnv->sharedData->mbcs.countStates==1) { |
|
2850 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); |
|
2851 } |
|
2852 |
|
2853 /* set up the local pointers */ |
|
2854 source=lastSource=(const uint8_t *)pArgs->source; |
|
2855 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
|
2856 |
|
2857 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
2858 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
|
2859 } else { |
|
2860 stateTable=cnv->sharedData->mbcs.stateTable; |
|
2861 } |
|
2862 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
|
2863 |
|
2864 /* get the converter state from UConverter */ |
|
2865 offset=cnv->toUnicodeStatus; |
|
2866 |
|
2867 /* |
|
2868 * if we are in the SBCS state for a DBCS-only converter, |
|
2869 * then load the DBCS state from the MBCS data |
|
2870 * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
|
2871 */ |
|
2872 if((state=(uint8_t)(cnv->mode))==0) { |
|
2873 state=cnv->sharedData->mbcs.dbcsOnlyState; |
|
2874 } |
|
2875 |
|
2876 /* conversion loop */ |
|
2877 c=U_SENTINEL; |
|
2878 while(source<sourceLimit) { |
|
2879 entry=stateTable[state][*source++]; |
|
2880 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
2881 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
|
2882 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
|
2883 |
|
2884 /* optimization for 1/2-byte input and BMP output */ |
|
2885 if( source<sourceLimit && |
|
2886 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
|
2887 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
|
2888 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
|
2889 ) { |
|
2890 ++source; |
|
2891 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2892 /* output BMP code point */ |
|
2893 break; |
|
2894 } |
|
2895 } else { |
|
2896 /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
|
2897 cnv->mode=state; |
|
2898 |
|
2899 /* set the next state early so that we can reuse the entry variable */ |
|
2900 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
|
2901 |
|
2902 /* |
|
2903 * An if-else-if chain provides more reliable performance for |
|
2904 * the most common cases compared to a switch. |
|
2905 */ |
|
2906 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
2907 if(action==MBCS_STATE_VALID_DIRECT_16) { |
|
2908 /* output BMP code point */ |
|
2909 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2910 break; |
|
2911 } else if(action==MBCS_STATE_VALID_16) { |
|
2912 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2913 c=unicodeCodeUnits[offset]; |
|
2914 if(c<0xfffe) { |
|
2915 /* output BMP code point */ |
|
2916 break; |
|
2917 } else if(c==0xfffe) { |
|
2918 if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
|
2919 break; |
|
2920 } |
|
2921 } else { |
|
2922 /* callback(illegal) */ |
|
2923 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2924 } |
|
2925 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
|
2926 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2927 c=unicodeCodeUnits[offset++]; |
|
2928 if(c<0xd800) { |
|
2929 /* output BMP code point below 0xd800 */ |
|
2930 break; |
|
2931 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
|
2932 /* output roundtrip or fallback supplementary code point */ |
|
2933 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); |
|
2934 break; |
|
2935 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
|
2936 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
|
2937 c=unicodeCodeUnits[offset]; |
|
2938 break; |
|
2939 } else if(c==0xffff) { |
|
2940 /* callback(illegal) */ |
|
2941 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2942 } |
|
2943 } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
|
2944 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
|
2945 ) { |
|
2946 /* output supplementary code point */ |
|
2947 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
|
2948 break; |
|
2949 } else if(action==MBCS_STATE_CHANGE_ONLY) { |
|
2950 /* |
|
2951 * This serves as a state change without any output. |
|
2952 * It is useful for reading simple stateful encodings, |
|
2953 * for example using just Shift-In/Shift-Out codes. |
|
2954 * The 21 unused bits may later be used for more sophisticated |
|
2955 * state transitions. |
|
2956 */ |
|
2957 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { |
|
2958 /* SI/SO are illegal for DBCS-only conversion */ |
|
2959 state=(uint8_t)(cnv->mode); /* restore the previous state */ |
|
2960 |
|
2961 /* callback(illegal) */ |
|
2962 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2963 } |
|
2964 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
2965 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
|
2966 /* output BMP code point */ |
|
2967 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
2968 break; |
|
2969 } |
|
2970 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
2971 /* just fall through */ |
|
2972 } else if(action==MBCS_STATE_ILLEGAL) { |
|
2973 /* callback(illegal) */ |
|
2974 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
2975 } else { |
|
2976 /* reserved (must never occur), or only state change */ |
|
2977 offset=0; |
|
2978 lastSource=source; |
|
2979 continue; |
|
2980 } |
|
2981 |
|
2982 /* end of action codes: prepare for a new character */ |
|
2983 offset=0; |
|
2984 |
|
2985 if(U_FAILURE(*pErrorCode)) { |
|
2986 /* callback(illegal) */ |
|
2987 break; |
|
2988 } else /* unassigned sequence */ { |
|
2989 /* defer to the generic implementation */ |
|
2990 cnv->toUnicodeStatus=0; |
|
2991 cnv->mode=state; |
|
2992 pArgs->source=(const char *)lastSource; |
|
2993 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
|
2994 } |
|
2995 } |
|
2996 } |
|
2997 |
|
2998 if(c<0) { |
|
2999 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { |
|
3000 /* incomplete character byte sequence */ |
|
3001 uint8_t *bytes=cnv->toUBytes; |
|
3002 cnv->toULength=(int8_t)(source-lastSource); |
|
3003 do { |
|
3004 *bytes++=*lastSource++; |
|
3005 } while(lastSource<source); |
|
3006 *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
|
3007 } else if(U_FAILURE(*pErrorCode)) { |
|
3008 /* callback(illegal) */ |
|
3009 /* |
|
3010 * Ticket 5691: consistent illegal sequences: |
|
3011 * - We include at least the first byte in the illegal sequence. |
|
3012 * - If any of the non-initial bytes could be the start of a character, |
|
3013 * we stop the illegal sequence before the first one of those. |
|
3014 */ |
|
3015 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); |
|
3016 uint8_t *bytes=cnv->toUBytes; |
|
3017 *bytes++=*lastSource++; /* first byte */ |
|
3018 if(lastSource==source) { |
|
3019 cnv->toULength=1; |
|
3020 } else /* lastSource<source: multi-byte character */ { |
|
3021 int8_t i; |
|
3022 for(i=1; |
|
3023 lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource); |
|
3024 ++i |
|
3025 ) { |
|
3026 *bytes++=*lastSource++; |
|
3027 } |
|
3028 cnv->toULength=i; |
|
3029 source=lastSource; |
|
3030 } |
|
3031 } else { |
|
3032 /* no output because of empty input or only state changes */ |
|
3033 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
3034 } |
|
3035 c=0xffff; |
|
3036 } |
|
3037 |
|
3038 /* set the converter state back into UConverter, ready for a new character */ |
|
3039 cnv->toUnicodeStatus=0; |
|
3040 cnv->mode=state; |
|
3041 |
|
3042 /* write back the updated pointer */ |
|
3043 pArgs->source=(const char *)source; |
|
3044 return c; |
|
3045 } |
|
3046 |
|
3047 #if 0 |
|
3048 /* |
|
3049 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus |
|
3050 * Removal improves code coverage. |
|
3051 */ |
|
3052 /** |
|
3053 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages. |
|
3054 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
|
3055 * It does not handle conversion extensions (_extToU()). |
|
3056 */ |
|
3057 U_CFUNC UChar32 |
|
3058 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, |
|
3059 uint8_t b, UBool useFallback) { |
|
3060 int32_t entry; |
|
3061 uint8_t action; |
|
3062 |
|
3063 entry=sharedData->mbcs.stateTable[0][b]; |
|
3064 /* MBCS_ENTRY_IS_FINAL(entry) */ |
|
3065 |
|
3066 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
|
3067 /* output BMP code point */ |
|
3068 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
3069 } |
|
3070 |
|
3071 /* |
|
3072 * An if-else-if chain provides more reliable performance for |
|
3073 * the most common cases compared to a switch. |
|
3074 */ |
|
3075 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
3076 if(action==MBCS_STATE_VALID_DIRECT_20) { |
|
3077 /* output supplementary code point */ |
|
3078 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
|
3079 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
3080 if(!TO_U_USE_FALLBACK(useFallback)) { |
|
3081 return 0xfffe; |
|
3082 } |
|
3083 /* output BMP code point */ |
|
3084 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
3085 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { |
|
3086 if(!TO_U_USE_FALLBACK(useFallback)) { |
|
3087 return 0xfffe; |
|
3088 } |
|
3089 /* output supplementary code point */ |
|
3090 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
|
3091 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
3092 return 0xfffe; |
|
3093 } else if(action==MBCS_STATE_ILLEGAL) { |
|
3094 return 0xffff; |
|
3095 } else { |
|
3096 /* reserved, must never occur */ |
|
3097 return 0xffff; |
|
3098 } |
|
3099 } |
|
3100 #endif |
|
3101 |
|
3102 /* |
|
3103 * This is a simple version of _MBCSGetNextUChar() that is used |
|
3104 * by other converter implementations. |
|
3105 * It only returns an "assigned" result if it consumes the entire input. |
|
3106 * It does not use state from the converter, nor error codes. |
|
3107 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
|
3108 * It handles conversion extensions but not GB 18030. |
|
3109 * |
|
3110 * Return value: |
|
3111 * U+fffe unassigned |
|
3112 * U+ffff illegal |
|
3113 * otherwise the Unicode code point |
|
3114 */ |
|
3115 U_CFUNC UChar32 |
|
3116 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, |
|
3117 const char *source, int32_t length, |
|
3118 UBool useFallback) { |
|
3119 const int32_t (*stateTable)[256]; |
|
3120 const uint16_t *unicodeCodeUnits; |
|
3121 |
|
3122 uint32_t offset; |
|
3123 uint8_t state, action; |
|
3124 |
|
3125 UChar32 c; |
|
3126 int32_t i, entry; |
|
3127 |
|
3128 if(length<=0) { |
|
3129 /* no input at all: "illegal" */ |
|
3130 return 0xffff; |
|
3131 } |
|
3132 |
|
3133 #if 0 |
|
3134 /* |
|
3135 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus |
|
3136 * TODO In future releases, verify that this function is never called for SBCS |
|
3137 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. |
|
3138 * Removal improves code coverage. |
|
3139 */ |
|
3140 /* use optimized function if possible */ |
|
3141 if(sharedData->mbcs.countStates==1) { |
|
3142 if(length==1) { |
|
3143 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback); |
|
3144 } else { |
|
3145 return 0xffff; /* illegal: more than a single byte for an SBCS converter */ |
|
3146 } |
|
3147 } |
|
3148 #endif |
|
3149 |
|
3150 /* set up the local pointers */ |
|
3151 stateTable=sharedData->mbcs.stateTable; |
|
3152 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; |
|
3153 |
|
3154 /* converter state */ |
|
3155 offset=0; |
|
3156 state=sharedData->mbcs.dbcsOnlyState; |
|
3157 |
|
3158 /* conversion loop */ |
|
3159 for(i=0;;) { |
|
3160 entry=stateTable[state][(uint8_t)source[i++]]; |
|
3161 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
3162 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
|
3163 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
|
3164 |
|
3165 if(i==length) { |
|
3166 return 0xffff; /* truncated character */ |
|
3167 } |
|
3168 } else { |
|
3169 /* |
|
3170 * An if-else-if chain provides more reliable performance for |
|
