|
1 /* |
|
2 ****************************************************************************** |
|
3 * |
|
4 * Copyright (C) 2001-2012, International Business Machines |
|
5 * Corporation and others. All Rights Reserved. |
|
6 * |
|
7 ****************************************************************************** |
|
8 * file name: utrie.cpp |
|
9 * encoding: US-ASCII |
|
10 * tab size: 8 (not used) |
|
11 * indentation:4 |
|
12 * |
|
13 * created on: 2001oct20 |
|
14 * created by: Markus W. Scherer |
|
15 * |
|
16 * This is a common implementation of a "folded" trie. |
|
17 * It is a kind of compressed, serializable table of 16- or 32-bit values associated with |
|
18 * Unicode code points (0..0x10ffff). |
|
19 */ |
|
20 |
|
21 #ifdef UTRIE_DEBUG |
|
22 # include <stdio.h> |
|
23 #endif |
|
24 |
|
25 #include "unicode/utypes.h" |
|
26 #include "cmemory.h" |
|
27 #include "utrie.h" |
|
28 |
|
29 /* miscellaneous ------------------------------------------------------------ */ |
|
30 |
|
31 #undef ABS |
|
32 #define ABS(x) ((x)>=0 ? (x) : -(x)) |
|
33 |
|
34 static inline UBool |
|
35 equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
|
36 while(length>0 && *s==*t) { |
|
37 ++s; |
|
38 ++t; |
|
39 --length; |
|
40 } |
|
41 return (UBool)(length==0); |
|
42 } |
|
43 |
|
44 /* Building a trie ----------------------------------------------------------*/ |
|
45 |
|
46 U_CAPI UNewTrie * U_EXPORT2 |
|
47 utrie_open(UNewTrie *fillIn, |
|
48 uint32_t *aliasData, int32_t maxDataLength, |
|
49 uint32_t initialValue, uint32_t leadUnitValue, |
|
50 UBool latin1Linear) { |
|
51 UNewTrie *trie; |
|
52 int32_t i, j; |
|
53 |
|
54 if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || |
|
55 (latin1Linear && maxDataLength<1024) |
|
56 ) { |
|
57 return NULL; |
|
58 } |
|
59 |
|
60 if(fillIn!=NULL) { |
|
61 trie=fillIn; |
|
62 } else { |
|
63 trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); |
|
64 if(trie==NULL) { |
|
65 return NULL; |
|
66 } |
|
67 } |
|
68 uprv_memset(trie, 0, sizeof(UNewTrie)); |
|
69 trie->isAllocated= (UBool)(fillIn==NULL); |
|
70 |
|
71 if(aliasData!=NULL) { |
|
72 trie->data=aliasData; |
|
73 trie->isDataAllocated=FALSE; |
|
74 } else { |
|
75 trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); |
|
76 if(trie->data==NULL) { |
|
77 uprv_free(trie); |
|
78 return NULL; |
|
79 } |
|
80 trie->isDataAllocated=TRUE; |
|
81 } |
|
82 |
|
83 /* preallocate and reset the first data block (block index 0) */ |
|
84 j=UTRIE_DATA_BLOCK_LENGTH; |
|
85 |
|
86 if(latin1Linear) { |
|
87 /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ |
|
88 /* made sure above that maxDataLength>=1024 */ |
|
89 |
|
90 /* set indexes to point to consecutive data blocks */ |
|
91 i=0; |
|
92 do { |
|
93 /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ |
|
94 trie->index[i++]=j; |
|
95 j+=UTRIE_DATA_BLOCK_LENGTH; |
|
96 } while(i<(256>>UTRIE_SHIFT)); |
|
97 } |
|
98 |
|
99 /* reset the initially allocated blocks to the initial value */ |
|
100 trie->dataLength=j; |
|
101 while(j>0) { |
|
102 trie->data[--j]=initialValue; |
|
103 } |
|
104 |
|
105 trie->leadUnitValue=leadUnitValue; |
|
106 trie->indexLength=UTRIE_MAX_INDEX_LENGTH; |
|
107 trie->dataCapacity=maxDataLength; |
|
108 trie->isLatin1Linear=latin1Linear; |
|
109 trie->isCompacted=FALSE; |
|
110 return trie; |
|
111 } |
|
112 |
|
113 U_CAPI UNewTrie * U_EXPORT2 |
|
114 utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { |
|
115 UNewTrie *trie; |
|
116 UBool isDataAllocated; |
|
117 |
|
118 /* do not clone if other is not valid or already compacted */ |
|
119 if(other==NULL || other->data==NULL || other->isCompacted) { |
|
120 return NULL; |
|
121 } |
|
122 |
|
123 /* clone data */ |
|
124 if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { |
|
125 isDataAllocated=FALSE; |
|
126 } else { |
|
127 aliasDataCapacity=other->dataCapacity; |
|
128 aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
|
129 if(aliasData==NULL) { |
|
130 return NULL; |
|
131 } |
|
132 isDataAllocated=TRUE; |
|
133 } |
|
134 |
|
135 trie=utrie_open(fillIn, aliasData, aliasDataCapacity, |
|
136 other->data[0], other->leadUnitValue, |
|
137 other->isLatin1Linear); |
|
138 if(trie==NULL) { |
|
139 uprv_free(aliasData); |
|
140 } else { |
|
141 uprv_memcpy(trie->index, other->index, sizeof(trie->index)); |
|
142 uprv_memcpy(trie->data, other->data, other->dataLength*4); |
|
143 trie->dataLength=other->dataLength; |
|
144 trie->isDataAllocated=isDataAllocated; |
|
145 } |
|
146 |
|
147 return trie; |
|
148 } |
|
149 |
|
150 U_CAPI void U_EXPORT2 |
|
151 utrie_close(UNewTrie *trie) { |
|
152 if(trie!=NULL) { |
|
153 if(trie->isDataAllocated) { |
|
154 uprv_free(trie->data); |
|
155 trie->data=NULL; |
|
156 } |
|
157 if(trie->isAllocated) { |
|
158 uprv_free(trie); |
|
159 } |
|
160 } |
|
161 } |
|
162 |
|
163 U_CAPI uint32_t * U_EXPORT2 |
|
164 utrie_getData(UNewTrie *trie, int32_t *pLength) { |
|
165 if(trie==NULL || pLength==NULL) { |
|
166 return NULL; |