3171 * the most common cases compared to a switch. |
|
3172 */ |
|
3173 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
|
3174 if(action==MBCS_STATE_VALID_16) { |
|
3175 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
3176 c=unicodeCodeUnits[offset]; |
|
3177 if(c!=0xfffe) { |
|
3178 /* done */ |
|
3179 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
|
3180 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); |
|
3181 /* else done with 0xfffe */ |
|
3182 } |
|
3183 break; |
|
3184 } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
|
3185 /* output BMP code point */ |
|
3186 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
3187 break; |
|
3188 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
|
3189 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
3190 c=unicodeCodeUnits[offset++]; |
|
3191 if(c<0xd800) { |
|
3192 /* output BMP code point below 0xd800 */ |
|
3193 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
|
3194 /* output roundtrip or fallback supplementary code point */ |
|
3195 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00)); |
|
3196 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
|
3197 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
|
3198 c=unicodeCodeUnits[offset]; |
|
3199 } else if(c==0xffff) { |
|
3200 return 0xffff; |
|
3201 } else { |
|
3202 c=0xfffe; |
|
3203 } |
|
3204 break; |
|
3205 } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
|
3206 /* output supplementary code point */ |
|
3207 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
|
3208 break; |
|
3209 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
3210 if(!TO_U_USE_FALLBACK(useFallback)) { |
|
3211 c=0xfffe; |
|
3212 break; |
|
3213 } |
|
3214 /* output BMP code point */ |
|
3215 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
3216 break; |
|
3217 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { |
|
3218 if(!TO_U_USE_FALLBACK(useFallback)) { |
|
3219 c=0xfffe; |
|
3220 break; |
|
3221 } |
|
3222 /* output supplementary code point */ |
|
3223 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
|
3224 break; |
|
3225 } else if(action==MBCS_STATE_UNASSIGNED) { |
|
3226 c=0xfffe; |
|
3227 break; |
|
3228 } |
|
3229 |
|
3230 /* |
|
3231 * forbid MBCS_STATE_CHANGE_ONLY for this function, |
|
3232 * and MBCS_STATE_ILLEGAL and reserved action codes |
|
3233 */ |
|
3234 return 0xffff; |
|
3235 } |
|
3236 } |
|
3237 |
|
3238 if(i!=length) { |
|
3239 /* illegal for this function: not all input consumed */ |
|
3240 return 0xffff; |
|
3241 } |
|
3242 |
|
3243 if(c==0xfffe) { |
|
3244 /* try an extension mapping */ |
|
3245 const int32_t *cx=sharedData->mbcs.extIndexes; |
|
3246 if(cx!=NULL) { |
|
3247 return ucnv_extSimpleMatchToU(cx, source, length, useFallback); |
|
3248 } |
|
3249 } |
|
3250 |
|
3251 return c; |
|
3252 } |
|
3253 |
|
3254 /* MBCS-from-Unicode conversion functions ----------------------------------- */ |
|
3255 |
|
3256 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */ |
|
3257 static void |
|
3258 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
|
3259 UErrorCode *pErrorCode) { |
|
3260 UConverter *cnv; |
|
3261 const UChar *source, *sourceLimit; |
|
3262 uint8_t *target; |
|
3263 int32_t targetCapacity; |
|
3264 int32_t *offsets; |
|
3265 |
|
3266 const uint16_t *table; |
|
3267 const uint16_t *mbcsIndex; |
|
3268 const uint8_t *bytes; |
|
3269 |
|
3270 UChar32 c; |
|
3271 |
|
3272 int32_t sourceIndex, nextSourceIndex; |
|
3273 |
|
3274 uint32_t stage2Entry; |
|
3275 uint32_t asciiRoundtrips; |
|
3276 uint32_t value; |
|
3277 uint8_t unicodeMask; |
|
3278 |
|
3279 /* use optimized function if possible */ |
|
3280 cnv=pArgs->converter; |
|
3281 unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
|
3282 |
|
3283 /* set up the local pointers */ |
|
3284 source=pArgs->source; |
|
3285 sourceLimit=pArgs->sourceLimit; |
|
3286 target=(uint8_t *)pArgs->target; |
|
3287 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
|
3288 offsets=pArgs->offsets; |
|
3289 |
|
3290 table=cnv->sharedData->mbcs.fromUnicodeTable; |
|
3291 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
|
3292 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
3293 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
|
3294 } else { |
|
3295 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
|
3296 } |
|
3297 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
|
3298 |
|
3299 /* get the converter state from UConverter */ |
|
3300 c=cnv->fromUChar32; |
|
3301 |
|
3302 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
3303 sourceIndex= c==0 ? 0 : -1; |
|
3304 nextSourceIndex=0; |
|
3305 |
|
3306 /* conversion loop */ |
|
3307 if(c!=0 && targetCapacity>0) { |
|
3308 goto getTrail; |
|
3309 } |
|
3310 |
|
3311 while(source<sourceLimit) { |
|
3312 /* |
|
3313 * This following test is to see if available input would overflow the output. |
|
3314 * It does not catch output of more than one byte that |
|
3315 * overflows as a result of a multi-byte character or callback output |
|
3316 * from the last source character. |
|
3317 * Therefore, those situations also test for overflows and will |
|
3318 * then break the loop, too. |
|
3319 */ |
|
3320 if(targetCapacity>0) { |
|
3321 /* |
|
3322 * Get a correct Unicode code point: |
|
3323 * a single UChar for a BMP code point or |
|
3324 * a matched surrogate pair for a "supplementary code point". |
|
3325 */ |
|
3326 c=*source++; |
|
3327 ++nextSourceIndex; |
|
3328 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
|
3329 *target++=(uint8_t)c; |
|
3330 if(offsets!=NULL) { |
|
3331 *offsets++=sourceIndex; |
|
3332 sourceIndex=nextSourceIndex; |
|
3333 } |
|
3334 --targetCapacity; |
|
3335 c=0; |
|
3336 continue; |
|
3337 } |
|
3338 /* |
|
3339 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
|
3340 * to avoid dealing with surrogates. |
|
3341 * MBCS_FAST_MAX must be >=0xd7ff. |
|
3342 */ |
|
3343 if(c<=0xd7ff) { |
|
3344 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c); |
|
3345 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ |
|
3346 if(value==0) { |
|
3347 goto unassigned; |
|
3348 } |
|
3349 /* output the value */ |
|
3350 } else { |
|
3351 /* |
|
3352 * This also tests if the codepage maps single surrogates. |
|
3353 * If it does, then surrogates are not paired but mapped separately. |
|
3354 * Note that in this case unmatched surrogates are not detected. |
|
3355 */ |
|
3356 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
|
3357 if(U16_IS_SURROGATE_LEAD(c)) { |
|
3358 getTrail: |
|
3359 if(source<sourceLimit) { |
|
3360 /* test the following code unit */ |
|
3361 UChar trail=*source; |
|
3362 if(U16_IS_TRAIL(trail)) { |
|
3363 ++source; |
|
3364 ++nextSourceIndex; |
|
3365 c=U16_GET_SUPPLEMENTARY(c, trail); |
|
3366 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
|
3367 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
3368 /* callback(unassigned) */ |
|
3369 goto unassigned; |
|
3370 } |
|
3371 /* convert this supplementary code point */ |
|
3372 /* exit this condition tree */ |
|
3373 } else { |
|
3374 /* this is an unmatched lead code unit (1st surrogate) */ |
|
3375 /* callback(illegal) */ |
|
3376 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
3377 break; |
|
3378 } |
|
3379 } else { |
|
3380 /* no more input */ |
|
3381 break; |
|
3382 } |
|
3383 } else { |
|
3384 /* this is an unmatched trail code unit (2nd surrogate) */ |
|
3385 /* callback(illegal) */ |
|
3386 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
3387 break; |
|
3388 } |
|
3389 } |
|
3390 |
|
3391 /* convert the Unicode code point in c into codepage bytes */ |
|
3392 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
|
3393 |
|
3394 /* get the bytes and the length for the output */ |
|
3395 /* MBCS_OUTPUT_2 */ |
|
3396 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
|
3397 |
|
3398 /* is this code point assigned, or do we use fallbacks? */ |
|
3399 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
|
3400 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
|
3401 ) { |
|
3402 /* |
|
3403 * We allow a 0 byte output if the "assigned" bit is set for this entry. |
|
3404 * There is no way with this data structure for fallback output |
|
3405 * to be a zero byte. |
|
3406 */ |
|
3407 |
|
3408 unassigned: |
|
3409 /* try an extension mapping */ |
|
3410 pArgs->source=source; |
|
3411 c=_extFromU(cnv, cnv->sharedData, |
|
3412 c, &source, sourceLimit, |
|
3413 &target, target+targetCapacity, |
|
3414 &offsets, sourceIndex, |
|
3415 pArgs->flush, |
|
3416 pErrorCode); |
|
3417 nextSourceIndex+=(int32_t)(source-pArgs->source); |
|
3418 |
|
3419 if(U_FAILURE(*pErrorCode)) { |
|
3420 /* not mappable or buffer overflow */ |
|
3421 break; |
|
3422 } else { |
|
3423 /* a mapping was written to the target, continue */ |
|
3424 |
|
3425 /* recalculate the targetCapacity after an extension mapping */ |
|
3426 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
|
3427 |
|
3428 /* normal end of conversion: prepare for a new character */ |
|
3429 sourceIndex=nextSourceIndex; |
|
3430 continue; |
|
3431 } |
|
3432 } |
|
3433 } |
|
3434 |
|
3435 /* write the output character bytes from value and length */ |
|
3436 /* from the first if in the loop we know that targetCapacity>0 */ |
|
3437 if(value<=0xff) { |
|
3438 /* this is easy because we know that there is enough space */ |
|
3439 *target++=(uint8_t)value; |
|
3440 if(offsets!=NULL) { |
|
3441 *offsets++=sourceIndex; |
|
3442 } |
|
3443 --targetCapacity; |
|
3444 } else /* length==2 */ { |
|
3445 *target++=(uint8_t)(value>>8); |
|
3446 if(2<=targetCapacity) { |
|
3447 *target++=(uint8_t)value; |
|
3448 if(offsets!=NULL) { |
|
3449 *offsets++=sourceIndex; |
|
3450 *offsets++=sourceIndex; |
|
3451 } |
|
3452 targetCapacity-=2; |
|
3453 } else { |
|
3454 if(offsets!=NULL) { |
|
3455 *offsets++=sourceIndex; |
|
3456 } |
|
3457 cnv->charErrorBuffer[0]=(char)value; |
|
3458 cnv->charErrorBufferLength=1; |
|
3459 |
|
3460 /* target overflow */ |
|
3461 targetCapacity=0; |
|
3462 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
3463 c=0; |
|
3464 break; |
|
3465 } |
|
3466 } |
|
3467 |
|
3468 /* normal end of conversion: prepare for a new character */ |
|
3469 c=0; |
|
3470 sourceIndex=nextSourceIndex; |
|
3471 continue; |
|
3472 } else { |
|
3473 /* target is full */ |
|
3474 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
3475 break; |
|
3476 } |
|
3477 } |
|
3478 |
|
3479 /* set the converter state back into UConverter */ |
|
3480 cnv->fromUChar32=c; |
|
3481 |
|
3482 /* write back the updated pointers */ |
|
3483 pArgs->source=source; |
|
3484 pArgs->target=(char *)target; |
|
3485 pArgs->offsets=offsets; |
|
3486 } |
|
3487 |
|
3488 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */ |
|
3489 static void |
|
3490 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
|
3491 UErrorCode *pErrorCode) { |
|
3492 UConverter *cnv; |
|
3493 const UChar *source, *sourceLimit; |
|
3494 uint8_t *target; |
|
3495 int32_t targetCapacity; |
|
3496 int32_t *offsets; |
|
3497 |
|
3498 const uint16_t *table; |
|
3499 const uint16_t *results; |
|
3500 |
|
3501 UChar32 c; |
|
3502 |
|
3503 int32_t sourceIndex, nextSourceIndex; |
|
3504 |
|
3505 uint16_t value, minValue; |
|
3506 UBool hasSupplementary; |
|
3507 |
|
3508 /* set up the local pointers */ |
|
3509 cnv=pArgs->converter; |
|
3510 source=pArgs->source; |
|
3511 sourceLimit=pArgs->sourceLimit; |
|
3512 target=(uint8_t *)pArgs->target; |
|
3513 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
|
3514 offsets=pArgs->offsets; |
|
3515 |
|
3516 table=cnv->sharedData->mbcs.fromUnicodeTable; |
|
3517 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
3518 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
|
3519 } else { |
|
3520 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
|
3521 } |
|
3522 |
|
3523 if(cnv->useFallback) { |