|
167 } |
|
168 |
|
169 *pLength=trie->dataLength; |
|
170 return trie->data; |
|
171 } |
|
172 |
|
173 static int32_t |
|
174 utrie_allocDataBlock(UNewTrie *trie) { |
|
175 int32_t newBlock, newTop; |
|
176 |
|
177 newBlock=trie->dataLength; |
|
178 newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; |
|
179 if(newTop>trie->dataCapacity) { |
|
180 /* out of memory in the data array */ |
|
181 return -1; |
|
182 } |
|
183 trie->dataLength=newTop; |
|
184 return newBlock; |
|
185 } |
|
186 |
|
187 /** |
|
188 * No error checking for illegal arguments. |
|
189 * |
|
190 * @return -1 if no new data block available (out of memory in data array) |
|
191 * @internal |
|
192 */ |
|
193 static int32_t |
|
194 utrie_getDataBlock(UNewTrie *trie, UChar32 c) { |
|
195 int32_t indexValue, newBlock; |
|
196 |
|
197 c>>=UTRIE_SHIFT; |
|
198 indexValue=trie->index[c]; |
|
199 if(indexValue>0) { |
|
200 return indexValue; |
|
201 } |
|
202 |
|
203 /* allocate a new data block */ |
|
204 newBlock=utrie_allocDataBlock(trie); |
|
205 if(newBlock<0) { |
|
206 /* out of memory in the data array */ |
|
207 return -1; |
|
208 } |
|
209 trie->index[c]=newBlock; |
|
210 |
|
211 /* copy-on-write for a block from a setRange() */ |
|
212 uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); |
|
213 return newBlock; |
|
214 } |
|
215 |
|
216 /** |
|
217 * @return TRUE if the value was successfully set |
|
218 */ |
|
219 U_CAPI UBool U_EXPORT2 |
|
220 utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { |
|
221 int32_t block; |
|
222 |
|
223 /* valid, uncompacted trie and valid c? */ |
|
224 if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
|
225 return FALSE; |
|
226 } |
|
227 |
|
228 block=utrie_getDataBlock(trie, c); |
|
229 if(block<0) { |
|
230 return FALSE; |
|
231 } |
|
232 |
|
233 trie->data[block+(c&UTRIE_MASK)]=value; |
|
234 return TRUE; |
|
235 } |
|
236 |
|
237 U_CAPI uint32_t U_EXPORT2 |
|
238 utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { |
|
239 int32_t block; |
|
240 |
|
241 /* valid, uncompacted trie and valid c? */ |
|
242 if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
|
243 if(pInBlockZero!=NULL) { |
|
244 *pInBlockZero=TRUE; |
|
245 } |
|
246 return 0; |
|
247 } |
|
248 |
|
249 block=trie->index[c>>UTRIE_SHIFT]; |
|
250 if(pInBlockZero!=NULL) { |
|
251 *pInBlockZero= (UBool)(block==0); |
|
252 } |
|
253 |
|
254 return trie->data[ABS(block)+(c&UTRIE_MASK)]; |
|
255 } |
|
256 |
|
257 /** |
|
258 * @internal |
|
259 */ |
|
260 static void |
|
261 utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
|
262 uint32_t value, uint32_t initialValue, UBool overwrite) { |
|
263 uint32_t *pLimit; |
|
264 |
|
265 pLimit=block+limit; |
|
266 block+=start; |
|
267 if(overwrite) { |
|
268 while(block<pLimit) { |
|
269 *block++=value; |
|
270 } |
|
271 } else { |
|
272 while(block<pLimit) { |
|
273 if(*block==initialValue) { |
|
274 *block=value; |
|
275 } |
|
276 ++block; |
|
277 } |
|
278 } |
|
279 } |
|
280 |
|
281 U_CAPI UBool U_EXPORT2 |
|
282 utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { |
|
283 /* |
|
284 * repeat value in [start..limit[ |
|
285 * mark index values for repeat-data blocks by setting bit 31 of the index values |
|
286 * fill around existing values if any, if(overwrite) |
|
287 */ |
|
288 uint32_t initialValue; |
|
289 int32_t block, rest, repeatBlock; |
|
290 |
|
291 /* valid, uncompacted trie and valid indexes? */ |
|
292 if( trie==NULL || trie->isCompacted || |
|
293 (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit |
|
294 ) { |
|
295 return FALSE; |
|
296 } |
|
297 if(start==limit) { |
|
298 return TRUE; /* nothing to do */ |
|
299 } |
|
300 |
|
301 initialValue=trie->data[0]; |
|
302 if(start&UTRIE_MASK) { |
|
303 UChar32 nextStart; |
|
304 |
|
305 /* set partial block at [start..following block boundary[ */ |
|
306 block=utrie_getDataBlock(trie, start); |
|
307 if(block<0) { |
|
308 return FALSE; |
|
309 } |
|
310 |
|
311 nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; |
|
312 if(nextStart<=limit) { |
|
313 utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, |
|
314 value, initialValue, overwrite); |
|
315 start=nextStart; |
|
316 } else { |
|
317 utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, |
|
318 value, initialValue, overwrite); |
|
319 return TRUE; |
|
320 } |
|
321 } |
|
322 |
|
323 /* number of positions in the last, partial block */ |
|
324 rest=limit&UTRIE_MASK; |
|
325 |
|
326 /* round down limit to a block boundary */ |
|
327 limit&=~UTRIE_MASK; |
|
328 |
|
329 /* iterate over all-value blocks */ |
|
330 if(value==initialValue) { |
|
331 repeatBlock=0; |
|
332 } else { |
|
333 repeatBlock=-1; |
|
334 } |
|
335 while(start<limit) { |
|
336 /* get index value */ |
|
337 block=trie->index[start>>UTRIE_SHIFT]; |
|
338 if(block>0) { |
|
339 /* already allocated, fill in value */ |
|
340 utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); |
|
341 } else if(trie->data[-block]!=value && (block==0 || overwrite)) { |
|
342 /* set the repeatBlock instead of the current block 0 or range block */ |
|
343 if(repeatBlock>=0) { |
|
344 trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
|
345 } else { |
|
346 /* create and set and fill the repeatBlock */ |
|
347 repeatBlock=utrie_getDataBlock(trie, start); |
|
348 if(repeatBlock<0) { |
|
349 return FALSE; |
|
350 } |
|
351 |
|
352 /* set the negative block number to indicate that it is a repeat block */ |
|
353 trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
|
354 utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); |
|
355 } |
|
356 } |
|
357 |
|
358 start+=UTRIE_DATA_BLOCK_LENGTH; |
|
359 } |
|
360 |
|
361 if(rest>0) { |
|
362 /* set partial block at [last block boundary..limit[ */ |
|
363 block=utrie_getDataBlock(trie, start); |
|
364 if(block<0) { |
|
365 return FALSE; |
|
366 } |
|
367 |
|
368 utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); |
|
369 } |
|
370 |
|
371 return TRUE; |
|
372 } |
|
373 |
|
374 static int32_t |
|
375 _findSameIndexBlock(const int32_t *idx, int32_t indexLength, |
|
376 int32_t otherBlock) { |
|
377 int32_t block, i; |
|
378 |
|
379 for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { |
|
380 for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { |
|
381 if(idx[block+i]!=idx[otherBlock+i]) { |
|
382 break; |
|
383 } |
|
384 } |
|
385 if(i==UTRIE_SURROGATE_BLOCK_COUNT) { |
|
386 return block; |
|
387 } |
|
388 } |
|
389 return indexLength; |
|
390 } |
|
391 |
|
392 /* |
|
393 * Fold the normalization data for supplementary code points into |
|
394 * a compact area on top of the BMP-part of the trie index, |
|
395 * with the lead surrogates indexing this compact area. |
|
396 * |
|
397 * Duplicate the index values for lead surrogates: |
|
398 * From inside the BMP area, where some may be overridden with folded values, |
|
399 * to just after the BMP area, where they can be retrieved for |
|
400 * code point lookups. |
|
401 */ |
|
402 static void |
|
403 utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { |
|
404 int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; |
|
405 int32_t *idx; |
|
406 uint32_t value; |
|
407 UChar32 c; |
|
408 int32_t indexLength, block; |
|
409 #ifdef UTRIE_DEBUG |
|
410 int countLeadCUWithData=0; |
|
411 #endif |
|
412 |
|
413 idx=trie->index; |
|
414 |
|
415 /* copy the lead surrogate indexes into a temporary array */ |
|
416 uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); |
|
417 |
|
418 /* |
|
419 * set all values for lead surrogate code *units* to leadUnitValue |
|
420 * so that, by default, runtime lookups will find no data for associated |
|
421 * supplementary code points, unless there is data for such code points |
|
422 * which will result in a non-zero folding value below that is set for |
|
423 * the respective lead units |
|
424 * |
|
425 * the above saved the indexes for surrogate code *points* |
|
426 * fill the indexes with simplified code from utrie_setRange32() |
|
427 */ |
|
428 if(trie->leadUnitValue==trie->data[0]) { |
|
429 block=0; /* leadUnitValue==initialValue, use all-initial-value block */ |
|
430 } else { |
|
431 /* create and fill the repeatBlock */ |
|
432 block=utrie_allocDataBlock(trie); |
|
433 if(block<0) { |
|
434 /* data table overflow */ |
|
435 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
|
436 return; |
|
437 } |
|
438 utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); |
|
439 block=-block; /* negative block number to indicate that it is a repeat block */ |
|
440 } |
|
441 for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { |
|
442 trie->index[c]=block; |
|
443 } |
|
444 |
|
445 /* |
|
446 * Fold significant index values into the area just after the BMP indexes. |
|
447 * In case the first lead surrogate has significant data, |
|
448 * its index block must be used first (in which case the folding is a no-op). |
|
449 * Later all folded index blocks are moved up one to insert the copied |
|
450 * lead surrogate indexes. |
|
451 */ |
|
452 indexLength=UTRIE_BMP_INDEX_LENGTH; |
|
453 |
|
454 /* search for any index (stage 1) entries for supplementary code points */ |
|
455 for(c=0x10000; c<0x110000;) { |
|
456 if(idx[c>>UTRIE_SHIFT]!=0) { |
|
457 /* there is data, treat the full block for a lead surrogate */ |
|
458 c&=~0x3ff; |
|
459 |
|
460 #ifdef UTRIE_DEBUG |
|
461 ++countLeadCUWithData; |
|
462 /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ |
|
463 #endif |
|
464 |
|
465 /* is there an identical index block? */ |
|
466 block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); |
|
467 |
|
468 /* |
|
469 * get a folded value for [c..c+0x400[ and, |
|
470 * if different from the value for the lead surrogate code point, |
|
471 * set it for the lead surrogate code unit |
|
472 */ |
|
473 value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); |
|
474 if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { |
|
475 if(!utrie_set32(trie, U16_LEAD(c), value)) { |