|
3524 /* use all roundtrip and fallback results */ |
|
3525 minValue=0x800; |
|
3526 } else { |
|
3527 /* use only roundtrips and fallbacks from private-use characters */ |
|
3528 minValue=0xc00; |
|
3529 } |
|
3530 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
|
3531 |
|
3532 /* get the converter state from UConverter */ |
|
3533 c=cnv->fromUChar32; |
|
3534 |
|
3535 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
3536 sourceIndex= c==0 ? 0 : -1; |
|
3537 nextSourceIndex=0; |
|
3538 |
|
3539 /* conversion loop */ |
|
3540 if(c!=0 && targetCapacity>0) { |
|
3541 goto getTrail; |
|
3542 } |
|
3543 |
|
3544 while(source<sourceLimit) { |
|
3545 /* |
|
3546 * This following test is to see if available input would overflow the output. |
|
3547 * It does not catch output of more than one byte that |
|
3548 * overflows as a result of a multi-byte character or callback output |
|
3549 * from the last source character. |
|
3550 * Therefore, those situations also test for overflows and will |
|
3551 * then break the loop, too. |
|
3552 */ |
|
3553 if(targetCapacity>0) { |
|
3554 /* |
|
3555 * Get a correct Unicode code point: |
|
3556 * a single UChar for a BMP code point or |
|
3557 * a matched surrogate pair for a "supplementary code point". |
|
3558 */ |
|
3559 c=*source++; |
|
3560 ++nextSourceIndex; |
|
3561 if(U16_IS_SURROGATE(c)) { |
|
3562 if(U16_IS_SURROGATE_LEAD(c)) { |
|
3563 getTrail: |
|
3564 if(source<sourceLimit) { |
|
3565 /* test the following code unit */ |
|
3566 UChar trail=*source; |
|
3567 if(U16_IS_TRAIL(trail)) { |
|
3568 ++source; |
|
3569 ++nextSourceIndex; |
|
3570 c=U16_GET_SUPPLEMENTARY(c, trail); |
|
3571 if(!hasSupplementary) { |
|
3572 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
3573 /* callback(unassigned) */ |
|
3574 goto unassigned; |
|
3575 } |
|
3576 /* convert this supplementary code point */ |
|
3577 /* exit this condition tree */ |
|
3578 } else { |
|
3579 /* this is an unmatched lead code unit (1st surrogate) */ |
|
3580 /* callback(illegal) */ |
|
3581 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
3582 break; |
|
3583 } |
|
3584 } else { |
|
3585 /* no more input */ |
|
3586 break; |
|
3587 } |
|
3588 } else { |
|
3589 /* this is an unmatched trail code unit (2nd surrogate) */ |
|
3590 /* callback(illegal) */ |
|
3591 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
3592 break; |
|
3593 } |
|
3594 } |
|
3595 |
|
3596 /* convert the Unicode code point in c into codepage bytes */ |
|
3597 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
3598 |
|
3599 /* is this code point assigned, or do we use fallbacks? */ |
|
3600 if(value>=minValue) { |
|
3601 /* assigned, write the output character bytes from value and length */ |
|
3602 /* length==1 */ |
|
3603 /* this is easy because we know that there is enough space */ |
|
3604 *target++=(uint8_t)value; |
|
3605 if(offsets!=NULL) { |
|
3606 *offsets++=sourceIndex; |
|
3607 } |
|
3608 --targetCapacity; |
|
3609 |
|
3610 /* normal end of conversion: prepare for a new character */ |
|
3611 c=0; |
|
3612 sourceIndex=nextSourceIndex; |
|
3613 } else { /* unassigned */ |
|
3614 unassigned: |
|
3615 /* try an extension mapping */ |
|
3616 pArgs->source=source; |
|
3617 c=_extFromU(cnv, cnv->sharedData, |
|
3618 c, &source, sourceLimit, |
|
3619 &target, target+targetCapacity, |
|
3620 &offsets, sourceIndex, |
|
3621 pArgs->flush, |
|
3622 pErrorCode); |
|
3623 nextSourceIndex+=(int32_t)(source-pArgs->source); |
|
3624 |
|
3625 if(U_FAILURE(*pErrorCode)) { |
|
3626 /* not mappable or buffer overflow */ |
|
3627 break; |
|
3628 } else { |
|
3629 /* a mapping was written to the target, continue */ |
|
3630 |
|
3631 /* recalculate the targetCapacity after an extension mapping */ |
|
3632 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
|
3633 |
|
3634 /* normal end of conversion: prepare for a new character */ |
|
3635 sourceIndex=nextSourceIndex; |
|
3636 } |
|
3637 } |
|
3638 } else { |
|
3639 /* target is full */ |
|
3640 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
3641 break; |
|
3642 } |
|
3643 } |
|
3644 |
|
3645 /* set the converter state back into UConverter */ |
|
3646 cnv->fromUChar32=c; |
|
3647 |
|
3648 /* write back the updated pointers */ |
|
3649 pArgs->source=source; |
|
3650 pArgs->target=(char *)target; |
|
3651 pArgs->offsets=offsets; |
|
3652 } |
|
3653 |
|
3654 /* |
|
3655 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages |
|
3656 * that map only to and from the BMP. |
|
3657 * In addition to single-byte/state optimizations, the offset calculations |
|
3658 * become much easier. |
|
3659 * It would be possible to use the sbcsIndex for UTF-8-friendly tables, |
|
3660 * but measurements have shown that this diminishes performance |
|
3661 * in more cases than it improves it. |
|
3662 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches |
|
3663 * for various MBCS and SBCS optimizations. |
|
3664 */ |
|
3665 static void |
|
3666 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, |
|
3667 UErrorCode *pErrorCode) { |
|
3668 UConverter *cnv; |
|
3669 const UChar *source, *sourceLimit, *lastSource; |
|
3670 uint8_t *target; |
|
3671 int32_t targetCapacity, length; |
|
3672 int32_t *offsets; |
|
3673 |
|
3674 const uint16_t *table; |
|
3675 const uint16_t *results; |
|
3676 |
|
3677 UChar32 c; |
|
3678 |
|
3679 int32_t sourceIndex; |
|
3680 |
|
3681 uint32_t asciiRoundtrips; |
|
3682 uint16_t value, minValue; |
|
3683 |
|
3684 /* set up the local pointers */ |
|
3685 cnv=pArgs->converter; |
|
3686 source=pArgs->source; |
|
3687 sourceLimit=pArgs->sourceLimit; |
|
3688 target=(uint8_t *)pArgs->target; |
|
3689 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
|
3690 offsets=pArgs->offsets; |
|
3691 |
|
3692 table=cnv->sharedData->mbcs.fromUnicodeTable; |
|
3693 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
3694 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
|
3695 } else { |
|
3696 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
|
3697 } |
|
3698 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
|
3699 |
|
3700 if(cnv->useFallback) { |
|
3701 /* use all roundtrip and fallback results */ |
|
3702 minValue=0x800; |
|
3703 } else { |
|
3704 /* use only roundtrips and fallbacks from private-use characters */ |
|
3705 minValue=0xc00; |
|
3706 } |
|
3707 |
|
3708 /* get the converter state from UConverter */ |
|
3709 c=cnv->fromUChar32; |
|
3710 |
|
3711 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
3712 sourceIndex= c==0 ? 0 : -1; |
|
3713 lastSource=source; |
|
3714 |
|
3715 /* |
|
3716 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
|
3717 * for the minimum of the sourceLength and targetCapacity |
|
3718 */ |
|
3719 length=(int32_t)(sourceLimit-source); |
|
3720 if(length<targetCapacity) { |
|
3721 targetCapacity=length; |
|
3722 } |
|
3723 |
|
3724 /* conversion loop */ |
|
3725 if(c!=0 && targetCapacity>0) { |
|
3726 goto getTrail; |
|
3727 } |
|
3728 |
|
3729 #if MBCS_UNROLL_SINGLE_FROM_BMP |
|
3730 /* unrolling makes it slower on Pentium III/Windows 2000?! */ |
|
3731 /* unroll the loop with the most common case */ |
|
3732 unrolled: |
|
3733 if(targetCapacity>=4) { |
|
3734 int32_t count, loops; |
|
3735 uint16_t andedValues; |
|
3736 |
|
3737 loops=count=targetCapacity>>2; |
|
3738 do { |
|
3739 c=*source++; |
|
3740 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
3741 *target++=(uint8_t)value; |
|
3742 c=*source++; |
|
3743 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
3744 *target++=(uint8_t)value; |
|
3745 c=*source++; |
|
3746 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
3747 *target++=(uint8_t)value; |
|
3748 c=*source++; |
|
3749 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
3750 *target++=(uint8_t)value; |
|
3751 |
|
3752 /* were all 4 entries really valid? */ |
|
3753 if(andedValues<minValue) { |
|
3754 /* no, return to the first of these 4 */ |
|
3755 source-=4; |
|
3756 target-=4; |
|
3757 break; |
|
3758 } |
|
3759 } while(--count>0); |
|
3760 count=loops-count; |
|
3761 targetCapacity-=4*count; |
|
3762 |
|
3763 if(offsets!=NULL) { |
|
3764 lastSource+=4*count; |
|
3765 while(count>0) { |
|
3766 *offsets++=sourceIndex++; |
|
3767 *offsets++=sourceIndex++; |
|
3768 *offsets++=sourceIndex++; |
|
3769 *offsets++=sourceIndex++; |
|
3770 --count; |
|
3771 } |
|
3772 } |
|
3773 |
|
3774 c=0; |
|
3775 } |
|
3776 #endif |
|
3777 |
|
3778 while(targetCapacity>0) { |
|
3779 /* |
|
3780 * Get a correct Unicode code point: |
|
3781 * a single UChar for a BMP code point or |
|
3782 * a matched surrogate pair for a "supplementary code point". |
|
3783 */ |
|
3784 c=*source++; |
|
3785 /* |
|
3786 * Do not immediately check for single surrogates: |
|
3787 * Assume that they are unassigned and check for them in that case. |
|
3788 * This speeds up the conversion of assigned characters. |
|
3789 */ |
|
3790 /* convert the Unicode code point in c into codepage bytes */ |
|
3791 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
|
3792 *target++=(uint8_t)c; |
|
3793 --targetCapacity; |
|
3794 c=0; |
|
3795 continue; |
|
3796 } |
|
3797 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
3798 /* is this code point assigned, or do we use fallbacks? */ |
|
3799 if(value>=minValue) { |
|
3800 /* assigned, write the output character bytes from value and length */ |
|
3801 /* length==1 */ |
|
3802 /* this is easy because we know that there is enough space */ |
|
3803 *target++=(uint8_t)value; |
|
3804 --targetCapacity; |
|
3805 |
|
3806 /* normal end of conversion: prepare for a new character */ |
|
3807 c=0; |
|
3808 continue; |
|
3809 } else if(!U16_IS_SURROGATE(c)) { |
|
3810 /* normal, unassigned BMP character */ |
|
3811 } else if(U16_IS_SURROGATE_LEAD(c)) { |
|
3812 getTrail: |
|
3813 if(source<sourceLimit) { |
|
3814 /* test the following code unit */ |
|
3815 UChar trail=*source; |
|
3816 if(U16_IS_TRAIL(trail)) { |
|
3817 ++source; |
|
3818 c=U16_GET_SUPPLEMENTARY(c, trail); |
|
3819 /* this codepage does not map supplementary code points */ |
|
3820 /* callback(unassigned) */ |
|
3821 } else { |
|
3822 /* this is an unmatched lead code unit (1st surrogate) */ |
|
3823 /* callback(illegal) */ |
|
3824 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
3825 break; |
|
3826 } |
|
3827 } else { |
|
3828 /* no more input */ |
|
3829 if (pArgs->flush) { |
|
3830 *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
|
3831 } |
|
3832 break; |
|
3833 } |
|
3834 } else { |
|
3835 /* this is an unmatched trail code unit (2nd surrogate) */ |
|
3836 /* callback(illegal) */ |
|
3837 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
3838 break; |
|
3839 } |
|
3840 |
|
3841 /* c does not have a mapping */ |
|
3842 |
|
3843 /* get the number of code units for c to correctly advance sourceIndex */ |
|
3844 length=U16_LENGTH(c); |
|
3845 |
|
3846 /* set offsets since the start or the last extension */ |
|
3847 if(offsets!=NULL) { |
|
3848 int32_t count=(int32_t)(source-lastSource); |
|
3849 |
|
3850 /* do not set the offset for this character */ |
|
3851 count-=length; |
|
3852 |
|
3853 while(count>0) { |
|
3854 *offsets++=sourceIndex++; |
|
3855 --count; |
|
3856 } |
|
3857 /* offsets and sourceIndex are now set for the current character */ |
|
3858 } |
|
3859 |
|
3860 /* try an extension mapping */ |
|
3861 lastSource=source; |
|
3862 c=_extFromU(cnv, cnv->sharedData, |
|
3863 c, &source, sourceLimit, |
|
3864 &target, (const uint8_t *)(pArgs->targetLimit), |
|
3865 &offsets, sourceIndex, |
|
3866 pArgs->flush, |
|
3867 pErrorCode); |
|
3868 sourceIndex+=length+(int32_t)(source-lastSource); |
|
3869 lastSource=source; |
|
3870 |
|
3871 if(U_FAILURE(*pErrorCode)) { |
|
3872 /* not mappable or buffer overflow */ |
|
3873 break; |
|
3874 } else { |
|
3875 /* a mapping was written to the target, continue */ |
|
3876 |
|
3877 /* recalculate the targetCapacity after an extension mapping */ |
|
3878 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
|
3879 length=(int32_t)(sourceLimit-source); |
|
3880 if(length<targetCapacity) { |
|
3881 targetCapacity=length; |
|
3882 } |
|
3883 } |
|
3884 |
|
3885 #if MBCS_UNROLL_SINGLE_FROM_BMP |
|
3886 /* unrolling makes it slower on Pentium III/Windows 2000?! */ |
|
3887 goto unrolled; |
|
3888 #endif |
|
3889 } |
|
3890 |
|
3891 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) { |
|
3892 /* target is full */ |
|
3893 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
3894 } |
|
3895 |
|
3896 /* set offsets since the start or the last callback */ |
|
3897 if(offsets!=NULL) { |
|
3898 size_t count=source-lastSource; |
|
3899 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { |
|
3900 /* |
|
3901 Caller gave us a partial supplementary character, |
|
3902 which this function couldn't convert in any case. |
|
3903 The callback will handle the offset. |
|
3904 */ |
|
3905 count--; |
|
3906 } |
|
3907 while(count>0) { |
|
3908 *offsets++=sourceIndex++; |
|
3909 --count; |
|
3910 } |
|
3911 } |
|
3912 |
|
3913 /* set the converter state back into UConverter */ |
|
3914 cnv->fromUChar32=c; |
|
3915 |
|
3916 /* write back the updated pointers */ |
|
3917 pArgs->source=source; |
|
3918 pArgs->target=(char *)target; |
|
3919 pArgs->offsets=offsets; |
|
3920 } |
|
3921 |
|
3922 U_CFUNC void |
|
3923 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
|
3924 UErrorCode *pErrorCode) { |
|
3925 UConverter *cnv; |
|
3926 const UChar *source, *sourceLimit; |
|
3927 uint8_t *target; |
|
3928 int32_t targetCapacity; |
|
3929 int32_t *offsets; |
|
3930 |
|
3931 const uint16_t *table; |
|
3932 const uint16_t *mbcsIndex; |
|
3933 const uint8_t *p, *bytes; |
|
3934 uint8_t outputType; |
|
3935 |
|
3936 UChar32 c; |
|
3937 |
|
3938 int32_t prevSourceIndex, sourceIndex, nextSourceIndex; |
|
3939 |
|
3940 uint32_t stage2Entry; |
|
3941 uint32_t asciiRoundtrips; |
|
3942 uint32_t value; |
|
3943 /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */ |
|
3944 uint8_t siBytes[2] = {0, 0}; |
|
3945 uint8_t soBytes[2] = {0, 0}; |
|
3946 uint8_t siLength, soLength; |
|
3947 int32_t length = 0, prevLength; |
|
3948 uint8_t unicodeMask; |
|
3949 |
|
3950 cnv=pArgs->converter; |
|
3951 |
|
3952 if(cnv->preFromUFirstCP>=0) { |
|
3953 /* |
|
3954 * pass sourceIndex=-1 because we continue from an earlier buffer |
|
3955 * in the future, this may change with continuous offsets |
|
3956 */ |
|
3957 ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); |
|
3958 |
|
3959 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { |
|
3960 return; |
|
3961 } |
|
3962 } |
|
3963 |
|
3964 /* use optimized function if possible */ |
|
3965 outputType=cnv->sharedData->mbcs.outputType; |
|
3966 unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
|
3967 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
|
3968 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
|
3969 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); |
|
3970 } else { |
|
3971 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); |
|
3972 } |
|
3973 return; |
|
3974 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { |
|
3975 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); |
|
3976 return; |
|
3977 } |
|
3978 |
|
3979 /* set up the local pointers */ |
|
3980 source=pArgs->source; |
|
3981 sourceLimit=pArgs->sourceLimit; |
|
3982 target=(uint8_t *)pArgs->target; |
|
3983 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
|
3984 offsets=pArgs->offsets; |
|
3985 |
|
3986 table=cnv->sharedData->mbcs.fromUnicodeTable; |
|
3987 if(cnv->sharedData->mbcs.utf8Friendly) { |
|
3988 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
|
3989 } else { |
|
3990 mbcsIndex=NULL; |
|
3991 } |
|
3992 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
3993 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
|
3994 } else { |
|
3995 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
|
3996 } |
|
3997 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
|
3998 |
|
3999 /* get the converter state from UConverter */ |
|
4000 c=cnv->fromUChar32; |
|
4001 |
|
4002 if(outputType==MBCS_OUTPUT_2_SISO) { |
|
4003 prevLength=cnv->fromUnicodeStatus; |
|
4004 if(prevLength==0) { |
|
4005 /* set the real value */ |
|
4006 prevLength=1; |
|
4007 } |
|
4008 } else { |
|
4009 /* prevent fromUnicodeStatus from being set to something non-0 */ |
|
4010 prevLength=0; |
|
4011 } |
|
4012 |
|
4013 /* sourceIndex=-1 if the current character began in the previous buffer */ |
|
4014 prevSourceIndex=-1; |
|
4015 sourceIndex= c==0 ? 0 : -1; |
|
4016 nextSourceIndex=0; |
|
4017 |
|
4018 /* Get the SI/SO character for the converter */ |
|
4019 siLength = getSISOBytes(SI, cnv->options, siBytes); |
|
4020 soLength = getSISOBytes(SO, cnv->options, soBytes); |
|
4021 |
|
4022 /* conversion loop */ |
|
4023 /* |
|
4024 * This is another piece of ugly code: |
|
4025 * A goto into the loop if the converter state contains a first surrogate |
|
4026 * from the previous function call. |
|
4027 * It saves me to check in each loop iteration a check of if(c==0) |
|
4028 * and duplicating the trail-surrogate-handling code in the else |
|
4029 * branch of that check. |
|
4030 * I could not find any other way to get around this other than |
|
4031 * using a function call for the conversion and callback, which would |
|
4032 * be even more inefficient. |
|
4033 * |
|
4034 * Markus Scherer 2000-jul-19 |
|
4035 */ |
|
4036 if(c!=0 && targetCapacity>0) { |
|
4037 goto getTrail; |
|
4038 } |
|
4039 |
|
4040 while(source<sourceLimit) { |
|
4041 /* |
|
4042 * This following test is to see if available input would overflow the output. |
|
4043 * It does not catch output of more than one byte that |
|
4044 * overflows as a result of a multi-byte character or callback output |
|
4045 * from the last source character. |
|
4046 * Therefore, those situations also test for overflows and will |
|
4047 * then break the loop, too. |
|
4048 */ |
|
4049 if(targetCapacity>0) { |
|
4050 /* |
|
4051 * Get a correct Unicode code point: |
|
4052 * a single UChar for a BMP code point or |
|
4053 * a matched surrogate pair for a "supplementary code point". |
|
4054 */ |
|
4055 c=*source++; |
|
4056 ++nextSourceIndex; |
|
4057 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
|
4058 *target++=(uint8_t)c; |
|
4059 if(offsets!=NULL) { |
|
4060 *offsets++=sourceIndex; |
|
4061 prevSourceIndex=sourceIndex; |
|
4062 sourceIndex=nextSourceIndex; |
|
4063 } |
|
4064 --targetCapacity; |
|
4065 c=0; |
|
4066 continue; |
|
4067 } |
|
4068 /* |
|
4069 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
|
4070 * to avoid dealing with surrogates. |
|
4071 * MBCS_FAST_MAX must be >=0xd7ff. |
|
4072 */ |
|
4073 if(c<=0xd7ff && mbcsIndex!=NULL) { |
|
4074 value=mbcsIndex[c>>6]; |
|
4075 |
|
4076 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */ |
|
4077 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ |
|
4078 switch(outputType) { |
|
4079 case MBCS_OUTPUT_2: |
|
4080 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
|
4081 if(value<=0xff) { |
|
4082 if(value==0) { |
|
4083 goto unassigned; |
|
4084 } else { |
|
4085 length=1; |
|
4086 } |
|
4087 } else { |
|
4088 length=2; |
|
4089 } |
|
4090 break; |
|
4091 case MBCS_OUTPUT_2_SISO: |
|
4092 /* 1/2-byte stateful with Shift-In/Shift-Out */ |
|
4093 /* |
|
4094 * Save the old state in the converter object |
|
4095 * right here, then change the local prevLength state variable if necessary. |
|
4096 * Then, if this character turns out to be unassigned or a fallback that |
|
4097 * is not taken, the callback code must not save the new state in the converter |
|
4098 * because the new state is for a character that is not output. |
|
4099 * However, the callback must still restore the state from the converter |
|
4100 * in case the callback function changed it for its output. |
|
4101 */ |
|
4102 cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
|
4103 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
|
4104 if(value<=0xff) { |
|
4105 if(value==0) { |
|
4106 goto unassigned; |
|
4107 } else if(prevLength<=1) { |
|
4108 length=1; |
|
4109 } else { |
|
4110 /* change from double-byte mode to single-byte */ |
|
4111 if (siLength == 1) { |
|
4112 value|=(uint32_t)siBytes[0]<<8; |
|
4113 length = 2; |
|
4114 } else if (siLength == 2) { |
|
4115 value|=(uint32_t)siBytes[1]<<8; |
|
4116 value|=(uint32_t)siBytes[0]<<16; |
|
4117 length = 3; |
|
4118 } |
|
4119 prevLength=1; |
|
4120 } |
|
4121 } else { |
|
4122 if(prevLength==2) { |
|
4123 length=2; |
|
4124 } else { |
|
4125 /* change from single-byte mode to double-byte */ |
|
4126 if (soLength == 1) { |
|
4127 value|=(uint32_t)soBytes[0]<<16; |
|
4128 length = 3; |
|
4129 } else if (soLength == 2) { |
|
4130 value|=(uint32_t)soBytes[1]<<16; |
|
4131 value|=(uint32_t)soBytes[0]<<24; |
|
4132 length = 4; |
|
4133 } |
|
4134 prevLength=2; |
|
4135 } |
|
4136 } |
|
4137 break; |
|
4138 case MBCS_OUTPUT_DBCS_ONLY: |
|
4139 /* table with single-byte results, but only DBCS mappings used */ |
|
4140 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
|
4141 if(value<=0xff) { |
|
4142 /* no mapping or SBCS result, not taken for DBCS-only */ |
|
4143 goto unassigned; |
|
4144 } else { |
|
4145 length=2; |
|
4146 } |
|
4147 break; |
|
4148 case MBCS_OUTPUT_3: |
|
4149 p=bytes+(value+(c&0x3f))*3; |
|
4150 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
|
4151 if(value<=0xff) { |
|
4152 if(value==0) { |
|
4153 goto unassigned; |
|
4154 } else { |
|
4155 length=1; |
|
4156 } |
|
4157 } else if(value<=0xffff) { |
|
4158 length=2; |
|
4159 } else { |
|
4160 length=3; |
|
4161 } |
|
4162 break; |
|
4163 case MBCS_OUTPUT_4: |
|
4164 value=((const uint32_t *)bytes)[value +(c&0x3f)]; |
|
4165 if(value<=0xff) { |
|
4166 if(value==0) { |
|
4167 goto unassigned; |
|
4168 } else { |
|
4169 length=1; |
|
4170 } |
|
4171 } else if(value<=0xffff) { |
|
4172 length=2; |
|
4173 } else if(value<=0xffffff) { |
|
4174 length=3; |
|
4175 } else { |
|
4176 length=4; |
|
4177 } |
|
4178 break; |
|
4179 case MBCS_OUTPUT_3_EUC: |
|
4180 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
|
4181 /* EUC 16-bit fixed-length representation */ |
|
4182 if(value<=0xff) { |
|
4183 if(value==0) { |
|
4184 goto unassigned; |
|
4185 } else { |
|
4186 length=1; |
|
4187 } |
|
4188 } else if((value&0x8000)==0) { |
|
4189 value|=0x8e8000; |
|
4190 length=3; |
|
4191 } else if((value&0x80)==0) { |
|
4192 value|=0x8f0080; |
|
4193 length=3; |
|
4194 } else { |
|
4195 length=2; |
|
4196 } |
|
4197 break; |
|
4198 case MBCS_OUTPUT_4_EUC: |
|
4199 p=bytes+(value+(c&0x3f))*3; |
|
4200 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
|
4201 /* EUC 16-bit fixed-length representation applied to the first two bytes */ |
|
4202 if(value<=0xff) { |
|
4203 if(value==0) { |
|
4204 goto unassigned; |
|
4205 } else { |
|
4206 length=1; |
|
4207 } |
|
4208 } else if(value<=0xffff) { |
|
4209 length=2; |
|
4210 } else if((value&0x800000)==0) { |
|
4211 value|=0x8e800000; |
|
4212 length=4; |
|
4213 } else if((value&0x8000)==0) { |
|
4214 value|=0x8f008000; |
|
4215 length=4; |
|
4216 } else { |
|
4217 length=3; |
|
4218 } |
|
4219 break; |
|
4220 default: |
|
4221 /* must not occur */ |
|
4222 /* |
|
4223 * To avoid compiler warnings that value & length may be |
|
4224 * used without having been initialized, we set them here. |
|
4225 * In reality, this is unreachable code. |
|
4226 * Not having a default branch also causes warnings with |
|
4227 * some compilers. |
|
4228 */ |
|
4229 value=0; |
|
4230 length=0; |
|
4231 break; |
|
4232 } |
|
4233 /* output the value */ |
|
4234 } else { |
|
4235 /* |
|
4236 * This also tests if the codepage maps single surrogates. |
|