|
476 /* data table overflow */ |
|
477 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
|
478 return; |
|
479 } |
|
480 |
|
481 /* if we did not find an identical index block... */ |
|
482 if(block==indexLength) { |
|
483 /* move the actual index (stage 1) entries from the supplementary position to the new one */ |
|
484 uprv_memmove(idx+indexLength, |
|
485 idx+(c>>UTRIE_SHIFT), |
|
486 4*UTRIE_SURROGATE_BLOCK_COUNT); |
|
487 indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
|
488 } |
|
489 } |
|
490 c+=0x400; |
|
491 } else { |
|
492 c+=UTRIE_DATA_BLOCK_LENGTH; |
|
493 } |
|
494 } |
|
495 #ifdef UTRIE_DEBUG |
|
496 if(countLeadCUWithData>0) { |
|
497 printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); |
|
498 } |
|
499 #endif |
|
500 |
|
501 /* |
|
502 * index array overflow? |
|
503 * This is to guarantee that a folding offset is of the form |
|
504 * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. |
|
505 * If the index is too large, then n>=1024 and more than 10 bits are necessary. |
|
506 * |
|
507 * In fact, it can only ever become n==1024 with completely unfoldable data and |
|
508 * the additional block of duplicated values for lead surrogates. |
|
509 */ |
|
510 if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { |
|
511 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
512 return; |
|
513 } |
|
514 |
|
515 /* |
|
516 * make space for the lead surrogate index block and |
|
517 * insert it between the BMP indexes and the folded ones |
|
518 */ |
|
519 uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, |
|
520 idx+UTRIE_BMP_INDEX_LENGTH, |
|
521 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); |
|
522 uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, |
|
523 leadIndexes, |
|
524 4*UTRIE_SURROGATE_BLOCK_COUNT); |
|
525 indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
|
526 |
|
527 #ifdef UTRIE_DEBUG |
|
528 printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", |
|
529 UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); |
|
530 #endif |
|
531 |
|
532 trie->indexLength=indexLength; |
|
533 } |
|
534 |
|
535 /* |
|
536 * Set a value in the trie index map to indicate which data block |
|
537 * is referenced and which one is not. |
|
538 * utrie_compact() will remove data blocks that are not used at all. |
|
539 * Set |
|
540 * - 0 if it is used |
|
541 * - -1 if it is not used |
|
542 */ |
|
543 static void |
|
544 _findUnusedBlocks(UNewTrie *trie) { |
|
545 int32_t i; |
|
546 |
|
547 /* fill the entire map with "not used" */ |
|
548 uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); |
|
549 |
|
550 /* mark each block that _is_ used with 0 */ |
|
551 for(i=0; i<trie->indexLength; ++i) { |
|
552 trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; |
|
553 } |
|
554 |
|
555 /* never move the all-initial-value block 0 */ |
|
556 trie->map[0]=0; |
|
557 } |
|
558 |
|
559 static int32_t |
|
560 _findSameDataBlock(const uint32_t *data, int32_t dataLength, |
|
561 int32_t otherBlock, int32_t step) { |
|
562 int32_t block; |
|
563 |
|
564 /* ensure that we do not even partially get past dataLength */ |
|
565 dataLength-=UTRIE_DATA_BLOCK_LENGTH; |
|
566 |
|
567 for(block=0; block<=dataLength; block+=step) { |
|
568 if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { |
|
569 return block; |
|
570 } |
|
571 } |
|
572 return -1; |
|
573 } |
|
574 |
|
575 /* |
|
576 * Compact a folded build-time trie. |
|
577 * |
|
578 * The compaction |
|
579 * - removes blocks that are identical with earlier ones |
|
580 * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
|
581 * - moves blocks in steps of the data granularity |
|
582 * - moves and overlaps blocks that overlap with multiple values in the overlap region |
|
583 * |
|
584 * It does not |
|
585 * - try to move and overlap blocks that are not already adjacent |
|
586 */ |
|
587 static void |
|
588 utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { |
|
589 int32_t i, start, newStart, overlapStart; |
|
590 |
|
591 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
|
592 return; |
|
593 } |
|
594 |
|
595 /* valid, uncompacted trie? */ |
|
596 if(trie==NULL) { |
|
597 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
598 return; |
|
599 } |
|
600 if(trie->isCompacted) { |
|
601 return; /* nothing left to do */ |
|
602 } |
|
603 |
|
604 /* compaction */ |
|
605 |
|
606 /* initialize the index map with "block is used/unused" flags */ |
|
607 _findUnusedBlocks(trie); |
|
608 |
|
609 /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ |
|
610 if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { |
|
611 overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; |
|
612 } else { |
|
613 overlapStart=UTRIE_DATA_BLOCK_LENGTH; |
|
614 } |
|
615 |
|
616 newStart=UTRIE_DATA_BLOCK_LENGTH; |
|
617 for(start=newStart; start<trie->dataLength;) { |
|
618 /* |
|
619 * start: index of first entry of current block |
|