4237 * If it does, then surrogates are not paired but mapped separately. |
|
4238 * Note that in this case unmatched surrogates are not detected. |
|
4239 */ |
|
4240 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
|
4241 if(U16_IS_SURROGATE_LEAD(c)) { |
|
4242 getTrail: |
|
4243 if(source<sourceLimit) { |
|
4244 /* test the following code unit */ |
|
4245 UChar trail=*source; |
|
4246 if(U16_IS_TRAIL(trail)) { |
|
4247 ++source; |
|
4248 ++nextSourceIndex; |
|
4249 c=U16_GET_SUPPLEMENTARY(c, trail); |
|
4250 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
|
4251 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
4252 cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
|
4253 /* callback(unassigned) */ |
|
4254 goto unassigned; |
|
4255 } |
|
4256 /* convert this supplementary code point */ |
|
4257 /* exit this condition tree */ |
|
4258 } else { |
|
4259 /* this is an unmatched lead code unit (1st surrogate) */ |
|
4260 /* callback(illegal) */ |
|
4261 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
4262 break; |
|
4263 } |
|
4264 } else { |
|
4265 /* no more input */ |
|
4266 break; |
|
4267 } |
|
4268 } else { |
|
4269 /* this is an unmatched trail code unit (2nd surrogate) */ |
|
4270 /* callback(illegal) */ |
|
4271 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
4272 break; |
|
4273 } |
|
4274 } |
|
4275 |
|
4276 /* convert the Unicode code point in c into codepage bytes */ |
|
4277 |
|
4278 /* |
|
4279 * The basic lookup is a triple-stage compact array (trie) lookup. |
|
4280 * For details see the beginning of this file. |
|
4281 * |
|
4282 * Single-byte codepages are handled with a different data structure |
|
4283 * by _MBCSSingle... functions. |
|
4284 * |
|
4285 * The result consists of a 32-bit value from stage 2 and |
|
4286 * a pointer to as many bytes as are stored per character. |
|
4287 * The pointer points to the character's bytes in stage 3. |
|
4288 * Bits 15..0 of the stage 2 entry contain the stage 3 index |
|
4289 * for that pointer, while bits 31..16 are flags for which of |
|
4290 * the 16 characters in the block are roundtrip-assigned. |
|
4291 * |
|
4292 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t |
|
4293 * respectively as uint32_t, in the platform encoding. |
|
4294 * For 3-byte codepages, the bytes are always stored in big-endian order. |
|
4295 * |
|
4296 * For EUC encodings that use only either 0x8e or 0x8f as the first |
|
4297 * byte of their longest byte sequences, the first two bytes in |
|
4298 * this third stage indicate with their 7th bits whether these bytes |
|
4299 * are to be written directly or actually need to be preceeded by |
|
4300 * one of the two Single-Shift codes. With this, the third stage |
|
4301 * stores one byte fewer per character than the actual maximum length of |
|
4302 * EUC byte sequences. |
|
4303 * |
|
4304 * Other than that, leading zero bytes are removed and the other |
|
4305 * bytes output. A single zero byte may be output if the "assigned" |
|
4306 * bit in stage 2 was on. |
|
4307 * The data structure does not support zero byte output as a fallback, |
|
4308 * and also does not allow output of leading zeros. |
|
4309 */ |
|
4310 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
|
4311 |
|
4312 /* get the bytes and the length for the output */ |
|
4313 switch(outputType) { |
|
4314 case MBCS_OUTPUT_2: |
|
4315 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4316 if(value<=0xff) { |
|
4317 length=1; |
|
4318 } else { |
|
4319 length=2; |
|
4320 } |
|
4321 break; |
|
4322 case MBCS_OUTPUT_2_SISO: |
|
4323 /* 1/2-byte stateful with Shift-In/Shift-Out */ |
|
4324 /* |
|
4325 * Save the old state in the converter object |
|
4326 * right here, then change the local prevLength state variable if necessary. |
|
4327 * Then, if this character turns out to be unassigned or a fallback that |
|
4328 * is not taken, the callback code must not save the new state in the converter |
|
4329 * because the new state is for a character that is not output. |
|
4330 * However, the callback must still restore the state from the converter |
|
4331 * in case the callback function changed it for its output. |
|
4332 */ |
|
4333 cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
|
4334 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4335 if(value<=0xff) { |
|
4336 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) { |
|
4337 /* no mapping, leave value==0 */ |
|
4338 length=0; |
|
4339 } else if(prevLength<=1) { |
|
4340 length=1; |
|
4341 } else { |
|
4342 /* change from double-byte mode to single-byte */ |
|
4343 if (siLength == 1) { |
|
4344 value|=(uint32_t)siBytes[0]<<8; |
|
4345 length = 2; |
|
4346 } else if (siLength == 2) { |
|
4347 value|=(uint32_t)siBytes[1]<<8; |
|
4348 value|=(uint32_t)siBytes[0]<<16; |
|
4349 length = 3; |
|
4350 } |
|
4351 prevLength=1; |
|
4352 } |
|
4353 } else { |
|
4354 if(prevLength==2) { |
|
4355 length=2; |
|
4356 } else { |
|
4357 /* change from single-byte mode to double-byte */ |
|
4358 if (soLength == 1) { |
|
4359 value|=(uint32_t)soBytes[0]<<16; |
|
4360 length = 3; |
|
4361 } else if (soLength == 2) { |
|
4362 value|=(uint32_t)soBytes[1]<<16; |
|
4363 value|=(uint32_t)soBytes[0]<<24; |
|
4364 length = 4; |
|
4365 } |
|
4366 prevLength=2; |
|
4367 } |
|
4368 } |
|
4369 break; |
|
4370 case MBCS_OUTPUT_DBCS_ONLY: |
|
4371 /* table with single-byte results, but only DBCS mappings used */ |
|
4372 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4373 if(value<=0xff) { |
|
4374 /* no mapping or SBCS result, not taken for DBCS-only */ |
|
4375 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
|
4376 length=0; |
|
4377 } else { |
|
4378 length=2; |
|
4379 } |
|
4380 break; |
|
4381 case MBCS_OUTPUT_3: |
|
4382 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4383 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
|
4384 if(value<=0xff) { |
|
4385 length=1; |
|
4386 } else if(value<=0xffff) { |
|
4387 length=2; |
|
4388 } else { |
|
4389 length=3; |
|
4390 } |
|
4391 break; |
|
4392 case MBCS_OUTPUT_4: |
|
4393 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4394 if(value<=0xff) { |
|
4395 length=1; |
|
4396 } else if(value<=0xffff) { |
|
4397 length=2; |
|
4398 } else if(value<=0xffffff) { |
|
4399 length=3; |
|
4400 } else { |
|
4401 length=4; |
|
4402 } |
|
4403 break; |
|
4404 case MBCS_OUTPUT_3_EUC: |
|
4405 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4406 /* EUC 16-bit fixed-length representation */ |
|
4407 if(value<=0xff) { |
|
4408 length=1; |
|
4409 } else if((value&0x8000)==0) { |
|
4410 value|=0x8e8000; |
|
4411 length=3; |
|
4412 } else if((value&0x80)==0) { |
|
4413 value|=0x8f0080; |
|
4414 length=3; |
|
4415 } else { |
|
4416 length=2; |
|
4417 } |
|
4418 break; |
|
4419 case MBCS_OUTPUT_4_EUC: |
|
4420 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); |
|
4421 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
|
4422 /* EUC 16-bit fixed-length representation applied to the first two bytes */ |
|
4423 if(value<=0xff) { |
|
4424 length=1; |
|
4425 } else if(value<=0xffff) { |
|
4426 length=2; |
|
4427 } else if((value&0x800000)==0) { |
|
4428 value|=0x8e800000; |
|
4429 length=4; |
|
4430 } else if((value&0x8000)==0) { |
|
4431 value|=0x8f008000; |
|
4432 length=4; |
|
4433 } else { |
|
4434 length=3; |
|
4435 } |
|
4436 break; |
|
4437 default: |
|
4438 /* must not occur */ |
|
4439 /* |
|
4440 * To avoid compiler warnings that value & length may be |
|
4441 * used without having been initialized, we set them here. |
|
4442 * In reality, this is unreachable code. |
|
4443 * Not having a default branch also causes warnings with |
|
4444 * some compilers. |
|
4445 */ |
|
4446 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
|
4447 length=0; |
|
4448 break; |
|
4449 } |
|
4450 |
|
4451 /* is this code point assigned, or do we use fallbacks? */ |
|
4452 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || |
|
4453 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
|
4454 ) { |
|
4455 /* |
|
4456 * We allow a 0 byte output if the "assigned" bit is set for this entry. |
|
4457 * There is no way with this data structure for fallback output |
|
4458 * to be a zero byte. |
|
4459 */ |
|
4460 |
|
4461 unassigned: |
|
4462 /* try an extension mapping */ |
|
4463 pArgs->source=source; |
|
4464 c=_extFromU(cnv, cnv->sharedData, |
|
4465 c, &source, sourceLimit, |
|
4466 &target, target+targetCapacity, |
|
4467 &offsets, sourceIndex, |
|
4468 pArgs->flush, |
|
4469 pErrorCode); |
|
4470 nextSourceIndex+=(int32_t)(source-pArgs->source); |
|
4471 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ |
|
4472 |
|
4473 if(U_FAILURE(*pErrorCode)) { |
|
4474 /* not mappable or buffer overflow */ |
|
4475 break; |
|
4476 } else { |
|
4477 /* a mapping was written to the target, continue */ |
|
4478 |
|
4479 /* recalculate the targetCapacity after an extension mapping */ |
|
4480 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
|
4481 |
|
4482 /* normal end of conversion: prepare for a new character */ |
|
4483 if(offsets!=NULL) { |
|
4484 prevSourceIndex=sourceIndex; |
|
4485 sourceIndex=nextSourceIndex; |
|
4486 } |
|
4487 continue; |
|
4488 } |
|
4489 } |
|
4490 } |
|
4491 |
|
4492 /* write the output character bytes from value and length */ |
|
4493 /* from the first if in the loop we know that targetCapacity>0 */ |
|
4494 if(length<=targetCapacity) { |
|
4495 if(offsets==NULL) { |
|
4496 switch(length) { |
|
4497 /* each branch falls through to the next one */ |
|
4498 case 4: |
|
4499 *target++=(uint8_t)(value>>24); |
|
4500 case 3: /*fall through*/ |
|
4501 *target++=(uint8_t)(value>>16); |
|
4502 case 2: /*fall through*/ |
|
4503 *target++=(uint8_t)(value>>8); |
|
4504 case 1: /*fall through*/ |
|
4505 *target++=(uint8_t)value; |
|
4506 default: |
|
4507 /* will never occur */ |
|
4508 break; |
|
4509 } |
|
4510 } else { |
|
4511 switch(length) { |
|
4512 /* each branch falls through to the next one */ |
|
4513 case 4: |
|
4514 *target++=(uint8_t)(value>>24); |
|
4515 *offsets++=sourceIndex; |
|
4516 case 3: /*fall through*/ |
|
4517 *target++=(uint8_t)(value>>16); |
|
4518 *offsets++=sourceIndex; |
|
4519 case 2: /*fall through*/ |
|
4520 *target++=(uint8_t)(value>>8); |
|
4521 *offsets++=sourceIndex; |
|
4522 case 1: /*fall through*/ |
|
4523 *target++=(uint8_t)value; |
|
4524 *offsets++=sourceIndex; |
|
4525 default: |
|
4526 /* will never occur */ |
|
4527 break; |
|
4528 } |
|
4529 } |
|
4530 targetCapacity-=length; |
|
4531 } else { |
|
4532 uint8_t *charErrorBuffer; |
|
4533 |
|
4534 /* |
|
4535 * We actually do this backwards here: |
|
4536 * In order to save an intermediate variable, we output |
|
4537 * first to the overflow buffer what does not fit into the |
|
4538 * regular target. |
|
4539 */ |
|
4540 /* we know that 1<=targetCapacity<length<=4 */ |
|
4541 length-=targetCapacity; |
|
4542 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; |
|
4543 switch(length) { |
|
4544 /* each branch falls through to the next one */ |
|
4545 case 3: |
|
4546 *charErrorBuffer++=(uint8_t)(value>>16); |
|
4547 case 2: /*fall through*/ |
|
4548 *charErrorBuffer++=(uint8_t)(value>>8); |
|
4549 case 1: /*fall through*/ |
|
4550 *charErrorBuffer=(uint8_t)value; |
|
4551 default: |
|
4552 /* will never occur */ |
|
4553 break; |
|
4554 } |
|
4555 cnv->charErrorBufferLength=(int8_t)length; |
|
4556 |
|
4557 /* now output what fits into the regular target */ |
|
4558 value>>=8*length; /* length was reduced by targetCapacity */ |
|
4559 switch(targetCapacity) { |
|
4560 /* each branch falls through to the next one */ |
|
4561 case 3: |
|
4562 *target++=(uint8_t)(value>>16); |
|
4563 if(offsets!=NULL) { |
|
4564 *offsets++=sourceIndex; |
|
4565 } |
|
4566 case 2: /*fall through*/ |
|
4567 *target++=(uint8_t)(value>>8); |
|
4568 if(offsets!=NULL) { |
|
4569 *offsets++=sourceIndex; |
|
4570 } |
|
4571 case 1: /*fall through*/ |
|
4572 *target++=(uint8_t)value; |
|
4573 if(offsets!=NULL) { |
|
4574 *offsets++=sourceIndex; |
|
4575 } |
|
4576 default: |
|
4577 /* will never occur */ |
|
4578 break; |
|
4579 } |
|
4580 |
|
4581 /* target overflow */ |
|
4582 targetCapacity=0; |
|
4583 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
4584 c=0; |
|
4585 break; |
|
4586 } |
|
4587 |
|
4588 /* normal end of conversion: prepare for a new character */ |
|
4589 c=0; |
|
4590 if(offsets!=NULL) { |
|
4591 prevSourceIndex=sourceIndex; |
|
4592 sourceIndex=nextSourceIndex; |
|
4593 } |
|
4594 continue; |
|
4595 } else { |
|
4596 /* target is full */ |
|
4597 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
4598 break; |
|
4599 } |
|
4600 } |
|
4601 |
|
4602 /* |
|
4603 * the end of the input stream and detection of truncated input |
|
4604 * are handled by the framework, but for EBCDIC_STATEFUL conversion |
|
4605 * we need to emit an SI at the very end |
|
4606 * |
|
4607 * conditions: |
|
4608 * successful |
|
4609 * EBCDIC_STATEFUL in DBCS mode |
|
4610 * end of input and no truncated input |
|
4611 */ |
|
4612 if( U_SUCCESS(*pErrorCode) && |
|
4613 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && |
|
4614 pArgs->flush && source>=sourceLimit && c==0 |
|
4615 ) { |
|
4616 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */ |
|
4617 if(targetCapacity>0) { |
|
4618 *target++=(uint8_t)siBytes[0]; |
|
4619 if (siLength == 2) { |
|
4620 if (targetCapacity<2) { |
|
4621 cnv->charErrorBuffer[0]=(uint8_t)siBytes[1]; |
|
4622 cnv->charErrorBufferLength=1; |
|
4623 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
4624 } else { |
|
4625 *target++=(uint8_t)siBytes[1]; |
|
4626 } |
|
4627 } |
|
4628 if(offsets!=NULL) { |
|
4629 /* set the last source character's index (sourceIndex points at sourceLimit now) */ |
|
4630 *offsets++=prevSourceIndex; |
|
4631 } |
|
4632 } else { |
|
4633 /* target is full */ |
|
4634 cnv->charErrorBuffer[0]=(uint8_t)siBytes[0]; |
|
4635 if (siLength == 2) { |
|
4636 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1]; |
|
4637 } |
|
4638 cnv->charErrorBufferLength=siLength; |
|
4639 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
4640 } |
|
4641 prevLength=1; /* we switched into SBCS */ |
|
4642 } |
|
4643 |
|
4644 /* set the converter state back into UConverter */ |
|
4645 cnv->fromUChar32=c; |
|
4646 cnv->fromUnicodeStatus=prevLength; |
|
4647 |
|
4648 /* write back the updated pointers */ |
|
4649 pArgs->source=source; |
|
4650 pArgs->target=(char *)target; |
|
4651 pArgs->offsets=offsets; |
|
4652 } |
|
4653 |
|
4654 /* |
|
4655 * This is another simple conversion function for internal use by other |
|
4656 * conversion implementations. |
|
4657 * It does not use the converter state nor call callbacks. |
|
4658 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
|
4659 * It handles conversion extensions but not GB 18030. |
|
4660 * |
|
4661 * It converts one single Unicode code point into codepage bytes, encoded |
|
4662 * as one 32-bit value. The function returns the number of bytes in *pValue: |
|
4663 * 1..4 the number of bytes in *pValue |
|
4664 * 0 unassigned (*pValue undefined) |
|
4665 * -1 illegal (currently not used, *pValue undefined) |
|
4666 * |
|
4667 * *pValue will contain the resulting bytes with the last byte in bits 7..0, |
|
4668 * the second to last byte in bits 15..8, etc. |
|
4669 * Currently, the function assumes but does not check that 0<=c<=0x10ffff. |
|
4670 */ |
|
4671 U_CFUNC int32_t |
|
4672 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, |
|
4673 UChar32 c, uint32_t *pValue, |
|
4674 UBool useFallback) { |
|
4675 const int32_t *cx; |
|
4676 const uint16_t *table; |
|
4677 #if 0 |
|
4678 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ |
|
4679 const uint8_t *p; |
|
4680 #endif |
|
4681 uint32_t stage2Entry; |
|
4682 uint32_t value; |
|
4683 int32_t length; |
|
4684 |
|
4685 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
4686 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
|
4687 table=sharedData->mbcs.fromUnicodeTable; |
|
4688 |
|
4689 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ |
|
4690 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { |
|
4691 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); |
|
4692 /* is this code point assigned, or do we use fallbacks? */ |
|
4693 if(useFallback ? value>=0x800 : value>=0xc00) { |
|
4694 *pValue=value&0xff; |
|
4695 return 1; |
|
4696 } |
|
4697 } else /* outputType!=MBCS_OUTPUT_1 */ { |
|
4698 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
|
4699 |
|
4700 /* get the bytes and the length for the output */ |
|
4701 switch(sharedData->mbcs.outputType) { |
|
4702 case MBCS_OUTPUT_2: |
|
4703 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
|
4704 if(value<=0xff) { |
|
4705 length=1; |
|
4706 } else { |
|
4707 length=2; |
|
4708 } |
|
4709 break; |
|
4710 #if 0 |
|
4711 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ |
|
4712 case MBCS_OUTPUT_DBCS_ONLY: |
|
4713 /* table with single-byte results, but only DBCS mappings used */ |
|
4714 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
|
4715 if(value<=0xff) { |
|
4716 /* no mapping or SBCS result, not taken for DBCS-only */ |
|
4717 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
|
4718 length=0; |
|
4719 } else { |
|
4720 length=2; |
|
4721 } |
|
4722 break; |
|
4723 case MBCS_OUTPUT_3: |
|
4724 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
|
4725 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
|
4726 if(value<=0xff) { |
|
4727 length=1; |
|
4728 } else if(value<=0xffff) { |
|
4729 length=2; |
|
4730 } else { |
|
4731 length=3; |
|
4732 } |
|
4733 break; |
|
4734 case MBCS_OUTPUT_4: |
|
4735 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
|
4736 if(value<=0xff) { |
|
4737 length=1; |
|
4738 } else if(value<=0xffff) { |
|
4739 length=2; |
|
4740 } else if(value<=0xffffff) { |
|
4741 length=3; |
|
4742 } else { |
|
4743 length=4; |
|
4744 } |
|
4745 break; |
|
4746 case MBCS_OUTPUT_3_EUC: |
|
4747 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
|
4748 /* EUC 16-bit fixed-length representation */ |
|
4749 if(value<=0xff) { |
|
4750 length=1; |
|
4751 } else if((value&0x8000)==0) { |
|
4752 value|=0x8e8000; |
|
4753 length=3; |
|
4754 } else if((value&0x80)==0) { |
|
4755 value|=0x8f0080; |
|
4756 length=3; |
|
4757 } else { |
|
4758 length=2; |
|
4759 } |
|
4760 break; |
|
4761 case MBCS_OUTPUT_4_EUC: |
|
4762 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
|
4763 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
|
4764 /* EUC 16-bit fixed-length representation applied to the first two bytes */ |
|
4765 if(value<=0xff) { |
|
4766 length=1; |
|
4767 } else if(value<=0xffff) { |
|
4768 length=2; |
|
4769 } else if((value&0x800000)==0) { |
|
4770 value|=0x8e800000; |
|
4771 length=4; |
|
4772 } else if((value&0x8000)==0) { |
|
4773 value|=0x8f008000; |
|
4774 length=4; |
|
4775 } else { |
|
4776 length=3; |
|
4777 } |
|
4778 break; |
|
4779 #endif |
|
4780 default: |
|
4781 /* must not occur */ |
|
4782 return -1; |
|
4783 } |
|
4784 |
|
4785 /* is this code point assigned, or do we use fallbacks? */ |
|
4786 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
|
4787 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) |
|
4788 ) { |
|
4789 /* |
|
4790 * We allow a 0 byte output if the "assigned" bit is set for this entry. |
|
4791 * There is no way with this data structure for fallback output |
|
4792 * to be a zero byte. |
|
4793 */ |
|
4794 /* assigned */ |
|
4795 *pValue=value; |
|
4796 return length; |
|
4797 } |
|
4798 } |
|
4799 } |
|
4800 |
|
4801 cx=sharedData->mbcs.extIndexes; |
|
4802 if(cx!=NULL) { |
|
4803 length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); |
|
4804 return length>=0 ? length : -length; /* return abs(length); */ |
|
4805 } |
|
4806 |
|
4807 /* unassigned */ |
|
4808 return 0; |
|
4809 } |
|
4810 |
|
4811 |
|
4812 #if 0 |
|
4813 /* |
|
4814 * This function has been moved to ucnv2022.c for inlining. |
|
4815 * This implementation is here only for documentation purposes |
|
4816 */ |
|
4817 |
|
4818 /** |
|
4819 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages. |
|
4820 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
|
4821 * It does not handle conversion extensions (_extFromU()). |
|
4822 * |
|
4823 * It returns the codepage byte for the code point, or -1 if it is unassigned. |
|
4824 */ |
|
4825 U_CFUNC int32_t |
|
4826 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, |
|
4827 UChar32 c, |
|
4828 UBool useFallback) { |
|
4829 const uint16_t *table; |
|
4830 int32_t value; |
|
4831 |
|
4832 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
4833 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
|
4834 return -1; |
|
4835 } |
|
4836 |
|
4837 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ |
|
4838 table=sharedData->mbcs.fromUnicodeTable; |
|
4839 |
|
4840 /* get the byte for the output */ |
|
4841 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); |
|
4842 /* is this code point assigned, or do we use fallbacks? */ |
|
4843 if(useFallback ? value>=0x800 : value>=0xc00) { |
|
4844 return value&0xff; |
|
4845 } else { |
|
4846 return -1; |
|
4847 } |
|
4848 } |
|
4849 #endif |
|
4850 |
|
4851 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ |
|
4852 |
|
4853 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ |
|
4854 static const UChar32 |
|
4855 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; |
|
4856 |
|
4857 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */ |
|
4858 static const UChar32 |
|
4859 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; |
|
4860 |
|
4861 static void |
|
4862 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
|
4863 UConverterToUnicodeArgs *pToUArgs, |
|
4864 UErrorCode *pErrorCode) { |
|
4865 UConverter *utf8, *cnv; |
|
4866 const uint8_t *source, *sourceLimit; |
|
4867 uint8_t *target; |
|
4868 int32_t targetCapacity; |
|
4869 |
|
4870 const uint16_t *table, *sbcsIndex; |
|
4871 const uint16_t *results; |
|
4872 |
|
4873 int8_t oldToULength, toULength, toULimit; |
|
4874 |
|
4875 UChar32 c; |
|
4876 uint8_t b, t1, t2; |
|
4877 |
|
4878 uint32_t asciiRoundtrips; |
|
4879 uint16_t value, minValue; |
|
4880 UBool hasSupplementary; |
|
4881 |
|
4882 /* set up the local pointers */ |
|
4883 utf8=pToUArgs->converter; |
|
4884 cnv=pFromUArgs->converter; |
|
4885 source=(uint8_t *)pToUArgs->source; |
|
4886 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; |
|
4887 target=(uint8_t *)pFromUArgs->target; |
|
4888 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); |
|
4889 |
|
4890 table=cnv->sharedData->mbcs.fromUnicodeTable; |
|
4891 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; |
|
4892 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
4893 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
|
4894 } else { |
|
4895 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
|
4896 } |
|
4897 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
|
4898 |
|
4899 if(cnv->useFallback) { |
|
4900 /* use all roundtrip and fallback results */ |
|
4901 minValue=0x800; |
|
4902 } else { |
|
4903 /* use only roundtrips and fallbacks from private-use characters */ |
|
4904 minValue=0xc00; |
|
4905 } |
|
4906 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
|
4907 |
|
4908 /* get the converter state from the UTF-8 UConverter */ |
|
4909 c=(UChar32)utf8->toUnicodeStatus; |
|
4910 if(c!=0) { |
|
4911 toULength=oldToULength=utf8->toULength; |
|
4912 toULimit=(int8_t)utf8->mode; |
|
4913 } else { |
|
4914 toULength=oldToULength=toULimit=0; |
|
4915 } |
|
4916 |
|
4917 /* |
|
4918 * Make sure that the last byte sequence before sourceLimit is complete |
|
4919 * or runs into a lead byte. |
|
4920 * Do not go back into the bytes that will be read for finishing a partial |