620 * newStart: index where the current block is to be moved |
|
621 * (right after current end of already-compacted data) |
|
622 */ |
|
623 |
|
624 /* skip blocks that are not used */ |
|
625 if(trie->map[start>>UTRIE_SHIFT]<0) { |
|
626 /* advance start to the next block */ |
|
627 start+=UTRIE_DATA_BLOCK_LENGTH; |
|
628 |
|
629 /* leave newStart with the previous block! */ |
|
630 continue; |
|
631 } |
|
632 |
|
633 /* search for an identical block */ |
|
634 if( start>=overlapStart && |
|
635 (i=_findSameDataBlock(trie->data, newStart, start, |
|
636 overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) |
|
637 >=0 |
|
638 ) { |
|
639 /* found an identical block, set the other block's index value for the current block */ |
|
640 trie->map[start>>UTRIE_SHIFT]=i; |
|
641 |
|
642 /* advance start to the next block */ |
|
643 start+=UTRIE_DATA_BLOCK_LENGTH; |
|
644 |
|
645 /* leave newStart with the previous block! */ |
|
646 continue; |
|
647 } |
|
648 |
|
649 /* see if the beginning of this block can be overlapped with the end of the previous block */ |
|
650 if(overlap && start>=overlapStart) { |
|
651 /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ |
|
652 for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; |
|
653 i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); |
|
654 i-=UTRIE_DATA_GRANULARITY) {} |
|
655 } else { |
|
656 i=0; |
|
657 } |
|
658 |
|
659 if(i>0) { |
|
660 /* some overlap */ |
|
661 trie->map[start>>UTRIE_SHIFT]=newStart-i; |
|
662 |
|
663 /* move the non-overlapping indexes to their new positions */ |
|
664 start+=i; |
|
665 for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { |
|
666 trie->data[newStart++]=trie->data[start++]; |
|
667 } |
|
668 } else if(newStart<start) { |
|
669 /* no overlap, just move the indexes to their new positions */ |
|
670 trie->map[start>>UTRIE_SHIFT]=newStart; |
|
671 for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { |
|
672 trie->data[newStart++]=trie->data[start++]; |
|
673 } |
|
674 } else /* no overlap && newStart==start */ { |
|
675 trie->map[start>>UTRIE_SHIFT]=start; |
|
676 newStart+=UTRIE_DATA_BLOCK_LENGTH; |
|
677 start=newStart; |
|
678 } |
|
679 } |
|
680 |
|
681 /* now adjust the index (stage 1) table */ |
|
682 for(i=0; i<trie->indexLength; ++i) { |
|
683 trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; |
|
684 } |
|
685 |
|
686 #ifdef UTRIE_DEBUG |
|
687 /* we saved some space */ |
|
688 printf("compacting trie: count of 32-bit words %lu->%lu\n", |
|
689 (long)trie->dataLength, (long)newStart); |
|
690 #endif |
|
691 |
|
692 trie->dataLength=newStart; |
|
693 } |
|
694 |
|
695 /* serialization ------------------------------------------------------------ */ |
|
696 |
|
697 /* |
|
698 * Default function for the folding value: |
|
699 * Just store the offset (16 bits) if there is any non-initial-value entry. |
|
700 * |
|
701 * The offset parameter is never 0. |
|
702 * Returning the offset itself is safe for UTRIE_SHIFT>=5 because |
|
703 * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 |
|
704 * which fits into 16-bit trie values; |
|
705 * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. |
|
706 * |
|
707 * Theoretically, it would be safer for all possible UTRIE_SHIFT including |
|
708 * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS |
|
709 * which would always result in a value of 0x40..0x43f |
|
710 * (start/end 1k blocks of supplementary Unicode code points). |
|
711 * However, this would be uglier, and would not work for some existing |
|
712 * binary data file formats. |
|
713 * |
|
714 * Also, we do not plan to change UTRIE_SHIFT because it would change binary |
|
715 * data file formats, and we would probably not make it smaller because of |
|
716 * the then even larger BMP index length even for empty tries. |
|
717 */ |
|
718 static uint32_t U_CALLCONV |
|
719 defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { |
|
720 uint32_t value, initialValue; |
|
721 UChar32 limit; |
|
722 UBool inBlockZero; |
|
723 |
|
724 initialValue=trie->data[0]; |
|
725 limit=start+0x400; |
|
726 while(start<limit) { |
|
727 value=utrie_get32(trie, start, &inBlockZero); |
|
728 if(inBlockZero) { |
|
729 start+=UTRIE_DATA_BLOCK_LENGTH; |
|
730 } else if(value!=initialValue) { |
|
731 return (uint32_t)offset; |
|
732 } else { |
|
733 ++start; |
|
734 } |
|
735 } |
|
736 return 0; |
|
737 } |
|
738 |
|
739 U_CAPI int32_t U_EXPORT2 |
|
740 utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, |
|
741 UNewTrieGetFoldedValue *getFoldedValue, |
|
742 UBool reduceTo16Bits, |
|
743 UErrorCode *pErrorCode) { |
|
744 UTrieHeader *header; |
|
745 uint32_t *p; |
|
746 uint16_t *dest16; |
|
747 int32_t i, length; |
|
748 uint8_t* data = NULL; |
|
749 |
|
750 /* argument check */ |
|
751 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
|
752 return 0; |
|
753 } |
|
754 |
|
755 if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { |
|
756 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