|
4921 * sequence from the previous buffer. |
|
4922 * In the conversion loop compare source with sourceLimit only once |
|
4923 * per multi-byte character. |
|
4924 */ |
|
4925 { |
|
4926 int32_t i, length; |
|
4927 |
|
4928 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); |
|
4929 for(i=0; i<3 && i<length;) { |
|
4930 b=*(sourceLimit-i-1); |
|
4931 if(U8_IS_TRAIL(b)) { |
|
4932 ++i; |
|
4933 } else { |
|
4934 if(i<U8_COUNT_TRAIL_BYTES(b)) { |
|
4935 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ |
|
4936 sourceLimit-=i+1; |
|
4937 } |
|
4938 break; |
|
4939 } |
|
4940 } |
|
4941 } |
|
4942 |
|
4943 if(c!=0 && targetCapacity>0) { |
|
4944 utf8->toUnicodeStatus=0; |
|
4945 utf8->toULength=0; |
|
4946 goto moreBytes; |
|
4947 /* |
|
4948 * Note: We could avoid the goto by duplicating some of the moreBytes |
|
4949 * code, but only up to the point of collecting a complete UTF-8 |
|
4950 * sequence; then recurse for the toUBytes[toULength] |
|
4951 * and then continue with normal conversion. |
|
4952 * |
|
4953 * If so, move this code to just after initializing the minimum |
|
4954 * set of local variables for reading the UTF-8 input |
|
4955 * (utf8, source, target, limits but not cnv, table, minValue, etc.). |
|
4956 * |
|
4957 * Potential advantages: |
|
4958 * - avoid the goto |
|
4959 * - oldToULength could become a local variable in just those code blocks |
|
4960 * that deal with buffer boundaries |
|
4961 * - possibly faster if the goto prevents some compiler optimizations |
|
4962 * (this would need measuring to confirm) |
|
4963 * Disadvantage: |
|
4964 * - code duplication |
|
4965 */ |
|
4966 } |
|
4967 |
|
4968 /* conversion loop */ |
|
4969 while(source<sourceLimit) { |
|
4970 if(targetCapacity>0) { |
|
4971 b=*source++; |
|
4972 if((int8_t)b>=0) { |
|
4973 /* convert ASCII */ |
|
4974 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { |
|
4975 *target++=(uint8_t)b; |
|
4976 --targetCapacity; |
|
4977 continue; |
|
4978 } else { |
|
4979 c=b; |
|
4980 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); |
|
4981 } |
|
4982 } else { |
|
4983 if(b<0xe0) { |
|
4984 if( /* handle U+0080..U+07FF inline */ |
|
4985 b>=0xc2 && |
|
4986 (t1=(uint8_t)(*source-0x80)) <= 0x3f |
|
4987 ) { |
|
4988 c=b&0x1f; |
|
4989 ++source; |
|
4990 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); |
|
4991 if(value>=minValue) { |
|
4992 *target++=(uint8_t)value; |
|
4993 --targetCapacity; |
|
4994 continue; |
|
4995 } else { |
|
4996 c=(c<<6)|t1; |
|
4997 } |
|
4998 } else { |
|
4999 c=-1; |
|
5000 } |
|
5001 } else if(b==0xe0) { |
|
5002 if( /* handle U+0800..U+0FFF inline */ |
|
5003 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && |
|
5004 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f |
|
5005 ) { |
|
5006 c=t1; |
|
5007 source+=2; |
|
5008 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); |
|
5009 if(value>=minValue) { |
|
5010 *target++=(uint8_t)value; |
|
5011 --targetCapacity; |
|
5012 continue; |
|
5013 } else { |
|
5014 c=(c<<6)|t2; |
|
5015 } |
|
5016 } else { |
|
5017 c=-1; |
|
5018 } |
|
5019 } else { |
|
5020 c=-1; |
|
5021 } |
|
5022 |
|
5023 if(c<0) { |
|
5024 /* handle "complicated" and error cases, and continuing partial characters */ |
|
5025 oldToULength=0; |
|
5026 toULength=1; |
|
5027 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
|
5028 c=b; |
|
5029 moreBytes: |
|
5030 while(toULength<toULimit) { |
|
5031 /* |
|
5032 * The sourceLimit may have been adjusted before the conversion loop |
|
5033 * to stop before a truncated sequence. |
|
5034 * Here we need to use the real limit in case we have two truncated |
|
5035 * sequences at the end. |
|
5036 * See ticket #7492. |
|
5037 */ |
|
5038 if(source<(uint8_t *)pToUArgs->sourceLimit) { |
|
5039 b=*source; |
|
5040 if(U8_IS_TRAIL(b)) { |
|
5041 ++source; |
|
5042 ++toULength; |
|
5043 c=(c<<6)+b; |
|
5044 } else { |
|
5045 break; /* sequence too short, stop with toULength<toULimit */ |
|
5046 } |
|
5047 } else { |
|
5048 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ |
|
5049 source-=(toULength-oldToULength); |
|
5050 while(oldToULength<toULength) { |
|
5051 utf8->toUBytes[oldToULength++]=*source++; |
|
5052 } |
|
5053 utf8->toUnicodeStatus=c; |
|
5054 utf8->toULength=toULength; |
|
5055 utf8->mode=toULimit; |
|
5056 pToUArgs->source=(char *)source; |
|
5057 pFromUArgs->target=(char *)target; |
|
5058 return; |
|
5059 } |
|
5060 } |
|
5061 |
|
5062 if( toULength==toULimit && /* consumed all trail bytes */ |
|
5063 (toULength==3 || toULength==2) && /* BMP */ |
|
5064 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && |
|
5065 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ |
|
5066 ) { |
|
5067 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
5068 } else if( |
|
5069 toULength==toULimit && toULength==4 && |
|
5070 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) |
|
5071 ) { |
|
5072 /* supplementary code point */ |
|
5073 if(!hasSupplementary) { |
|
5074 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
5075 value=0; |
|
5076 } else { |
|
5077 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
|
5078 } |
|
5079 } else { |
|
5080 /* error handling: illegal UTF-8 byte sequence */ |
|
5081 source-=(toULength-oldToULength); |
|
5082 while(oldToULength<toULength) { |
|
5083 utf8->toUBytes[oldToULength++]=*source++; |
|
5084 } |
|
5085 utf8->toULength=toULength; |
|
5086 pToUArgs->source=(char *)source; |
|
5087 pFromUArgs->target=(char *)target; |
|
5088 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
5089 return; |
|
5090 } |
|
5091 } |
|
5092 } |
|
5093 |
|
5094 if(value>=minValue) { |
|
5095 /* output the mapping for c */ |
|
5096 *target++=(uint8_t)value; |
|
5097 --targetCapacity; |
|
5098 } else { |
|
5099 /* value<minValue means c is unassigned (unmappable) */ |
|
5100 /* |
|
5101 * Try an extension mapping. |
|
5102 * Pass in no source because we don't have UTF-16 input. |
|
5103 * If we have a partial match on c, we will return and revert |
|
5104 * to UTF-8->UTF-16->charset conversion. |
|
5105 */ |
|
5106 static const UChar nul=0; |
|
5107 const UChar *noSource=&nul; |
|
5108 c=_extFromU(cnv, cnv->sharedData, |
|
5109 c, &noSource, noSource, |
|
5110 &target, target+targetCapacity, |
|
5111 NULL, -1, |
|
5112 pFromUArgs->flush, |
|
5113 pErrorCode); |
|
5114 |
|
5115 if(U_FAILURE(*pErrorCode)) { |
|
5116 /* not mappable or buffer overflow */ |
|
5117 cnv->fromUChar32=c; |
|
5118 break; |
|
5119 } else if(cnv->preFromUFirstCP>=0) { |
|
5120 /* |
|
5121 * Partial match, return and revert to pivoting. |
|
5122 * In normal from-UTF-16 conversion, we would just continue |
|
5123 * but then exit the loop because the extension match would |
|
5124 * have consumed the source. |
|
5125 */ |
|
5126 *pErrorCode=U_USING_DEFAULT_WARNING; |
|
5127 break; |
|
5128 } else { |
|
5129 /* a mapping was written to the target, continue */ |
|
5130 |
|
5131 /* recalculate the targetCapacity after an extension mapping */ |
|
5132 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); |
|
5133 } |
|
5134 } |
|
5135 } else { |
|
5136 /* target is full */ |
|
5137 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
5138 break; |
|
5139 } |
|
5140 } |
|
5141 |
|
5142 /* |
|
5143 * The sourceLimit may have been adjusted before the conversion loop |
|
5144 * to stop before a truncated sequence. |
|
5145 * If so, then collect the truncated sequence now. |
|
5146 */ |
|
5147 if(U_SUCCESS(*pErrorCode) && |
|
5148 cnv->preFromUFirstCP<0 && |
|
5149 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { |
|
5150 c=utf8->toUBytes[0]=b=*source++; |
|
5151 toULength=1; |
|
5152 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
|
5153 while(source<sourceLimit) { |
|
5154 utf8->toUBytes[toULength++]=b=*source++; |
|
5155 c=(c<<6)+b; |
|
5156 } |
|
5157 utf8->toUnicodeStatus=c; |
|
5158 utf8->toULength=toULength; |
|
5159 utf8->mode=toULimit; |
|
5160 } |
|
5161 |
|
5162 /* write back the updated pointers */ |
|
5163 pToUArgs->source=(char *)source; |
|
5164 pFromUArgs->target=(char *)target; |
|
5165 } |
|
5166 |
|
5167 static void |
|
5168 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
|
5169 UConverterToUnicodeArgs *pToUArgs, |
|
5170 UErrorCode *pErrorCode) { |
|
5171 UConverter *utf8, *cnv; |
|
5172 const uint8_t *source, *sourceLimit; |
|
5173 uint8_t *target; |
|
5174 int32_t targetCapacity; |
|
5175 |
|
5176 const uint16_t *table, *mbcsIndex; |
|
5177 const uint16_t *results; |
|
5178 |
|
5179 int8_t oldToULength, toULength, toULimit; |
|
5180 |
|
5181 UChar32 c; |
|
5182 uint8_t b, t1, t2; |
|
5183 |
|
5184 uint32_t stage2Entry; |
|
5185 uint32_t asciiRoundtrips; |
|
5186 uint16_t value; |
|
5187 UBool hasSupplementary; |
|
5188 |
|
5189 /* set up the local pointers */ |
|
5190 utf8=pToUArgs->converter; |
|
5191 cnv=pFromUArgs->converter; |
|
5192 source=(uint8_t *)pToUArgs->source; |
|
5193 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; |
|
5194 target=(uint8_t *)pFromUArgs->target; |
|
5195 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); |
|
5196 |
|
5197 table=cnv->sharedData->mbcs.fromUnicodeTable; |
|
5198 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
|
5199 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
|
5200 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
|
5201 } else { |
|
5202 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
|
5203 } |
|
5204 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
|
5205 |
|
5206 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
|
5207 |
|
5208 /* get the converter state from the UTF-8 UConverter */ |
|
5209 c=(UChar32)utf8->toUnicodeStatus; |
|
5210 if(c!=0) { |
|
5211 toULength=oldToULength=utf8->toULength; |
|
5212 toULimit=(int8_t)utf8->mode; |
|
5213 } else { |
|
5214 toULength=oldToULength=toULimit=0; |
|
5215 } |
|
5216 |
|
5217 /* |
|
5218 * Make sure that the last byte sequence before sourceLimit is complete |
|
5219 * or runs into a lead byte. |
|
5220 * Do not go back into the bytes that will be read for finishing a partial |
|
5221 * sequence from the previous buffer. |
|
5222 * In the conversion loop compare source with sourceLimit only once |
|
5223 * per multi-byte character. |
|
5224 */ |
|
5225 { |
|
5226 int32_t i, length; |
|
5227 |
|
5228 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); |
|
5229 for(i=0; i<3 && i<length;) { |
|
5230 b=*(sourceLimit-i-1); |
|
5231 if(U8_IS_TRAIL(b)) { |
|
5232 ++i; |
|
5233 } else { |
|
5234 if(i<U8_COUNT_TRAIL_BYTES(b)) { |
|
5235 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ |
|
5236 sourceLimit-=i+1; |
|
5237 } |
|
5238 break; |
|
5239 } |
|
5240 } |
|
5241 } |
|
5242 |
|
5243 if(c!=0 && targetCapacity>0) { |
|
5244 utf8->toUnicodeStatus=0; |
|
5245 utf8->toULength=0; |
|
5246 goto moreBytes; |
|
5247 /* See note in ucnv_SBCSFromUTF8() about this goto. */ |
|
5248 } |
|
5249 |
|
5250 /* conversion loop */ |
|
5251 while(source<sourceLimit) { |
|
5252 if(targetCapacity>0) { |
|
5253 b=*source++; |
|
5254 if((int8_t)b>=0) { |
|
5255 /* convert ASCII */ |
|
5256 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { |
|
5257 *target++=b; |
|
5258 --targetCapacity; |
|
5259 continue; |
|
5260 } else { |
|
5261 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); |
|
5262 if(value==0) { |
|
5263 c=b; |
|
5264 goto unassigned; |
|
5265 } |
|
5266 } |
|
5267 } else { |
|
5268 if(b>0xe0) { |
|
5269 if( /* handle U+1000..U+D7FF inline */ |
|
5270 (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) || |
|
5271 (b==0xed && (t1 <= 0x1f))) && |
|
5272 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f |
|
5273 ) { |
|
5274 c=((b&0xf)<<6)|t1; |
|
5275 source+=2; |
|
5276 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); |
|
5277 if(value==0) { |
|
5278 c=(c<<6)|t2; |
|
5279 goto unassigned; |
|
5280 } |
|
5281 } else { |