757 return 0; |
|
758 } |
|
759 if(getFoldedValue==NULL) { |
|
760 getFoldedValue=defaultGetFoldedValue; |
|
761 } |
|
762 |
|
763 data = (uint8_t*)dt; |
|
764 /* fold and compact if necessary, also checks that indexLength is within limits */ |
|
765 if(!trie->isCompacted) { |
|
766 /* compact once without overlap to improve folding */ |
|
767 utrie_compact(trie, FALSE, pErrorCode); |
|
768 |
|
769 /* fold the supplementary part of the index array */ |
|
770 utrie_fold(trie, getFoldedValue, pErrorCode); |
|
771 |
|
772 /* compact again with overlap for minimum data array length */ |
|
773 utrie_compact(trie, TRUE, pErrorCode); |
|
774 |
|
775 trie->isCompacted=TRUE; |
|
776 if(U_FAILURE(*pErrorCode)) { |
|
777 return 0; |
|
778 } |
|
779 } |
|
780 |
|
781 /* is dataLength within limits? */ |
|
782 if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { |
|
783 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
784 } |
|
785 |
|
786 length=sizeof(UTrieHeader)+2*trie->indexLength; |
|
787 if(reduceTo16Bits) { |
|
788 length+=2*trie->dataLength; |
|
789 } else { |
|
790 length+=4*trie->dataLength; |
|
791 } |
|
792 |
|
793 if(length>capacity) { |
|
794 return length; /* preflighting */ |
|
795 } |
|
796 |
|
797 #ifdef UTRIE_DEBUG |
|
798 printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", |
|
799 (long)trie->indexLength, (long)trie->dataLength, (long)length); |
|
800 #endif |
|
801 |
|
802 /* set the header fields */ |
|
803 header=(UTrieHeader *)data; |
|
804 data+=sizeof(UTrieHeader); |
|
805 |
|
806 header->signature=0x54726965; /* "Trie" */ |
|
807 header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); |
|
808 |
|
809 if(!reduceTo16Bits) { |
|
810 header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; |
|
811 } |
|
812 if(trie->isLatin1Linear) { |
|
813 header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; |
|
814 } |
|
815 |
|
816 header->indexLength=trie->indexLength; |
|
817 header->dataLength=trie->dataLength; |
|
818 |
|
819 /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ |
|
820 if(reduceTo16Bits) { |
|
821 /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ |
|
822 p=(uint32_t *)trie->index; |
|
823 dest16=(uint16_t *)data; |
|
824 for(i=trie->indexLength; i>0; --i) { |
|
825 *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); |
|
826 } |
|
827 |
|
828 /* write 16-bit data values */ |
|
829 p=trie->data; |
|
830 for(i=trie->dataLength; i>0; --i) { |
|
831 *dest16++=(uint16_t)*p++; |
|
832 } |
|
833 } else { |
|
834 /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ |
|
835 p=(uint32_t *)trie->index; |
|
836 dest16=(uint16_t *)data; |
|
837 for(i=trie->indexLength; i>0; --i) { |
|
838 *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); |
|
839 } |
|
840 |
|
841 /* write 32-bit data values */ |
|
842 uprv_memcpy(dest16, trie->data, 4*trie->dataLength); |
|
843 } |
|
844 |
|
845 return length; |
|
846 } |
|
847 |
|
848 /* inverse to defaultGetFoldedValue() */ |
|
849 U_CAPI int32_t U_EXPORT2 |
|
850 utrie_defaultGetFoldingOffset(uint32_t data) { |
|
851 return (int32_t)data; |
|
852 } |
|
853 |
|
854 U_CAPI int32_t U_EXPORT2 |
|
855 utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { |
|
856 const UTrieHeader *header; |
|
857 const uint16_t *p16; |
|
858 uint32_t options; |
|
859 |
|
860 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
|
861 return -1; |
|
862 } |
|
863 |
|
864 /* enough data for a trie header? */ |
|
865 if(length<(int32_t)sizeof(UTrieHeader)) { |
|
866 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
867 return -1; |
|
868 } |
|
869 |
|
870 /* check the signature */ |
|
871 header=(const UTrieHeader *)data; |
|
872 if(header->signature!=0x54726965) { |
|
873 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
874 return -1; |
|
875 } |
|
876 |
|
877 /* get the options and check the shift values */ |
|
878 options=header->options; |
|
879 if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || |
|
880 ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT |
|
881 ) { |
|
882 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
883 return -1; |
|
884 } |
|
885 trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); |
|
886 |
|
887 /* get the length values */ |
|
888 trie->indexLength=header->indexLength; |
|
889 trie->dataLength=header->dataLength; |
|
890 |
|
891 length-=(int32_t)sizeof(UTrieHeader); |
|
892 |
|
893 /* enough data for the index? */ |
|
894 if(length<2*trie->indexLength) { |
|
895 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
896 return -1; |
|
897 } |
|
898 p16=(const uint16_t *)(header+1); |
|
899 trie->index=p16; |
|
900 p16+=trie->indexLength; |
|
901 length-=2*trie->indexLength; |
|
902 |
|
903 /* get the data */ |
|
904 if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { |
|
905 if(length<4*trie->dataLength) { |
|
906 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
907 return -1; |
|
908 } |
|
909 trie->data32=(const uint32_t *)p16; |
|
910 trie->initialValue=trie->data32[0]; |
|
911 length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; |
|
912 } else { |
|
913 if(length<2*trie->dataLength) { |
|
914 *pErrorCode=U_INVALID_FORMAT_ERROR; |
|
915 return -1; |
|
916 } |
|
917 |
|
918 /* the "data16" data is used via the index pointer */ |
|
919 trie->data32=NULL; |
|
920 trie->initialValue=trie->index[trie->indexLength]; |
|
921 length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; |
|
922 } |
|
923 |
|
924 trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
|
925 |
|
926 return length; |
|
927 } |
|
928 |
|
929 U_CAPI int32_t U_EXPORT2 |
|
930 utrie_unserializeDummy(UTrie *trie, |
|
931 void *data, int32_t length, |
|
932 uint32_t initialValue, uint32_t leadUnitValue, |
|
933 UBool make16BitTrie, |
|
934 UErrorCode *pErrorCode) { |
|
935 uint16_t *p16; |
|
936 int32_t actualLength, latin1Length, i, limit; |
|
937 uint16_t block; |
|
938 |
|
939 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
|
940 return -1; |
|
941 } |
|
942 |
|
943 /* calculate the actual size of the dummy trie data */ |
|
944 |
|
945 /* max(Latin-1, block 0) */ |
|
946 latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/ |
|
947 |
|
948 trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; |
|
949 trie->dataLength=latin1Length; |
|
950 if(leadUnitValue!=initialValue) { |
|
951 trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; |
|
952 } |
|
953 |
|
954 actualLength=trie->indexLength*2; |
|
955 if(make16BitTrie) { |
|
956 actualLength+=trie->dataLength*2; |
|
957 } else { |
|
958 actualLength+=trie->dataLength*4; |
|
959 } |
|
960 |
|
961 /* enough space for the dummy trie? */ |
|
962 if(length<actualLength) { |
|
963 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
|
964 return actualLength; |
|
965 } |
|
966 |
|
967 trie->isLatin1Linear=TRUE; |
|
968 trie->initialValue=initialValue; |
|
969 |
|
970 /* fill the index and data arrays */ |
|
971 p16=(uint16_t *)data; |
|
972 trie->index=p16; |
|
973 |
|
974 if(make16BitTrie) { |
|
975 /* indexes to block 0 */ |
|
976 block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); |
|
977 limit=trie->indexLength; |
|
978 for(i=0; i<limit; ++i) { |
|
979 p16[i]=block; |
|
980 } |
|
981 |
|
982 if(leadUnitValue!=initialValue) { |
|
983 /* indexes for lead surrogate code units to the block after Latin-1 */ |
|
984 block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
|
985 i=0xd800>>UTRIE_SHIFT; |
|
986 limit=0xdc00>>UTRIE_SHIFT; |
|
987 for(; i<limit; ++i) { |
|
988 p16[i]=block; |
|
989 } |
|
990 } |
|
991 |
|
992 trie->data32=NULL; |
|
993 |
|
994 /* Latin-1 data */ |
|
995 p16+=trie->indexLength; |
|
996 for(i=0; i<latin1Length; ++i) { |
|
997 p16[i]=(uint16_t)initialValue; |
|
998 } |
|
999 |
|
1000 /* data for lead surrogate code units */ |
|
1001 if(leadUnitValue!=initialValue) { |
|
1002 limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
|
1003 for(/* i=latin1Length */; i<limit; ++i) { |
|
1004 p16[i]=(uint16_t)leadUnitValue; |
|
1005 } |
|
1006 } |
|
1007 } else { |
|
1008 uint32_t *p32; |
|
1009 |
|
1010 /* indexes to block 0 */ |
|
1011 uprv_memset(p16, 0, trie->indexLength*2); |
|
1012 |
|
1013 if(leadUnitValue!=initialValue) { |
|
1014 /* indexes for lead surrogate code units to the block after Latin-1 */ |
|
1015 block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
|
1016 i=0xd800>>UTRIE_SHIFT; |
|
1017 limit=0xdc00>>UTRIE_SHIFT; |
|
1018 for(; i<limit; ++i) { |
|
1019 p16[i]=block; |
|
1020 } |
|
1021 } |
|
1022 |
|
1023 trie->data32=p32=(uint32_t *)(p16+trie->indexLength); |
|
1024 |
|
1025 /* Latin-1 data */ |
|
1026 for(i=0; i<latin1Length; ++i) { |
|
1027 p32[i]=initialValue; |
|
1028 } |
|
1029 |
|
1030 /* data for lead surrogate code units */ |
|
1031 if(leadUnitValue!=initialValue) { |
|
1032 limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
|
1033 for(/* i=latin1Length */; i<limit; ++i) { |
|
1034 p32[i]=leadUnitValue; |
|
1035 } |
|
1036 } |
|
1037 } |
|
1038 |
|
1039 trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
|
1040 |
|
1041 return actualLength; |
|
1042 } |
|
1043 |
|
1044 /* enumeration -------------------------------------------------------------- */ |
|
1045 |
|
1046 /* default UTrieEnumValue() returns the input value itself */ |
|
1047 static uint32_t U_CALLCONV |
|
1048 enumSameValue(const void * /*context*/, uint32_t value) { |
|
1049 return value; |
|
1050 } |
|
1051 |
|
1052 /** |
|
1053 * Enumerate all ranges of code points with the same relevant values. |
|
1054 * The values are transformed from the raw trie entries by the enumValue function. |
|
1055 */ |
|
1056 U_CAPI void U_EXPORT2 |
|
1057 utrie_enum(const UTrie *trie, |
|
1058 UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { |
|
1059 const uint32_t *data32; |
|
1060 const uint16_t *idx; |
|
1061 |
|
1062 uint32_t value, prevValue, initialValue; |
|
1063 UChar32 c, prev; |
|
1064 int32_t l, i, j, block, prevBlock, nullBlock, offset; |
|
1065 |
|
1066 /* check arguments */ |
|
1067 if(trie==NULL || trie->index==NULL || enumRange==NULL) { |
|
1068 return; |
|
1069 } |
|
1070 if(enumValue==NULL) { |
|
1071 enumValue=enumSameValue; |
|
1072 } |
|
1073 |
|
1074 idx=trie->index; |
|
1075 data32=trie->data32; |
|
1076 |
|
1077 /* get the enumeration value that corresponds to an initial-value trie data entry */ |
|
1078 initialValue=enumValue(context, trie->initialValue); |
|
1079 |
|
1080 if(data32==NULL) { |
|
1081 nullBlock=trie->indexLength; |
|
1082 } else { |
|
1083 nullBlock=0; |
|
1084 } |
|
1085 |
|
1086 /* set variables for previous range */ |
|
1087 prevBlock=nullBlock; |
|
1088 prev=0; |
|
1089 prevValue=initialValue; |
|
1090 |
|
1091 /* enumerate BMP - the main loop enumerates data blocks */ |
|
1092 for(i=0, c=0; c<=0xffff; ++i) { |
|
1093 if(c==0xd800) { |
|
1094 /* skip lead surrogate code _units_, go to lead surr. code _points_ */ |
|
1095 i=UTRIE_BMP_INDEX_LENGTH; |
|
1096 } else if(c==0xdc00) { |
|
1097 /* go back to regular BMP code points */ |
|
1098 i=c>>UTRIE_SHIFT; |
|
1099 } |
|
1100 |
|
1101 block=idx[i]<<UTRIE_INDEX_SHIFT; |
|
1102 if(block==prevBlock) { |
|
1103 /* the block is the same as the previous one, and filled with value */ |
|
1104 c+=UTRIE_DATA_BLOCK_LENGTH; |
|
1105 } else if(block==nullBlock) { |
|
1106 /* this is the all-initial-value block */ |
|
1107 if(prevValue!=initialValue) { |
|
1108 if(prev<c) { |
|
1109 if(!enumRange(context, prev, c, prevValue)) { |
|
1110 return; |
|
1111 } |
|
1112 } |
|
1113 prevBlock=nullBlock; |
|
1114 prev=c; |
|
1115 prevValue=initialValue; |
|
1116 } |
|
1117 c+=UTRIE_DATA_BLOCK_LENGTH; |
|
1118 } else { |
|
1119 prevBlock=block; |
|
1120 for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
|
1121 value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
|
1122 if(value!=prevValue) { |
|
1123 if(prev<c) { |
|
1124 if(!enumRange(context, prev, c, prevValue)) { |
|
1125 return; |
|
1126 } |
|
1127 } |
|
1128 if(j>0) { |
|
1129 /* the block is not filled with all the same value */ |
|
1130 prevBlock=-1; |
|
1131 } |
|
1132 prev=c; |
|
1133 prevValue=value; |
|
1134 } |
|
1135 ++c; |
|
1136 } |
|
1137 } |
|
1138 } |
|
1139 |
|
1140 /* enumerate supplementary code points */ |
|
1141 for(l=0xd800; l<0xdc00;) { |
|
1142 /* lead surrogate access */ |
|
1143 offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; |
|
1144 if(offset==nullBlock) { |
|
1145 /* no entries for a whole block of lead surrogates */ |
|
1146 if(prevValue!=initialValue) { |
|
1147 if(prev<c) { |
|
1148 if(!enumRange(context, prev, c, prevValue)) { |
|
1149 return; |
|
1150 } |
|
1151 } |
|
1152 prevBlock=nullBlock; |
|
1153 prev=c; |
|
1154 prevValue=initialValue; |
|
1155 } |
|
1156 |
|
1157 l+=UTRIE_DATA_BLOCK_LENGTH; |
|
1158 c+=UTRIE_DATA_BLOCK_LENGTH<<10; |
|
1159 continue; |
|
1160 } |
|
1161 |
|
1162 value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; |
|
1163 |
|
1164 /* enumerate trail surrogates for this lead surrogate */ |
|
1165 offset=trie->getFoldingOffset(value); |
|
1166 if(offset<=0) { |
|
1167 /* no data for this lead surrogate */ |
|
1168 if(prevValue!=initialValue) { |
|
1169 if(prev<c) { |
|
1170 if(!enumRange(context, prev, c, prevValue)) { |
|
1171 return; |
|
1172 } |
|
1173 } |
|
1174 prevBlock=nullBlock; |
|
1175 prev=c; |
|
1176 prevValue=initialValue; |
|
1177 } |
|
1178 |
|
1179 /* nothing else to do for the supplementary code points for this lead surrogate */ |
|
1180 c+=0x400; |
|
1181 } else { |
|
1182 /* enumerate code points for this lead surrogate */ |
|
1183 i=offset; |
|
1184 offset+=UTRIE_SURROGATE_BLOCK_COUNT; |
|
1185 do { |
|
1186 /* copy of most of the body of the BMP loop */ |
|
1187 block=idx[i]<<UTRIE_INDEX_SHIFT; |
|
1188 if(block==prevBlock) { |
|
1189 /* the block is the same as the previous one, and filled with value */ |
|
1190 c+=UTRIE_DATA_BLOCK_LENGTH; |
|
1191 } else if(block==nullBlock) { |
|
1192 /* this is the all-initial-value block */ |
|
1193 if(prevValue!=initialValue) { |
|
1194 if(prev<c) { |
|
1195 if(!enumRange(context, prev, c, prevValue)) { |
|
1196 return; |
|
1197 } |
|
1198 } |
|
1199 prevBlock=nullBlock; |
|
1200 prev=c; |
|
1201 prevValue=initialValue; |
|
1202 } |
|
1203 c+=UTRIE_DATA_BLOCK_LENGTH; |
|
1204 } else { |
|
1205 prevBlock=block; |
|
1206 for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
|
1207 value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
|
1208 if(value!=prevValue) { |
|
1209 if(prev<c) { |
|
1210 if(!enumRange(context, prev, c, prevValue)) { |
|
1211 return; |
|
1212 } |
|
1213 } |
|
1214 if(j>0) { |
|
1215 /* the block is not filled with all the same value */ |
|
1216 prevBlock=-1; |
|
1217 } |
|
1218 prev=c; |
|
1219 prevValue=value; |
|
1220 } |
|
1221 ++c; |
|
1222 } |
|
1223 } |
|
1224 } while(++i<offset); |
|
1225 } |
|
1226 |
|
1227 ++l; |
|
1228 } |
|
1229 |
|
1230 /* deliver last range */ |
|
1231 enumRange(context, prev, c, prevValue); |
|
1232 } |