|
5282 c=-1; |
|
5283 } |
|
5284 } else if(b<0xe0) { |
|
5285 if( /* handle U+0080..U+07FF inline */ |
|
5286 b>=0xc2 && |
|
5287 (t1=(uint8_t)(*source-0x80)) <= 0x3f |
|
5288 ) { |
|
5289 c=b&0x1f; |
|
5290 ++source; |
|
5291 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); |
|
5292 if(value==0) { |
|
5293 c=(c<<6)|t1; |
|
5294 goto unassigned; |
|
5295 } |
|
5296 } else { |
|
5297 c=-1; |
|
5298 } |
|
5299 } else { |
|
5300 c=-1; |
|
5301 } |
|
5302 |
|
5303 if(c<0) { |
|
5304 /* handle "complicated" and error cases, and continuing partial characters */ |
|
5305 oldToULength=0; |
|
5306 toULength=1; |
|
5307 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
|
5308 c=b; |
|
5309 moreBytes: |
|
5310 while(toULength<toULimit) { |
|
5311 /* |
|
5312 * The sourceLimit may have been adjusted before the conversion loop |
|
5313 * to stop before a truncated sequence. |
|
5314 * Here we need to use the real limit in case we have two truncated |
|
5315 * sequences at the end. |
|
5316 * See ticket #7492. |
|
5317 */ |
|
5318 if(source<(uint8_t *)pToUArgs->sourceLimit) { |
|
5319 b=*source; |
|
5320 if(U8_IS_TRAIL(b)) { |
|
5321 ++source; |
|
5322 ++toULength; |
|
5323 c=(c<<6)+b; |
|
5324 } else { |
|
5325 break; /* sequence too short, stop with toULength<toULimit */ |
|
5326 } |
|
5327 } else { |
|
5328 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ |
|
5329 source-=(toULength-oldToULength); |
|
5330 while(oldToULength<toULength) { |
|
5331 utf8->toUBytes[oldToULength++]=*source++; |
|
5332 } |
|
5333 utf8->toUnicodeStatus=c; |
|
5334 utf8->toULength=toULength; |
|
5335 utf8->mode=toULimit; |
|
5336 pToUArgs->source=(char *)source; |
|
5337 pFromUArgs->target=(char *)target; |
|
5338 return; |
|
5339 } |
|
5340 } |
|
5341 |
|
5342 if( toULength==toULimit && /* consumed all trail bytes */ |
|
5343 (toULength==3 || toULength==2) && /* BMP */ |
|
5344 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && |
|
5345 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ |
|
5346 ) { |
|
5347 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
|
5348 } else if( |
|
5349 toULength==toULimit && toULength==4 && |
|
5350 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) |
|
5351 ) { |
|
5352 /* supplementary code point */ |
|
5353 if(!hasSupplementary) { |
|
5354 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
|
5355 stage2Entry=0; |
|
5356 } else { |
|
5357 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
|
5358 } |
|
5359 } else { |
|
5360 /* error handling: illegal UTF-8 byte sequence */ |
|
5361 source-=(toULength-oldToULength); |
|
5362 while(oldToULength<toULength) { |
|
5363 utf8->toUBytes[oldToULength++]=*source++; |
|
5364 } |
|
5365 utf8->toULength=toULength; |
|
5366 pToUArgs->source=(char *)source; |
|
5367 pFromUArgs->target=(char *)target; |
|
5368 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
|
5369 return; |
|
5370 } |
|
5371 |
|
5372 /* get the bytes and the length for the output */ |
|
5373 /* MBCS_OUTPUT_2 */ |
|
5374 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); |
|
5375 |
|
5376 /* is this code point assigned, or do we use fallbacks? */ |
|
5377 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
|
5378 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
|
5379 ) { |
|
5380 goto unassigned; |
|
5381 } |
|
5382 } |
|
5383 } |
|
5384 |
|
5385 /* write the output character bytes from value and length */ |
|
5386 /* from the first if in the loop we know that targetCapacity>0 */ |
|
5387 if(value<=0xff) { |
|
5388 /* this is easy because we know that there is enough space */ |
|
5389 *target++=(uint8_t)value; |
|
5390 --targetCapacity; |
|
5391 } else /* length==2 */ { |
|
5392 *target++=(uint8_t)(value>>8); |
|
5393 if(2<=targetCapacity) { |
|
5394 *target++=(uint8_t)value; |
|
5395 targetCapacity-=2; |
|
5396 } else { |
|
5397 cnv->charErrorBuffer[0]=(char)value; |
|
5398 cnv->charErrorBufferLength=1; |
|
5399 |
|
5400 /* target overflow */ |
|
5401 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
5402 break; |
|
5403 } |
|
5404 } |
|
5405 continue; |
|
5406 |
|
5407 unassigned: |
|
5408 { |
|
5409 /* |
|
5410 * Try an extension mapping. |
|
5411 * Pass in no source because we don't have UTF-16 input. |
|
5412 * If we have a partial match on c, we will return and revert |
|
5413 * to UTF-8->UTF-16->charset conversion. |
|
5414 */ |
|
5415 static const UChar nul=0; |
|
5416 const UChar *noSource=&nul; |
|
5417 c=_extFromU(cnv, cnv->sharedData, |
|
5418 c, &noSource, noSource, |
|
5419 &target, target+targetCapacity, |
|
5420 NULL, -1, |
|
5421 pFromUArgs->flush, |
|
5422 pErrorCode); |
|
5423 |
|
5424 if(U_FAILURE(*pErrorCode)) { |
|
5425 /* not mappable or buffer overflow */ |
|
5426 cnv->fromUChar32=c; |
|
5427 break; |
|
5428 } else if(cnv->preFromUFirstCP>=0) { |
|
5429 /* |
|
5430 * Partial match, return and revert to pivoting. |
|
5431 * In normal from-UTF-16 conversion, we would just continue |
|
5432 * but then exit the loop because the extension match would |
|
5433 * have consumed the source. |
|
5434 */ |
|
5435 *pErrorCode=U_USING_DEFAULT_WARNING; |
|
5436 break; |
|
5437 } else { |
|
5438 /* a mapping was written to the target, continue */ |
|
5439 |
|
5440 /* recalculate the targetCapacity after an extension mapping */ |
|
5441 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); |
|
5442 continue; |
|
5443 } |
|
5444 } |
|
5445 } else { |
|
5446 /* target is full */ |
|
5447 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
5448 break; |
|
5449 } |
|
5450 } |
|
5451 |
|
5452 /* |
|
5453 * The sourceLimit may have been adjusted before the conversion loop |
|
5454 * to stop before a truncated sequence. |
|
5455 * If so, then collect the truncated sequence now. |
|
5456 */ |
|
5457 if(U_SUCCESS(*pErrorCode) && |
|
5458 cnv->preFromUFirstCP<0 && |
|
5459 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { |
|
5460 c=utf8->toUBytes[0]=b=*source++; |
|
5461 toULength=1; |
|
5462 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
|
5463 while(source<sourceLimit) { |
|
5464 utf8->toUBytes[toULength++]=b=*source++; |
|
5465 c=(c<<6)+b; |
|
5466 } |
|
5467 utf8->toUnicodeStatus=c; |
|
5468 utf8->toULength=toULength; |
|
5469 utf8->mode=toULimit; |
|
5470 } |
|
5471 |
|
5472 /* write back the updated pointers */ |
|
5473 pToUArgs->source=(char *)source; |
|
5474 pFromUArgs->target=(char *)target; |
|
5475 } |
|
5476 |
|
5477 /* miscellaneous ------------------------------------------------------------ */ |
|
5478 |
|
5479 static void |
|
5480 ucnv_MBCSGetStarters(const UConverter* cnv, |
|
5481 UBool starters[256], |
|
5482 UErrorCode *pErrorCode) { |
|
5483 const int32_t *state0; |
|
5484 int i; |
|
5485 |
|
5486 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]; |
|
5487 for(i=0; i<256; ++i) { |
|
5488 /* all bytes that cause a state transition from state 0 are lead bytes */ |
|
5489 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); |
|
5490 } |
|
5491 } |
|
5492 |
|
5493 /* |
|
5494 * This is an internal function that allows other converter implementations |
|
5495 * to check whether a byte is a lead byte. |
|
5496 */ |
|
5497 U_CFUNC UBool |
|
5498 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { |
|
5499 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]); |
|
5500 } |
|
5501 |
|
5502 static void |
|
5503 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, |
|
5504 int32_t offsetIndex, |
|
5505 UErrorCode *pErrorCode) { |
|
5506 UConverter *cnv=pArgs->converter; |
|
5507 char *p, *subchar; |
|
5508 char buffer[4]; |
|
5509 int32_t length; |
|
5510 |
|
5511 /* first, select between subChar and subChar1 */ |
|
5512 if( cnv->subChar1!=0 && |
|
5513 (cnv->sharedData->mbcs.extIndexes!=NULL ? |
|
5514 cnv->useSubChar1 : |
|
5515 (cnv->invalidUCharBuffer[0]<=0xff)) |
|
5516 ) { |
|
5517 /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */ |
|
5518 subchar=(char *)&cnv->subChar1; |
|
5519 length=1; |
|
5520 } else { |
|
5521 /* select subChar in all other cases */ |
|
5522 subchar=(char *)cnv->subChars; |
|
5523 length=cnv->subCharLen; |
|
5524 } |
|
5525 |
|
5526 /* reset the selector for the next code point */ |
|
5527 cnv->useSubChar1=FALSE; |
|
5528 |
|
5529 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { |
|
5530 p=buffer; |
|
5531 |
|
5532 /* fromUnicodeStatus contains prevLength */ |
|
5533 switch(length) { |
|
5534 case 1: |
|
5535 if(cnv->fromUnicodeStatus==2) { |
|
5536 /* DBCS mode and SBCS sub char: change to SBCS */ |
|
5537 cnv->fromUnicodeStatus=1; |
|
5538 *p++=UCNV_SI; |
|
5539 } |
|
5540 *p++=subchar[0]; |
|
5541 break; |
|
5542 case 2: |
|
5543 if(cnv->fromUnicodeStatus<=1) { |
|
5544 /* SBCS mode and DBCS sub char: change to DBCS */ |
|
5545 cnv->fromUnicodeStatus=2; |
|
5546 *p++=UCNV_SO; |
|
5547 } |
|
5548 *p++=subchar[0]; |
|
5549 *p++=subchar[1]; |
|
5550 break; |
|
5551 default: |
|
5552 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
5553 return; |
|
5554 } |
|
5555 subchar=buffer; |
|
5556 length=(int32_t)(p-buffer); |
|
5557 } |
|
5558 |
|
5559 ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); |
|
5560 } |
|
5561 |
|
5562 U_CFUNC UConverterType |
|
5563 ucnv_MBCSGetType(const UConverter* converter) { |
|
5564 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */ |
|
5565 if(converter->sharedData->mbcs.countStates==1) { |
|
5566 return (UConverterType)UCNV_SBCS; |
|
5567 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) { |
|
5568 return (UConverterType)UCNV_EBCDIC_STATEFUL; |
|
5569 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) { |
|
5570 return (UConverterType)UCNV_DBCS; |
|
5571 } |
|
5572 return (UConverterType)UCNV_MBCS; |
|
5573 } |
|
5574 |
|
5575 static const UConverterImpl _SBCSUTF8Impl={ |
|
5576 UCNV_MBCS, |
|
5577 |
|
5578 ucnv_MBCSLoad, |
|
5579 ucnv_MBCSUnload, |
|
5580 |
|
5581 ucnv_MBCSOpen, |
|
5582 NULL, |
|
5583 NULL, |
|
5584 |
|
5585 ucnv_MBCSToUnicodeWithOffsets, |
|
5586 ucnv_MBCSToUnicodeWithOffsets, |
|
5587 ucnv_MBCSFromUnicodeWithOffsets, |
|
5588 ucnv_MBCSFromUnicodeWithOffsets, |
|
5589 ucnv_MBCSGetNextUChar, |
|
5590 |
|
5591 ucnv_MBCSGetStarters, |
|
5592 ucnv_MBCSGetName, |
|
5593 ucnv_MBCSWriteSub, |
|
5594 NULL, |
|
5595 ucnv_MBCSGetUnicodeSet, |
|
5596 |
|
5597 NULL, |
|
5598 ucnv_SBCSFromUTF8 |
|
5599 }; |
|
5600 |
|
5601 static const UConverterImpl _DBCSUTF8Impl={ |
|
5602 UCNV_MBCS, |
|
5603 |
|
5604 ucnv_MBCSLoad, |
|
5605 ucnv_MBCSUnload, |
|
5606 |
|
5607 ucnv_MBCSOpen, |
|
5608 NULL, |
|
5609 NULL, |
|
5610 |
|
5611 ucnv_MBCSToUnicodeWithOffsets, |
|
5612 ucnv_MBCSToUnicodeWithOffsets, |
|
5613 ucnv_MBCSFromUnicodeWithOffsets, |
|
5614 ucnv_MBCSFromUnicodeWithOffsets, |
|
5615 ucnv_MBCSGetNextUChar, |
|
5616 |
|
5617 ucnv_MBCSGetStarters, |
|
5618 ucnv_MBCSGetName, |
|
5619 ucnv_MBCSWriteSub, |
|
5620 NULL, |
|
5621 ucnv_MBCSGetUnicodeSet, |
|
5622 |
|
5623 NULL, |
|
5624 ucnv_DBCSFromUTF8 |
|
5625 }; |
|
5626 |
|
5627 static const UConverterImpl _MBCSImpl={ |
|
5628 UCNV_MBCS, |
|
5629 |
|
5630 ucnv_MBCSLoad, |
|
5631 ucnv_MBCSUnload, |
|
5632 |
|
5633 ucnv_MBCSOpen, |
|
5634 NULL, |
|
5635 NULL, |
|
5636 |
|
5637 ucnv_MBCSToUnicodeWithOffsets, |
|
5638 ucnv_MBCSToUnicodeWithOffsets, |
|
5639 ucnv_MBCSFromUnicodeWithOffsets, |
|
5640 ucnv_MBCSFromUnicodeWithOffsets, |
|
5641 ucnv_MBCSGetNextUChar, |
|
5642 |
|
5643 ucnv_MBCSGetStarters, |
|
5644 ucnv_MBCSGetName, |
|
5645 ucnv_MBCSWriteSub, |
|
5646 NULL, |
|
5647 ucnv_MBCSGetUnicodeSet |
|
5648 }; |
|
5649 |
|
5650 |
|
5651 /* Static data is in tools/makeconv/ucnvstat.c for data-based |
|
5652 * converters. Be sure to update it as well. |
|
5653 */ |
|
5654 |
|
5655 const UConverterSharedData _MBCSData={ |
|
5656 sizeof(UConverterSharedData), 1, |
|
5657 NULL, NULL, NULL, FALSE, &_MBCSImpl, |
|
5658 0 |
|
5659 }; |
|
5660 |
|
5661 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |