|
1 /* ------------------------------------------------------------------ */ |
|
2 /* Decimal Number arithmetic module */ |
|
3 /* ------------------------------------------------------------------ */ |
|
4 /* Copyright (c) IBM Corporation, 2000-2012. All rights reserved. */ |
|
5 /* */ |
|
6 /* This software is made available under the terms of the */ |
|
7 /* ICU License -- ICU 1.8.1 and later. */ |
|
8 /* */ |
|
9 /* The description and User's Guide ("The decNumber C Library") for */ |
|
10 /* this software is called decNumber.pdf. This document is */ |
|
11 /* available, together with arithmetic and format specifications, */ |
|
12 /* testcases, and Web links, on the General Decimal Arithmetic page. */ |
|
13 /* */ |
|
14 /* Please send comments, suggestions, and corrections to the author: */ |
|
15 /* mfc@uk.ibm.com */ |
|
16 /* Mike Cowlishaw, IBM Fellow */ |
|
17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ |
|
18 /* ------------------------------------------------------------------ */ |
|
19 |
|
20 /* Modified version, for use from within ICU. |
|
21 * Renamed public functions, to avoid an unwanted export of the |
|
22 * standard names from the ICU library. |
|
23 * |
|
24 * Use ICU's uprv_malloc() and uprv_free() |
|
25 * |
|
26 * Revert comment syntax to plain C |
|
27 * |
|
28 * Remove a few compiler warnings. |
|
29 */ |
|
30 |
|
31 /* This module comprises the routines for arbitrary-precision General */ |
|
32 /* Decimal Arithmetic as defined in the specification which may be */ |
|
33 /* found on the General Decimal Arithmetic pages. It implements both */ |
|
34 /* the full ('extended') arithmetic and the simpler ('subset') */ |
|
35 /* arithmetic. */ |
|
36 /* */ |
|
37 /* Usage notes: */ |
|
38 /* */ |
|
39 /* 1. This code is ANSI C89 except: */ |
|
40 /* */ |
|
41 /* a) C99 line comments (double forward slash) are used. (Most C */ |
|
42 /* compilers accept these. If yours does not, a simple script */ |
|
43 /* can be used to convert them to ANSI C comments.) */ |
|
44 /* */ |
|
45 /* b) Types from C99 stdint.h are used. If you do not have this */ |
|
46 /* header file, see the User's Guide section of the decNumber */ |
|
47 /* documentation; this lists the necessary definitions. */ |
|
48 /* */ |
|
49 /* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ |
|
50 /* uint64_t types may be used. To avoid these, set DECUSE64=0 */ |
|
51 /* and DECDPUN<=4 (see documentation). */ |
|
52 /* */ |
|
53 /* The code also conforms to C99 restrictions; in particular, */ |
|
54 /* strict aliasing rules are observed. */ |
|
55 /* */ |
|
56 /* 2. The decNumber format which this library uses is optimized for */ |
|
57 /* efficient processing of relatively short numbers; in particular */ |
|
58 /* it allows the use of fixed sized structures and minimizes copy */ |
|
59 /* and move operations. It does, however, support arbitrary */ |
|
60 /* precision (up to 999,999,999 digits) and arbitrary exponent */ |
|
61 /* range (Emax in the range 0 through 999,999,999 and Emin in the */ |
|
62 /* range -999,999,999 through 0). Mathematical functions (for */ |
|
63 /* example decNumberExp) as identified below are restricted more */ |
|
64 /* tightly: digits, emax, and -emin in the context must be <= */ |
|
65 /* DEC_MAX_MATH (999999), and their operand(s) must be within */ |
|
66 /* these bounds. */ |
|
67 /* */ |
|
68 /* 3. Logical functions are further restricted; their operands must */ |
|
69 /* be finite, positive, have an exponent of zero, and all digits */ |
|
70 /* must be either 0 or 1. The result will only contain digits */ |
|
71 /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ |
|
72 /* */ |
|
73 /* 4. Operands to operator functions are never modified unless they */ |
|
74 /* are also specified to be the result number (which is always */ |
|
75 /* permitted). Other than that case, operands must not overlap. */ |
|
76 /* */ |
|
77 /* 5. Error handling: the type of the error is ORed into the status */ |
|
78 /* flags in the current context (decContext structure). The */ |
|
79 /* SIGFPE signal is then raised if the corresponding trap-enabler */ |
|
80 /* flag in the decContext is set (is 1). */ |
|
81 /* */ |
|
82 /* It is the responsibility of the caller to clear the status */ |
|
83 /* flags as required. */ |
|
84 /* */ |
|
85 /* The result of any routine which returns a number will always */ |
|
86 /* be a valid number (which may be a special value, such as an */ |
|
87 /* Infinity or NaN). */ |
|
88 /* */ |
|
89 /* 6. The decNumber format is not an exchangeable concrete */ |
|
90 /* representation as it comprises fields which may be machine- */ |
|
91 /* dependent (packed or unpacked, or special length, for example). */ |
|
92 /* Canonical conversions to and from strings are provided; other */ |
|
93 /* conversions are available in separate modules. */ |
|
94 /* */ |
|
95 /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ |
|
96 /* to 1 for extended operand checking (including NULL operands). */ |
|
97 /* Results are undefined if a badly-formed structure (or a NULL */ |
|
98 /* pointer to a structure) is provided, though with DECCHECK */ |
|
99 /* enabled the operator routines are protected against exceptions. */ |
|
100 /* (Except if the result pointer is NULL, which is unrecoverable.) */ |
|
101 /* */ |
|
102 /* However, the routines will never cause exceptions if they are */ |
|
103 /* given well-formed operands, even if the value of the operands */ |
|
104 /* is inappropriate for the operation and DECCHECK is not set. */ |
|
105 /* (Except for SIGFPE, as and where documented.) */ |
|
106 /* */ |
|
107 /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ |
|
108 /* ------------------------------------------------------------------ */ |
|
109 /* Implementation notes for maintenance of this module: */ |
|
110 /* */ |
|
111 /* 1. Storage leak protection: Routines which use malloc are not */ |
|
112 /* permitted to use return for fastpath or error exits (i.e., */ |
|
113 /* they follow strict structured programming conventions). */ |
|
114 /* Instead they have a do{}while(0); construct surrounding the */ |
|
115 /* code which is protected -- break may be used to exit this. */ |
|
116 /* Other routines can safely use the return statement inline. */ |
|
117 /* */ |
|
118 /* Storage leak accounting can be enabled using DECALLOC. */ |
|
119 /* */ |
|
120 /* 2. All loops use the for(;;) construct. Any do construct does */ |
|
121 /* not loop; it is for allocation protection as just described. */ |
|
122 /* */ |
|
123 /* 3. Setting status in the context must always be the very last */ |
|
124 /* action in a routine, as non-0 status may raise a trap and hence */ |
|
125 /* the call to set status may not return (if the handler uses long */ |
|
126 /* jump). Therefore all cleanup must be done first. In general, */ |
|
127 /* to achieve this status is accumulated and is only applied just */ |
|
128 /* before return by calling decContextSetStatus (via decStatus). */ |
|
129 /* */ |
|
130 /* Routines which allocate storage cannot, in general, use the */ |
|
131 /* 'top level' routines which could cause a non-returning */ |
|
132 /* transfer of control. The decXxxxOp routines are safe (do not */ |
|
133 /* call decStatus even if traps are set in the context) and should */ |
|
134 /* be used instead (they are also a little faster). */ |
|
135 /* */ |
|
136 /* 4. Exponent checking is minimized by allowing the exponent to */ |
|
137 /* grow outside its limits during calculations, provided that */ |
|
138 /* the decFinalize function is called later. Multiplication and */ |
|
139 /* division, and intermediate calculations in exponentiation, */ |
|
140 /* require more careful checks because of the risk of 31-bit */ |
|
141 /* overflow (the most negative valid exponent is -1999999997, for */ |
|
142 /* a 999999999-digit number with adjusted exponent of -999999999). */ |
|
143 /* */ |
|
144 /* 5. Rounding is deferred until finalization of results, with any */ |
|
145 /* 'off to the right' data being represented as a single digit */ |
|
146 /* residue (in the range -1 through 9). This avoids any double- */ |
|
147 /* rounding when more than one shortening takes place (for */ |
|
148 /* example, when a result is subnormal). */ |
|
149 /* */ |
|
150 /* 6. The digits count is allowed to rise to a multiple of DECDPUN */ |
|
151 /* during many operations, so whole Units are handled and exact */ |
|
152 /* accounting of digits is not needed. The correct digits value */ |
|
153 /* is found by decGetDigits, which accounts for leading zeros. */ |
|
154 /* This must be called before any rounding if the number of digits */ |
|
155 /* is not known exactly. */ |
|
156 /* */ |
|
157 /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ |
|
158 /* numbers up to four digits, using appropriate constants. This */ |
|
159 /* is not useful for longer numbers because overflow of 32 bits */ |
|
160 /* would lead to 4 multiplies, which is almost as expensive as */ |
|
161 /* a divide (unless a floating-point or 64-bit multiply is */ |
|
162 /* assumed to be available). */ |
|
163 /* */ |
|
164 /* 8. Unusual abbreviations that may be used in the commentary: */ |
|
165 /* lhs -- left hand side (operand, of an operation) */ |
|
166 /* lsd -- least significant digit (of coefficient) */ |
|
167 /* lsu -- least significant Unit (of coefficient) */ |
|
168 /* msd -- most significant digit (of coefficient) */ |
|
169 /* msi -- most significant item (in an array) */ |
|
170 /* msu -- most significant Unit (of coefficient) */ |
|
171 /* rhs -- right hand side (operand, of an operation) */ |
|
172 /* +ve -- positive */ |
|
173 /* -ve -- negative */ |
|
174 /* ** -- raise to the power */ |
|
175 /* ------------------------------------------------------------------ */ |
|
176 |
|
177 #include <stdlib.h> /* for malloc, free, etc. */ |
|
178 /* #include <stdio.h> */ /* for printf [if needed] */ |
|
179 #include <string.h> /* for strcpy */ |
|
180 #include <ctype.h> /* for lower */ |
|
181 #include "cmemory.h" /* for uprv_malloc, etc., in ICU */ |
|
182 #include "decNumber.h" /* base number library */ |
|
183 #include "decNumberLocal.h" /* decNumber local types, etc. */ |
|
184 #include "uassert.h" |
|
185 |
|
186 /* Constants */ |
|
187 /* Public lookup table used by the D2U macro */ |
|
188 static const uByte d2utable[DECMAXD2U+1]=D2UTABLE; |
|
189 |
|
190 #define DECVERB 1 /* set to 1 for verbose DECCHECK */ |
|
191 #define powers DECPOWERS /* old internal name */ |
|
192 |
|
193 /* Local constants */ |
|
194 #define DIVIDE 0x80 /* Divide operators */ |
|
195 #define REMAINDER 0x40 /* .. */ |
|
196 #define DIVIDEINT 0x20 /* .. */ |
|
197 #define REMNEAR 0x10 /* .. */ |
|
198 #define COMPARE 0x01 /* Compare operators */ |
|
199 #define COMPMAX 0x02 /* .. */ |
|
200 #define COMPMIN 0x03 /* .. */ |
|
201 #define COMPTOTAL 0x04 /* .. */ |
|
202 #define COMPNAN 0x05 /* .. [NaN processing] */ |
|
203 #define COMPSIG 0x06 /* .. [signaling COMPARE] */ |
|
204 #define COMPMAXMAG 0x07 /* .. */ |
|
205 #define COMPMINMAG 0x08 /* .. */ |
|
206 |
|
207 #define DEC_sNaN 0x40000000 /* local status: sNaN signal */ |
|
208 #define BADINT (Int)0x80000000 /* most-negative Int; error indicator */ |
|
209 /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */ |
|
210 #define BIGEVEN (Int)0x80000002 |
|
211 #define BIGODD (Int)0x80000003 |
|
212 |
|
213 static const Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */ |
|
214 |
|
215 /* ------------------------------------------------------------------ */ |
|
216 /* round-for-reround digits */ |
|
217 /* ------------------------------------------------------------------ */ |
|
218 static const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */ |
|
219 |
|
220 /* ------------------------------------------------------------------ */ |
|
221 /* Powers of ten (powers[n]==10**n, 0<=n<=9) */ |
|
222 /* ------------------------------------------------------------------ */ |
|
223 static const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000, |
|
224 10000000, 100000000, 1000000000}; |
|
225 |
|
226 |
|
227 /* Granularity-dependent code */ |
|
228 #if DECDPUN<=4 |
|
229 #define eInt Int /* extended integer */ |
|
230 #define ueInt uInt /* unsigned extended integer */ |
|
231 /* Constant multipliers for divide-by-power-of five using reciprocal */ |
|
232 /* multiply, after removing powers of 2 by shifting, and final shift */ |
|
233 /* of 17 [we only need up to **4] */ |
|
234 static const uInt multies[]={131073, 26215, 5243, 1049, 210}; |
|
235 /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ |
|
236 #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) |
|
237 #else |
|
238 /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */ |
|
239 #if !DECUSE64 |
|
240 #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 |
|
241 #endif |
|
242 #define eInt Long /* extended integer */ |
|
243 #define ueInt uLong /* unsigned extended integer */ |
|
244 #endif |
|
245 |
|
246 /* Local routines */ |
|
247 static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, |
|
248 decContext *, uByte, uInt *); |
|
249 static Flag decBiStr(const char *, const char *, const char *); |
|
250 static uInt decCheckMath(const decNumber *, decContext *, uInt *); |
|
251 static void decApplyRound(decNumber *, decContext *, Int, uInt *); |
|
252 static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag); |
|
253 static decNumber * decCompareOp(decNumber *, const decNumber *, |
|
254 const decNumber *, decContext *, |
|
255 Flag, uInt *); |
|
256 static void decCopyFit(decNumber *, const decNumber *, decContext *, |
|
257 Int *, uInt *); |
|
258 static decNumber * decDecap(decNumber *, Int); |
|
259 static decNumber * decDivideOp(decNumber *, const decNumber *, |
|
260 const decNumber *, decContext *, Flag, uInt *); |
|
261 static decNumber * decExpOp(decNumber *, const decNumber *, |
|
262 decContext *, uInt *); |
|
263 static void decFinalize(decNumber *, decContext *, Int *, uInt *); |
|
264 static Int decGetDigits(Unit *, Int); |
|
265 static Int decGetInt(const decNumber *); |
|
266 static decNumber * decLnOp(decNumber *, const decNumber *, |
|
267 decContext *, uInt *); |
|
268 static decNumber * decMultiplyOp(decNumber *, const decNumber *, |
|
269 const decNumber *, decContext *, |
|
270 uInt *); |
|
271 static decNumber * decNaNs(decNumber *, const decNumber *, |
|
272 const decNumber *, decContext *, uInt *); |
|
273 static decNumber * decQuantizeOp(decNumber *, const decNumber *, |
|
274 const decNumber *, decContext *, Flag, |
|
275 uInt *); |
|
276 static void decReverse(Unit *, Unit *); |
|
277 static void decSetCoeff(decNumber *, decContext *, const Unit *, |
|
278 Int, Int *, uInt *); |
|
279 static void decSetMaxValue(decNumber *, decContext *); |
|
280 static void decSetOverflow(decNumber *, decContext *, uInt *); |
|
281 static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *); |
|
282 static Int decShiftToLeast(Unit *, Int, Int); |
|
283 static Int decShiftToMost(Unit *, Int, Int); |
|
284 static void decStatus(decNumber *, uInt, decContext *); |
|
285 static void decToString(const decNumber *, char[], Flag); |
|
286 static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *); |
|
287 static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, |
|
288 Unit *, Int); |
|
289 static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int); |
|
290 |
|
291 #if !DECSUBSET |
|
292 /* decFinish == decFinalize when no subset arithmetic needed */ |
|
293 #define decFinish(a,b,c,d) decFinalize(a,b,c,d) |
|
294 #else |
|
295 static void decFinish(decNumber *, decContext *, Int *, uInt *); |
|
296 static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); |
|
297 #endif |
|
298 |
|
299 /* Local macros */ |
|
300 /* masked special-values bits */ |
|
301 #define SPECIALARG (rhs->bits & DECSPECIAL) |
|
302 #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) |
|
303 |
|
304 /* For use in ICU */ |
|
305 #define malloc(a) uprv_malloc(a) |
|
306 #define free(a) uprv_free(a) |
|
307 |
|
308 /* Diagnostic macros, etc. */ |
|
309 #if DECALLOC |
|
310 /* Handle malloc/free accounting. If enabled, our accountable routines */ |
|
311 /* are used; otherwise the code just goes straight to the system malloc */ |
|
312 /* and free routines. */ |
|
313 #define malloc(a) decMalloc(a) |
|
314 #define free(a) decFree(a) |
|
315 #define DECFENCE 0x5a /* corruption detector */ |
|
316 /* 'Our' malloc and free: */ |
|
317 static void *decMalloc(size_t); |
|
318 static void decFree(void *); |
|
319 uInt decAllocBytes=0; /* count of bytes allocated */ |
|
320 /* Note that DECALLOC code only checks for storage buffer overflow. */ |
|
321 /* To check for memory leaks, the decAllocBytes variable must be */ |
|
322 /* checked to be 0 at appropriate times (e.g., after the test */ |
|
323 /* harness completes a set of tests). This checking may be unreliable */ |
|
324 /* if the testing is done in a multi-thread environment. */ |
|
325 #endif |
|
326 |
|
327 #if DECCHECK |
|
328 /* Optional checking routines. Enabling these means that decNumber */ |
|
329 /* and decContext operands to operator routines are checked for */ |
|
330 /* correctness. This roughly doubles the execution time of the */ |
|
331 /* fastest routines (and adds 600+ bytes), so should not normally be */ |
|
332 /* used in 'production'. */ |
|
333 /* decCheckInexact is used to check that inexact results have a full */ |
|
334 /* complement of digits (where appropriate -- this is not the case */ |
|
335 /* for Quantize, for example) */ |
|
336 #define DECUNRESU ((decNumber *)(void *)0xffffffff) |
|
337 #define DECUNUSED ((const decNumber *)(void *)0xffffffff) |
|
338 #define DECUNCONT ((decContext *)(void *)(0xffffffff)) |
|
339 static Flag decCheckOperands(decNumber *, const decNumber *, |
|
340 const decNumber *, decContext *); |
|
341 static Flag decCheckNumber(const decNumber *); |
|
342 static void decCheckInexact(const decNumber *, decContext *); |
|
343 #endif |
|
344 |
|
345 #if DECTRACE || DECCHECK |
|
346 /* Optional trace/debugging routines (may or may not be used) */ |
|
347 void decNumberShow(const decNumber *); /* displays the components of a number */ |
|
348 static void decDumpAr(char, const Unit *, Int); |
|
349 #endif |
|
350 |
|
351 /* ================================================================== */ |
|
352 /* Conversions */ |
|
353 /* ================================================================== */ |
|
354 |
|
355 /* ------------------------------------------------------------------ */ |
|
356 /* from-int32 -- conversion from Int or uInt */ |
|
357 /* */ |
|
358 /* dn is the decNumber to receive the integer */ |
|
359 /* in or uin is the integer to be converted */ |
|
360 /* returns dn */ |
|
361 /* */ |
|
362 /* No error is possible. */ |
|
363 /* ------------------------------------------------------------------ */ |
|
364 U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromInt32(decNumber *dn, Int in) { |
|
365 uInt unsig; |
|
366 if (in>=0) unsig=in; |
|
367 else { /* negative (possibly BADINT) */ |
|
368 if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */ |
|
369 else unsig=-in; /* invert */ |
|
370 } |
|
371 /* in is now positive */ |
|
372 uprv_decNumberFromUInt32(dn, unsig); |
|
373 if (in<0) dn->bits=DECNEG; /* sign needed */ |
|
374 return dn; |
|
375 } /* decNumberFromInt32 */ |
|
376 |
|
377 U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromUInt32(decNumber *dn, uInt uin) { |
|
378 Unit *up; /* work pointer */ |
|
379 uprv_decNumberZero(dn); /* clean */ |
|
380 if (uin==0) return dn; /* [or decGetDigits bad call] */ |
|
381 for (up=dn->lsu; uin>0; up++) { |
|
382 *up=(Unit)(uin%(DECDPUNMAX+1)); |
|
383 uin=uin/(DECDPUNMAX+1); |
|
384 } |
|
385 dn->digits=decGetDigits(dn->lsu, up-dn->lsu); |
|
386 return dn; |
|
387 } /* decNumberFromUInt32 */ |
|
388 |
|
389 /* ------------------------------------------------------------------ */ |
|
390 /* to-int32 -- conversion to Int or uInt */ |
|
391 /* */ |
|
392 /* dn is the decNumber to convert */ |
|
393 /* set is the context for reporting errors */ |
|
394 /* returns the converted decNumber, or 0 if Invalid is set */ |
|
395 /* */ |
|
396 /* Invalid is set if the decNumber does not have exponent==0 or if */ |
|
397 /* it is a NaN, Infinite, or out-of-range. */ |
|
398 /* ------------------------------------------------------------------ */ |
|
399 U_CAPI Int U_EXPORT2 uprv_decNumberToInt32(const decNumber *dn, decContext *set) { |
|
400 #if DECCHECK |
|
401 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
|
402 #endif |
|
403 |
|
404 /* special or too many digits, or bad exponent */ |
|
405 if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */ |
|
406 else { /* is a finite integer with 10 or fewer digits */ |
|
407 Int d; /* work */ |
|
408 const Unit *up; /* .. */ |
|
409 uInt hi=0, lo; /* .. */ |
|
410 up=dn->lsu; /* -> lsu */ |
|
411 lo=*up; /* get 1 to 9 digits */ |
|
412 #if DECDPUN>1 /* split to higher */ |
|
413 hi=lo/10; |
|
414 lo=lo%10; |
|
415 #endif |
|
416 up++; |
|
417 /* collect remaining Units, if any, into hi */ |
|
418 for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; |
|
419 /* now low has the lsd, hi the remainder */ |
|
420 if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */ |
|
421 /* most-negative is a reprieve */ |
|
422 if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; |
|
423 /* bad -- drop through */ |
|
424 } |
|
425 else { /* in-range always */ |
|
426 Int i=X10(hi)+lo; |
|
427 if (dn->bits&DECNEG) return -i; |
|
428 return i; |
|
429 } |
|
430 } /* integer */ |
|
431 uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ |
|
432 return 0; |
|
433 } /* decNumberToInt32 */ |
|
434 |
|
435 U_CAPI uInt U_EXPORT2 uprv_decNumberToUInt32(const decNumber *dn, decContext *set) { |
|
436 #if DECCHECK |
|
437 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
|
438 #endif |
|
439 /* special or too many digits, or bad exponent, or negative (<0) */ |
|
440 if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 |
|
441 || (dn->bits&DECNEG && !ISZERO(dn))); /* bad */ |
|
442 else { /* is a finite integer with 10 or fewer digits */ |
|
443 Int d; /* work */ |
|
444 const Unit *up; /* .. */ |
|
445 uInt hi=0, lo; /* .. */ |
|
446 up=dn->lsu; /* -> lsu */ |
|
447 lo=*up; /* get 1 to 9 digits */ |
|
448 #if DECDPUN>1 /* split to higher */ |
|
449 hi=lo/10; |
|
450 lo=lo%10; |
|
451 #endif |
|
452 up++; |
|
453 /* collect remaining Units, if any, into hi */ |
|
454 for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; |
|
455 |
|
456 /* now low has the lsd, hi the remainder */ |
|
457 if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */ |
|
458 else return X10(hi)+lo; |
|
459 } /* integer */ |
|
460 uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ |
|
461 return 0; |
|
462 } /* decNumberToUInt32 */ |
|
463 |
|
464 /* ------------------------------------------------------------------ */ |
|
465 /* to-scientific-string -- conversion to numeric string */ |
|
466 /* to-engineering-string -- conversion to numeric string */ |
|
467 /* */ |
|
468 /* decNumberToString(dn, string); */ |
|
469 /* decNumberToEngString(dn, string); */ |
|
470 /* */ |
|
471 /* dn is the decNumber to convert */ |
|
472 /* string is the string where the result will be laid out */ |
|
473 /* */ |
|
474 /* string must be at least dn->digits+14 characters long */ |
|
475 /* */ |
|
476 /* No error is possible, and no status can be set. */ |
|
477 /* ------------------------------------------------------------------ */ |
|
478 U_CAPI char * U_EXPORT2 uprv_decNumberToString(const decNumber *dn, char *string){ |
|
479 decToString(dn, string, 0); |
|
480 return string; |
|
481 } /* DecNumberToString */ |
|
482 |
|
483 U_CAPI char * U_EXPORT2 uprv_decNumberToEngString(const decNumber *dn, char *string){ |
|
484 decToString(dn, string, 1); |
|
485 return string; |
|
486 } /* DecNumberToEngString */ |
|
487 |
|
488 /* ------------------------------------------------------------------ */ |
|
489 /* to-number -- conversion from numeric string */ |
|
490 /* */ |
|
491 /* decNumberFromString -- convert string to decNumber */ |
|
492 /* dn -- the number structure to fill */ |
|
493 /* chars[] -- the string to convert ('\0' terminated) */ |
|
494 /* set -- the context used for processing any error, */ |
|
495 /* determining the maximum precision available */ |
|
496 /* (set.digits), determining the maximum and minimum */ |
|
497 /* exponent (set.emax and set.emin), determining if */ |
|
498 /* extended values are allowed, and checking the */ |
|
499 /* rounding mode if overflow occurs or rounding is */ |
|
500 /* needed. */ |
|
501 /* */ |
|
502 /* The length of the coefficient and the size of the exponent are */ |
|
503 /* checked by this routine, so the correct error (Underflow or */ |
|
504 /* Overflow) can be reported or rounding applied, as necessary. */ |
|
505 /* */ |
|
506 /* If bad syntax is detected, the result will be a quiet NaN. */ |
|
507 /* ------------------------------------------------------------------ */ |
|
508 U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromString(decNumber *dn, const char chars[], |
|
509 decContext *set) { |
|
510 Int exponent=0; /* working exponent [assume 0] */ |
|
511 uByte bits=0; /* working flags [assume +ve] */ |
|
512 Unit *res; /* where result will be built */ |
|
513 Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */ |
|
514 /* [+9 allows for ln() constants] */ |
|
515 Unit *allocres=NULL; /* -> allocated result, iff allocated */ |
|
516 Int d=0; /* count of digits found in decimal part */ |
|
517 const char *dotchar=NULL; /* where dot was found */ |
|
518 const char *cfirst=chars; /* -> first character of decimal part */ |
|
519 const char *last=NULL; /* -> last digit of decimal part */ |
|
520 const char *c; /* work */ |
|
521 Unit *up; /* .. */ |
|
522 #if DECDPUN>1 |
|
523 Int cut, out; /* .. */ |
|
524 #endif |
|
525 Int residue; /* rounding residue */ |
|
526 uInt status=0; /* error code */ |
|
527 |
|
528 #if DECCHECK |
|
529 if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) |
|
530 return uprv_decNumberZero(dn); |
|
531 #endif |
|
532 |
|
533 do { /* status & malloc protection */ |
|
534 for (c=chars;; c++) { /* -> input character */ |
|
535 if (*c>='0' && *c<='9') { /* test for Arabic digit */ |
|
536 last=c; |
|
537 d++; /* count of real digits */ |
|
538 continue; /* still in decimal part */ |
|
539 } |
|
540 if (*c=='.' && dotchar==NULL) { /* first '.' */ |
|
541 dotchar=c; /* record offset into decimal part */ |
|
542 if (c==cfirst) cfirst++; /* first digit must follow */ |
|
543 continue;} |
|
544 if (c==chars) { /* first in string... */ |
|
545 if (*c=='-') { /* valid - sign */ |
|
546 cfirst++; |
|
547 bits=DECNEG; |
|
548 continue;} |
|
549 if (*c=='+') { /* valid + sign */ |
|
550 cfirst++; |
|
551 continue;} |
|
552 } |
|
553 /* *c is not a digit, or a valid +, -, or '.' */ |
|
554 break; |
|
555 } /* c */ |
|
556 |
|
557 if (last==NULL) { /* no digits yet */ |
|
558 status=DEC_Conversion_syntax;/* assume the worst */ |
|
559 if (*c=='\0') break; /* and no more to come... */ |
|
560 #if DECSUBSET |
|
561 /* if subset then infinities and NaNs are not allowed */ |
|
562 if (!set->extended) break; /* hopeless */ |
|
563 #endif |
|
564 /* Infinities and NaNs are possible, here */ |
|
565 if (dotchar!=NULL) break; /* .. unless had a dot */ |
|
566 uprv_decNumberZero(dn); /* be optimistic */ |
|
567 if (decBiStr(c, "infinity", "INFINITY") |
|
568 || decBiStr(c, "inf", "INF")) { |
|
569 dn->bits=bits | DECINF; |
|
570 status=0; /* is OK */ |
|
571 break; /* all done */ |
|
572 } |
|
573 /* a NaN expected */ |
|
574 /* 2003.09.10 NaNs are now permitted to have a sign */ |
|
575 dn->bits=bits | DECNAN; /* assume simple NaN */ |
|
576 if (*c=='s' || *c=='S') { /* looks like an sNaN */ |
|
577 c++; |
|
578 dn->bits=bits | DECSNAN; |
|
579 } |
|
580 if (*c!='n' && *c!='N') break; /* check caseless "NaN" */ |
|
581 c++; |
|
582 if (*c!='a' && *c!='A') break; /* .. */ |
|
583 c++; |
|
584 if (*c!='n' && *c!='N') break; /* .. */ |
|
585 c++; |
|
586 /* now either nothing, or nnnn payload, expected */ |
|
587 /* -> start of integer and skip leading 0s [including plain 0] */ |
|
588 for (cfirst=c; *cfirst=='0';) cfirst++; |
|
589 if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */ |
|
590 status=0; /* it's good */ |
|
591 break; /* .. */ |
|
592 } |
|
593 /* something other than 0s; setup last and d as usual [no dots] */ |
|
594 for (c=cfirst;; c++, d++) { |
|
595 if (*c<'0' || *c>'9') break; /* test for Arabic digit */ |
|
596 last=c; |
|
597 } |
|
598 if (*c!='\0') break; /* not all digits */ |
|
599 if (d>set->digits-1) { |
|
600 /* [NB: payload in a decNumber can be full length unless */ |
|
601 /* clamped, in which case can only be digits-1] */ |
|
602 if (set->clamp) break; |
|
603 if (d>set->digits) break; |
|
604 } /* too many digits? */ |
|
605 /* good; drop through to convert the integer to coefficient */ |
|
606 status=0; /* syntax is OK */ |
|
607 bits=dn->bits; /* for copy-back */ |
|
608 } /* last==NULL */ |
|
609 |
|
610 else if (*c!='\0') { /* more to process... */ |
|
611 /* had some digits; exponent is only valid sequence now */ |
|
612 Flag nege; /* 1=negative exponent */ |
|
613 const char *firstexp; /* -> first significant exponent digit */ |
|
614 status=DEC_Conversion_syntax;/* assume the worst */ |
|
615 if (*c!='e' && *c!='E') break; |
|
616 /* Found 'e' or 'E' -- now process explicit exponent */ |
|
617 /* 1998.07.11: sign no longer required */ |
|
618 nege=0; |
|
619 c++; /* to (possible) sign */ |
|
620 if (*c=='-') {nege=1; c++;} |
|
621 else if (*c=='+') c++; |
|
622 if (*c=='\0') break; |
|
623 |
|
624 for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */ |
|
625 firstexp=c; /* save exponent digit place */ |
|
626 for (; ;c++) { |
|
627 if (*c<'0' || *c>'9') break; /* not a digit */ |
|
628 exponent=X10(exponent)+(Int)*c-(Int)'0'; |
|
629 } /* c */ |
|
630 /* if not now on a '\0', *c must not be a digit */ |
|
631 if (*c!='\0') break; |
|
632 |
|
633 /* (this next test must be after the syntax checks) */ |
|
634 /* if it was too long the exponent may have wrapped, so check */ |
|
635 /* carefully and set it to a certain overflow if wrap possible */ |
|
636 if (c>=firstexp+9+1) { |
|
637 if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2; |
|
638 /* [up to 1999999999 is OK, for example 1E-1000000998] */ |
|
639 } |
|
640 if (nege) exponent=-exponent; /* was negative */ |
|
641 status=0; /* is OK */ |
|
642 } /* stuff after digits */ |
|
643 |
|
644 /* Here when whole string has been inspected; syntax is good */ |
|
645 /* cfirst->first digit (never dot), last->last digit (ditto) */ |
|
646 |
|
647 /* strip leading zeros/dot [leave final 0 if all 0's] */ |
|
648 if (*cfirst=='0') { /* [cfirst has stepped over .] */ |
|
649 for (c=cfirst; c<last; c++, cfirst++) { |
|
650 if (*c=='.') continue; /* ignore dots */ |
|
651 if (*c!='0') break; /* non-zero found */ |
|
652 d--; /* 0 stripped */ |
|
653 } /* c */ |
|
654 #if DECSUBSET |
|
655 /* make a rapid exit for easy zeros if !extended */ |
|
656 if (*cfirst=='0' && !set->extended) { |
|
657 uprv_decNumberZero(dn); /* clean result */ |
|
658 break; /* [could be return] */ |
|
659 } |
|
660 #endif |
|
661 } /* at least one leading 0 */ |
|
662 |
|
663 /* Handle decimal point... */ |
|
664 if (dotchar!=NULL && dotchar<last) /* non-trailing '.' found? */ |
|
665 exponent-=(last-dotchar); /* adjust exponent */ |
|
666 /* [we can now ignore the .] */ |
|
667 |
|
668 /* OK, the digits string is good. Assemble in the decNumber, or in */ |
|
669 /* a temporary units array if rounding is needed */ |
|
670 if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */ |
|
671 else { /* rounding needed */ |
|
672 Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */ |
|
673 res=resbuff; /* assume use local buffer */ |
|
674 if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */ |
|
675 allocres=(Unit *)malloc(needbytes); |
|
676 if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} |
|
677 res=allocres; |
|
678 } |
|
679 } |
|
680 /* res now -> number lsu, buffer, or allocated storage for Unit array */ |
|
681 |
|
682 /* Place the coefficient into the selected Unit array */ |
|
683 /* [this is often 70% of the cost of this function when DECDPUN>1] */ |
|
684 #if DECDPUN>1 |
|
685 out=0; /* accumulator */ |
|
686 up=res+D2U(d)-1; /* -> msu */ |
|
687 cut=d-(up-res)*DECDPUN; /* digits in top unit */ |
|
688 for (c=cfirst;; c++) { /* along the digits */ |
|
689 if (*c=='.') continue; /* ignore '.' [don't decrement cut] */ |
|
690 out=X10(out)+(Int)*c-(Int)'0'; |
|
691 if (c==last) break; /* done [never get to trailing '.'] */ |
|
692 cut--; |
|
693 if (cut>0) continue; /* more for this unit */ |
|
694 *up=(Unit)out; /* write unit */ |
|
695 up--; /* prepare for unit below.. */ |
|
696 cut=DECDPUN; /* .. */ |
|
697 out=0; /* .. */ |
|
698 } /* c */ |
|
699 *up=(Unit)out; /* write lsu */ |
|
700 |
|
701 #else |
|
702 /* DECDPUN==1 */ |
|
703 up=res; /* -> lsu */ |
|
704 for (c=last; c>=cfirst; c--) { /* over each character, from least */ |
|
705 if (*c=='.') continue; /* ignore . [don't step up] */ |
|
706 *up=(Unit)((Int)*c-(Int)'0'); |
|
707 up++; |
|
708 } /* c */ |
|
709 #endif |
|
710 |
|
711 dn->bits=bits; |
|
712 dn->exponent=exponent; |
|
713 dn->digits=d; |
|
714 |
|
715 /* if not in number (too long) shorten into the number */ |
|
716 if (d>set->digits) { |
|
717 residue=0; |
|
718 decSetCoeff(dn, set, res, d, &residue, &status); |
|
719 /* always check for overflow or subnormal and round as needed */ |
|
720 decFinalize(dn, set, &residue, &status); |
|
721 } |
|
722 else { /* no rounding, but may still have overflow or subnormal */ |
|
723 /* [these tests are just for performance; finalize repeats them] */ |
|
724 if ((dn->exponent-1<set->emin-dn->digits) |
|
725 || (dn->exponent-1>set->emax-set->digits)) { |
|
726 residue=0; |
|
727 decFinalize(dn, set, &residue, &status); |
|
728 } |
|
729 } |
|
730 /* decNumberShow(dn); */ |
|
731 } while(0); /* [for break] */ |
|
732 |
|
733 if (allocres!=NULL) free(allocres); /* drop any storage used */ |
|
734 if (status!=0) decStatus(dn, status, set); |
|
735 return dn; |
|
736 } /* decNumberFromString */ |
|
737 |
|
738 /* ================================================================== */ |
|
739 /* Operators */ |
|
740 /* ================================================================== */ |
|
741 |
|
742 /* ------------------------------------------------------------------ */ |
|
743 /* decNumberAbs -- absolute value operator */ |
|
744 /* */ |
|
745 /* This computes C = abs(A) */ |
|
746 /* */ |
|
747 /* res is C, the result. C may be A */ |
|
748 /* rhs is A */ |
|
749 /* set is the context */ |
|
750 /* */ |
|
751 /* See also decNumberCopyAbs for a quiet bitwise version of this. */ |
|
752 /* C must have space for set->digits digits. */ |
|
753 /* ------------------------------------------------------------------ */ |
|
754 /* This has the same effect as decNumberPlus unless A is negative, */ |
|
755 /* in which case it has the same effect as decNumberMinus. */ |
|
756 /* ------------------------------------------------------------------ */ |
|
757 U_CAPI decNumber * U_EXPORT2 uprv_decNumberAbs(decNumber *res, const decNumber *rhs, |
|
758 decContext *set) { |
|
759 decNumber dzero; /* for 0 */ |
|
760 uInt status=0; /* accumulator */ |
|
761 |
|
762 #if DECCHECK |
|
763 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
764 #endif |
|
765 |
|
766 uprv_decNumberZero(&dzero); /* set 0 */ |
|
767 dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
|
768 decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); |
|
769 if (status!=0) decStatus(res, status, set); |
|
770 #if DECCHECK |
|
771 decCheckInexact(res, set); |
|
772 #endif |
|
773 return res; |
|
774 } /* decNumberAbs */ |
|
775 |
|
776 /* ------------------------------------------------------------------ */ |
|
777 /* decNumberAdd -- add two Numbers */ |
|
778 /* */ |
|
779 /* This computes C = A + B */ |
|
780 /* */ |
|
781 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
|
782 /* lhs is A */ |
|
783 /* rhs is B */ |
|
784 /* set is the context */ |
|
785 /* */ |
|
786 /* C must have space for set->digits digits. */ |
|
787 /* ------------------------------------------------------------------ */ |
|
788 /* This just calls the routine shared with Subtract */ |
|
789 U_CAPI decNumber * U_EXPORT2 uprv_decNumberAdd(decNumber *res, const decNumber *lhs, |
|
790 const decNumber *rhs, decContext *set) { |
|
791 uInt status=0; /* accumulator */ |
|
792 decAddOp(res, lhs, rhs, set, 0, &status); |
|
793 if (status!=0) decStatus(res, status, set); |
|
794 #if DECCHECK |
|
795 decCheckInexact(res, set); |
|
796 #endif |
|
797 return res; |
|
798 } /* decNumberAdd */ |
|
799 |
|
800 /* ------------------------------------------------------------------ */ |
|
801 /* decNumberAnd -- AND two Numbers, digitwise */ |
|
802 /* */ |
|
803 /* This computes C = A & B */ |
|
804 /* */ |
|
805 /* res is C, the result. C may be A and/or B (e.g., X=X&X) */ |
|
806 /* lhs is A */ |
|
807 /* rhs is B */ |
|
808 /* set is the context (used for result length and error report) */ |
|
809 /* */ |
|
810 /* C must have space for set->digits digits. */ |
|
811 /* */ |
|
812 /* Logical function restrictions apply (see above); a NaN is */ |
|
813 /* returned with Invalid_operation if a restriction is violated. */ |
|
814 /* ------------------------------------------------------------------ */ |
|
815 U_CAPI decNumber * U_EXPORT2 uprv_decNumberAnd(decNumber *res, const decNumber *lhs, |
|
816 const decNumber *rhs, decContext *set) { |
|
817 const Unit *ua, *ub; /* -> operands */ |
|
818 const Unit *msua, *msub; /* -> operand msus */ |
|
819 Unit *uc, *msuc; /* -> result and its msu */ |
|
820 Int msudigs; /* digits in res msu */ |
|
821 #if DECCHECK |
|
822 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
823 #endif |
|
824 |
|
825 if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
|
826 || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
|
827 decStatus(res, DEC_Invalid_operation, set); |
|
828 return res; |
|
829 } |
|
830 |
|
831 /* operands are valid */ |
|
832 ua=lhs->lsu; /* bottom-up */ |
|
833 ub=rhs->lsu; /* .. */ |
|
834 uc=res->lsu; /* .. */ |
|
835 msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ |
|
836 msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ |
|
837 msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
|
838 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
|
839 for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
|
840 Unit a, b; /* extract units */ |
|
841 if (ua>msua) a=0; |
|
842 else a=*ua; |
|
843 if (ub>msub) b=0; |
|
844 else b=*ub; |
|
845 *uc=0; /* can now write back */ |
|
846 if (a|b) { /* maybe 1 bits to examine */ |
|
847 Int i, j; |
|
848 *uc=0; /* can now write back */ |
|
849 /* This loop could be unrolled and/or use BIN2BCD tables */ |
|
850 for (i=0; i<DECDPUN; i++) { |
|
851 if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */ |
|
852 j=a%10; |
|
853 a=a/10; |
|
854 j|=b%10; |
|
855 b=b/10; |
|
856 if (j>1) { |
|
857 decStatus(res, DEC_Invalid_operation, set); |
|
858 return res; |
|
859 } |
|
860 if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
|
861 } /* each digit */ |
|
862 } /* both OK */ |
|
863 } /* each unit */ |
|
864 /* [here uc-1 is the msu of the result] */ |
|
865 res->digits=decGetDigits(res->lsu, uc-res->lsu); |
|
866 res->exponent=0; /* integer */ |
|
867 res->bits=0; /* sign=0 */ |
|
868 return res; /* [no status to set] */ |
|
869 } /* decNumberAnd */ |
|
870 |
|
871 /* ------------------------------------------------------------------ */ |
|
872 /* decNumberCompare -- compare two Numbers */ |
|
873 /* */ |
|
874 /* This computes C = A ? B */ |
|
875 /* */ |
|
876 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
877 /* lhs is A */ |
|
878 /* rhs is B */ |
|
879 /* set is the context */ |
|
880 /* */ |
|
881 /* C must have space for one digit (or NaN). */ |
|
882 /* ------------------------------------------------------------------ */ |
|
883 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompare(decNumber *res, const decNumber *lhs, |
|
884 const decNumber *rhs, decContext *set) { |
|
885 uInt status=0; /* accumulator */ |
|
886 decCompareOp(res, lhs, rhs, set, COMPARE, &status); |
|
887 if (status!=0) decStatus(res, status, set); |
|
888 return res; |
|
889 } /* decNumberCompare */ |
|
890 |
|
891 /* ------------------------------------------------------------------ */ |
|
892 /* decNumberCompareSignal -- compare, signalling on all NaNs */ |
|
893 /* */ |
|
894 /* This computes C = A ? B */ |
|
895 /* */ |
|
896 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
897 /* lhs is A */ |
|
898 /* rhs is B */ |
|
899 /* set is the context */ |
|
900 /* */ |
|
901 /* C must have space for one digit (or NaN). */ |
|
902 /* ------------------------------------------------------------------ */ |
|
903 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareSignal(decNumber *res, const decNumber *lhs, |
|
904 const decNumber *rhs, decContext *set) { |
|
905 uInt status=0; /* accumulator */ |
|
906 decCompareOp(res, lhs, rhs, set, COMPSIG, &status); |
|
907 if (status!=0) decStatus(res, status, set); |
|
908 return res; |
|
909 } /* decNumberCompareSignal */ |
|
910 |
|
911 /* ------------------------------------------------------------------ */ |
|
912 /* decNumberCompareTotal -- compare two Numbers, using total ordering */ |
|
913 /* */ |
|
914 /* This computes C = A ? B, under total ordering */ |
|
915 /* */ |
|
916 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
917 /* lhs is A */ |
|
918 /* rhs is B */ |
|
919 /* set is the context */ |
|
920 /* */ |
|
921 /* C must have space for one digit; the result will always be one of */ |
|
922 /* -1, 0, or 1. */ |
|
923 /* ------------------------------------------------------------------ */ |
|
924 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotal(decNumber *res, const decNumber *lhs, |
|
925 const decNumber *rhs, decContext *set) { |
|
926 uInt status=0; /* accumulator */ |
|
927 decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); |
|
928 if (status!=0) decStatus(res, status, set); |
|
929 return res; |
|
930 } /* decNumberCompareTotal */ |
|
931 |
|
932 /* ------------------------------------------------------------------ */ |
|
933 /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ |
|
934 /* */ |
|
935 /* This computes C = |A| ? |B|, under total ordering */ |
|
936 /* */ |
|
937 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
938 /* lhs is A */ |
|
939 /* rhs is B */ |
|
940 /* set is the context */ |
|
941 /* */ |
|
942 /* C must have space for one digit; the result will always be one of */ |
|
943 /* -1, 0, or 1. */ |
|
944 /* ------------------------------------------------------------------ */ |
|
945 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, |
|
946 const decNumber *rhs, decContext *set) { |
|
947 uInt status=0; /* accumulator */ |
|
948 uInt needbytes; /* for space calculations */ |
|
949 decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */ |
|
950 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
|
951 decNumber bufb[D2N(DECBUFFER+1)]; |
|
952 decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ |
|
953 decNumber *a, *b; /* temporary pointers */ |
|
954 |
|
955 #if DECCHECK |
|
956 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
957 #endif |
|
958 |
|
959 do { /* protect allocated storage */ |
|
960 /* if either is negative, take a copy and absolute */ |
|
961 if (decNumberIsNegative(lhs)) { /* lhs<0 */ |
|
962 a=bufa; |
|
963 needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); |
|
964 if (needbytes>sizeof(bufa)) { /* need malloc space */ |
|
965 allocbufa=(decNumber *)malloc(needbytes); |
|
966 if (allocbufa==NULL) { /* hopeless -- abandon */ |
|
967 status|=DEC_Insufficient_storage; |
|
968 break;} |
|
969 a=allocbufa; /* use the allocated space */ |
|
970 } |
|
971 uprv_decNumberCopy(a, lhs); /* copy content */ |
|
972 a->bits&=~DECNEG; /* .. and clear the sign */ |
|
973 lhs=a; /* use copy from here on */ |
|
974 } |
|
975 if (decNumberIsNegative(rhs)) { /* rhs<0 */ |
|
976 b=bufb; |
|
977 needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
|
978 if (needbytes>sizeof(bufb)) { /* need malloc space */ |
|
979 allocbufb=(decNumber *)malloc(needbytes); |
|
980 if (allocbufb==NULL) { /* hopeless -- abandon */ |
|
981 status|=DEC_Insufficient_storage; |
|
982 break;} |
|
983 b=allocbufb; /* use the allocated space */ |
|
984 } |
|
985 uprv_decNumberCopy(b, rhs); /* copy content */ |
|
986 b->bits&=~DECNEG; /* .. and clear the sign */ |
|
987 rhs=b; /* use copy from here on */ |
|
988 } |
|
989 decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); |
|
990 } while(0); /* end protected */ |
|
991 |
|
992 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
|
993 if (allocbufb!=NULL) free(allocbufb); /* .. */ |
|
994 if (status!=0) decStatus(res, status, set); |
|
995 return res; |
|
996 } /* decNumberCompareTotalMag */ |
|
997 |
|
998 /* ------------------------------------------------------------------ */ |
|
999 /* decNumberDivide -- divide one number by another */ |
|
1000 /* */ |
|
1001 /* This computes C = A / B */ |
|
1002 /* */ |
|
1003 /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
|
1004 /* lhs is A */ |
|
1005 /* rhs is B */ |
|
1006 /* set is the context */ |
|
1007 /* */ |
|
1008 /* C must have space for set->digits digits. */ |
|
1009 /* ------------------------------------------------------------------ */ |
|
1010 U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivide(decNumber *res, const decNumber *lhs, |
|
1011 const decNumber *rhs, decContext *set) { |
|
1012 uInt status=0; /* accumulator */ |
|
1013 decDivideOp(res, lhs, rhs, set, DIVIDE, &status); |
|
1014 if (status!=0) decStatus(res, status, set); |
|
1015 #if DECCHECK |
|
1016 decCheckInexact(res, set); |
|
1017 #endif |
|
1018 return res; |
|
1019 } /* decNumberDivide */ |
|
1020 |
|
1021 /* ------------------------------------------------------------------ */ |
|
1022 /* decNumberDivideInteger -- divide and return integer quotient */ |
|
1023 /* */ |
|
1024 /* This computes C = A # B, where # is the integer divide operator */ |
|
1025 /* */ |
|
1026 /* res is C, the result. C may be A and/or B (e.g., X=X#X) */ |
|
1027 /* lhs is A */ |
|
1028 /* rhs is B */ |
|
1029 /* set is the context */ |
|
1030 /* */ |
|
1031 /* C must have space for set->digits digits. */ |
|
1032 /* ------------------------------------------------------------------ */ |
|
1033 U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivideInteger(decNumber *res, const decNumber *lhs, |
|
1034 const decNumber *rhs, decContext *set) { |
|
1035 uInt status=0; /* accumulator */ |
|
1036 decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); |
|
1037 if (status!=0) decStatus(res, status, set); |
|
1038 return res; |
|
1039 } /* decNumberDivideInteger */ |
|
1040 |
|
1041 /* ------------------------------------------------------------------ */ |
|
1042 /* decNumberExp -- exponentiation */ |
|
1043 /* */ |
|
1044 /* This computes C = exp(A) */ |
|
1045 /* */ |
|
1046 /* res is C, the result. C may be A */ |
|
1047 /* rhs is A */ |
|
1048 /* set is the context; note that rounding mode has no effect */ |
|
1049 /* */ |
|
1050 /* C must have space for set->digits digits. */ |
|
1051 /* */ |
|
1052 /* Mathematical function restrictions apply (see above); a NaN is */ |
|
1053 /* returned with Invalid_operation if a restriction is violated. */ |
|
1054 /* */ |
|
1055 /* Finite results will always be full precision and Inexact, except */ |
|
1056 /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
|
1057 /* */ |
|
1058 /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
|
1059 /* almost always be correctly rounded, but may be up to 1 ulp in */ |
|
1060 /* error in rare cases. */ |
|
1061 /* ------------------------------------------------------------------ */ |
|
1062 /* This is a wrapper for decExpOp which can handle the slightly wider */ |
|
1063 /* (double) range needed by Ln (which has to be able to calculate */ |
|
1064 /* exp(-a) where a can be the tiniest number (Ntiny). */ |
|
1065 /* ------------------------------------------------------------------ */ |
|
1066 U_CAPI decNumber * U_EXPORT2 uprv_decNumberExp(decNumber *res, const decNumber *rhs, |
|
1067 decContext *set) { |
|
1068 uInt status=0; /* accumulator */ |
|
1069 #if DECSUBSET |
|
1070 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
|
1071 #endif |
|
1072 |
|
1073 #if DECCHECK |
|
1074 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1075 #endif |
|
1076 |
|
1077 /* Check restrictions; these restrictions ensure that if h=8 (see */ |
|
1078 /* decExpOp) then the result will either overflow or underflow to 0. */ |
|
1079 /* Other math functions restrict the input range, too, for inverses. */ |
|
1080 /* If not violated then carry out the operation. */ |
|
1081 if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ |
|
1082 #if DECSUBSET |
|
1083 if (!set->extended) { |
|
1084 /* reduce operand and set lostDigits status, as needed */ |
|
1085 if (rhs->digits>set->digits) { |
|
1086 allocrhs=decRoundOperand(rhs, set, &status); |
|
1087 if (allocrhs==NULL) break; |
|
1088 rhs=allocrhs; |
|
1089 } |
|
1090 } |
|
1091 #endif |
|
1092 decExpOp(res, rhs, set, &status); |
|
1093 } while(0); /* end protected */ |
|
1094 |
|
1095 #if DECSUBSET |
|
1096 if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ |
|
1097 #endif |
|
1098 /* apply significant status */ |
|
1099 if (status!=0) decStatus(res, status, set); |
|
1100 #if DECCHECK |
|
1101 decCheckInexact(res, set); |
|
1102 #endif |
|
1103 return res; |
|
1104 } /* decNumberExp */ |
|
1105 |
|
1106 /* ------------------------------------------------------------------ */ |
|
1107 /* decNumberFMA -- fused multiply add */ |
|
1108 /* */ |
|
1109 /* This computes D = (A * B) + C with only one rounding */ |
|
1110 /* */ |
|
1111 /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ |
|
1112 /* lhs is A */ |
|
1113 /* rhs is B */ |
|
1114 /* fhs is C [far hand side] */ |
|
1115 /* set is the context */ |
|
1116 /* */ |
|
1117 /* Mathematical function restrictions apply (see above); a NaN is */ |
|
1118 /* returned with Invalid_operation if a restriction is violated. */ |
|
1119 /* */ |
|
1120 /* C must have space for set->digits digits. */ |
|
1121 /* ------------------------------------------------------------------ */ |
|
1122 U_CAPI decNumber * U_EXPORT2 uprv_decNumberFMA(decNumber *res, const decNumber *lhs, |
|
1123 const decNumber *rhs, const decNumber *fhs, |
|
1124 decContext *set) { |
|
1125 uInt status=0; /* accumulator */ |
|
1126 decContext dcmul; /* context for the multiplication */ |
|
1127 uInt needbytes; /* for space calculations */ |
|
1128 decNumber bufa[D2N(DECBUFFER*2+1)]; |
|
1129 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
|
1130 decNumber *acc; /* accumulator pointer */ |
|
1131 decNumber dzero; /* work */ |
|
1132 |
|
1133 #if DECCHECK |
|
1134 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
1135 if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; |
|
1136 #endif |
|
1137 |
|
1138 do { /* protect allocated storage */ |
|
1139 #if DECSUBSET |
|
1140 if (!set->extended) { /* [undefined if subset] */ |
|
1141 status|=DEC_Invalid_operation; |
|
1142 break;} |
|
1143 #endif |
|
1144 /* Check math restrictions [these ensure no overflow or underflow] */ |
|
1145 if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) |
|
1146 || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) |
|
1147 || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; |
|
1148 /* set up context for multiply */ |
|
1149 dcmul=*set; |
|
1150 dcmul.digits=lhs->digits+rhs->digits; /* just enough */ |
|
1151 /* [The above may be an over-estimate for subset arithmetic, but that's OK] */ |
|
1152 dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */ |
|
1153 dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */ |
|
1154 /* set up decNumber space to receive the result of the multiply */ |
|
1155 acc=bufa; /* may fit */ |
|
1156 needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); |
|
1157 if (needbytes>sizeof(bufa)) { /* need malloc space */ |
|
1158 allocbufa=(decNumber *)malloc(needbytes); |
|
1159 if (allocbufa==NULL) { /* hopeless -- abandon */ |
|
1160 status|=DEC_Insufficient_storage; |
|
1161 break;} |
|
1162 acc=allocbufa; /* use the allocated space */ |
|
1163 } |
|
1164 /* multiply with extended range and necessary precision */ |
|
1165 /*printf("emin=%ld\n", dcmul.emin); */ |
|
1166 decMultiplyOp(acc, lhs, rhs, &dcmul, &status); |
|
1167 /* Only Invalid operation (from sNaN or Inf * 0) is possible in */ |
|
1168 /* status; if either is seen than ignore fhs (in case it is */ |
|
1169 /* another sNaN) and set acc to NaN unless we had an sNaN */ |
|
1170 /* [decMultiplyOp leaves that to caller] */ |
|
1171 /* Note sNaN has to go through addOp to shorten payload if */ |
|
1172 /* necessary */ |
|
1173 if ((status&DEC_Invalid_operation)!=0) { |
|
1174 if (!(status&DEC_sNaN)) { /* but be true invalid */ |
|
1175 uprv_decNumberZero(res); /* acc not yet set */ |
|
1176 res->bits=DECNAN; |
|
1177 break; |
|
1178 } |
|
1179 uprv_decNumberZero(&dzero); /* make 0 (any non-NaN would do) */ |
|
1180 fhs=&dzero; /* use that */ |
|
1181 } |
|
1182 #if DECCHECK |
|
1183 else { /* multiply was OK */ |
|
1184 if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); |
|
1185 } |
|
1186 #endif |
|
1187 /* add the third operand and result -> res, and all is done */ |
|
1188 decAddOp(res, acc, fhs, set, 0, &status); |
|
1189 } while(0); /* end protected */ |
|
1190 |
|
1191 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
|
1192 if (status!=0) decStatus(res, status, set); |
|
1193 #if DECCHECK |
|
1194 decCheckInexact(res, set); |
|
1195 #endif |
|
1196 return res; |
|
1197 } /* decNumberFMA */ |
|
1198 |
|
1199 /* ------------------------------------------------------------------ */ |
|
1200 /* decNumberInvert -- invert a Number, digitwise */ |
|
1201 /* */ |
|
1202 /* This computes C = ~A */ |
|
1203 /* */ |
|
1204 /* res is C, the result. C may be A (e.g., X=~X) */ |
|
1205 /* rhs is A */ |
|
1206 /* set is the context (used for result length and error report) */ |
|
1207 /* */ |
|
1208 /* C must have space for set->digits digits. */ |
|
1209 /* */ |
|
1210 /* Logical function restrictions apply (see above); a NaN is */ |
|
1211 /* returned with Invalid_operation if a restriction is violated. */ |
|
1212 /* ------------------------------------------------------------------ */ |
|
1213 U_CAPI decNumber * U_EXPORT2 uprv_decNumberInvert(decNumber *res, const decNumber *rhs, |
|
1214 decContext *set) { |
|
1215 const Unit *ua, *msua; /* -> operand and its msu */ |
|
1216 Unit *uc, *msuc; /* -> result and its msu */ |
|
1217 Int msudigs; /* digits in res msu */ |
|
1218 #if DECCHECK |
|
1219 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1220 #endif |
|
1221 |
|
1222 if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
|
1223 decStatus(res, DEC_Invalid_operation, set); |
|
1224 return res; |
|
1225 } |
|
1226 /* operand is valid */ |
|
1227 ua=rhs->lsu; /* bottom-up */ |
|
1228 uc=res->lsu; /* .. */ |
|
1229 msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */ |
|
1230 msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
|
1231 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
|
1232 for (; uc<=msuc; ua++, uc++) { /* Unit loop */ |
|
1233 Unit a; /* extract unit */ |
|
1234 Int i, j; /* work */ |
|
1235 if (ua>msua) a=0; |
|
1236 else a=*ua; |
|
1237 *uc=0; /* can now write back */ |
|
1238 /* always need to examine all bits in rhs */ |
|
1239 /* This loop could be unrolled and/or use BIN2BCD tables */ |
|
1240 for (i=0; i<DECDPUN; i++) { |
|
1241 if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */ |
|
1242 j=a%10; |
|
1243 a=a/10; |
|
1244 if (j>1) { |
|
1245 decStatus(res, DEC_Invalid_operation, set); |
|
1246 return res; |
|
1247 } |
|
1248 if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
|
1249 } /* each digit */ |
|
1250 } /* each unit */ |
|
1251 /* [here uc-1 is the msu of the result] */ |
|
1252 res->digits=decGetDigits(res->lsu, uc-res->lsu); |
|
1253 res->exponent=0; /* integer */ |
|
1254 res->bits=0; /* sign=0 */ |
|
1255 return res; /* [no status to set] */ |
|
1256 } /* decNumberInvert */ |
|
1257 |
|
1258 /* ------------------------------------------------------------------ */ |
|
1259 /* decNumberLn -- natural logarithm */ |
|
1260 /* */ |
|
1261 /* This computes C = ln(A) */ |
|
1262 /* */ |
|
1263 /* res is C, the result. C may be A */ |
|
1264 /* rhs is A */ |
|
1265 /* set is the context; note that rounding mode has no effect */ |
|
1266 /* */ |
|
1267 /* C must have space for set->digits digits. */ |
|
1268 /* */ |
|
1269 /* Notable cases: */ |
|
1270 /* A<0 -> Invalid */ |
|
1271 /* A=0 -> -Infinity (Exact) */ |
|
1272 /* A=+Infinity -> +Infinity (Exact) */ |
|
1273 /* A=1 exactly -> 0 (Exact) */ |
|
1274 /* */ |
|
1275 /* Mathematical function restrictions apply (see above); a NaN is */ |
|
1276 /* returned with Invalid_operation if a restriction is violated. */ |
|
1277 /* */ |
|
1278 /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
|
1279 /* almost always be correctly rounded, but may be up to 1 ulp in */ |
|
1280 /* error in rare cases. */ |
|
1281 /* ------------------------------------------------------------------ */ |
|
1282 /* This is a wrapper for decLnOp which can handle the slightly wider */ |
|
1283 /* (+11) range needed by Ln, Log10, etc. (which may have to be able */ |
|
1284 /* to calculate at p+e+2). */ |
|
1285 /* ------------------------------------------------------------------ */ |
|
1286 U_CAPI decNumber * U_EXPORT2 uprv_decNumberLn(decNumber *res, const decNumber *rhs, |
|
1287 decContext *set) { |
|
1288 uInt status=0; /* accumulator */ |
|
1289 #if DECSUBSET |
|
1290 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
|
1291 #endif |
|
1292 |
|
1293 #if DECCHECK |
|
1294 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1295 #endif |
|
1296 |
|
1297 /* Check restrictions; this is a math function; if not violated */ |
|
1298 /* then carry out the operation. */ |
|
1299 if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ |
|
1300 #if DECSUBSET |
|
1301 if (!set->extended) { |
|
1302 /* reduce operand and set lostDigits status, as needed */ |
|
1303 if (rhs->digits>set->digits) { |
|
1304 allocrhs=decRoundOperand(rhs, set, &status); |
|
1305 if (allocrhs==NULL) break; |
|
1306 rhs=allocrhs; |
|
1307 } |
|
1308 /* special check in subset for rhs=0 */ |
|
1309 if (ISZERO(rhs)) { /* +/- zeros -> error */ |
|
1310 status|=DEC_Invalid_operation; |
|
1311 break;} |
|
1312 } /* extended=0 */ |
|
1313 #endif |
|
1314 decLnOp(res, rhs, set, &status); |
|
1315 } while(0); /* end protected */ |
|
1316 |
|
1317 #if DECSUBSET |
|
1318 if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ |
|
1319 #endif |
|
1320 /* apply significant status */ |
|
1321 if (status!=0) decStatus(res, status, set); |
|
1322 #if DECCHECK |
|
1323 decCheckInexact(res, set); |
|
1324 #endif |
|
1325 return res; |
|
1326 } /* decNumberLn */ |
|
1327 |
|
1328 /* ------------------------------------------------------------------ */ |
|
1329 /* decNumberLogB - get adjusted exponent, by 754 rules */ |
|
1330 /* */ |
|
1331 /* This computes C = adjustedexponent(A) */ |
|
1332 /* */ |
|
1333 /* res is C, the result. C may be A */ |
|
1334 /* rhs is A */ |
|
1335 /* set is the context, used only for digits and status */ |
|
1336 /* */ |
|
1337 /* C must have space for 10 digits (A might have 10**9 digits and */ |
|
1338 /* an exponent of +999999999, or one digit and an exponent of */ |
|
1339 /* -1999999999). */ |
|
1340 /* */ |
|
1341 /* This returns the adjusted exponent of A after (in theory) padding */ |
|
1342 /* with zeros on the right to set->digits digits while keeping the */ |
|
1343 /* same value. The exponent is not limited by emin/emax. */ |
|
1344 /* */ |
|
1345 /* Notable cases: */ |
|
1346 /* A<0 -> Use |A| */ |
|
1347 /* A=0 -> -Infinity (Division by zero) */ |
|
1348 /* A=Infinite -> +Infinity (Exact) */ |
|
1349 /* A=1 exactly -> 0 (Exact) */ |
|
1350 /* NaNs are propagated as usual */ |
|
1351 /* ------------------------------------------------------------------ */ |
|
1352 U_CAPI decNumber * U_EXPORT2 uprv_decNumberLogB(decNumber *res, const decNumber *rhs, |
|
1353 decContext *set) { |
|
1354 uInt status=0; /* accumulator */ |
|
1355 |
|
1356 #if DECCHECK |
|
1357 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1358 #endif |
|
1359 |
|
1360 /* NaNs as usual; Infinities return +Infinity; 0->oops */ |
|
1361 if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); |
|
1362 else if (decNumberIsInfinite(rhs)) uprv_decNumberCopyAbs(res, rhs); |
|
1363 else if (decNumberIsZero(rhs)) { |
|
1364 uprv_decNumberZero(res); /* prepare for Infinity */ |
|
1365 res->bits=DECNEG|DECINF; /* -Infinity */ |
|
1366 status|=DEC_Division_by_zero; /* as per 754 */ |
|
1367 } |
|
1368 else { /* finite non-zero */ |
|
1369 Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ |
|
1370 uprv_decNumberFromInt32(res, ae); /* lay it out */ |
|
1371 } |
|
1372 |
|
1373 if (status!=0) decStatus(res, status, set); |
|
1374 return res; |
|
1375 } /* decNumberLogB */ |
|
1376 |
|
1377 /* ------------------------------------------------------------------ */ |
|
1378 /* decNumberLog10 -- logarithm in base 10 */ |
|
1379 /* */ |
|
1380 /* This computes C = log10(A) */ |
|
1381 /* */ |
|
1382 /* res is C, the result. C may be A */ |
|
1383 /* rhs is A */ |
|
1384 /* set is the context; note that rounding mode has no effect */ |
|
1385 /* */ |
|
1386 /* C must have space for set->digits digits. */ |
|
1387 /* */ |
|
1388 /* Notable cases: */ |
|
1389 /* A<0 -> Invalid */ |
|
1390 /* A=0 -> -Infinity (Exact) */ |
|
1391 /* A=+Infinity -> +Infinity (Exact) */ |
|
1392 /* A=10**n (if n is an integer) -> n (Exact) */ |
|
1393 /* */ |
|
1394 /* Mathematical function restrictions apply (see above); a NaN is */ |
|
1395 /* returned with Invalid_operation if a restriction is violated. */ |
|
1396 /* */ |
|
1397 /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
|
1398 /* almost always be correctly rounded, but may be up to 1 ulp in */ |
|
1399 /* error in rare cases. */ |
|
1400 /* ------------------------------------------------------------------ */ |
|
1401 /* This calculates ln(A)/ln(10) using appropriate precision. For */ |
|
1402 /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ |
|
1403 /* requested digits and t is the number of digits in the exponent */ |
|
1404 /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ |
|
1405 /* fastpath in decLnOp. The final division is done to the requested */ |
|
1406 /* precision. */ |
|
1407 /* ------------------------------------------------------------------ */ |
|
1408 #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 |
|
1409 #pragma GCC diagnostic push |
|
1410 #pragma GCC diagnostic ignored "-Warray-bounds" |
|
1411 #endif |
|
1412 U_CAPI decNumber * U_EXPORT2 uprv_decNumberLog10(decNumber *res, const decNumber *rhs, |
|
1413 decContext *set) { |
|
1414 uInt status=0, ignore=0; /* status accumulators */ |
|
1415 uInt needbytes; /* for space calculations */ |
|
1416 Int p; /* working precision */ |
|
1417 Int t; /* digits in exponent of A */ |
|
1418 |
|
1419 /* buffers for a and b working decimals */ |
|
1420 /* (adjustment calculator, same size) */ |
|
1421 decNumber bufa[D2N(DECBUFFER+2)]; |
|
1422 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
|
1423 decNumber *a=bufa; /* temporary a */ |
|
1424 decNumber bufb[D2N(DECBUFFER+2)]; |
|
1425 decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ |
|
1426 decNumber *b=bufb; /* temporary b */ |
|
1427 decNumber bufw[D2N(10)]; /* working 2-10 digit number */ |
|
1428 decNumber *w=bufw; /* .. */ |
|
1429 #if DECSUBSET |
|
1430 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
|
1431 #endif |
|
1432 |
|
1433 decContext aset; /* working context */ |
|
1434 |
|
1435 #if DECCHECK |
|
1436 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1437 #endif |
|
1438 |
|
1439 /* Check restrictions; this is a math function; if not violated */ |
|
1440 /* then carry out the operation. */ |
|
1441 if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */ |
|
1442 #if DECSUBSET |
|
1443 if (!set->extended) { |
|
1444 /* reduce operand and set lostDigits status, as needed */ |
|
1445 if (rhs->digits>set->digits) { |
|
1446 allocrhs=decRoundOperand(rhs, set, &status); |
|
1447 if (allocrhs==NULL) break; |
|
1448 rhs=allocrhs; |
|
1449 } |
|
1450 /* special check in subset for rhs=0 */ |
|
1451 if (ISZERO(rhs)) { /* +/- zeros -> error */ |
|
1452 status|=DEC_Invalid_operation; |
|
1453 break;} |
|
1454 } /* extended=0 */ |
|
1455 #endif |
|
1456 |
|
1457 uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ |
|
1458 |
|
1459 /* handle exact powers of 10; only check if +ve finite */ |
|
1460 if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { |
|
1461 Int residue=0; /* (no residue) */ |
|
1462 uInt copystat=0; /* clean status */ |
|
1463 |
|
1464 /* round to a single digit... */ |
|
1465 aset.digits=1; |
|
1466 decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */ |
|
1467 /* if exact and the digit is 1, rhs is a power of 10 */ |
|
1468 if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { |
|
1469 /* the exponent, conveniently, is the power of 10; making */ |
|
1470 /* this the result needs a little care as it might not fit, */ |
|
1471 /* so first convert it into the working number, and then move */ |
|
1472 /* to res */ |
|
1473 uprv_decNumberFromInt32(w, w->exponent); |
|
1474 residue=0; |
|
1475 decCopyFit(res, w, set, &residue, &status); /* copy & round */ |
|
1476 decFinish(res, set, &residue, &status); /* cleanup/set flags */ |
|
1477 break; |
|
1478 } /* not a power of 10 */ |
|
1479 } /* not a candidate for exact */ |
|
1480 |
|
1481 /* simplify the information-content calculation to use 'total */ |
|
1482 /* number of digits in a, including exponent' as compared to the */ |
|
1483 /* requested digits, as increasing this will only rarely cost an */ |
|
1484 /* iteration in ln(a) anyway */ |
|
1485 t=6; /* it can never be >6 */ |
|
1486 |
|
1487 /* allocate space when needed... */ |
|
1488 p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; |
|
1489 needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); |
|
1490 if (needbytes>sizeof(bufa)) { /* need malloc space */ |
|
1491 allocbufa=(decNumber *)malloc(needbytes); |
|
1492 if (allocbufa==NULL) { /* hopeless -- abandon */ |
|
1493 status|=DEC_Insufficient_storage; |
|
1494 break;} |
|
1495 a=allocbufa; /* use the allocated space */ |
|
1496 } |
|
1497 aset.digits=p; /* as calculated */ |
|
1498 aset.emax=DEC_MAX_MATH; /* usual bounds */ |
|
1499 aset.emin=-DEC_MAX_MATH; /* .. */ |
|
1500 aset.clamp=0; /* and no concrete format */ |
|
1501 decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */ |
|
1502 |
|
1503 /* skip the division if the result so far is infinite, NaN, or */ |
|
1504 /* zero, or there was an error; note NaN from sNaN needs copy */ |
|
1505 if (status&DEC_NaNs && !(status&DEC_sNaN)) break; |
|
1506 if (a->bits&DECSPECIAL || ISZERO(a)) { |
|
1507 uprv_decNumberCopy(res, a); /* [will fit] */ |
|
1508 break;} |
|
1509 |
|
1510 /* for ln(10) an extra 3 digits of precision are needed */ |
|
1511 p=set->digits+3; |
|
1512 needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); |
|
1513 if (needbytes>sizeof(bufb)) { /* need malloc space */ |
|
1514 allocbufb=(decNumber *)malloc(needbytes); |
|
1515 if (allocbufb==NULL) { /* hopeless -- abandon */ |
|
1516 status|=DEC_Insufficient_storage; |
|
1517 break;} |
|
1518 b=allocbufb; /* use the allocated space */ |
|
1519 } |
|
1520 uprv_decNumberZero(w); /* set up 10... */ |
|
1521 #if DECDPUN==1 |
|
1522 w->lsu[1]=1; w->lsu[0]=0; /* .. */ |
|
1523 #else |
|
1524 w->lsu[0]=10; /* .. */ |
|
1525 #endif |
|
1526 w->digits=2; /* .. */ |
|
1527 |
|
1528 aset.digits=p; |
|
1529 decLnOp(b, w, &aset, &ignore); /* b=ln(10) */ |
|
1530 |
|
1531 aset.digits=set->digits; /* for final divide */ |
|
1532 decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */ |
|
1533 } while(0); /* [for break] */ |
|
1534 |
|
1535 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
|
1536 if (allocbufb!=NULL) free(allocbufb); /* .. */ |
|
1537 #if DECSUBSET |
|
1538 if (allocrhs !=NULL) free(allocrhs); /* .. */ |
|
1539 #endif |
|
1540 /* apply significant status */ |
|
1541 if (status!=0) decStatus(res, status, set); |
|
1542 #if DECCHECK |
|
1543 decCheckInexact(res, set); |
|
1544 #endif |
|
1545 return res; |
|
1546 } /* decNumberLog10 */ |
|
1547 #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 |
|
1548 #pragma GCC diagnostic pop |
|
1549 #endif |
|
1550 |
|
1551 /* ------------------------------------------------------------------ */ |
|
1552 /* decNumberMax -- compare two Numbers and return the maximum */ |
|
1553 /* */ |
|
1554 /* This computes C = A ? B, returning the maximum by 754 rules */ |
|
1555 /* */ |
|
1556 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
1557 /* lhs is A */ |
|
1558 /* rhs is B */ |
|
1559 /* set is the context */ |
|
1560 /* */ |
|
1561 /* C must have space for set->digits digits. */ |
|
1562 /* ------------------------------------------------------------------ */ |
|
1563 U_CAPI decNumber * U_EXPORT2 uprv_decNumberMax(decNumber *res, const decNumber *lhs, |
|
1564 const decNumber *rhs, decContext *set) { |
|
1565 uInt status=0; /* accumulator */ |
|
1566 decCompareOp(res, lhs, rhs, set, COMPMAX, &status); |
|
1567 if (status!=0) decStatus(res, status, set); |
|
1568 #if DECCHECK |
|
1569 decCheckInexact(res, set); |
|
1570 #endif |
|
1571 return res; |
|
1572 } /* decNumberMax */ |
|
1573 |
|
1574 /* ------------------------------------------------------------------ */ |
|
1575 /* decNumberMaxMag -- compare and return the maximum by magnitude */ |
|
1576 /* */ |
|
1577 /* This computes C = A ? B, returning the maximum by 754 rules */ |
|
1578 /* */ |
|
1579 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
1580 /* lhs is A */ |
|
1581 /* rhs is B */ |
|
1582 /* set is the context */ |
|
1583 /* */ |
|
1584 /* C must have space for set->digits digits. */ |
|
1585 /* ------------------------------------------------------------------ */ |
|
1586 U_CAPI decNumber * U_EXPORT2 uprv_decNumberMaxMag(decNumber *res, const decNumber *lhs, |
|
1587 const decNumber *rhs, decContext *set) { |
|
1588 uInt status=0; /* accumulator */ |
|
1589 decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); |
|
1590 if (status!=0) decStatus(res, status, set); |
|
1591 #if DECCHECK |
|
1592 decCheckInexact(res, set); |
|
1593 #endif |
|
1594 return res; |
|
1595 } /* decNumberMaxMag */ |
|
1596 |
|
1597 /* ------------------------------------------------------------------ */ |
|
1598 /* decNumberMin -- compare two Numbers and return the minimum */ |
|
1599 /* */ |
|
1600 /* This computes C = A ? B, returning the minimum by 754 rules */ |
|
1601 /* */ |
|
1602 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
1603 /* lhs is A */ |
|
1604 /* rhs is B */ |
|
1605 /* set is the context */ |
|
1606 /* */ |
|
1607 /* C must have space for set->digits digits. */ |
|
1608 /* ------------------------------------------------------------------ */ |
|
1609 U_CAPI decNumber * U_EXPORT2 uprv_decNumberMin(decNumber *res, const decNumber *lhs, |
|
1610 const decNumber *rhs, decContext *set) { |
|
1611 uInt status=0; /* accumulator */ |
|
1612 decCompareOp(res, lhs, rhs, set, COMPMIN, &status); |
|
1613 if (status!=0) decStatus(res, status, set); |
|
1614 #if DECCHECK |
|
1615 decCheckInexact(res, set); |
|
1616 #endif |
|
1617 return res; |
|
1618 } /* decNumberMin */ |
|
1619 |
|
1620 /* ------------------------------------------------------------------ */ |
|
1621 /* decNumberMinMag -- compare and return the minimum by magnitude */ |
|
1622 /* */ |
|
1623 /* This computes C = A ? B, returning the minimum by 754 rules */ |
|
1624 /* */ |
|
1625 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
1626 /* lhs is A */ |
|
1627 /* rhs is B */ |
|
1628 /* set is the context */ |
|
1629 /* */ |
|
1630 /* C must have space for set->digits digits. */ |
|
1631 /* ------------------------------------------------------------------ */ |
|
1632 U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinMag(decNumber *res, const decNumber *lhs, |
|
1633 const decNumber *rhs, decContext *set) { |
|
1634 uInt status=0; /* accumulator */ |
|
1635 decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); |
|
1636 if (status!=0) decStatus(res, status, set); |
|
1637 #if DECCHECK |
|
1638 decCheckInexact(res, set); |
|
1639 #endif |
|
1640 return res; |
|
1641 } /* decNumberMinMag */ |
|
1642 |
|
1643 /* ------------------------------------------------------------------ */ |
|
1644 /* decNumberMinus -- prefix minus operator */ |
|
1645 /* */ |
|
1646 /* This computes C = 0 - A */ |
|
1647 /* */ |
|
1648 /* res is C, the result. C may be A */ |
|
1649 /* rhs is A */ |
|
1650 /* set is the context */ |
|
1651 /* */ |
|
1652 /* See also decNumberCopyNegate for a quiet bitwise version of this. */ |
|
1653 /* C must have space for set->digits digits. */ |
|
1654 /* ------------------------------------------------------------------ */ |
|
1655 /* Simply use AddOp for the subtract, which will do the necessary. */ |
|
1656 /* ------------------------------------------------------------------ */ |
|
1657 U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinus(decNumber *res, const decNumber *rhs, |
|
1658 decContext *set) { |
|
1659 decNumber dzero; |
|
1660 uInt status=0; /* accumulator */ |
|
1661 |
|
1662 #if DECCHECK |
|
1663 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1664 #endif |
|
1665 |
|
1666 uprv_decNumberZero(&dzero); /* make 0 */ |
|
1667 dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
|
1668 decAddOp(res, &dzero, rhs, set, DECNEG, &status); |
|
1669 if (status!=0) decStatus(res, status, set); |
|
1670 #if DECCHECK |
|
1671 decCheckInexact(res, set); |
|
1672 #endif |
|
1673 return res; |
|
1674 } /* decNumberMinus */ |
|
1675 |
|
1676 /* ------------------------------------------------------------------ */ |
|
1677 /* decNumberNextMinus -- next towards -Infinity */ |
|
1678 /* */ |
|
1679 /* This computes C = A - infinitesimal, rounded towards -Infinity */ |
|
1680 /* */ |
|
1681 /* res is C, the result. C may be A */ |
|
1682 /* rhs is A */ |
|
1683 /* set is the context */ |
|
1684 /* */ |
|
1685 /* This is a generalization of 754 NextDown. */ |
|
1686 /* ------------------------------------------------------------------ */ |
|
1687 U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextMinus(decNumber *res, const decNumber *rhs, |
|
1688 decContext *set) { |
|
1689 decNumber dtiny; /* constant */ |
|
1690 decContext workset=*set; /* work */ |
|
1691 uInt status=0; /* accumulator */ |
|
1692 #if DECCHECK |
|
1693 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1694 #endif |
|
1695 |
|
1696 /* +Infinity is the special case */ |
|
1697 if ((rhs->bits&(DECINF|DECNEG))==DECINF) { |
|
1698 decSetMaxValue(res, set); /* is +ve */ |
|
1699 /* there is no status to set */ |
|
1700 return res; |
|
1701 } |
|
1702 uprv_decNumberZero(&dtiny); /* start with 0 */ |
|
1703 dtiny.lsu[0]=1; /* make number that is .. */ |
|
1704 dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ |
|
1705 workset.round=DEC_ROUND_FLOOR; |
|
1706 decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); |
|
1707 status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */ |
|
1708 if (status!=0) decStatus(res, status, set); |
|
1709 return res; |
|
1710 } /* decNumberNextMinus */ |
|
1711 |
|
1712 /* ------------------------------------------------------------------ */ |
|
1713 /* decNumberNextPlus -- next towards +Infinity */ |
|
1714 /* */ |
|
1715 /* This computes C = A + infinitesimal, rounded towards +Infinity */ |
|
1716 /* */ |
|
1717 /* res is C, the result. C may be A */ |
|
1718 /* rhs is A */ |
|
1719 /* set is the context */ |
|
1720 /* */ |
|
1721 /* This is a generalization of 754 NextUp. */ |
|
1722 /* ------------------------------------------------------------------ */ |
|
1723 U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextPlus(decNumber *res, const decNumber *rhs, |
|
1724 decContext *set) { |
|
1725 decNumber dtiny; /* constant */ |
|
1726 decContext workset=*set; /* work */ |
|
1727 uInt status=0; /* accumulator */ |
|
1728 #if DECCHECK |
|
1729 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1730 #endif |
|
1731 |
|
1732 /* -Infinity is the special case */ |
|
1733 if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { |
|
1734 decSetMaxValue(res, set); |
|
1735 res->bits=DECNEG; /* negative */ |
|
1736 /* there is no status to set */ |
|
1737 return res; |
|
1738 } |
|
1739 uprv_decNumberZero(&dtiny); /* start with 0 */ |
|
1740 dtiny.lsu[0]=1; /* make number that is .. */ |
|
1741 dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ |
|
1742 workset.round=DEC_ROUND_CEILING; |
|
1743 decAddOp(res, rhs, &dtiny, &workset, 0, &status); |
|
1744 status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */ |
|
1745 if (status!=0) decStatus(res, status, set); |
|
1746 return res; |
|
1747 } /* decNumberNextPlus */ |
|
1748 |
|
1749 /* ------------------------------------------------------------------ */ |
|
1750 /* decNumberNextToward -- next towards rhs */ |
|
1751 /* */ |
|
1752 /* This computes C = A +/- infinitesimal, rounded towards */ |
|
1753 /* +/-Infinity in the direction of B, as per 754-1985 nextafter */ |
|
1754 /* modified during revision but dropped from 754-2008. */ |
|
1755 /* */ |
|
1756 /* res is C, the result. C may be A or B. */ |
|
1757 /* lhs is A */ |
|
1758 /* rhs is B */ |
|
1759 /* set is the context */ |
|
1760 /* */ |
|
1761 /* This is a generalization of 754-1985 NextAfter. */ |
|
1762 /* ------------------------------------------------------------------ */ |
|
1763 U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextToward(decNumber *res, const decNumber *lhs, |
|
1764 const decNumber *rhs, decContext *set) { |
|
1765 decNumber dtiny; /* constant */ |
|
1766 decContext workset=*set; /* work */ |
|
1767 Int result; /* .. */ |
|
1768 uInt status=0; /* accumulator */ |
|
1769 #if DECCHECK |
|
1770 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
1771 #endif |
|
1772 |
|
1773 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { |
|
1774 decNaNs(res, lhs, rhs, set, &status); |
|
1775 } |
|
1776 else { /* Is numeric, so no chance of sNaN Invalid, etc. */ |
|
1777 result=decCompare(lhs, rhs, 0); /* sign matters */ |
|
1778 if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */ |
|
1779 else { /* valid compare */ |
|
1780 if (result==0) uprv_decNumberCopySign(res, lhs, rhs); /* easy */ |
|
1781 else { /* differ: need NextPlus or NextMinus */ |
|
1782 uByte sub; /* add or subtract */ |
|
1783 if (result<0) { /* lhs<rhs, do nextplus */ |
|
1784 /* -Infinity is the special case */ |
|
1785 if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { |
|
1786 decSetMaxValue(res, set); |
|
1787 res->bits=DECNEG; /* negative */ |
|
1788 return res; /* there is no status to set */ |
|
1789 } |
|
1790 workset.round=DEC_ROUND_CEILING; |
|
1791 sub=0; /* add, please */ |
|
1792 } /* plus */ |
|
1793 else { /* lhs>rhs, do nextminus */ |
|
1794 /* +Infinity is the special case */ |
|
1795 if ((lhs->bits&(DECINF|DECNEG))==DECINF) { |
|
1796 decSetMaxValue(res, set); |
|
1797 return res; /* there is no status to set */ |
|
1798 } |
|
1799 workset.round=DEC_ROUND_FLOOR; |
|
1800 sub=DECNEG; /* subtract, please */ |
|
1801 } /* minus */ |
|
1802 uprv_decNumberZero(&dtiny); /* start with 0 */ |
|
1803 dtiny.lsu[0]=1; /* make number that is .. */ |
|
1804 dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ |
|
1805 decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */ |
|
1806 /* turn off exceptions if the result is a normal number */ |
|
1807 /* (including Nmin), otherwise let all status through */ |
|
1808 if (uprv_decNumberIsNormal(res, set)) status=0; |
|
1809 } /* unequal */ |
|
1810 } /* compare OK */ |
|
1811 } /* numeric */ |
|
1812 if (status!=0) decStatus(res, status, set); |
|
1813 return res; |
|
1814 } /* decNumberNextToward */ |
|
1815 |
|
1816 /* ------------------------------------------------------------------ */ |
|
1817 /* decNumberOr -- OR two Numbers, digitwise */ |
|
1818 /* */ |
|
1819 /* This computes C = A | B */ |
|
1820 /* */ |
|
1821 /* res is C, the result. C may be A and/or B (e.g., X=X|X) */ |
|
1822 /* lhs is A */ |
|
1823 /* rhs is B */ |
|
1824 /* set is the context (used for result length and error report) */ |
|
1825 /* */ |
|
1826 /* C must have space for set->digits digits. */ |
|
1827 /* */ |
|
1828 /* Logical function restrictions apply (see above); a NaN is */ |
|
1829 /* returned with Invalid_operation if a restriction is violated. */ |
|
1830 /* ------------------------------------------------------------------ */ |
|
1831 U_CAPI decNumber * U_EXPORT2 uprv_decNumberOr(decNumber *res, const decNumber *lhs, |
|
1832 const decNumber *rhs, decContext *set) { |
|
1833 const Unit *ua, *ub; /* -> operands */ |
|
1834 const Unit *msua, *msub; /* -> operand msus */ |
|
1835 Unit *uc, *msuc; /* -> result and its msu */ |
|
1836 Int msudigs; /* digits in res msu */ |
|
1837 #if DECCHECK |
|
1838 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
1839 #endif |
|
1840 |
|
1841 if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
|
1842 || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
|
1843 decStatus(res, DEC_Invalid_operation, set); |
|
1844 return res; |
|
1845 } |
|
1846 /* operands are valid */ |
|
1847 ua=lhs->lsu; /* bottom-up */ |
|
1848 ub=rhs->lsu; /* .. */ |
|
1849 uc=res->lsu; /* .. */ |
|
1850 msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ |
|
1851 msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ |
|
1852 msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
|
1853 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
|
1854 for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
|
1855 Unit a, b; /* extract units */ |
|
1856 if (ua>msua) a=0; |
|
1857 else a=*ua; |
|
1858 if (ub>msub) b=0; |
|
1859 else b=*ub; |
|
1860 *uc=0; /* can now write back */ |
|
1861 if (a|b) { /* maybe 1 bits to examine */ |
|
1862 Int i, j; |
|
1863 /* This loop could be unrolled and/or use BIN2BCD tables */ |
|
1864 for (i=0; i<DECDPUN; i++) { |
|
1865 if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */ |
|
1866 j=a%10; |
|
1867 a=a/10; |
|
1868 j|=b%10; |
|
1869 b=b/10; |
|
1870 if (j>1) { |
|
1871 decStatus(res, DEC_Invalid_operation, set); |
|
1872 return res; |
|
1873 } |
|
1874 if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
|
1875 } /* each digit */ |
|
1876 } /* non-zero */ |
|
1877 } /* each unit */ |
|
1878 /* [here uc-1 is the msu of the result] */ |
|
1879 res->digits=decGetDigits(res->lsu, uc-res->lsu); |
|
1880 res->exponent=0; /* integer */ |
|
1881 res->bits=0; /* sign=0 */ |
|
1882 return res; /* [no status to set] */ |
|
1883 } /* decNumberOr */ |
|
1884 |
|
1885 /* ------------------------------------------------------------------ */ |
|
1886 /* decNumberPlus -- prefix plus operator */ |
|
1887 /* */ |
|
1888 /* This computes C = 0 + A */ |
|
1889 /* */ |
|
1890 /* res is C, the result. C may be A */ |
|
1891 /* rhs is A */ |
|
1892 /* set is the context */ |
|
1893 /* */ |
|
1894 /* See also decNumberCopy for a quiet bitwise version of this. */ |
|
1895 /* C must have space for set->digits digits. */ |
|
1896 /* ------------------------------------------------------------------ */ |
|
1897 /* This simply uses AddOp; Add will take fast path after preparing A. */ |
|
1898 /* Performance is a concern here, as this routine is often used to */ |
|
1899 /* check operands and apply rounding and overflow/underflow testing. */ |
|
1900 /* ------------------------------------------------------------------ */ |
|
1901 U_CAPI decNumber * U_EXPORT2 uprv_decNumberPlus(decNumber *res, const decNumber *rhs, |
|
1902 decContext *set) { |
|
1903 decNumber dzero; |
|
1904 uInt status=0; /* accumulator */ |
|
1905 #if DECCHECK |
|
1906 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
1907 #endif |
|
1908 |
|
1909 uprv_decNumberZero(&dzero); /* make 0 */ |
|
1910 dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
|
1911 decAddOp(res, &dzero, rhs, set, 0, &status); |
|
1912 if (status!=0) decStatus(res, status, set); |
|
1913 #if DECCHECK |
|
1914 decCheckInexact(res, set); |
|
1915 #endif |
|
1916 return res; |
|
1917 } /* decNumberPlus */ |
|
1918 |
|
1919 /* ------------------------------------------------------------------ */ |
|
1920 /* decNumberMultiply -- multiply two Numbers */ |
|
1921 /* */ |
|
1922 /* This computes C = A x B */ |
|
1923 /* */ |
|
1924 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
|
1925 /* lhs is A */ |
|
1926 /* rhs is B */ |
|
1927 /* set is the context */ |
|
1928 /* */ |
|
1929 /* C must have space for set->digits digits. */ |
|
1930 /* ------------------------------------------------------------------ */ |
|
1931 U_CAPI decNumber * U_EXPORT2 uprv_decNumberMultiply(decNumber *res, const decNumber *lhs, |
|
1932 const decNumber *rhs, decContext *set) { |
|
1933 uInt status=0; /* accumulator */ |
|
1934 decMultiplyOp(res, lhs, rhs, set, &status); |
|
1935 if (status!=0) decStatus(res, status, set); |
|
1936 #if DECCHECK |
|
1937 decCheckInexact(res, set); |
|
1938 #endif |
|
1939 return res; |
|
1940 } /* decNumberMultiply */ |
|
1941 |
|
1942 /* ------------------------------------------------------------------ */ |
|
1943 /* decNumberPower -- raise a number to a power */ |
|
1944 /* */ |
|
1945 /* This computes C = A ** B */ |
|
1946 /* */ |
|
1947 /* res is C, the result. C may be A and/or B (e.g., X=X**X) */ |
|
1948 /* lhs is A */ |
|
1949 /* rhs is B */ |
|
1950 /* set is the context */ |
|
1951 /* */ |
|
1952 /* C must have space for set->digits digits. */ |
|
1953 /* */ |
|
1954 /* Mathematical function restrictions apply (see above); a NaN is */ |
|
1955 /* returned with Invalid_operation if a restriction is violated. */ |
|
1956 /* */ |
|
1957 /* However, if 1999999997<=B<=999999999 and B is an integer then the */ |
|
1958 /* restrictions on A and the context are relaxed to the usual bounds, */ |
|
1959 /* for compatibility with the earlier (integer power only) version */ |
|
1960 /* of this function. */ |
|
1961 /* */ |
|
1962 /* When B is an integer, the result may be exact, even if rounded. */ |
|
1963 /* */ |
|
1964 /* The final result is rounded according to the context; it will */ |
|
1965 /* almost always be correctly rounded, but may be up to 1 ulp in */ |
|
1966 /* error in rare cases. */ |
|
1967 /* ------------------------------------------------------------------ */ |
|
1968 U_CAPI decNumber * U_EXPORT2 uprv_decNumberPower(decNumber *res, const decNumber *lhs, |
|
1969 const decNumber *rhs, decContext *set) { |
|
1970 #if DECSUBSET |
|
1971 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
|
1972 decNumber *allocrhs=NULL; /* .., rhs */ |
|
1973 #endif |
|
1974 decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */ |
|
1975 decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */ |
|
1976 Int reqdigits=set->digits; /* requested DIGITS */ |
|
1977 Int n; /* rhs in binary */ |
|
1978 Flag rhsint=0; /* 1 if rhs is an integer */ |
|
1979 Flag useint=0; /* 1 if can use integer calculation */ |
|
1980 Flag isoddint=0; /* 1 if rhs is an integer and odd */ |
|
1981 Int i; /* work */ |
|
1982 #if DECSUBSET |
|
1983 Int dropped; /* .. */ |
|
1984 #endif |
|
1985 uInt needbytes; /* buffer size needed */ |
|
1986 Flag seenbit; /* seen a bit while powering */ |
|
1987 Int residue=0; /* rounding residue */ |
|
1988 uInt status=0; /* accumulators */ |
|
1989 uByte bits=0; /* result sign if errors */ |
|
1990 decContext aset; /* working context */ |
|
1991 decNumber dnOne; /* work value 1... */ |
|
1992 /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */ |
|
1993 decNumber dacbuff[D2N(DECBUFFER+9)]; |
|
1994 decNumber *dac=dacbuff; /* -> result accumulator */ |
|
1995 /* same again for possible 1/lhs calculation */ |
|
1996 decNumber invbuff[D2N(DECBUFFER+9)]; |
|
1997 |
|
1998 #if DECCHECK |
|
1999 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
2000 #endif |
|
2001 |
|
2002 do { /* protect allocated storage */ |
|
2003 #if DECSUBSET |
|
2004 if (!set->extended) { /* reduce operands and set status, as needed */ |
|
2005 if (lhs->digits>reqdigits) { |
|
2006 alloclhs=decRoundOperand(lhs, set, &status); |
|
2007 if (alloclhs==NULL) break; |
|
2008 lhs=alloclhs; |
|
2009 } |
|
2010 if (rhs->digits>reqdigits) { |
|
2011 allocrhs=decRoundOperand(rhs, set, &status); |
|
2012 if (allocrhs==NULL) break; |
|
2013 rhs=allocrhs; |
|
2014 } |
|
2015 } |
|
2016 #endif |
|
2017 /* [following code does not require input rounding] */ |
|
2018 |
|
2019 /* handle NaNs and rhs Infinity (lhs infinity is harder) */ |
|
2020 if (SPECIALARGS) { |
|
2021 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */ |
|
2022 decNaNs(res, lhs, rhs, set, &status); |
|
2023 break;} |
|
2024 if (decNumberIsInfinite(rhs)) { /* rhs Infinity */ |
|
2025 Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */ |
|
2026 if (decNumberIsNegative(lhs) /* lhs<0 */ |
|
2027 && !decNumberIsZero(lhs)) /* .. */ |
|
2028 status|=DEC_Invalid_operation; |
|
2029 else { /* lhs >=0 */ |
|
2030 uprv_decNumberZero(&dnOne); /* set up 1 */ |
|
2031 dnOne.lsu[0]=1; |
|
2032 uprv_decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */ |
|
2033 uprv_decNumberZero(res); /* prepare for 0/1/Infinity */ |
|
2034 if (decNumberIsNegative(dac)) { /* lhs<1 */ |
|
2035 if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */ |
|
2036 } |
|
2037 else if (dac->lsu[0]==0) { /* lhs=1 */ |
|
2038 /* 1**Infinity is inexact, so return fully-padded 1.0000 */ |
|
2039 Int shift=set->digits-1; |
|
2040 *res->lsu=1; /* was 0, make int 1 */ |
|
2041 res->digits=decShiftToMost(res->lsu, 1, shift); |
|
2042 res->exponent=-shift; /* make 1.0000... */ |
|
2043 status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ |
|
2044 } |
|
2045 else { /* lhs>1 */ |
|
2046 if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */ |
|
2047 } |
|
2048 } /* lhs>=0 */ |
|
2049 break;} |
|
2050 /* [lhs infinity drops through] */ |
|
2051 } /* specials */ |
|
2052 |
|
2053 /* Original rhs may be an integer that fits and is in range */ |
|
2054 n=decGetInt(rhs); |
|
2055 if (n!=BADINT) { /* it is an integer */ |
|
2056 rhsint=1; /* record the fact for 1**n */ |
|
2057 isoddint=(Flag)n&1; /* [works even if big] */ |
|
2058 if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */ |
|
2059 useint=1; /* looks good */ |
|
2060 } |
|
2061 |
|
2062 if (decNumberIsNegative(lhs) /* -x .. */ |
|
2063 && isoddint) bits=DECNEG; /* .. to an odd power */ |
|
2064 |
|
2065 /* handle LHS infinity */ |
|
2066 if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */ |
|
2067 uByte rbits=rhs->bits; /* save */ |
|
2068 uprv_decNumberZero(res); /* prepare */ |
|
2069 if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */ |
|
2070 else { |
|
2071 /* -Inf**nonint -> error */ |
|
2072 if (!rhsint && decNumberIsNegative(lhs)) { |
|
2073 status|=DEC_Invalid_operation; /* -Inf**nonint is error */ |
|
2074 break;} |
|
2075 if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */ |
|
2076 /* [otherwise will be 0 or -0] */ |
|
2077 res->bits=bits; |
|
2078 } |
|
2079 break;} |
|
2080 |
|
2081 /* similarly handle LHS zero */ |
|
2082 if (decNumberIsZero(lhs)) { |
|
2083 if (n==0) { /* 0**0 => Error */ |
|
2084 #if DECSUBSET |
|
2085 if (!set->extended) { /* [unless subset] */ |
|
2086 uprv_decNumberZero(res); |
|
2087 *res->lsu=1; /* return 1 */ |
|
2088 break;} |
|
2089 #endif |
|
2090 status|=DEC_Invalid_operation; |
|
2091 } |
|
2092 else { /* 0**x */ |
|
2093 uByte rbits=rhs->bits; /* save */ |
|
2094 if (rbits & DECNEG) { /* was a 0**(-n) */ |
|
2095 #if DECSUBSET |
|
2096 if (!set->extended) { /* [bad if subset] */ |
|
2097 status|=DEC_Invalid_operation; |
|
2098 break;} |
|
2099 #endif |
|
2100 bits|=DECINF; |
|
2101 } |
|
2102 uprv_decNumberZero(res); /* prepare */ |
|
2103 /* [otherwise will be 0 or -0] */ |
|
2104 res->bits=bits; |
|
2105 } |
|
2106 break;} |
|
2107 |
|
2108 /* here both lhs and rhs are finite; rhs==0 is handled in the */ |
|
2109 /* integer path. Next handle the non-integer cases */ |
|
2110 if (!useint) { /* non-integral rhs */ |
|
2111 /* any -ve lhs is bad, as is either operand or context out of */ |
|
2112 /* bounds */ |
|
2113 if (decNumberIsNegative(lhs)) { |
|
2114 status|=DEC_Invalid_operation; |
|
2115 break;} |
|
2116 if (decCheckMath(lhs, set, &status) |
|
2117 || decCheckMath(rhs, set, &status)) break; /* variable status */ |
|
2118 |
|
2119 uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ |
|
2120 aset.emax=DEC_MAX_MATH; /* usual bounds */ |
|
2121 aset.emin=-DEC_MAX_MATH; /* .. */ |
|
2122 aset.clamp=0; /* and no concrete format */ |
|
2123 |
|
2124 /* calculate the result using exp(ln(lhs)*rhs), which can */ |
|
2125 /* all be done into the accumulator, dac. The precision needed */ |
|
2126 /* is enough to contain the full information in the lhs (which */ |
|
2127 /* is the total digits, including exponent), or the requested */ |
|
2128 /* precision, if larger, + 4; 6 is used for the exponent */ |
|
2129 /* maximum length, and this is also used when it is shorter */ |
|
2130 /* than the requested digits as it greatly reduces the >0.5 ulp */ |
|
2131 /* cases at little cost (because Ln doubles digits each */ |
|
2132 /* iteration so a few extra digits rarely causes an extra */ |
|
2133 /* iteration) */ |
|
2134 aset.digits=MAXI(lhs->digits, set->digits)+6+4; |
|
2135 } /* non-integer rhs */ |
|
2136 |
|
2137 else { /* rhs is in-range integer */ |
|
2138 if (n==0) { /* x**0 = 1 */ |
|
2139 /* (0**0 was handled above) */ |
|
2140 uprv_decNumberZero(res); /* result=1 */ |
|
2141 *res->lsu=1; /* .. */ |
|
2142 break;} |
|
2143 /* rhs is a non-zero integer */ |
|
2144 if (n<0) n=-n; /* use abs(n) */ |
|
2145 |
|
2146 aset=*set; /* clone the context */ |
|
2147 aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */ |
|
2148 /* calculate the working DIGITS */ |
|
2149 aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; |
|
2150 #if DECSUBSET |
|
2151 if (!set->extended) aset.digits--; /* use classic precision */ |
|
2152 #endif |
|
2153 /* it's an error if this is more than can be handled */ |
|
2154 if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} |
|
2155 } /* integer path */ |
|
2156 |
|
2157 /* aset.digits is the count of digits for the accumulator needed */ |
|
2158 /* if accumulator is too long for local storage, then allocate */ |
|
2159 needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); |
|
2160 /* [needbytes also used below if 1/lhs needed] */ |
|
2161 if (needbytes>sizeof(dacbuff)) { |
|
2162 allocdac=(decNumber *)malloc(needbytes); |
|
2163 if (allocdac==NULL) { /* hopeless -- abandon */ |
|
2164 status|=DEC_Insufficient_storage; |
|
2165 break;} |
|
2166 dac=allocdac; /* use the allocated space */ |
|
2167 } |
|
2168 /* here, aset is set up and accumulator is ready for use */ |
|
2169 |
|
2170 if (!useint) { /* non-integral rhs */ |
|
2171 /* x ** y; special-case x=1 here as it will otherwise always */ |
|
2172 /* reduce to integer 1; decLnOp has a fastpath which detects */ |
|
2173 /* the case of x=1 */ |
|
2174 decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */ |
|
2175 /* [no error possible, as lhs 0 already handled] */ |
|
2176 if (ISZERO(dac)) { /* x==1, 1.0, etc. */ |
|
2177 /* need to return fully-padded 1.0000 etc., but rhsint->1 */ |
|
2178 *dac->lsu=1; /* was 0, make int 1 */ |
|
2179 if (!rhsint) { /* add padding */ |
|
2180 Int shift=set->digits-1; |
|
2181 dac->digits=decShiftToMost(dac->lsu, 1, shift); |
|
2182 dac->exponent=-shift; /* make 1.0000... */ |
|
2183 status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ |
|
2184 } |
|
2185 } |
|
2186 else { |
|
2187 decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */ |
|
2188 decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */ |
|
2189 } |
|
2190 /* and drop through for final rounding */ |
|
2191 } /* non-integer rhs */ |
|
2192 |
|
2193 else { /* carry on with integer */ |
|
2194 uprv_decNumberZero(dac); /* acc=1 */ |
|
2195 *dac->lsu=1; /* .. */ |
|
2196 |
|
2197 /* if a negative power the constant 1 is needed, and if not subset */ |
|
2198 /* invert the lhs now rather than inverting the result later */ |
|
2199 if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */ |
|
2200 decNumber *inv=invbuff; /* asssume use fixed buffer */ |
|
2201 uprv_decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */ |
|
2202 #if DECSUBSET |
|
2203 if (set->extended) { /* need to calculate 1/lhs */ |
|
2204 #endif |
|
2205 /* divide lhs into 1, putting result in dac [dac=1/dac] */ |
|
2206 decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); |
|
2207 /* now locate or allocate space for the inverted lhs */ |
|
2208 if (needbytes>sizeof(invbuff)) { |
|
2209 allocinv=(decNumber *)malloc(needbytes); |
|
2210 if (allocinv==NULL) { /* hopeless -- abandon */ |
|
2211 status|=DEC_Insufficient_storage; |
|
2212 break;} |
|
2213 inv=allocinv; /* use the allocated space */ |
|
2214 } |
|
2215 /* [inv now points to big-enough buffer or allocated storage] */ |
|
2216 uprv_decNumberCopy(inv, dac); /* copy the 1/lhs */ |
|
2217 uprv_decNumberCopy(dac, &dnOne); /* restore acc=1 */ |
|
2218 lhs=inv; /* .. and go forward with new lhs */ |
|
2219 #if DECSUBSET |
|
2220 } |
|
2221 #endif |
|
2222 } |
|
2223 |
|
2224 /* Raise-to-the-power loop... */ |
|
2225 seenbit=0; /* set once a 1-bit is encountered */ |
|
2226 for (i=1;;i++){ /* for each bit [top bit ignored] */ |
|
2227 /* abandon if had overflow or terminal underflow */ |
|
2228 if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ |
|
2229 if (status&DEC_Overflow || ISZERO(dac)) break; |
|
2230 } |
|
2231 /* [the following two lines revealed an optimizer bug in a C++ */ |
|
2232 /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */ |
|
2233 n=n<<1; /* move next bit to testable position */ |
|
2234 if (n<0) { /* top bit is set */ |
|
2235 seenbit=1; /* OK, significant bit seen */ |
|
2236 decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */ |
|
2237 } |
|
2238 if (i==31) break; /* that was the last bit */ |
|
2239 if (!seenbit) continue; /* no need to square 1 */ |
|
2240 decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */ |
|
2241 } /*i*/ /* 32 bits */ |
|
2242 |
|
2243 /* complete internal overflow or underflow processing */ |
|
2244 if (status & (DEC_Overflow|DEC_Underflow)) { |
|
2245 #if DECSUBSET |
|
2246 /* If subset, and power was negative, reverse the kind of -erflow */ |
|
2247 /* [1/x not yet done] */ |
|
2248 if (!set->extended && decNumberIsNegative(rhs)) { |
|
2249 if (status & DEC_Overflow) |
|
2250 status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; |
|
2251 else { /* trickier -- Underflow may or may not be set */ |
|
2252 status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */ |
|
2253 status|=DEC_Overflow; |
|
2254 } |
|
2255 } |
|
2256 #endif |
|
2257 dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */ |
|
2258 /* round subnormals [to set.digits rather than aset.digits] */ |
|
2259 /* or set overflow result similarly as required */ |
|
2260 decFinalize(dac, set, &residue, &status); |
|
2261 uprv_decNumberCopy(res, dac); /* copy to result (is now OK length) */ |
|
2262 break; |
|
2263 } |
|
2264 |
|
2265 #if DECSUBSET |
|
2266 if (!set->extended && /* subset math */ |
|
2267 decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */ |
|
2268 /* so divide result into 1 [dac=1/dac] */ |
|
2269 decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); |
|
2270 } |
|
2271 #endif |
|
2272 } /* rhs integer path */ |
|
2273 |
|
2274 /* reduce result to the requested length and copy to result */ |
|
2275 decCopyFit(res, dac, set, &residue, &status); |
|
2276 decFinish(res, set, &residue, &status); /* final cleanup */ |
|
2277 #if DECSUBSET |
|
2278 if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros */ |
|
2279 #endif |
|
2280 } while(0); /* end protected */ |
|
2281 |
|
2282 if (allocdac!=NULL) free(allocdac); /* drop any storage used */ |
|
2283 if (allocinv!=NULL) free(allocinv); /* .. */ |
|
2284 #if DECSUBSET |
|
2285 if (alloclhs!=NULL) free(alloclhs); /* .. */ |
|
2286 if (allocrhs!=NULL) free(allocrhs); /* .. */ |
|
2287 #endif |
|
2288 if (status!=0) decStatus(res, status, set); |
|
2289 #if DECCHECK |
|
2290 decCheckInexact(res, set); |
|
2291 #endif |
|
2292 return res; |
|
2293 } /* decNumberPower */ |
|
2294 |
|
2295 /* ------------------------------------------------------------------ */ |
|
2296 /* decNumberQuantize -- force exponent to requested value */ |
|
2297 /* */ |
|
2298 /* This computes C = op(A, B), where op adjusts the coefficient */ |
|
2299 /* of C (by rounding or shifting) such that the exponent (-scale) */ |
|
2300 /* of C has exponent of B. The numerical value of C will equal A, */ |
|
2301 /* except for the effects of any rounding that occurred. */ |
|
2302 /* */ |
|
2303 /* res is C, the result. C may be A or B */ |
|
2304 /* lhs is A, the number to adjust */ |
|
2305 /* rhs is B, the number with exponent to match */ |
|
2306 /* set is the context */ |
|
2307 /* */ |
|
2308 /* C must have space for set->digits digits. */ |
|
2309 /* */ |
|
2310 /* Unless there is an error or the result is infinite, the exponent */ |
|
2311 /* after the operation is guaranteed to be equal to that of B. */ |
|
2312 /* ------------------------------------------------------------------ */ |
|
2313 U_CAPI decNumber * U_EXPORT2 uprv_decNumberQuantize(decNumber *res, const decNumber *lhs, |
|
2314 const decNumber *rhs, decContext *set) { |
|
2315 uInt status=0; /* accumulator */ |
|
2316 decQuantizeOp(res, lhs, rhs, set, 1, &status); |
|
2317 if (status!=0) decStatus(res, status, set); |
|
2318 return res; |
|
2319 } /* decNumberQuantize */ |
|
2320 |
|
2321 /* ------------------------------------------------------------------ */ |
|
2322 /* decNumberReduce -- remove trailing zeros */ |
|
2323 /* */ |
|
2324 /* This computes C = 0 + A, and normalizes the result */ |
|
2325 /* */ |
|
2326 /* res is C, the result. C may be A */ |
|
2327 /* rhs is A */ |
|
2328 /* set is the context */ |
|
2329 /* */ |
|
2330 /* C must have space for set->digits digits. */ |
|
2331 /* ------------------------------------------------------------------ */ |
|
2332 /* Previously known as Normalize */ |
|
2333 U_CAPI decNumber * U_EXPORT2 uprv_decNumberNormalize(decNumber *res, const decNumber *rhs, |
|
2334 decContext *set) { |
|
2335 return uprv_decNumberReduce(res, rhs, set); |
|
2336 } /* decNumberNormalize */ |
|
2337 |
|
2338 U_CAPI decNumber * U_EXPORT2 uprv_decNumberReduce(decNumber *res, const decNumber *rhs, |
|
2339 decContext *set) { |
|
2340 #if DECSUBSET |
|
2341 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
|
2342 #endif |
|
2343 uInt status=0; /* as usual */ |
|
2344 Int residue=0; /* as usual */ |
|
2345 Int dropped; /* work */ |
|
2346 |
|
2347 #if DECCHECK |
|
2348 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
2349 #endif |
|
2350 |
|
2351 do { /* protect allocated storage */ |
|
2352 #if DECSUBSET |
|
2353 if (!set->extended) { |
|
2354 /* reduce operand and set lostDigits status, as needed */ |
|
2355 if (rhs->digits>set->digits) { |
|
2356 allocrhs=decRoundOperand(rhs, set, &status); |
|
2357 if (allocrhs==NULL) break; |
|
2358 rhs=allocrhs; |
|
2359 } |
|
2360 } |
|
2361 #endif |
|
2362 /* [following code does not require input rounding] */ |
|
2363 |
|
2364 /* Infinities copy through; NaNs need usual treatment */ |
|
2365 if (decNumberIsNaN(rhs)) { |
|
2366 decNaNs(res, rhs, NULL, set, &status); |
|
2367 break; |
|
2368 } |
|
2369 |
|
2370 /* reduce result to the requested length and copy to result */ |
|
2371 decCopyFit(res, rhs, set, &residue, &status); /* copy & round */ |
|
2372 decFinish(res, set, &residue, &status); /* cleanup/set flags */ |
|
2373 decTrim(res, set, 1, 0, &dropped); /* normalize in place */ |
|
2374 /* [may clamp] */ |
|
2375 } while(0); /* end protected */ |
|
2376 |
|
2377 #if DECSUBSET |
|
2378 if (allocrhs !=NULL) free(allocrhs); /* .. */ |
|
2379 #endif |
|
2380 if (status!=0) decStatus(res, status, set);/* then report status */ |
|
2381 return res; |
|
2382 } /* decNumberReduce */ |
|
2383 |
|
2384 /* ------------------------------------------------------------------ */ |
|
2385 /* decNumberRescale -- force exponent to requested value */ |
|
2386 /* */ |
|
2387 /* This computes C = op(A, B), where op adjusts the coefficient */ |
|
2388 /* of C (by rounding or shifting) such that the exponent (-scale) */ |
|
2389 /* of C has the value B. The numerical value of C will equal A, */ |
|
2390 /* except for the effects of any rounding that occurred. */ |
|
2391 /* */ |
|
2392 /* res is C, the result. C may be A or B */ |
|
2393 /* lhs is A, the number to adjust */ |
|
2394 /* rhs is B, the requested exponent */ |
|
2395 /* set is the context */ |
|
2396 /* */ |
|
2397 /* C must have space for set->digits digits. */ |
|
2398 /* */ |
|
2399 /* Unless there is an error or the result is infinite, the exponent */ |
|
2400 /* after the operation is guaranteed to be equal to B. */ |
|
2401 /* ------------------------------------------------------------------ */ |
|
2402 U_CAPI decNumber * U_EXPORT2 uprv_decNumberRescale(decNumber *res, const decNumber *lhs, |
|
2403 const decNumber *rhs, decContext *set) { |
|
2404 uInt status=0; /* accumulator */ |
|
2405 decQuantizeOp(res, lhs, rhs, set, 0, &status); |
|
2406 if (status!=0) decStatus(res, status, set); |
|
2407 return res; |
|
2408 } /* decNumberRescale */ |
|
2409 |
|
2410 /* ------------------------------------------------------------------ */ |
|
2411 /* decNumberRemainder -- divide and return remainder */ |
|
2412 /* */ |
|
2413 /* This computes C = A % B */ |
|
2414 /* */ |
|
2415 /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
|
2416 /* lhs is A */ |
|
2417 /* rhs is B */ |
|
2418 /* set is the context */ |
|
2419 /* */ |
|
2420 /* C must have space for set->digits digits. */ |
|
2421 /* ------------------------------------------------------------------ */ |
|
2422 U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainder(decNumber *res, const decNumber *lhs, |
|
2423 const decNumber *rhs, decContext *set) { |
|
2424 uInt status=0; /* accumulator */ |
|
2425 decDivideOp(res, lhs, rhs, set, REMAINDER, &status); |
|
2426 if (status!=0) decStatus(res, status, set); |
|
2427 #if DECCHECK |
|
2428 decCheckInexact(res, set); |
|
2429 #endif |
|
2430 return res; |
|
2431 } /* decNumberRemainder */ |
|
2432 |
|
2433 /* ------------------------------------------------------------------ */ |
|
2434 /* decNumberRemainderNear -- divide and return remainder from nearest */ |
|
2435 /* */ |
|
2436 /* This computes C = A % B, where % is the IEEE remainder operator */ |
|
2437 /* */ |
|
2438 /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
|
2439 /* lhs is A */ |
|
2440 /* rhs is B */ |
|
2441 /* set is the context */ |
|
2442 /* */ |
|
2443 /* C must have space for set->digits digits. */ |
|
2444 /* ------------------------------------------------------------------ */ |
|
2445 U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainderNear(decNumber *res, const decNumber *lhs, |
|
2446 const decNumber *rhs, decContext *set) { |
|
2447 uInt status=0; /* accumulator */ |
|
2448 decDivideOp(res, lhs, rhs, set, REMNEAR, &status); |
|
2449 if (status!=0) decStatus(res, status, set); |
|
2450 #if DECCHECK |
|
2451 decCheckInexact(res, set); |
|
2452 #endif |
|
2453 return res; |
|
2454 } /* decNumberRemainderNear */ |
|
2455 |
|
2456 /* ------------------------------------------------------------------ */ |
|
2457 /* decNumberRotate -- rotate the coefficient of a Number left/right */ |
|
2458 /* */ |
|
2459 /* This computes C = A rot B (in base ten and rotating set->digits */ |
|
2460 /* digits). */ |
|
2461 /* */ |
|
2462 /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ |
|
2463 /* lhs is A */ |
|
2464 /* rhs is B, the number of digits to rotate (-ve to right) */ |
|
2465 /* set is the context */ |
|
2466 /* */ |
|
2467 /* The digits of the coefficient of A are rotated to the left (if B */ |
|
2468 /* is positive) or to the right (if B is negative) without adjusting */ |
|
2469 /* the exponent or the sign of A. If lhs->digits is less than */ |
|
2470 /* set->digits the coefficient is padded with zeros on the left */ |
|
2471 /* before the rotate. Any leading zeros in the result are removed */ |
|
2472 /* as usual. */ |
|
2473 /* */ |
|
2474 /* B must be an integer (q=0) and in the range -set->digits through */ |
|
2475 /* +set->digits. */ |
|
2476 /* C must have space for set->digits digits. */ |
|
2477 /* NaNs are propagated as usual. Infinities are unaffected (but */ |
|
2478 /* B must be valid). No status is set unless B is invalid or an */ |
|
2479 /* operand is an sNaN. */ |
|
2480 /* ------------------------------------------------------------------ */ |
|
2481 U_CAPI decNumber * U_EXPORT2 uprv_decNumberRotate(decNumber *res, const decNumber *lhs, |
|
2482 const decNumber *rhs, decContext *set) { |
|
2483 uInt status=0; /* accumulator */ |
|
2484 Int rotate; /* rhs as an Int */ |
|
2485 |
|
2486 #if DECCHECK |
|
2487 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
2488 #endif |
|
2489 |
|
2490 /* NaNs propagate as normal */ |
|
2491 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
|
2492 decNaNs(res, lhs, rhs, set, &status); |
|
2493 /* rhs must be an integer */ |
|
2494 else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
|
2495 status=DEC_Invalid_operation; |
|
2496 else { /* both numeric, rhs is an integer */ |
|
2497 rotate=decGetInt(rhs); /* [cannot fail] */ |
|
2498 if (rotate==BADINT /* something bad .. */ |
|
2499 || rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */ |
|
2500 || abs(rotate)>set->digits) /* .. or out of range */ |
|
2501 status=DEC_Invalid_operation; |
|
2502 else { /* rhs is OK */ |
|
2503 uprv_decNumberCopy(res, lhs); |
|
2504 /* convert -ve rotate to equivalent positive rotation */ |
|
2505 if (rotate<0) rotate=set->digits+rotate; |
|
2506 if (rotate!=0 && rotate!=set->digits /* zero or full rotation */ |
|
2507 && !decNumberIsInfinite(res)) { /* lhs was infinite */ |
|
2508 /* left-rotate to do; 0 < rotate < set->digits */ |
|
2509 uInt units, shift; /* work */ |
|
2510 uInt msudigits; /* digits in result msu */ |
|
2511 Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */ |
|
2512 Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */ |
|
2513 for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */ |
|
2514 res->digits=set->digits; /* now full-length */ |
|
2515 msudigits=MSUDIGITS(res->digits); /* actual digits in msu */ |
|
2516 |
|
2517 /* rotation here is done in-place, in three steps */ |
|
2518 /* 1. shift all to least up to one unit to unit-align final */ |
|
2519 /* lsd [any digits shifted out are rotated to the left, */ |
|
2520 /* abutted to the original msd (which may require split)] */ |
|
2521 /* */ |
|
2522 /* [if there are no whole units left to rotate, the */ |
|
2523 /* rotation is now complete] */ |
|
2524 /* */ |
|
2525 /* 2. shift to least, from below the split point only, so that */ |
|
2526 /* the final msd is in the right place in its Unit [any */ |
|
2527 /* digits shifted out will fit exactly in the current msu, */ |
|
2528 /* left aligned, no split required] */ |
|
2529 /* */ |
|
2530 /* 3. rotate all the units by reversing left part, right */ |
|
2531 /* part, and then whole */ |
|
2532 /* */ |
|
2533 /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */ |
|
2534 /* */ |
|
2535 /* start: 00a bcd efg hij klm npq */ |
|
2536 /* */ |
|
2537 /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */ |
|
2538 /* 1b 00p qab cde fgh|ijk lmn */ |
|
2539 /* */ |
|
2540 /* 2a 00p qab cde fgh|00i jkl [mn saved] */ |
|
2541 /* 2b mnp qab cde fgh|00i jkl */ |
|
2542 /* */ |
|
2543 /* 3a fgh cde qab mnp|00i jkl */ |
|
2544 /* 3b fgh cde qab mnp|jkl 00i */ |
|
2545 /* 3c 00i jkl mnp qab cde fgh */ |
|
2546 |
|
2547 /* Step 1: amount to shift is the partial right-rotate count */ |
|
2548 rotate=set->digits-rotate; /* make it right-rotate */ |
|
2549 units=rotate/DECDPUN; /* whole units to rotate */ |
|
2550 shift=rotate%DECDPUN; /* left-over digits count */ |
|
2551 if (shift>0) { /* not an exact number of units */ |
|
2552 uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */ |
|
2553 decShiftToLeast(res->lsu, D2U(res->digits), shift); |
|
2554 if (shift>msudigits) { /* msumax-1 needs >0 digits */ |
|
2555 uInt rem=save%powers[shift-msudigits];/* split save */ |
|
2556 *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */ |
|
2557 *(msumax-1)=*(msumax-1) |
|
2558 +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */ |
|
2559 } |
|
2560 else { /* all fits in msumax */ |
|
2561 *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */ |
|
2562 } |
|
2563 } /* digits shift needed */ |
|
2564 |
|
2565 /* If whole units to rotate... */ |
|
2566 if (units>0) { /* some to do */ |
|
2567 /* Step 2: the units to touch are the whole ones in rotate, */ |
|
2568 /* if any, and the shift is DECDPUN-msudigits (which may be */ |
|
2569 /* 0, again) */ |
|
2570 shift=DECDPUN-msudigits; |
|
2571 if (shift>0) { /* not an exact number of units */ |
|
2572 uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */ |
|
2573 decShiftToLeast(res->lsu, units, shift); |
|
2574 *msumax=*msumax+(Unit)(save*powers[msudigits]); |
|
2575 } /* partial shift needed */ |
|
2576 |
|
2577 /* Step 3: rotate the units array using triple reverse */ |
|
2578 /* (reversing is easy and fast) */ |
|
2579 decReverse(res->lsu+units, msumax); /* left part */ |
|
2580 decReverse(res->lsu, res->lsu+units-1); /* right part */ |
|
2581 decReverse(res->lsu, msumax); /* whole */ |
|
2582 } /* whole units to rotate */ |
|
2583 /* the rotation may have left an undetermined number of zeros */ |
|
2584 /* on the left, so true length needs to be calculated */ |
|
2585 res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); |
|
2586 } /* rotate needed */ |
|
2587 } /* rhs OK */ |
|
2588 } /* numerics */ |
|
2589 if (status!=0) decStatus(res, status, set); |
|
2590 return res; |
|
2591 } /* decNumberRotate */ |
|
2592 |
|
2593 /* ------------------------------------------------------------------ */ |
|
2594 /* decNumberSameQuantum -- test for equal exponents */ |
|
2595 /* */ |
|
2596 /* res is the result number, which will contain either 0 or 1 */ |
|
2597 /* lhs is a number to test */ |
|
2598 /* rhs is the second (usually a pattern) */ |
|
2599 /* */ |
|
2600 /* No errors are possible and no context is needed. */ |
|
2601 /* ------------------------------------------------------------------ */ |
|
2602 U_CAPI decNumber * U_EXPORT2 uprv_decNumberSameQuantum(decNumber *res, const decNumber *lhs, |
|
2603 const decNumber *rhs) { |
|
2604 Unit ret=0; /* return value */ |
|
2605 |
|
2606 #if DECCHECK |
|
2607 if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; |
|
2608 #endif |
|
2609 |
|
2610 if (SPECIALARGS) { |
|
2611 if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; |
|
2612 else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; |
|
2613 /* [anything else with a special gives 0] */ |
|
2614 } |
|
2615 else if (lhs->exponent==rhs->exponent) ret=1; |
|
2616 |
|
2617 uprv_decNumberZero(res); /* OK to overwrite an operand now */ |
|
2618 *res->lsu=ret; |
|
2619 return res; |
|
2620 } /* decNumberSameQuantum */ |
|
2621 |
|
2622 /* ------------------------------------------------------------------ */ |
|
2623 /* decNumberScaleB -- multiply by a power of 10 */ |
|
2624 /* */ |
|
2625 /* This computes C = A x 10**B where B is an integer (q=0) with */ |
|
2626 /* maximum magnitude 2*(emax+digits) */ |
|
2627 /* */ |
|
2628 /* res is C, the result. C may be A or B */ |
|
2629 /* lhs is A, the number to adjust */ |
|
2630 /* rhs is B, the requested power of ten to use */ |
|
2631 /* set is the context */ |
|
2632 /* */ |
|
2633 /* C must have space for set->digits digits. */ |
|
2634 /* */ |
|
2635 /* The result may underflow or overflow. */ |
|
2636 /* ------------------------------------------------------------------ */ |
|
2637 U_CAPI decNumber * U_EXPORT2 uprv_decNumberScaleB(decNumber *res, const decNumber *lhs, |
|
2638 const decNumber *rhs, decContext *set) { |
|
2639 Int reqexp; /* requested exponent change [B] */ |
|
2640 uInt status=0; /* accumulator */ |
|
2641 Int residue; /* work */ |
|
2642 |
|
2643 #if DECCHECK |
|
2644 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
2645 #endif |
|
2646 |
|
2647 /* Handle special values except lhs infinite */ |
|
2648 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
|
2649 decNaNs(res, lhs, rhs, set, &status); |
|
2650 /* rhs must be an integer */ |
|
2651 else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
|
2652 status=DEC_Invalid_operation; |
|
2653 else { |
|
2654 /* lhs is a number; rhs is a finite with q==0 */ |
|
2655 reqexp=decGetInt(rhs); /* [cannot fail] */ |
|
2656 if (reqexp==BADINT /* something bad .. */ |
|
2657 || reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */ |
|
2658 || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */ |
|
2659 status=DEC_Invalid_operation; |
|
2660 else { /* rhs is OK */ |
|
2661 uprv_decNumberCopy(res, lhs); /* all done if infinite lhs */ |
|
2662 if (!decNumberIsInfinite(res)) { /* prepare to scale */ |
|
2663 res->exponent+=reqexp; /* adjust the exponent */ |
|
2664 residue=0; |
|
2665 decFinalize(res, set, &residue, &status); /* .. and check */ |
|
2666 } /* finite LHS */ |
|
2667 } /* rhs OK */ |
|
2668 } /* rhs finite */ |
|
2669 if (status!=0) decStatus(res, status, set); |
|
2670 return res; |
|
2671 } /* decNumberScaleB */ |
|
2672 |
|
2673 /* ------------------------------------------------------------------ */ |
|
2674 /* decNumberShift -- shift the coefficient of a Number left or right */ |
|
2675 /* */ |
|
2676 /* This computes C = A << B or C = A >> -B (in base ten). */ |
|
2677 /* */ |
|
2678 /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */ |
|
2679 /* lhs is A */ |
|
2680 /* rhs is B, the number of digits to shift (-ve to right) */ |
|
2681 /* set is the context */ |
|
2682 /* */ |
|
2683 /* The digits of the coefficient of A are shifted to the left (if B */ |
|
2684 /* is positive) or to the right (if B is negative) without adjusting */ |
|
2685 /* the exponent or the sign of A. */ |
|
2686 /* */ |
|
2687 /* B must be an integer (q=0) and in the range -set->digits through */ |
|
2688 /* +set->digits. */ |
|
2689 /* C must have space for set->digits digits. */ |
|
2690 /* NaNs are propagated as usual. Infinities are unaffected (but */ |
|
2691 /* B must be valid). No status is set unless B is invalid or an */ |
|
2692 /* operand is an sNaN. */ |
|
2693 /* ------------------------------------------------------------------ */ |
|
2694 U_CAPI decNumber * U_EXPORT2 uprv_decNumberShift(decNumber *res, const decNumber *lhs, |
|
2695 const decNumber *rhs, decContext *set) { |
|
2696 uInt status=0; /* accumulator */ |
|
2697 Int shift; /* rhs as an Int */ |
|
2698 |
|
2699 #if DECCHECK |
|
2700 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
2701 #endif |
|
2702 |
|
2703 /* NaNs propagate as normal */ |
|
2704 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
|
2705 decNaNs(res, lhs, rhs, set, &status); |
|
2706 /* rhs must be an integer */ |
|
2707 else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
|
2708 status=DEC_Invalid_operation; |
|
2709 else { /* both numeric, rhs is an integer */ |
|
2710 shift=decGetInt(rhs); /* [cannot fail] */ |
|
2711 if (shift==BADINT /* something bad .. */ |
|
2712 || shift==BIGODD || shift==BIGEVEN /* .. very big .. */ |
|
2713 || abs(shift)>set->digits) /* .. or out of range */ |
|
2714 status=DEC_Invalid_operation; |
|
2715 else { /* rhs is OK */ |
|
2716 uprv_decNumberCopy(res, lhs); |
|
2717 if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */ |
|
2718 if (shift>0) { /* to left */ |
|
2719 if (shift==set->digits) { /* removing all */ |
|
2720 *res->lsu=0; /* so place 0 */ |
|
2721 res->digits=1; /* .. */ |
|
2722 } |
|
2723 else { /* */ |
|
2724 /* first remove leading digits if necessary */ |
|
2725 if (res->digits+shift>set->digits) { |
|
2726 decDecap(res, res->digits+shift-set->digits); |
|
2727 /* that updated res->digits; may have gone to 1 (for a */ |
|
2728 /* single digit or for zero */ |
|
2729 } |
|
2730 if (res->digits>1 || *res->lsu) /* if non-zero.. */ |
|
2731 res->digits=decShiftToMost(res->lsu, res->digits, shift); |
|
2732 } /* partial left */ |
|
2733 } /* left */ |
|
2734 else { /* to right */ |
|
2735 if (-shift>=res->digits) { /* discarding all */ |
|
2736 *res->lsu=0; /* so place 0 */ |
|
2737 res->digits=1; /* .. */ |
|
2738 } |
|
2739 else { |
|
2740 decShiftToLeast(res->lsu, D2U(res->digits), -shift); |
|
2741 res->digits-=(-shift); |
|
2742 } |
|
2743 } /* to right */ |
|
2744 } /* non-0 non-Inf shift */ |
|
2745 } /* rhs OK */ |
|
2746 } /* numerics */ |
|
2747 if (status!=0) decStatus(res, status, set); |
|
2748 return res; |
|
2749 } /* decNumberShift */ |
|
2750 |
|
2751 /* ------------------------------------------------------------------ */ |
|
2752 /* decNumberSquareRoot -- square root operator */ |
|
2753 /* */ |
|
2754 /* This computes C = squareroot(A) */ |
|
2755 /* */ |
|
2756 /* res is C, the result. C may be A */ |
|
2757 /* rhs is A */ |
|
2758 /* set is the context; note that rounding mode has no effect */ |
|
2759 /* */ |
|
2760 /* C must have space for set->digits digits. */ |
|
2761 /* ------------------------------------------------------------------ */ |
|
2762 /* This uses the following varying-precision algorithm in: */ |
|
2763 /* */ |
|
2764 /* Properly Rounded Variable Precision Square Root, T. E. Hull and */ |
|
2765 /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ |
|
2766 /* pp229-237, ACM, September 1985. */ |
|
2767 /* */ |
|
2768 /* The square-root is calculated using Newton's method, after which */ |
|
2769 /* a check is made to ensure the result is correctly rounded. */ |
|
2770 /* */ |
|
2771 /* % [Reformatted original Numerical Turing source code follows.] */ |
|
2772 /* function sqrt(x : real) : real */ |
|
2773 /* % sqrt(x) returns the properly rounded approximation to the square */ |
|
2774 /* % root of x, in the precision of the calling environment, or it */ |
|
2775 /* % fails if x < 0. */ |
|
2776 /* % t e hull and a abrham, august, 1984 */ |
|
2777 /* if x <= 0 then */ |
|
2778 /* if x < 0 then */ |
|
2779 /* assert false */ |
|
2780 /* else */ |
|
2781 /* result 0 */ |
|
2782 /* end if */ |
|
2783 /* end if */ |
|
2784 /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ |
|
2785 /* var e := getexp(x) % exponent part of x */ |
|
2786 /* var approx : real */ |
|
2787 /* if e mod 2 = 0 then */ |
|
2788 /* approx := .259 + .819 * f % approx to root of f */ |
|
2789 /* else */ |
|
2790 /* f := f/l0 % adjustments */ |
|
2791 /* e := e + 1 % for odd */ |
|
2792 /* approx := .0819 + 2.59 * f % exponent */ |
|
2793 /* end if */ |
|
2794 /* */ |
|
2795 /* var p:= 3 */ |
|
2796 /* const maxp := currentprecision + 2 */ |
|
2797 /* loop */ |
|
2798 /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ |
|
2799 /* precision p */ |
|
2800 /* approx := .5 * (approx + f/approx) */ |
|
2801 /* exit when p = maxp */ |
|
2802 /* end loop */ |
|
2803 /* */ |
|
2804 /* % approx is now within 1 ulp of the properly rounded square root */ |
|
2805 /* % of f; to ensure proper rounding, compare squares of (approx - */ |
|
2806 /* % l/2 ulp) and (approx + l/2 ulp) with f. */ |
|
2807 /* p := currentprecision */ |
|
2808 /* begin */ |
|
2809 /* precision p + 2 */ |
|
2810 /* const approxsubhalf := approx - setexp(.5, -p) */ |
|
2811 /* if mulru(approxsubhalf, approxsubhalf) > f then */ |
|
2812 /* approx := approx - setexp(.l, -p + 1) */ |
|
2813 /* else */ |
|
2814 /* const approxaddhalf := approx + setexp(.5, -p) */ |
|
2815 /* if mulrd(approxaddhalf, approxaddhalf) < f then */ |
|
2816 /* approx := approx + setexp(.l, -p + 1) */ |
|
2817 /* end if */ |
|
2818 /* end if */ |
|
2819 /* end */ |
|
2820 /* result setexp(approx, e div 2) % fix exponent */ |
|
2821 /* end sqrt */ |
|
2822 /* ------------------------------------------------------------------ */ |
|
2823 #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 |
|
2824 #pragma GCC diagnostic push |
|
2825 #pragma GCC diagnostic ignored "-Warray-bounds" |
|
2826 #endif |
|
2827 U_CAPI decNumber * U_EXPORT2 uprv_decNumberSquareRoot(decNumber *res, const decNumber *rhs, |
|
2828 decContext *set) { |
|
2829 decContext workset, approxset; /* work contexts */ |
|
2830 decNumber dzero; /* used for constant zero */ |
|
2831 Int maxp; /* largest working precision */ |
|
2832 Int workp; /* working precision */ |
|
2833 Int residue=0; /* rounding residue */ |
|
2834 uInt status=0, ignore=0; /* status accumulators */ |
|
2835 uInt rstatus; /* .. */ |
|
2836 Int exp; /* working exponent */ |
|
2837 Int ideal; /* ideal (preferred) exponent */ |
|
2838 Int needbytes; /* work */ |
|
2839 Int dropped; /* .. */ |
|
2840 |
|
2841 #if DECSUBSET |
|
2842 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
|
2843 #endif |
|
2844 /* buffer for f [needs +1 in case DECBUFFER 0] */ |
|
2845 decNumber buff[D2N(DECBUFFER+1)]; |
|
2846 /* buffer for a [needs +2 to match likely maxp] */ |
|
2847 decNumber bufa[D2N(DECBUFFER+2)]; |
|
2848 /* buffer for temporary, b [must be same size as a] */ |
|
2849 decNumber bufb[D2N(DECBUFFER+2)]; |
|
2850 decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */ |
|
2851 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
|
2852 decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ |
|
2853 decNumber *f=buff; /* reduced fraction */ |
|
2854 decNumber *a=bufa; /* approximation to result */ |
|
2855 decNumber *b=bufb; /* intermediate result */ |
|
2856 /* buffer for temporary variable, up to 3 digits */ |
|
2857 decNumber buft[D2N(3)]; |
|
2858 decNumber *t=buft; /* up-to-3-digit constant or work */ |
|
2859 |
|
2860 #if DECCHECK |
|
2861 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
2862 #endif |
|
2863 |
|
2864 do { /* protect allocated storage */ |
|
2865 #if DECSUBSET |
|
2866 if (!set->extended) { |
|
2867 /* reduce operand and set lostDigits status, as needed */ |
|
2868 if (rhs->digits>set->digits) { |
|
2869 allocrhs=decRoundOperand(rhs, set, &status); |
|
2870 if (allocrhs==NULL) break; |
|
2871 /* [Note: 'f' allocation below could reuse this buffer if */ |
|
2872 /* used, but as this is rare they are kept separate for clarity.] */ |
|
2873 rhs=allocrhs; |
|
2874 } |
|
2875 } |
|
2876 #endif |
|
2877 /* [following code does not require input rounding] */ |
|
2878 |
|
2879 /* handle infinities and NaNs */ |
|
2880 if (SPECIALARG) { |
|
2881 if (decNumberIsInfinite(rhs)) { /* an infinity */ |
|
2882 if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; |
|
2883 else uprv_decNumberCopy(res, rhs); /* +Infinity */ |
|
2884 } |
|
2885 else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ |
|
2886 break; |
|
2887 } |
|
2888 |
|
2889 /* calculate the ideal (preferred) exponent [floor(exp/2)] */ |
|
2890 /* [It would be nicer to write: ideal=rhs->exponent>>1, but this */ |
|
2891 /* generates a compiler warning. Generated code is the same.] */ |
|
2892 ideal=(rhs->exponent&~1)/2; /* target */ |
|
2893 |
|
2894 /* handle zeros */ |
|
2895 if (ISZERO(rhs)) { |
|
2896 uprv_decNumberCopy(res, rhs); /* could be 0 or -0 */ |
|
2897 res->exponent=ideal; /* use the ideal [safe] */ |
|
2898 /* use decFinish to clamp any out-of-range exponent, etc. */ |
|
2899 decFinish(res, set, &residue, &status); |
|
2900 break; |
|
2901 } |
|
2902 |
|
2903 /* any other -x is an oops */ |
|
2904 if (decNumberIsNegative(rhs)) { |
|
2905 status|=DEC_Invalid_operation; |
|
2906 break; |
|
2907 } |
|
2908 |
|
2909 /* space is needed for three working variables */ |
|
2910 /* f -- the same precision as the RHS, reduced to 0.01->0.99... */ |
|
2911 /* a -- Hull's approximation -- precision, when assigned, is */ |
|
2912 /* currentprecision+1 or the input argument precision, */ |
|
2913 /* whichever is larger (+2 for use as temporary) */ |
|
2914 /* b -- intermediate temporary result (same size as a) */ |
|
2915 /* if any is too long for local storage, then allocate */ |
|
2916 workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */ |
|
2917 workp=MAXI(workp, 7); /* at least 7 for low cases */ |
|
2918 maxp=workp+2; /* largest working precision */ |
|
2919 |
|
2920 needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
|
2921 if (needbytes>(Int)sizeof(buff)) { |
|
2922 allocbuff=(decNumber *)malloc(needbytes); |
|
2923 if (allocbuff==NULL) { /* hopeless -- abandon */ |
|
2924 status|=DEC_Insufficient_storage; |
|
2925 break;} |
|
2926 f=allocbuff; /* use the allocated space */ |
|
2927 } |
|
2928 /* a and b both need to be able to hold a maxp-length number */ |
|
2929 needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); |
|
2930 if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */ |
|
2931 allocbufa=(decNumber *)malloc(needbytes); |
|
2932 allocbufb=(decNumber *)malloc(needbytes); |
|
2933 if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */ |
|
2934 status|=DEC_Insufficient_storage; |
|
2935 break;} |
|
2936 a=allocbufa; /* use the allocated spaces */ |
|
2937 b=allocbufb; /* .. */ |
|
2938 } |
|
2939 |
|
2940 /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */ |
|
2941 uprv_decNumberCopy(f, rhs); |
|
2942 exp=f->exponent+f->digits; /* adjusted to Hull rules */ |
|
2943 f->exponent=-(f->digits); /* to range */ |
|
2944 |
|
2945 /* set up working context */ |
|
2946 uprv_decContextDefault(&workset, DEC_INIT_DECIMAL64); |
|
2947 workset.emax=DEC_MAX_EMAX; |
|
2948 workset.emin=DEC_MIN_EMIN; |
|
2949 |
|
2950 /* [Until further notice, no error is possible and status bits */ |
|
2951 /* (Rounded, etc.) should be ignored, not accumulated.] */ |
|
2952 |
|
2953 /* Calculate initial approximation, and allow for odd exponent */ |
|
2954 workset.digits=workp; /* p for initial calculation */ |
|
2955 t->bits=0; t->digits=3; |
|
2956 a->bits=0; a->digits=3; |
|
2957 if ((exp & 1)==0) { /* even exponent */ |
|
2958 /* Set t=0.259, a=0.819 */ |
|
2959 t->exponent=-3; |
|
2960 a->exponent=-3; |
|
2961 #if DECDPUN>=3 |
|
2962 t->lsu[0]=259; |
|
2963 a->lsu[0]=819; |
|
2964 #elif DECDPUN==2 |
|
2965 t->lsu[0]=59; t->lsu[1]=2; |
|
2966 a->lsu[0]=19; a->lsu[1]=8; |
|
2967 #else |
|
2968 t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; |
|
2969 a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; |
|
2970 #endif |
|
2971 } |
|
2972 else { /* odd exponent */ |
|
2973 /* Set t=0.0819, a=2.59 */ |
|
2974 f->exponent--; /* f=f/10 */ |
|
2975 exp++; /* e=e+1 */ |
|
2976 t->exponent=-4; |
|
2977 a->exponent=-2; |
|
2978 #if DECDPUN>=3 |
|
2979 t->lsu[0]=819; |
|
2980 a->lsu[0]=259; |
|
2981 #elif DECDPUN==2 |
|
2982 t->lsu[0]=19; t->lsu[1]=8; |
|
2983 a->lsu[0]=59; a->lsu[1]=2; |
|
2984 #else |
|
2985 t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; |
|
2986 a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; |
|
2987 #endif |
|
2988 } |
|
2989 |
|
2990 decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */ |
|
2991 decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */ |
|
2992 /* [a is now the initial approximation for sqrt(f), calculated with */ |
|
2993 /* currentprecision, which is also a's precision.] */ |
|
2994 |
|
2995 /* the main calculation loop */ |
|
2996 uprv_decNumberZero(&dzero); /* make 0 */ |
|
2997 uprv_decNumberZero(t); /* set t = 0.5 */ |
|
2998 t->lsu[0]=5; /* .. */ |
|
2999 t->exponent=-1; /* .. */ |
|
3000 workset.digits=3; /* initial p */ |
|
3001 for (; workset.digits<maxp;) { |
|
3002 /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */ |
|
3003 workset.digits=MINI(workset.digits*2-2, maxp); |
|
3004 /* a = 0.5 * (a + f/a) */ |
|
3005 /* [calculated at p then rounded to currentprecision] */ |
|
3006 decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */ |
|
3007 decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */ |
|
3008 decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */ |
|
3009 } /* loop */ |
|
3010 |
|
3011 /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */ |
|
3012 /* now reduce to length, etc.; this needs to be done with a */ |
|
3013 /* having the correct exponent so as to handle subnormals */ |
|
3014 /* correctly */ |
|
3015 approxset=*set; /* get emin, emax, etc. */ |
|
3016 approxset.round=DEC_ROUND_HALF_EVEN; |
|
3017 a->exponent+=exp/2; /* set correct exponent */ |
|
3018 rstatus=0; /* clear status */ |
|
3019 residue=0; /* .. and accumulator */ |
|
3020 decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */ |
|
3021 decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */ |
|
3022 |
|
3023 /* Overflow was possible if the input exponent was out-of-range, */ |
|
3024 /* in which case quit */ |
|
3025 if (rstatus&DEC_Overflow) { |
|
3026 status=rstatus; /* use the status as-is */ |
|
3027 uprv_decNumberCopy(res, a); /* copy to result */ |
|
3028 break; |
|
3029 } |
|
3030 |
|
3031 /* Preserve status except Inexact/Rounded */ |
|
3032 status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); |
|
3033 |
|
3034 /* Carry out the Hull correction */ |
|
3035 a->exponent-=exp/2; /* back to 0.1->1 */ |
|
3036 |
|
3037 /* a is now at final precision and within 1 ulp of the properly */ |
|
3038 /* rounded square root of f; to ensure proper rounding, compare */ |
|
3039 /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */ |
|
3040 /* Here workset.digits=maxp and t=0.5, and a->digits determines */ |
|
3041 /* the ulp */ |
|
3042 workset.digits--; /* maxp-1 is OK now */ |
|
3043 t->exponent=-a->digits-1; /* make 0.5 ulp */ |
|
3044 decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */ |
|
3045 workset.round=DEC_ROUND_UP; |
|
3046 decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */ |
|
3047 decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */ |
|
3048 if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */ |
|
3049 /* this is the more common adjustment, though both are rare */ |
|
3050 t->exponent++; /* make 1.0 ulp */ |
|
3051 t->lsu[0]=1; /* .. */ |
|
3052 decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */ |
|
3053 /* assign to approx [round to length] */ |
|
3054 approxset.emin-=exp/2; /* adjust to match a */ |
|
3055 approxset.emax-=exp/2; |
|
3056 decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
|
3057 } |
|
3058 else { |
|
3059 decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */ |
|
3060 workset.round=DEC_ROUND_DOWN; |
|
3061 decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */ |
|
3062 decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */ |
|
3063 if (decNumberIsNegative(b)) { /* b < f */ |
|
3064 t->exponent++; /* make 1.0 ulp */ |
|
3065 t->lsu[0]=1; /* .. */ |
|
3066 decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */ |
|
3067 /* assign to approx [round to length] */ |
|
3068 approxset.emin-=exp/2; /* adjust to match a */ |
|
3069 approxset.emax-=exp/2; |
|
3070 decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
|
3071 } |
|
3072 } |
|
3073 /* [no errors are possible in the above, and rounding/inexact during */ |
|
3074 /* estimation are irrelevant, so status was not accumulated] */ |
|
3075 |
|
3076 /* Here, 0.1 <= a < 1 (still), so adjust back */ |
|
3077 a->exponent+=exp/2; /* set correct exponent */ |
|
3078 |
|
3079 /* count droppable zeros [after any subnormal rounding] by */ |
|
3080 /* trimming a copy */ |
|
3081 uprv_decNumberCopy(b, a); |
|
3082 decTrim(b, set, 1, 1, &dropped); /* [drops trailing zeros] */ |
|
3083 |
|
3084 /* Set Inexact and Rounded. The answer can only be exact if */ |
|
3085 /* it is short enough so that squaring it could fit in workp */ |
|
3086 /* digits, so this is the only (relatively rare) condition that */ |
|
3087 /* a careful check is needed */ |
|
3088 if (b->digits*2-1 > workp) { /* cannot fit */ |
|
3089 status|=DEC_Inexact|DEC_Rounded; |
|
3090 } |
|
3091 else { /* could be exact/unrounded */ |
|
3092 uInt mstatus=0; /* local status */ |
|
3093 decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */ |
|
3094 if (mstatus&DEC_Overflow) { /* result just won't fit */ |
|
3095 status|=DEC_Inexact|DEC_Rounded; |
|
3096 } |
|
3097 else { /* plausible */ |
|
3098 decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */ |
|
3099 if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */ |
|
3100 else { /* is Exact */ |
|
3101 /* here, dropped is the count of trailing zeros in 'a' */ |
|
3102 /* use closest exponent to ideal... */ |
|
3103 Int todrop=ideal-a->exponent; /* most that can be dropped */ |
|
3104 if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */ |
|
3105 else { /* unrounded */ |
|
3106 /* there are some to drop, but emax may not allow all */ |
|
3107 Int maxexp=set->emax-set->digits+1; |
|
3108 Int maxdrop=maxexp-a->exponent; |
|
3109 if (todrop>maxdrop && set->clamp) { /* apply clamping */ |
|
3110 todrop=maxdrop; |
|
3111 status|=DEC_Clamped; |
|
3112 } |
|
3113 if (dropped<todrop) { /* clamp to those available */ |
|
3114 todrop=dropped; |
|
3115 status|=DEC_Clamped; |
|
3116 } |
|
3117 if (todrop>0) { /* have some to drop */ |
|
3118 decShiftToLeast(a->lsu, D2U(a->digits), todrop); |
|
3119 a->exponent+=todrop; /* maintain numerical value */ |
|
3120 a->digits-=todrop; /* new length */ |
|
3121 } |
|
3122 } |
|
3123 } |
|
3124 } |
|
3125 } |
|
3126 |
|
3127 /* double-check Underflow, as perhaps the result could not have */ |
|
3128 /* been subnormal (initial argument too big), or it is now Exact */ |
|
3129 if (status&DEC_Underflow) { |
|
3130 Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ |
|
3131 /* check if truly subnormal */ |
|
3132 #if DECEXTFLAG /* DEC_Subnormal too */ |
|
3133 if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); |
|
3134 #else |
|
3135 if (ae>=set->emin*2) status&=~DEC_Underflow; |
|
3136 #endif |
|
3137 /* check if truly inexact */ |
|
3138 if (!(status&DEC_Inexact)) status&=~DEC_Underflow; |
|
3139 } |
|
3140 |
|
3141 uprv_decNumberCopy(res, a); /* a is now the result */ |
|
3142 } while(0); /* end protected */ |
|
3143 |
|
3144 if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */ |
|
3145 if (allocbufa!=NULL) free(allocbufa); /* .. */ |
|
3146 if (allocbufb!=NULL) free(allocbufb); /* .. */ |
|
3147 #if DECSUBSET |
|
3148 if (allocrhs !=NULL) free(allocrhs); /* .. */ |
|
3149 #endif |
|
3150 if (status!=0) decStatus(res, status, set);/* then report status */ |
|
3151 #if DECCHECK |
|
3152 decCheckInexact(res, set); |
|
3153 #endif |
|
3154 return res; |
|
3155 } /* decNumberSquareRoot */ |
|
3156 #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 |
|
3157 #pragma GCC diagnostic pop |
|
3158 #endif |
|
3159 |
|
3160 /* ------------------------------------------------------------------ */ |
|
3161 /* decNumberSubtract -- subtract two Numbers */ |
|
3162 /* */ |
|
3163 /* This computes C = A - B */ |
|
3164 /* */ |
|
3165 /* res is C, the result. C may be A and/or B (e.g., X=X-X) */ |
|
3166 /* lhs is A */ |
|
3167 /* rhs is B */ |
|
3168 /* set is the context */ |
|
3169 /* */ |
|
3170 /* C must have space for set->digits digits. */ |
|
3171 /* ------------------------------------------------------------------ */ |
|
3172 U_CAPI decNumber * U_EXPORT2 uprv_decNumberSubtract(decNumber *res, const decNumber *lhs, |
|
3173 const decNumber *rhs, decContext *set) { |
|
3174 uInt status=0; /* accumulator */ |
|
3175 |
|
3176 decAddOp(res, lhs, rhs, set, DECNEG, &status); |
|
3177 if (status!=0) decStatus(res, status, set); |
|
3178 #if DECCHECK |
|
3179 decCheckInexact(res, set); |
|
3180 #endif |
|
3181 return res; |
|
3182 } /* decNumberSubtract */ |
|
3183 |
|
3184 /* ------------------------------------------------------------------ */ |
|
3185 /* decNumberToIntegralExact -- round-to-integral-value with InExact */ |
|
3186 /* decNumberToIntegralValue -- round-to-integral-value */ |
|
3187 /* */ |
|
3188 /* res is the result */ |
|
3189 /* rhs is input number */ |
|
3190 /* set is the context */ |
|
3191 /* */ |
|
3192 /* res must have space for any value of rhs. */ |
|
3193 /* */ |
|
3194 /* This implements the IEEE special operators and therefore treats */ |
|
3195 /* special values as valid. For finite numbers it returns */ |
|
3196 /* rescale(rhs, 0) if rhs->exponent is <0. */ |
|
3197 /* Otherwise the result is rhs (so no error is possible, except for */ |
|
3198 /* sNaN). */ |
|
3199 /* */ |
|
3200 /* The context is used for rounding mode and status after sNaN, but */ |
|
3201 /* the digits setting is ignored. The Exact version will signal */ |
|
3202 /* Inexact if the result differs numerically from rhs; the other */ |
|
3203 /* never signals Inexact. */ |
|
3204 /* ------------------------------------------------------------------ */ |
|
3205 U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralExact(decNumber *res, const decNumber *rhs, |
|
3206 decContext *set) { |
|
3207 decNumber dn; |
|
3208 decContext workset; /* working context */ |
|
3209 uInt status=0; /* accumulator */ |
|
3210 |
|
3211 #if DECCHECK |
|
3212 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
3213 #endif |
|
3214 |
|
3215 /* handle infinities and NaNs */ |
|
3216 if (SPECIALARG) { |
|
3217 if (decNumberIsInfinite(rhs)) uprv_decNumberCopy(res, rhs); /* an Infinity */ |
|
3218 else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ |
|
3219 } |
|
3220 else { /* finite */ |
|
3221 /* have a finite number; no error possible (res must be big enough) */ |
|
3222 if (rhs->exponent>=0) return uprv_decNumberCopy(res, rhs); |
|
3223 /* that was easy, but if negative exponent there is work to do... */ |
|
3224 workset=*set; /* clone rounding, etc. */ |
|
3225 workset.digits=rhs->digits; /* no length rounding */ |
|
3226 workset.traps=0; /* no traps */ |
|
3227 uprv_decNumberZero(&dn); /* make a number with exponent 0 */ |
|
3228 uprv_decNumberQuantize(res, rhs, &dn, &workset); |
|
3229 status|=workset.status; |
|
3230 } |
|
3231 if (status!=0) decStatus(res, status, set); |
|
3232 return res; |
|
3233 } /* decNumberToIntegralExact */ |
|
3234 |
|
3235 U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralValue(decNumber *res, const decNumber *rhs, |
|
3236 decContext *set) { |
|
3237 decContext workset=*set; /* working context */ |
|
3238 workset.traps=0; /* no traps */ |
|
3239 uprv_decNumberToIntegralExact(res, rhs, &workset); |
|
3240 /* this never affects set, except for sNaNs; NaN will have been set */ |
|
3241 /* or propagated already, so no need to call decStatus */ |
|
3242 set->status|=workset.status&DEC_Invalid_operation; |
|
3243 return res; |
|
3244 } /* decNumberToIntegralValue */ |
|
3245 |
|
3246 /* ------------------------------------------------------------------ */ |
|
3247 /* decNumberXor -- XOR two Numbers, digitwise */ |
|
3248 /* */ |
|
3249 /* This computes C = A ^ B */ |
|
3250 /* */ |
|
3251 /* res is C, the result. C may be A and/or B (e.g., X=X^X) */ |
|
3252 /* lhs is A */ |
|
3253 /* rhs is B */ |
|
3254 /* set is the context (used for result length and error report) */ |
|
3255 /* */ |
|
3256 /* C must have space for set->digits digits. */ |
|
3257 /* */ |
|
3258 /* Logical function restrictions apply (see above); a NaN is */ |
|
3259 /* returned with Invalid_operation if a restriction is violated. */ |
|
3260 /* ------------------------------------------------------------------ */ |
|
3261 U_CAPI decNumber * U_EXPORT2 uprv_decNumberXor(decNumber *res, const decNumber *lhs, |
|
3262 const decNumber *rhs, decContext *set) { |
|
3263 const Unit *ua, *ub; /* -> operands */ |
|
3264 const Unit *msua, *msub; /* -> operand msus */ |
|
3265 Unit *uc, *msuc; /* -> result and its msu */ |
|
3266 Int msudigs; /* digits in res msu */ |
|
3267 #if DECCHECK |
|
3268 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
3269 #endif |
|
3270 |
|
3271 if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
|
3272 || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
|
3273 decStatus(res, DEC_Invalid_operation, set); |
|
3274 return res; |
|
3275 } |
|
3276 /* operands are valid */ |
|
3277 ua=lhs->lsu; /* bottom-up */ |
|
3278 ub=rhs->lsu; /* .. */ |
|
3279 uc=res->lsu; /* .. */ |
|
3280 msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ |
|
3281 msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ |
|
3282 msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
|
3283 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
|
3284 for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
|
3285 Unit a, b; /* extract units */ |
|
3286 if (ua>msua) a=0; |
|
3287 else a=*ua; |
|
3288 if (ub>msub) b=0; |
|
3289 else b=*ub; |
|
3290 *uc=0; /* can now write back */ |
|
3291 if (a|b) { /* maybe 1 bits to examine */ |
|
3292 Int i, j; |
|
3293 /* This loop could be unrolled and/or use BIN2BCD tables */ |
|
3294 for (i=0; i<DECDPUN; i++) { |
|
3295 if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */ |
|
3296 j=a%10; |
|
3297 a=a/10; |
|
3298 j|=b%10; |
|
3299 b=b/10; |
|
3300 if (j>1) { |
|
3301 decStatus(res, DEC_Invalid_operation, set); |
|
3302 return res; |
|
3303 } |
|
3304 if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
|
3305 } /* each digit */ |
|
3306 } /* non-zero */ |
|
3307 } /* each unit */ |
|
3308 /* [here uc-1 is the msu of the result] */ |
|
3309 res->digits=decGetDigits(res->lsu, uc-res->lsu); |
|
3310 res->exponent=0; /* integer */ |
|
3311 res->bits=0; /* sign=0 */ |
|
3312 return res; /* [no status to set] */ |
|
3313 } /* decNumberXor */ |
|
3314 |
|
3315 |
|
3316 /* ================================================================== */ |
|
3317 /* Utility routines */ |
|
3318 /* ================================================================== */ |
|
3319 |
|
3320 /* ------------------------------------------------------------------ */ |
|
3321 /* decNumberClass -- return the decClass of a decNumber */ |
|
3322 /* dn -- the decNumber to test */ |
|
3323 /* set -- the context to use for Emin */ |
|
3324 /* returns the decClass enum */ |
|
3325 /* ------------------------------------------------------------------ */ |
|
3326 enum decClass uprv_decNumberClass(const decNumber *dn, decContext *set) { |
|
3327 if (decNumberIsSpecial(dn)) { |
|
3328 if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; |
|
3329 if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; |
|
3330 /* must be an infinity */ |
|
3331 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; |
|
3332 return DEC_CLASS_POS_INF; |
|
3333 } |
|
3334 /* is finite */ |
|
3335 if (uprv_decNumberIsNormal(dn, set)) { /* most common */ |
|
3336 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; |
|
3337 return DEC_CLASS_POS_NORMAL; |
|
3338 } |
|
3339 /* is subnormal or zero */ |
|
3340 if (decNumberIsZero(dn)) { /* most common */ |
|
3341 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; |
|
3342 return DEC_CLASS_POS_ZERO; |
|
3343 } |
|
3344 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; |
|
3345 return DEC_CLASS_POS_SUBNORMAL; |
|
3346 } /* decNumberClass */ |
|
3347 |
|
3348 /* ------------------------------------------------------------------ */ |
|
3349 /* decNumberClassToString -- convert decClass to a string */ |
|
3350 /* */ |
|
3351 /* eclass is a valid decClass */ |
|
3352 /* returns a constant string describing the class (max 13+1 chars) */ |
|
3353 /* ------------------------------------------------------------------ */ |
|
3354 const char *uprv_decNumberClassToString(enum decClass eclass) { |
|
3355 if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; |
|
3356 if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; |
|
3357 if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; |
|
3358 if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; |
|
3359 if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; |
|
3360 if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; |
|
3361 if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; |
|
3362 if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; |
|
3363 if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; |
|
3364 if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; |
|
3365 return DEC_ClassString_UN; /* Unknown */ |
|
3366 } /* decNumberClassToString */ |
|
3367 |
|
3368 /* ------------------------------------------------------------------ */ |
|
3369 /* decNumberCopy -- copy a number */ |
|
3370 /* */ |
|
3371 /* dest is the target decNumber */ |
|
3372 /* src is the source decNumber */ |
|
3373 /* returns dest */ |
|
3374 /* */ |
|
3375 /* (dest==src is allowed and is a no-op) */ |
|
3376 /* All fields are updated as required. This is a utility operation, */ |
|
3377 /* so special values are unchanged and no error is possible. */ |
|
3378 /* ------------------------------------------------------------------ */ |
|
3379 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopy(decNumber *dest, const decNumber *src) { |
|
3380 |
|
3381 #if DECCHECK |
|
3382 if (src==NULL) return uprv_decNumberZero(dest); |
|
3383 #endif |
|
3384 |
|
3385 if (dest==src) return dest; /* no copy required */ |
|
3386 |
|
3387 /* Use explicit assignments here as structure assignment could copy */ |
|
3388 /* more than just the lsu (for small DECDPUN). This would not affect */ |
|
3389 /* the value of the results, but could disturb test harness spill */ |
|
3390 /* checking. */ |
|
3391 dest->bits=src->bits; |
|
3392 dest->exponent=src->exponent; |
|
3393 dest->digits=src->digits; |
|
3394 dest->lsu[0]=src->lsu[0]; |
|
3395 if (src->digits>DECDPUN) { /* more Units to come */ |
|
3396 const Unit *smsup, *s; /* work */ |
|
3397 Unit *d; /* .. */ |
|
3398 /* memcpy for the remaining Units would be safe as they cannot */ |
|
3399 /* overlap. However, this explicit loop is faster in short cases. */ |
|
3400 d=dest->lsu+1; /* -> first destination */ |
|
3401 smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */ |
|
3402 for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; |
|
3403 } |
|
3404 return dest; |
|
3405 } /* decNumberCopy */ |
|
3406 |
|
3407 /* ------------------------------------------------------------------ */ |
|
3408 /* decNumberCopyAbs -- quiet absolute value operator */ |
|
3409 /* */ |
|
3410 /* This sets C = abs(A) */ |
|
3411 /* */ |
|
3412 /* res is C, the result. C may be A */ |
|
3413 /* rhs is A */ |
|
3414 /* */ |
|
3415 /* C must have space for set->digits digits. */ |
|
3416 /* No exception or error can occur; this is a quiet bitwise operation.*/ |
|
3417 /* See also decNumberAbs for a checking version of this. */ |
|
3418 /* ------------------------------------------------------------------ */ |
|
3419 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyAbs(decNumber *res, const decNumber *rhs) { |
|
3420 #if DECCHECK |
|
3421 if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
|
3422 #endif |
|
3423 uprv_decNumberCopy(res, rhs); |
|
3424 res->bits&=~DECNEG; /* turn off sign */ |
|
3425 return res; |
|
3426 } /* decNumberCopyAbs */ |
|
3427 |
|
3428 /* ------------------------------------------------------------------ */ |
|
3429 /* decNumberCopyNegate -- quiet negate value operator */ |
|
3430 /* */ |
|
3431 /* This sets C = negate(A) */ |
|
3432 /* */ |
|
3433 /* res is C, the result. C may be A */ |
|
3434 /* rhs is A */ |
|
3435 /* */ |
|
3436 /* C must have space for set->digits digits. */ |
|
3437 /* No exception or error can occur; this is a quiet bitwise operation.*/ |
|
3438 /* See also decNumberMinus for a checking version of this. */ |
|
3439 /* ------------------------------------------------------------------ */ |
|
3440 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyNegate(decNumber *res, const decNumber *rhs) { |
|
3441 #if DECCHECK |
|
3442 if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
|
3443 #endif |
|
3444 uprv_decNumberCopy(res, rhs); |
|
3445 res->bits^=DECNEG; /* invert the sign */ |
|
3446 return res; |
|
3447 } /* decNumberCopyNegate */ |
|
3448 |
|
3449 /* ------------------------------------------------------------------ */ |
|
3450 /* decNumberCopySign -- quiet copy and set sign operator */ |
|
3451 /* */ |
|
3452 /* This sets C = A with the sign of B */ |
|
3453 /* */ |
|
3454 /* res is C, the result. C may be A */ |
|
3455 /* lhs is A */ |
|
3456 /* rhs is B */ |
|
3457 /* */ |
|
3458 /* C must have space for set->digits digits. */ |
|
3459 /* No exception or error can occur; this is a quiet bitwise operation.*/ |
|
3460 /* ------------------------------------------------------------------ */ |
|
3461 U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopySign(decNumber *res, const decNumber *lhs, |
|
3462 const decNumber *rhs) { |
|
3463 uByte sign; /* rhs sign */ |
|
3464 #if DECCHECK |
|
3465 if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
|
3466 #endif |
|
3467 sign=rhs->bits & DECNEG; /* save sign bit */ |
|
3468 uprv_decNumberCopy(res, lhs); |
|
3469 res->bits&=~DECNEG; /* clear the sign */ |
|
3470 res->bits|=sign; /* set from rhs */ |
|
3471 return res; |
|
3472 } /* decNumberCopySign */ |
|
3473 |
|
3474 /* ------------------------------------------------------------------ */ |
|
3475 /* decNumberGetBCD -- get the coefficient in BCD8 */ |
|
3476 /* dn is the source decNumber */ |
|
3477 /* bcd is the uInt array that will receive dn->digits BCD bytes, */ |
|
3478 /* most-significant at offset 0 */ |
|
3479 /* returns bcd */ |
|
3480 /* */ |
|
3481 /* bcd must have at least dn->digits bytes. No error is possible; if */ |
|
3482 /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ |
|
3483 /* ------------------------------------------------------------------ */ |
|
3484 U_CAPI uByte * U_EXPORT2 uprv_decNumberGetBCD(const decNumber *dn, uByte *bcd) { |
|
3485 uByte *ub=bcd+dn->digits-1; /* -> lsd */ |
|
3486 const Unit *up=dn->lsu; /* Unit pointer, -> lsu */ |
|
3487 |
|
3488 #if DECDPUN==1 /* trivial simple copy */ |
|
3489 for (; ub>=bcd; ub--, up++) *ub=*up; |
|
3490 #else /* chopping needed */ |
|
3491 uInt u=*up; /* work */ |
|
3492 uInt cut=DECDPUN; /* downcounter through unit */ |
|
3493 for (; ub>=bcd; ub--) { |
|
3494 *ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */ |
|
3495 u=u/10; |
|
3496 cut--; |
|
3497 if (cut>0) continue; /* more in this unit */ |
|
3498 up++; |
|
3499 u=*up; |
|
3500 cut=DECDPUN; |
|
3501 } |
|
3502 #endif |
|
3503 return bcd; |
|
3504 } /* decNumberGetBCD */ |
|
3505 |
|
3506 /* ------------------------------------------------------------------ */ |
|
3507 /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ |
|
3508 /* dn is the target decNumber */ |
|
3509 /* bcd is the uInt array that will source n BCD bytes, most- */ |
|
3510 /* significant at offset 0 */ |
|
3511 /* n is the number of digits in the source BCD array (bcd) */ |
|
3512 /* returns dn */ |
|
3513 /* */ |
|
3514 /* dn must have space for at least n digits. No error is possible; */ |
|
3515 /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ |
|
3516 /* and bcd[0] zero. */ |
|
3517 /* ------------------------------------------------------------------ */ |
|
3518 U_CAPI decNumber * U_EXPORT2 uprv_decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { |
|
3519 Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [target pointer] */ |
|
3520 const uByte *ub=bcd; /* -> source msd */ |
|
3521 |
|
3522 #if DECDPUN==1 /* trivial simple copy */ |
|
3523 for (; ub<bcd+n; ub++, up--) *up=*ub; |
|
3524 #else /* some assembly needed */ |
|
3525 /* calculate how many digits in msu, and hence first cut */ |
|
3526 Int cut=MSUDIGITS(n); /* [faster than remainder] */ |
|
3527 for (;up>=dn->lsu; up--) { /* each Unit from msu */ |
|
3528 *up=0; /* will take <=DECDPUN digits */ |
|
3529 for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; |
|
3530 cut=DECDPUN; /* next Unit has all digits */ |
|
3531 } |
|
3532 #endif |
|
3533 dn->digits=n; /* set digit count */ |
|
3534 return dn; |
|
3535 } /* decNumberSetBCD */ |
|
3536 |
|
3537 /* ------------------------------------------------------------------ */ |
|
3538 /* decNumberIsNormal -- test normality of a decNumber */ |
|
3539 /* dn is the decNumber to test */ |
|
3540 /* set is the context to use for Emin */ |
|
3541 /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ |
|
3542 /* ------------------------------------------------------------------ */ |
|
3543 Int uprv_decNumberIsNormal(const decNumber *dn, decContext *set) { |
|
3544 Int ae; /* adjusted exponent */ |
|
3545 #if DECCHECK |
|
3546 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
|
3547 #endif |
|
3548 |
|
3549 if (decNumberIsSpecial(dn)) return 0; /* not finite */ |
|
3550 if (decNumberIsZero(dn)) return 0; /* not non-zero */ |
|
3551 |
|
3552 ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
|
3553 if (ae<set->emin) return 0; /* is subnormal */ |
|
3554 return 1; |
|
3555 } /* decNumberIsNormal */ |
|
3556 |
|
3557 /* ------------------------------------------------------------------ */ |
|
3558 /* decNumberIsSubnormal -- test subnormality of a decNumber */ |
|
3559 /* dn is the decNumber to test */ |
|
3560 /* set is the context to use for Emin */ |
|
3561 /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */ |
|
3562 /* ------------------------------------------------------------------ */ |
|
3563 Int uprv_decNumberIsSubnormal(const decNumber *dn, decContext *set) { |
|
3564 Int ae; /* adjusted exponent */ |
|
3565 #if DECCHECK |
|
3566 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
|
3567 #endif |
|
3568 |
|
3569 if (decNumberIsSpecial(dn)) return 0; /* not finite */ |
|
3570 if (decNumberIsZero(dn)) return 0; /* not non-zero */ |
|
3571 |
|
3572 ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
|
3573 if (ae<set->emin) return 1; /* is subnormal */ |
|
3574 return 0; |
|
3575 } /* decNumberIsSubnormal */ |
|
3576 |
|
3577 /* ------------------------------------------------------------------ */ |
|
3578 /* decNumberTrim -- remove insignificant zeros */ |
|
3579 /* */ |
|
3580 /* dn is the number to trim */ |
|
3581 /* returns dn */ |
|
3582 /* */ |
|
3583 /* All fields are updated as required. This is a utility operation, */ |
|
3584 /* so special values are unchanged and no error is possible. The */ |
|
3585 /* zeros are removed unconditionally. */ |
|
3586 /* ------------------------------------------------------------------ */ |
|
3587 U_CAPI decNumber * U_EXPORT2 uprv_decNumberTrim(decNumber *dn) { |
|
3588 Int dropped; /* work */ |
|
3589 decContext set; /* .. */ |
|
3590 #if DECCHECK |
|
3591 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; |
|
3592 #endif |
|
3593 uprv_decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */ |
|
3594 return decTrim(dn, &set, 0, 1, &dropped); |
|
3595 } /* decNumberTrim */ |
|
3596 |
|
3597 /* ------------------------------------------------------------------ */ |
|
3598 /* decNumberVersion -- return the name and version of this module */ |
|
3599 /* */ |
|
3600 /* No error is possible. */ |
|
3601 /* ------------------------------------------------------------------ */ |
|
3602 const char * uprv_decNumberVersion(void) { |
|
3603 return DECVERSION; |
|
3604 } /* decNumberVersion */ |
|
3605 |
|
3606 /* ------------------------------------------------------------------ */ |
|
3607 /* decNumberZero -- set a number to 0 */ |
|
3608 /* */ |
|
3609 /* dn is the number to set, with space for one digit */ |
|
3610 /* returns dn */ |
|
3611 /* */ |
|
3612 /* No error is possible. */ |
|
3613 /* ------------------------------------------------------------------ */ |
|
3614 /* Memset is not used as it is much slower in some environments. */ |
|
3615 U_CAPI decNumber * U_EXPORT2 uprv_decNumberZero(decNumber *dn) { |
|
3616 |
|
3617 #if DECCHECK |
|
3618 if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
|
3619 #endif |
|
3620 |
|
3621 dn->bits=0; |
|
3622 dn->exponent=0; |
|
3623 dn->digits=1; |
|
3624 dn->lsu[0]=0; |
|
3625 return dn; |
|
3626 } /* decNumberZero */ |
|
3627 |
|
3628 /* ================================================================== */ |
|
3629 /* Local routines */ |
|
3630 /* ================================================================== */ |
|
3631 |
|
3632 /* ------------------------------------------------------------------ */ |
|
3633 /* decToString -- lay out a number into a string */ |
|
3634 /* */ |
|
3635 /* dn is the number to lay out */ |
|
3636 /* string is where to lay out the number */ |
|
3637 /* eng is 1 if Engineering, 0 if Scientific */ |
|
3638 /* */ |
|
3639 /* string must be at least dn->digits+14 characters long */ |
|
3640 /* No error is possible. */ |
|
3641 /* */ |
|
3642 /* Note that this routine can generate a -0 or 0.000. These are */ |
|
3643 /* never generated in subset to-number or arithmetic, but can occur */ |
|
3644 /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ |
|
3645 /* ------------------------------------------------------------------ */ |
|
3646 /* If DECCHECK is enabled the string "?" is returned if a number is */ |
|
3647 /* invalid. */ |
|
3648 static void decToString(const decNumber *dn, char *string, Flag eng) { |
|
3649 Int exp=dn->exponent; /* local copy */ |
|
3650 Int e; /* E-part value */ |
|
3651 Int pre; /* digits before the '.' */ |
|
3652 Int cut; /* for counting digits in a Unit */ |
|
3653 char *c=string; /* work [output pointer] */ |
|
3654 const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */ |
|
3655 uInt u, pow; /* work */ |
|
3656 |
|
3657 #if DECCHECK |
|
3658 if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { |
|
3659 strcpy(string, "?"); |
|
3660 return;} |
|
3661 #endif |
|
3662 |
|
3663 if (decNumberIsNegative(dn)) { /* Negatives get a minus */ |
|
3664 *c='-'; |
|
3665 c++; |
|
3666 } |
|
3667 if (dn->bits&DECSPECIAL) { /* Is a special value */ |
|
3668 if (decNumberIsInfinite(dn)) { |
|
3669 strcpy(c, "Inf"); |
|
3670 strcpy(c+3, "inity"); |
|
3671 return;} |
|
3672 /* a NaN */ |
|
3673 if (dn->bits&DECSNAN) { /* signalling NaN */ |
|
3674 *c='s'; |
|
3675 c++; |
|
3676 } |
|
3677 strcpy(c, "NaN"); |
|
3678 c+=3; /* step past */ |
|
3679 /* if not a clean non-zero coefficient, that's all there is in a */ |
|
3680 /* NaN string */ |
|
3681 if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; |
|
3682 /* [drop through to add integer] */ |
|
3683 } |
|
3684 |
|
3685 /* calculate how many digits in msu, and hence first cut */ |
|
3686 cut=MSUDIGITS(dn->digits); /* [faster than remainder] */ |
|
3687 cut--; /* power of ten for digit */ |
|
3688 |
|
3689 if (exp==0) { /* simple integer [common fastpath] */ |
|
3690 for (;up>=dn->lsu; up--) { /* each Unit from msu */ |
|
3691 u=*up; /* contains DECDPUN digits to lay out */ |
|
3692 for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); |
|
3693 cut=DECDPUN-1; /* next Unit has all digits */ |
|
3694 } |
|
3695 *c='\0'; /* terminate the string */ |
|
3696 return;} |
|
3697 |
|
3698 /* non-0 exponent -- assume plain form */ |
|
3699 pre=dn->digits+exp; /* digits before '.' */ |
|
3700 e=0; /* no E */ |
|
3701 if ((exp>0) || (pre<-5)) { /* need exponential form */ |
|
3702 e=exp+dn->digits-1; /* calculate E value */ |
|
3703 pre=1; /* assume one digit before '.' */ |
|
3704 if (eng && (e!=0)) { /* engineering: may need to adjust */ |
|
3705 Int adj; /* adjustment */ |
|
3706 /* The C remainder operator is undefined for negative numbers, so */ |
|
3707 /* a positive remainder calculation must be used here */ |
|
3708 if (e<0) { |
|
3709 adj=(-e)%3; |
|
3710 if (adj!=0) adj=3-adj; |
|
3711 } |
|
3712 else { /* e>0 */ |
|
3713 adj=e%3; |
|
3714 } |
|
3715 e=e-adj; |
|
3716 /* if dealing with zero still produce an exponent which is a */ |
|
3717 /* multiple of three, as expected, but there will only be the */ |
|
3718 /* one zero before the E, still. Otherwise note the padding. */ |
|
3719 if (!ISZERO(dn)) pre+=adj; |
|
3720 else { /* is zero */ |
|
3721 if (adj!=0) { /* 0.00Esnn needed */ |
|
3722 e=e+3; |
|
3723 pre=-(2-adj); |
|
3724 } |
|
3725 } /* zero */ |
|
3726 } /* eng */ |
|
3727 } /* need exponent */ |
|
3728 |
|
3729 /* lay out the digits of the coefficient, adding 0s and . as needed */ |
|
3730 u=*up; |
|
3731 if (pre>0) { /* xxx.xxx or xx00 (engineering) form */ |
|
3732 Int n=pre; |
|
3733 for (; pre>0; pre--, c++, cut--) { |
|
3734 if (cut<0) { /* need new Unit */ |
|
3735 if (up==dn->lsu) break; /* out of input digits (pre>digits) */ |
|
3736 up--; |
|
3737 cut=DECDPUN-1; |
|
3738 u=*up; |
|
3739 } |
|
3740 TODIGIT(u, cut, c, pow); |
|
3741 } |
|
3742 if (n<dn->digits) { /* more to come, after '.' */ |
|
3743 *c='.'; c++; |
|
3744 for (;; c++, cut--) { |
|
3745 if (cut<0) { /* need new Unit */ |
|
3746 if (up==dn->lsu) break; /* out of input digits */ |
|
3747 up--; |
|
3748 cut=DECDPUN-1; |
|
3749 u=*up; |
|
3750 } |
|
3751 TODIGIT(u, cut, c, pow); |
|
3752 } |
|
3753 } |
|
3754 else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */ |
|
3755 } |
|
3756 else { /* 0.xxx or 0.000xxx form */ |
|
3757 *c='0'; c++; |
|
3758 *c='.'; c++; |
|
3759 for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */ |
|
3760 for (; ; c++, cut--) { |
|
3761 if (cut<0) { /* need new Unit */ |
|
3762 if (up==dn->lsu) break; /* out of input digits */ |
|
3763 up--; |
|
3764 cut=DECDPUN-1; |
|
3765 u=*up; |
|
3766 } |
|
3767 TODIGIT(u, cut, c, pow); |
|
3768 } |
|
3769 } |
|
3770 |
|
3771 /* Finally add the E-part, if needed. It will never be 0, has a |
|
3772 base maximum and minimum of +999999999 through -999999999, but |
|
3773 could range down to -1999999998 for anormal numbers */ |
|
3774 if (e!=0) { |
|
3775 Flag had=0; /* 1=had non-zero */ |
|
3776 *c='E'; c++; |
|
3777 *c='+'; c++; /* assume positive */ |
|
3778 u=e; /* .. */ |
|
3779 if (e<0) { |
|
3780 *(c-1)='-'; /* oops, need - */ |
|
3781 u=-e; /* uInt, please */ |
|
3782 } |
|
3783 /* lay out the exponent [_itoa or equivalent is not ANSI C] */ |
|
3784 for (cut=9; cut>=0; cut--) { |
|
3785 TODIGIT(u, cut, c, pow); |
|
3786 if (*c=='0' && !had) continue; /* skip leading zeros */ |
|
3787 had=1; /* had non-0 */ |
|
3788 c++; /* step for next */ |
|
3789 } /* cut */ |
|
3790 } |
|
3791 *c='\0'; /* terminate the string (all paths) */ |
|
3792 return; |
|
3793 } /* decToString */ |
|
3794 |
|
3795 /* ------------------------------------------------------------------ */ |
|
3796 /* decAddOp -- add/subtract operation */ |
|
3797 /* */ |
|
3798 /* This computes C = A + B */ |
|
3799 /* */ |
|
3800 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
|
3801 /* lhs is A */ |
|
3802 /* rhs is B */ |
|
3803 /* set is the context */ |
|
3804 /* negate is DECNEG if rhs should be negated, or 0 otherwise */ |
|
3805 /* status accumulates status for the caller */ |
|
3806 /* */ |
|
3807 /* C must have space for set->digits digits. */ |
|
3808 /* Inexact in status must be 0 for correct Exact zero sign in result */ |
|
3809 /* ------------------------------------------------------------------ */ |
|
3810 /* If possible, the coefficient is calculated directly into C. */ |
|
3811 /* However, if: */ |
|
3812 /* -- a digits+1 calculation is needed because the numbers are */ |
|
3813 /* unaligned and span more than set->digits digits */ |
|
3814 /* -- a carry to digits+1 digits looks possible */ |
|
3815 /* -- C is the same as A or B, and the result would destructively */ |
|
3816 /* overlap the A or B coefficient */ |
|
3817 /* then the result must be calculated into a temporary buffer. In */ |
|
3818 /* this case a local (stack) buffer is used if possible, and only if */ |
|
3819 /* too long for that does malloc become the final resort. */ |
|
3820 /* */ |
|
3821 /* Misalignment is handled as follows: */ |
|
3822 /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ |
|
3823 /* BPad: Apply the padding by a combination of shifting (whole */ |
|
3824 /* units) and multiplication (part units). */ |
|
3825 /* */ |
|
3826 /* Addition, especially x=x+1, is speed-critical. */ |
|
3827 /* The static buffer is larger than might be expected to allow for */ |
|
3828 /* calls from higher-level funtions (notable exp). */ |
|
3829 /* ------------------------------------------------------------------ */ |
|
3830 static decNumber * decAddOp(decNumber *res, const decNumber *lhs, |
|
3831 const decNumber *rhs, decContext *set, |
|
3832 uByte negate, uInt *status) { |
|
3833 #if DECSUBSET |
|
3834 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
|
3835 decNumber *allocrhs=NULL; /* .., rhs */ |
|
3836 #endif |
|
3837 Int rhsshift; /* working shift (in Units) */ |
|
3838 Int maxdigits; /* longest logical length */ |
|
3839 Int mult; /* multiplier */ |
|
3840 Int residue; /* rounding accumulator */ |
|
3841 uByte bits; /* result bits */ |
|
3842 Flag diffsign; /* non-0 if arguments have different sign */ |
|
3843 Unit *acc; /* accumulator for result */ |
|
3844 Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */ |
|
3845 /* allocations when called from */ |
|
3846 /* other operations, notable exp] */ |
|
3847 Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */ |
|
3848 Int reqdigits=set->digits; /* local copy; requested DIGITS */ |
|
3849 Int padding; /* work */ |
|
3850 |
|
3851 #if DECCHECK |
|
3852 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
3853 #endif |
|
3854 |
|
3855 do { /* protect allocated storage */ |
|
3856 #if DECSUBSET |
|
3857 if (!set->extended) { |
|
3858 /* reduce operands and set lostDigits status, as needed */ |
|
3859 if (lhs->digits>reqdigits) { |
|
3860 alloclhs=decRoundOperand(lhs, set, status); |
|
3861 if (alloclhs==NULL) break; |
|
3862 lhs=alloclhs; |
|
3863 } |
|
3864 if (rhs->digits>reqdigits) { |
|
3865 allocrhs=decRoundOperand(rhs, set, status); |
|
3866 if (allocrhs==NULL) break; |
|
3867 rhs=allocrhs; |
|
3868 } |
|
3869 } |
|
3870 #endif |
|
3871 /* [following code does not require input rounding] */ |
|
3872 |
|
3873 /* note whether signs differ [used all paths] */ |
|
3874 diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); |
|
3875 |
|
3876 /* handle infinities and NaNs */ |
|
3877 if (SPECIALARGS) { /* a special bit set */ |
|
3878 if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */ |
|
3879 decNaNs(res, lhs, rhs, set, status); |
|
3880 else { /* one or two infinities */ |
|
3881 if (decNumberIsInfinite(lhs)) { /* LHS is infinity */ |
|
3882 /* two infinities with different signs is invalid */ |
|
3883 if (decNumberIsInfinite(rhs) && diffsign) { |
|
3884 *status|=DEC_Invalid_operation; |
|
3885 break; |
|
3886 } |
|
3887 bits=lhs->bits & DECNEG; /* get sign from LHS */ |
|
3888 } |
|
3889 else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */ |
|
3890 bits|=DECINF; |
|
3891 uprv_decNumberZero(res); |
|
3892 res->bits=bits; /* set +/- infinity */ |
|
3893 } /* an infinity */ |
|
3894 break; |
|
3895 } |
|
3896 |
|
3897 /* Quick exit for add 0s; return the non-0, modified as need be */ |
|
3898 if (ISZERO(lhs)) { |
|
3899 Int adjust; /* work */ |
|
3900 Int lexp=lhs->exponent; /* save in case LHS==RES */ |
|
3901 bits=lhs->bits; /* .. */ |
|
3902 residue=0; /* clear accumulator */ |
|
3903 decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */ |
|
3904 res->bits^=negate; /* flip if rhs was negated */ |
|
3905 #if DECSUBSET |
|
3906 if (set->extended) { /* exponents on zeros count */ |
|
3907 #endif |
|
3908 /* exponent will be the lower of the two */ |
|
3909 adjust=lexp-res->exponent; /* adjustment needed [if -ve] */ |
|
3910 if (ISZERO(res)) { /* both 0: special IEEE 754 rules */ |
|
3911 if (adjust<0) res->exponent=lexp; /* set exponent */ |
|
3912 /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */ |
|
3913 if (diffsign) { |
|
3914 if (set->round!=DEC_ROUND_FLOOR) res->bits=0; |
|
3915 else res->bits=DECNEG; /* preserve 0 sign */ |
|
3916 } |
|
3917 } |
|
3918 else { /* non-0 res */ |
|
3919 if (adjust<0) { /* 0-padding needed */ |
|
3920 if ((res->digits-adjust)>set->digits) { |
|
3921 adjust=res->digits-set->digits; /* to fit exactly */ |
|
3922 *status|=DEC_Rounded; /* [but exact] */ |
|
3923 } |
|
3924 res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
|
3925 res->exponent+=adjust; /* set the exponent. */ |
|
3926 } |
|
3927 } /* non-0 res */ |
|
3928 #if DECSUBSET |
|
3929 } /* extended */ |
|
3930 #endif |
|
3931 decFinish(res, set, &residue, status); /* clean and finalize */ |
|
3932 break;} |
|
3933 |
|
3934 if (ISZERO(rhs)) { /* [lhs is non-zero] */ |
|
3935 Int adjust; /* work */ |
|
3936 Int rexp=rhs->exponent; /* save in case RHS==RES */ |
|
3937 bits=rhs->bits; /* be clean */ |
|
3938 residue=0; /* clear accumulator */ |
|
3939 decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */ |
|
3940 #if DECSUBSET |
|
3941 if (set->extended) { /* exponents on zeros count */ |
|
3942 #endif |
|
3943 /* exponent will be the lower of the two */ |
|
3944 /* [0-0 case handled above] */ |
|
3945 adjust=rexp-res->exponent; /* adjustment needed [if -ve] */ |
|
3946 if (adjust<0) { /* 0-padding needed */ |
|
3947 if ((res->digits-adjust)>set->digits) { |
|
3948 adjust=res->digits-set->digits; /* to fit exactly */ |
|
3949 *status|=DEC_Rounded; /* [but exact] */ |
|
3950 } |
|
3951 res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
|
3952 res->exponent+=adjust; /* set the exponent. */ |
|
3953 } |
|
3954 #if DECSUBSET |
|
3955 } /* extended */ |
|
3956 #endif |
|
3957 decFinish(res, set, &residue, status); /* clean and finalize */ |
|
3958 break;} |
|
3959 |
|
3960 /* [NB: both fastpath and mainpath code below assume these cases */ |
|
3961 /* (notably 0-0) have already been handled] */ |
|
3962 |
|
3963 /* calculate the padding needed to align the operands */ |
|
3964 padding=rhs->exponent-lhs->exponent; |
|
3965 |
|
3966 /* Fastpath cases where the numbers are aligned and normal, the RHS */ |
|
3967 /* is all in one unit, no operand rounding is needed, and no carry, */ |
|
3968 /* lengthening, or borrow is needed */ |
|
3969 if (padding==0 |
|
3970 && rhs->digits<=DECDPUN |
|
3971 && rhs->exponent>=set->emin /* [some normals drop through] */ |
|
3972 && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */ |
|
3973 && rhs->digits<=reqdigits |
|
3974 && lhs->digits<=reqdigits) { |
|
3975 Int partial=*lhs->lsu; |
|
3976 if (!diffsign) { /* adding */ |
|
3977 partial+=*rhs->lsu; |
|
3978 if ((partial<=DECDPUNMAX) /* result fits in unit */ |
|
3979 && (lhs->digits>=DECDPUN || /* .. and no digits-count change */ |
|
3980 partial<(Int)powers[lhs->digits])) { /* .. */ |
|
3981 if (res!=lhs) uprv_decNumberCopy(res, lhs); /* not in place */ |
|
3982 *res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */ |
|
3983 break; |
|
3984 } |
|
3985 /* else drop out for careful add */ |
|
3986 } |
|
3987 else { /* signs differ */ |
|
3988 partial-=*rhs->lsu; |
|
3989 if (partial>0) { /* no borrow needed, and non-0 result */ |
|
3990 if (res!=lhs) uprv_decNumberCopy(res, lhs); /* not in place */ |
|
3991 *res->lsu=(Unit)partial; |
|
3992 /* this could have reduced digits [but result>0] */ |
|
3993 res->digits=decGetDigits(res->lsu, D2U(res->digits)); |
|
3994 break; |
|
3995 } |
|
3996 /* else drop out for careful subtract */ |
|
3997 } |
|
3998 } |
|
3999 |
|
4000 /* Now align (pad) the lhs or rhs so they can be added or */ |
|
4001 /* subtracted, as necessary. If one number is much larger than */ |
|
4002 /* the other (that is, if in plain form there is a least one */ |
|
4003 /* digit between the lowest digit of one and the highest of the */ |
|
4004 /* other) padding with up to DIGITS-1 trailing zeros may be */ |
|
4005 /* needed; then apply rounding (as exotic rounding modes may be */ |
|
4006 /* affected by the residue). */ |
|
4007 rhsshift=0; /* rhs shift to left (padding) in Units */ |
|
4008 bits=lhs->bits; /* assume sign is that of LHS */ |
|
4009 mult=1; /* likely multiplier */ |
|
4010 |
|
4011 /* [if padding==0 the operands are aligned; no padding is needed] */ |
|
4012 if (padding!=0) { |
|
4013 /* some padding needed; always pad the RHS, as any required */ |
|
4014 /* padding can then be effected by a simple combination of */ |
|
4015 /* shifts and a multiply */ |
|
4016 Flag swapped=0; |
|
4017 if (padding<0) { /* LHS needs the padding */ |
|
4018 const decNumber *t; |
|
4019 padding=-padding; /* will be +ve */ |
|
4020 bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */ |
|
4021 t=lhs; lhs=rhs; rhs=t; |
|
4022 swapped=1; |
|
4023 } |
|
4024 |
|
4025 /* If, after pad, rhs would be longer than lhs by digits+1 or */ |
|
4026 /* more then lhs cannot affect the answer, except as a residue, */ |
|
4027 /* so only need to pad up to a length of DIGITS+1. */ |
|
4028 if (rhs->digits+padding > lhs->digits+reqdigits+1) { |
|
4029 /* The RHS is sufficient */ |
|
4030 /* for residue use the relative sign indication... */ |
|
4031 Int shift=reqdigits-rhs->digits; /* left shift needed */ |
|
4032 residue=1; /* residue for rounding */ |
|
4033 if (diffsign) residue=-residue; /* signs differ */ |
|
4034 /* copy, shortening if necessary */ |
|
4035 decCopyFit(res, rhs, set, &residue, status); |
|
4036 /* if it was already shorter, then need to pad with zeros */ |
|
4037 if (shift>0) { |
|
4038 res->digits=decShiftToMost(res->lsu, res->digits, shift); |
|
4039 res->exponent-=shift; /* adjust the exponent. */ |
|
4040 } |
|
4041 /* flip the result sign if unswapped and rhs was negated */ |
|
4042 if (!swapped) res->bits^=negate; |
|
4043 decFinish(res, set, &residue, status); /* done */ |
|
4044 break;} |
|
4045 |
|
4046 /* LHS digits may affect result */ |
|
4047 rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */ |
|
4048 mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */ |
|
4049 } /* padding needed */ |
|
4050 |
|
4051 if (diffsign) mult=-mult; /* signs differ */ |
|
4052 |
|
4053 /* determine the longer operand */ |
|
4054 maxdigits=rhs->digits+padding; /* virtual length of RHS */ |
|
4055 if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
|
4056 |
|
4057 /* Decide on the result buffer to use; if possible place directly */ |
|
4058 /* into result. */ |
|
4059 acc=res->lsu; /* assume add direct to result */ |
|
4060 /* If destructive overlap, or the number is too long, or a carry or */ |
|
4061 /* borrow to DIGITS+1 might be possible, a buffer must be used. */ |
|
4062 /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */ |
|
4063 if ((maxdigits>=reqdigits) /* is, or could be, too large */ |
|
4064 || (res==rhs && rhsshift>0)) { /* destructive overlap */ |
|
4065 /* buffer needed, choose it; units for maxdigits digits will be */ |
|
4066 /* needed, +1 Unit for carry or borrow */ |
|
4067 Int need=D2U(maxdigits)+1; |
|
4068 acc=accbuff; /* assume use local buffer */ |
|
4069 if (need*sizeof(Unit)>sizeof(accbuff)) { |
|
4070 /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */ |
|
4071 allocacc=(Unit *)malloc(need*sizeof(Unit)); |
|
4072 if (allocacc==NULL) { /* hopeless -- abandon */ |
|
4073 *status|=DEC_Insufficient_storage; |
|
4074 break;} |
|
4075 acc=allocacc; |
|
4076 } |
|
4077 } |
|
4078 |
|
4079 res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */ |
|
4080 res->exponent=lhs->exponent; /* .. operands (even if aliased) */ |
|
4081 |
|
4082 #if DECTRACE |
|
4083 decDumpAr('A', lhs->lsu, D2U(lhs->digits)); |
|
4084 decDumpAr('B', rhs->lsu, D2U(rhs->digits)); |
|
4085 printf(" :h: %ld %ld\n", rhsshift, mult); |
|
4086 #endif |
|
4087 |
|
4088 /* add [A+B*m] or subtract [A+B*(-m)] */ |
|
4089 U_ASSERT(rhs->digits > 0); |
|
4090 U_ASSERT(lhs->digits > 0); |
|
4091 res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), |
|
4092 rhs->lsu, D2U(rhs->digits), |
|
4093 rhsshift, acc, mult) |
|
4094 *DECDPUN; /* [units -> digits] */ |
|
4095 if (res->digits<0) { /* borrowed... */ |
|
4096 res->digits=-res->digits; |
|
4097 res->bits^=DECNEG; /* flip the sign */ |
|
4098 } |
|
4099 #if DECTRACE |
|
4100 decDumpAr('+', acc, D2U(res->digits)); |
|
4101 #endif |
|
4102 |
|
4103 /* If a buffer was used the result must be copied back, possibly */ |
|
4104 /* shortening. (If no buffer was used then the result must have */ |
|
4105 /* fit, so can't need rounding and residue must be 0.) */ |
|
4106 residue=0; /* clear accumulator */ |
|
4107 if (acc!=res->lsu) { |
|
4108 #if DECSUBSET |
|
4109 if (set->extended) { /* round from first significant digit */ |
|
4110 #endif |
|
4111 /* remove leading zeros that were added due to rounding up to */ |
|
4112 /* integral Units -- before the test for rounding. */ |
|
4113 if (res->digits>reqdigits) |
|
4114 res->digits=decGetDigits(acc, D2U(res->digits)); |
|
4115 decSetCoeff(res, set, acc, res->digits, &residue, status); |
|
4116 #if DECSUBSET |
|
4117 } |
|
4118 else { /* subset arithmetic rounds from original significant digit */ |
|
4119 /* May have an underestimate. This only occurs when both */ |
|
4120 /* numbers fit in DECDPUN digits and are padding with a */ |
|
4121 /* negative multiple (-10, -100...) and the top digit(s) become */ |
|
4122 /* 0. (This only matters when using X3.274 rules where the */ |
|
4123 /* leading zero could be included in the rounding.) */ |
|
4124 if (res->digits<maxdigits) { |
|
4125 *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */ |
|
4126 res->digits=maxdigits; |
|
4127 } |
|
4128 else { |
|
4129 /* remove leading zeros that added due to rounding up to */ |
|
4130 /* integral Units (but only those in excess of the original */ |
|
4131 /* maxdigits length, unless extended) before test for rounding. */ |
|
4132 if (res->digits>reqdigits) { |
|
4133 res->digits=decGetDigits(acc, D2U(res->digits)); |
|
4134 if (res->digits<maxdigits) res->digits=maxdigits; |
|
4135 } |
|
4136 } |
|
4137 decSetCoeff(res, set, acc, res->digits, &residue, status); |
|
4138 /* Now apply rounding if needed before removing leading zeros. */ |
|
4139 /* This is safe because subnormals are not a possibility */ |
|
4140 if (residue!=0) { |
|
4141 decApplyRound(res, set, residue, status); |
|
4142 residue=0; /* did what needed to be done */ |
|
4143 } |
|
4144 } /* subset */ |
|
4145 #endif |
|
4146 } /* used buffer */ |
|
4147 |
|
4148 /* strip leading zeros [these were left on in case of subset subtract] */ |
|
4149 res->digits=decGetDigits(res->lsu, D2U(res->digits)); |
|
4150 |
|
4151 /* apply checks and rounding */ |
|
4152 decFinish(res, set, &residue, status); |
|
4153 |
|
4154 /* "When the sum of two operands with opposite signs is exactly */ |
|
4155 /* zero, the sign of that sum shall be '+' in all rounding modes */ |
|
4156 /* except round toward -Infinity, in which mode that sign shall be */ |
|
4157 /* '-'." [Subset zeros also never have '-', set by decFinish.] */ |
|
4158 if (ISZERO(res) && diffsign |
|
4159 #if DECSUBSET |
|
4160 && set->extended |
|
4161 #endif |
|
4162 && (*status&DEC_Inexact)==0) { |
|
4163 if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */ |
|
4164 else res->bits&=~DECNEG; /* sign + */ |
|
4165 } |
|
4166 } while(0); /* end protected */ |
|
4167 |
|
4168 if (allocacc!=NULL) free(allocacc); /* drop any storage used */ |
|
4169 #if DECSUBSET |
|
4170 if (allocrhs!=NULL) free(allocrhs); /* .. */ |
|
4171 if (alloclhs!=NULL) free(alloclhs); /* .. */ |
|
4172 #endif |
|
4173 return res; |
|
4174 } /* decAddOp */ |
|
4175 |
|
4176 /* ------------------------------------------------------------------ */ |
|
4177 /* decDivideOp -- division operation */ |
|
4178 /* */ |
|
4179 /* This routine performs the calculations for all four division */ |
|
4180 /* operators (divide, divideInteger, remainder, remainderNear). */ |
|
4181 /* */ |
|
4182 /* C=A op B */ |
|
4183 /* */ |
|
4184 /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
|
4185 /* lhs is A */ |
|
4186 /* rhs is B */ |
|
4187 /* set is the context */ |
|
4188 /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ |
|
4189 /* status is the usual accumulator */ |
|
4190 /* */ |
|
4191 /* C must have space for set->digits digits. */ |
|
4192 /* */ |
|
4193 /* ------------------------------------------------------------------ */ |
|
4194 /* The underlying algorithm of this routine is the same as in the */ |
|
4195 /* 1981 S/370 implementation, that is, non-restoring long division */ |
|
4196 /* with bi-unit (rather than bi-digit) estimation for each unit */ |
|
4197 /* multiplier. In this pseudocode overview, complications for the */ |
|
4198 /* Remainder operators and division residues for exact rounding are */ |
|
4199 /* omitted for clarity. */ |
|
4200 /* */ |
|
4201 /* Prepare operands and handle special values */ |
|
4202 /* Test for x/0 and then 0/x */ |
|
4203 /* Exp =Exp1 - Exp2 */ |
|
4204 /* Exp =Exp +len(var1) -len(var2) */ |
|
4205 /* Sign=Sign1 * Sign2 */ |
|
4206 /* Pad accumulator (Var1) to double-length with 0's (pad1) */ |
|
4207 /* Pad Var2 to same length as Var1 */ |
|
4208 /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ |
|
4209 /* have=0 */ |
|
4210 /* Do until (have=digits+1 OR residue=0) */ |
|
4211 /* if exp<0 then if integer divide/residue then leave */ |
|
4212 /* this_unit=0 */ |
|
4213 /* Do forever */ |
|
4214 /* compare numbers */ |
|
4215 /* if <0 then leave inner_loop */ |
|
4216 /* if =0 then (* quick exit without subtract *) do */ |
|
4217 /* this_unit=this_unit+1; output this_unit */ |
|
4218 /* leave outer_loop; end */ |
|
4219 /* Compare lengths of numbers (mantissae): */ |
|
4220 /* If same then tops2=msu2pair -- {units 1&2 of var2} */ |
|
4221 /* else tops2=msu2plus -- {0, unit 1 of var2} */ |
|
4222 /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ |
|
4223 /* mult=tops1/tops2 -- Good and safe guess at divisor */ |
|
4224 /* if mult=0 then mult=1 */ |
|
4225 /* this_unit=this_unit+mult */ |
|
4226 /* subtract */ |
|
4227 /* end inner_loop */ |
|
4228 /* if have\=0 | this_unit\=0 then do */ |
|
4229 /* output this_unit */ |
|
4230 /* have=have+1; end */ |
|
4231 /* var2=var2/10 */ |
|
4232 /* exp=exp-1 */ |
|
4233 /* end outer_loop */ |
|
4234 /* exp=exp+1 -- set the proper exponent */ |
|
4235 /* if have=0 then generate answer=0 */ |
|
4236 /* Return (Result is defined by Var1) */ |
|
4237 /* */ |
|
4238 /* ------------------------------------------------------------------ */ |
|
4239 /* Two working buffers are needed during the division; one (digits+ */ |
|
4240 /* 1) to accumulate the result, and the other (up to 2*digits+1) for */ |
|
4241 /* long subtractions. These are acc and var1 respectively. */ |
|
4242 /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ |
|
4243 /* The static buffers may be larger than might be expected to allow */ |
|
4244 /* for calls from higher-level funtions (notable exp). */ |
|
4245 /* ------------------------------------------------------------------ */ |
|
4246 static decNumber * decDivideOp(decNumber *res, |
|
4247 const decNumber *lhs, const decNumber *rhs, |
|
4248 decContext *set, Flag op, uInt *status) { |
|
4249 #if DECSUBSET |
|
4250 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
|
4251 decNumber *allocrhs=NULL; /* .., rhs */ |
|
4252 #endif |
|
4253 Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */ |
|
4254 Unit *acc=accbuff; /* -> accumulator array for result */ |
|
4255 Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */ |
|
4256 Unit *accnext; /* -> where next digit will go */ |
|
4257 Int acclength; /* length of acc needed [Units] */ |
|
4258 Int accunits; /* count of units accumulated */ |
|
4259 Int accdigits; /* count of digits accumulated */ |
|
4260 |
|
4261 Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)]; /* buffer for var1 */ |
|
4262 Unit *var1=varbuff; /* -> var1 array for long subtraction */ |
|
4263 Unit *varalloc=NULL; /* -> allocated buffer, iff used */ |
|
4264 Unit *msu1; /* -> msu of var1 */ |
|
4265 |
|
4266 const Unit *var2; /* -> var2 array */ |
|
4267 const Unit *msu2; /* -> msu of var2 */ |
|
4268 Int msu2plus; /* msu2 plus one [does not vary] */ |
|
4269 eInt msu2pair; /* msu2 pair plus one [does not vary] */ |
|
4270 |
|
4271 Int var1units, var2units; /* actual lengths */ |
|
4272 Int var2ulen; /* logical length (units) */ |
|
4273 Int var1initpad=0; /* var1 initial padding (digits) */ |
|
4274 Int maxdigits; /* longest LHS or required acc length */ |
|
4275 Int mult; /* multiplier for subtraction */ |
|
4276 Unit thisunit; /* current unit being accumulated */ |
|
4277 Int residue; /* for rounding */ |
|
4278 Int reqdigits=set->digits; /* requested DIGITS */ |
|
4279 Int exponent; /* working exponent */ |
|
4280 Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */ |
|
4281 uByte bits; /* working sign */ |
|
4282 Unit *target; /* work */ |
|
4283 const Unit *source; /* .. */ |
|
4284 uInt const *pow; /* .. */ |
|
4285 Int shift, cut; /* .. */ |
|
4286 #if DECSUBSET |
|
4287 Int dropped; /* work */ |
|
4288 #endif |
|
4289 |
|
4290 #if DECCHECK |
|
4291 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
4292 #endif |
|
4293 |
|
4294 do { /* protect allocated storage */ |
|
4295 #if DECSUBSET |
|
4296 if (!set->extended) { |
|
4297 /* reduce operands and set lostDigits status, as needed */ |
|
4298 if (lhs->digits>reqdigits) { |
|
4299 alloclhs=decRoundOperand(lhs, set, status); |
|
4300 if (alloclhs==NULL) break; |
|
4301 lhs=alloclhs; |
|
4302 } |
|
4303 if (rhs->digits>reqdigits) { |
|
4304 allocrhs=decRoundOperand(rhs, set, status); |
|
4305 if (allocrhs==NULL) break; |
|
4306 rhs=allocrhs; |
|
4307 } |
|
4308 } |
|
4309 #endif |
|
4310 /* [following code does not require input rounding] */ |
|
4311 |
|
4312 bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */ |
|
4313 |
|
4314 /* handle infinities and NaNs */ |
|
4315 if (SPECIALARGS) { /* a special bit set */ |
|
4316 if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ |
|
4317 decNaNs(res, lhs, rhs, set, status); |
|
4318 break; |
|
4319 } |
|
4320 /* one or two infinities */ |
|
4321 if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */ |
|
4322 if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */ |
|
4323 op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */ |
|
4324 *status|=DEC_Invalid_operation; |
|
4325 break; |
|
4326 } |
|
4327 /* [Note that infinity/0 raises no exceptions] */ |
|
4328 uprv_decNumberZero(res); |
|
4329 res->bits=bits|DECINF; /* set +/- infinity */ |
|
4330 break; |
|
4331 } |
|
4332 else { /* RHS (divisor) is infinite */ |
|
4333 residue=0; |
|
4334 if (op&(REMAINDER|REMNEAR)) { |
|
4335 /* result is [finished clone of] lhs */ |
|
4336 decCopyFit(res, lhs, set, &residue, status); |
|
4337 } |
|
4338 else { /* a division */ |
|
4339 uprv_decNumberZero(res); |
|
4340 res->bits=bits; /* set +/- zero */ |
|
4341 /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */ |
|
4342 /* is a 0 with infinitely negative exponent, clamped to minimum */ |
|
4343 if (op&DIVIDE) { |
|
4344 res->exponent=set->emin-set->digits+1; |
|
4345 *status|=DEC_Clamped; |
|
4346 } |
|
4347 } |
|
4348 decFinish(res, set, &residue, status); |
|
4349 break; |
|
4350 } |
|
4351 } |
|
4352 |
|
4353 /* handle 0 rhs (x/0) */ |
|
4354 if (ISZERO(rhs)) { /* x/0 is always exceptional */ |
|
4355 if (ISZERO(lhs)) { |
|
4356 uprv_decNumberZero(res); /* [after lhs test] */ |
|
4357 *status|=DEC_Division_undefined;/* 0/0 will become NaN */ |
|
4358 } |
|
4359 else { |
|
4360 uprv_decNumberZero(res); |
|
4361 if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; |
|
4362 else { |
|
4363 *status|=DEC_Division_by_zero; /* x/0 */ |
|
4364 res->bits=bits|DECINF; /* .. is +/- Infinity */ |
|
4365 } |
|
4366 } |
|
4367 break;} |
|
4368 |
|
4369 /* handle 0 lhs (0/x) */ |
|
4370 if (ISZERO(lhs)) { /* 0/x [x!=0] */ |
|
4371 #if DECSUBSET |
|
4372 if (!set->extended) uprv_decNumberZero(res); |
|
4373 else { |
|
4374 #endif |
|
4375 if (op&DIVIDE) { |
|
4376 residue=0; |
|
4377 exponent=lhs->exponent-rhs->exponent; /* ideal exponent */ |
|
4378 uprv_decNumberCopy(res, lhs); /* [zeros always fit] */ |
|
4379 res->bits=bits; /* sign as computed */ |
|
4380 res->exponent=exponent; /* exponent, too */ |
|
4381 decFinalize(res, set, &residue, status); /* check exponent */ |
|
4382 } |
|
4383 else if (op&DIVIDEINT) { |
|
4384 uprv_decNumberZero(res); /* integer 0 */ |
|
4385 res->bits=bits; /* sign as computed */ |
|
4386 } |
|
4387 else { /* a remainder */ |
|
4388 exponent=rhs->exponent; /* [save in case overwrite] */ |
|
4389 uprv_decNumberCopy(res, lhs); /* [zeros always fit] */ |
|
4390 if (exponent<res->exponent) res->exponent=exponent; /* use lower */ |
|
4391 } |
|
4392 #if DECSUBSET |
|
4393 } |
|
4394 #endif |
|
4395 break;} |
|
4396 |
|
4397 /* Precalculate exponent. This starts off adjusted (and hence fits */ |
|
4398 /* in 31 bits) and becomes the usual unadjusted exponent as the */ |
|
4399 /* division proceeds. The order of evaluation is important, here, */ |
|
4400 /* to avoid wrap. */ |
|
4401 exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); |
|
4402 |
|
4403 /* If the working exponent is -ve, then some quick exits are */ |
|
4404 /* possible because the quotient is known to be <1 */ |
|
4405 /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */ |
|
4406 if (exponent<0 && !(op==DIVIDE)) { |
|
4407 if (op&DIVIDEINT) { |
|
4408 uprv_decNumberZero(res); /* integer part is 0 */ |
|
4409 #if DECSUBSET |
|
4410 if (set->extended) |
|
4411 #endif |
|
4412 res->bits=bits; /* set +/- zero */ |
|
4413 break;} |
|
4414 /* fastpath remainders so long as the lhs has the smaller */ |
|
4415 /* (or equal) exponent */ |
|
4416 if (lhs->exponent<=rhs->exponent) { |
|
4417 if (op&REMAINDER || exponent<-1) { |
|
4418 /* It is REMAINDER or safe REMNEAR; result is [finished */ |
|
4419 /* clone of] lhs (r = x - 0*y) */ |
|
4420 residue=0; |
|
4421 decCopyFit(res, lhs, set, &residue, status); |
|
4422 decFinish(res, set, &residue, status); |
|
4423 break; |
|
4424 } |
|
4425 /* [unsafe REMNEAR drops through] */ |
|
4426 } |
|
4427 } /* fastpaths */ |
|
4428 |
|
4429 /* Long (slow) division is needed; roll up the sleeves... */ |
|
4430 |
|
4431 /* The accumulator will hold the quotient of the division. */ |
|
4432 /* If it needs to be too long for stack storage, then allocate. */ |
|
4433 acclength=D2U(reqdigits+DECDPUN); /* in Units */ |
|
4434 if (acclength*sizeof(Unit)>sizeof(accbuff)) { |
|
4435 /* printf("malloc dvacc %ld units\n", acclength); */ |
|
4436 allocacc=(Unit *)malloc(acclength*sizeof(Unit)); |
|
4437 if (allocacc==NULL) { /* hopeless -- abandon */ |
|
4438 *status|=DEC_Insufficient_storage; |
|
4439 break;} |
|
4440 acc=allocacc; /* use the allocated space */ |
|
4441 } |
|
4442 |
|
4443 /* var1 is the padded LHS ready for subtractions. */ |
|
4444 /* If it needs to be too long for stack storage, then allocate. */ |
|
4445 /* The maximum units needed for var1 (long subtraction) is: */ |
|
4446 /* Enough for */ |
|
4447 /* (rhs->digits+reqdigits-1) -- to allow full slide to right */ |
|
4448 /* or (lhs->digits) -- to allow for long lhs */ |
|
4449 /* whichever is larger */ |
|
4450 /* +1 -- for rounding of slide to right */ |
|
4451 /* +1 -- for leading 0s */ |
|
4452 /* +1 -- for pre-adjust if a remainder or DIVIDEINT */ |
|
4453 /* [Note: unused units do not participate in decUnitAddSub data] */ |
|
4454 maxdigits=rhs->digits+reqdigits-1; |
|
4455 if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
|
4456 var1units=D2U(maxdigits)+2; |
|
4457 /* allocate a guard unit above msu1 for REMAINDERNEAR */ |
|
4458 if (!(op&DIVIDE)) var1units++; |
|
4459 if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { |
|
4460 /* printf("malloc dvvar %ld units\n", var1units+1); */ |
|
4461 varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); |
|
4462 if (varalloc==NULL) { /* hopeless -- abandon */ |
|
4463 *status|=DEC_Insufficient_storage; |
|
4464 break;} |
|
4465 var1=varalloc; /* use the allocated space */ |
|
4466 } |
|
4467 |
|
4468 /* Extend the lhs and rhs to full long subtraction length. The lhs */ |
|
4469 /* is truly extended into the var1 buffer, with 0 padding, so a */ |
|
4470 /* subtract in place is always possible. The rhs (var2) has */ |
|
4471 /* virtual padding (implemented by decUnitAddSub). */ |
|
4472 /* One guard unit was allocated above msu1 for rem=rem+rem in */ |
|
4473 /* REMAINDERNEAR. */ |
|
4474 msu1=var1+var1units-1; /* msu of var1 */ |
|
4475 source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */ |
|
4476 for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; |
|
4477 for (; target>=var1; target--) *target=0; |
|
4478 |
|
4479 /* rhs (var2) is left-aligned with var1 at the start */ |
|
4480 var2ulen=var1units; /* rhs logical length (units) */ |
|
4481 var2units=D2U(rhs->digits); /* rhs actual length (units) */ |
|
4482 var2=rhs->lsu; /* -> rhs array */ |
|
4483 msu2=var2+var2units-1; /* -> msu of var2 [never changes] */ |
|
4484 /* now set up the variables which will be used for estimating the */ |
|
4485 /* multiplication factor. If these variables are not exact, add */ |
|
4486 /* 1 to make sure that the multiplier is never overestimated. */ |
|
4487 msu2plus=*msu2; /* it's value .. */ |
|
4488 if (var2units>1) msu2plus++; /* .. +1 if any more */ |
|
4489 msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */ |
|
4490 if (var2units>1) { /* .. [else treat 2nd as 0] */ |
|
4491 msu2pair+=*(msu2-1); /* .. */ |
|
4492 if (var2units>2) msu2pair++; /* .. +1 if any more */ |
|
4493 } |
|
4494 |
|
4495 /* The calculation is working in units, which may have leading zeros, */ |
|
4496 /* but the exponent was calculated on the assumption that they are */ |
|
4497 /* both left-aligned. Adjust the exponent to compensate: add the */ |
|
4498 /* number of leading zeros in var1 msu and subtract those in var2 msu. */ |
|
4499 /* [This is actually done by counting the digits and negating, as */ |
|
4500 /* lead1=DECDPUN-digits1, and similarly for lead2.] */ |
|
4501 for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; |
|
4502 for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; |
|
4503 |
|
4504 /* Now, if doing an integer divide or remainder, ensure that */ |
|
4505 /* the result will be Unit-aligned. To do this, shift the var1 */ |
|
4506 /* accumulator towards least if need be. (It's much easier to */ |
|
4507 /* do this now than to reassemble the residue afterwards, if */ |
|
4508 /* doing a remainder.) Also ensure the exponent is not negative. */ |
|
4509 if (!(op&DIVIDE)) { |
|
4510 Unit *u; /* work */ |
|
4511 /* save the initial 'false' padding of var1, in digits */ |
|
4512 var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; |
|
4513 /* Determine the shift to do. */ |
|
4514 if (exponent<0) cut=-exponent; |
|
4515 else cut=DECDPUN-exponent%DECDPUN; |
|
4516 decShiftToLeast(var1, var1units, cut); |
|
4517 exponent+=cut; /* maintain numerical value */ |
|
4518 var1initpad-=cut; /* .. and reduce padding */ |
|
4519 /* clean any most-significant units which were just emptied */ |
|
4520 for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; |
|
4521 } /* align */ |
|
4522 else { /* is DIVIDE */ |
|
4523 maxexponent=lhs->exponent-rhs->exponent; /* save */ |
|
4524 /* optimization: if the first iteration will just produce 0, */ |
|
4525 /* preadjust to skip it [valid for DIVIDE only] */ |
|
4526 if (*msu1<*msu2) { |
|
4527 var2ulen--; /* shift down */ |
|
4528 exponent-=DECDPUN; /* update the exponent */ |
|
4529 } |
|
4530 } |
|
4531 |
|
4532 /* ---- start the long-division loops ------------------------------ */ |
|
4533 accunits=0; /* no units accumulated yet */ |
|
4534 accdigits=0; /* .. or digits */ |
|
4535 accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */ |
|
4536 for (;;) { /* outer forever loop */ |
|
4537 thisunit=0; /* current unit assumed 0 */ |
|
4538 /* find the next unit */ |
|
4539 for (;;) { /* inner forever loop */ |
|
4540 /* strip leading zero units [from either pre-adjust or from */ |
|
4541 /* subtract last time around]. Leave at least one unit. */ |
|
4542 for (; *msu1==0 && msu1>var1; msu1--) var1units--; |
|
4543 |
|
4544 if (var1units<var2ulen) break; /* var1 too low for subtract */ |
|
4545 if (var1units==var2ulen) { /* unit-by-unit compare needed */ |
|
4546 /* compare the two numbers, from msu */ |
|
4547 const Unit *pv1, *pv2; |
|
4548 Unit v2; /* units to compare */ |
|
4549 pv2=msu2; /* -> msu */ |
|
4550 for (pv1=msu1; ; pv1--, pv2--) { |
|
4551 /* v1=*pv1 -- always OK */ |
|
4552 v2=0; /* assume in padding */ |
|
4553 if (pv2>=var2) v2=*pv2; /* in range */ |
|
4554 if (*pv1!=v2) break; /* no longer the same */ |
|
4555 if (pv1==var1) break; /* done; leave pv1 as is */ |
|
4556 } |
|
4557 /* here when all inspected or a difference seen */ |
|
4558 if (*pv1<v2) break; /* var1 too low to subtract */ |
|
4559 if (*pv1==v2) { /* var1 == var2 */ |
|
4560 /* reach here if var1 and var2 are identical; subtraction */ |
|
4561 /* would increase digit by one, and the residue will be 0 so */ |
|
4562 /* the calculation is done; leave the loop with residue=0. */ |
|
4563 thisunit++; /* as though subtracted */ |
|
4564 *var1=0; /* set var1 to 0 */ |
|
4565 var1units=1; /* .. */ |
|
4566 break; /* from inner */ |
|
4567 } /* var1 == var2 */ |
|
4568 /* *pv1>v2. Prepare for real subtraction; the lengths are equal */ |
|
4569 /* Estimate the multiplier (there's always a msu1-1)... */ |
|
4570 /* Bring in two units of var2 to provide a good estimate. */ |
|
4571 mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); |
|
4572 } /* lengths the same */ |
|
4573 else { /* var1units > var2ulen, so subtraction is safe */ |
|
4574 /* The var2 msu is one unit towards the lsu of the var1 msu, */ |
|
4575 /* so only one unit for var2 can be used. */ |
|
4576 mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); |
|
4577 } |
|
4578 if (mult==0) mult=1; /* must always be at least 1 */ |
|
4579 /* subtraction needed; var1 is > var2 */ |
|
4580 thisunit=(Unit)(thisunit+mult); /* accumulate */ |
|
4581 /* subtract var1-var2, into var1; only the overlap needs */ |
|
4582 /* processing, as this is an in-place calculation */ |
|
4583 shift=var2ulen-var2units; |
|
4584 #if DECTRACE |
|
4585 decDumpAr('1', &var1[shift], var1units-shift); |
|
4586 decDumpAr('2', var2, var2units); |
|
4587 printf("m=%ld\n", -mult); |
|
4588 #endif |
|
4589 decUnitAddSub(&var1[shift], var1units-shift, |
|
4590 var2, var2units, 0, |
|
4591 &var1[shift], -mult); |
|
4592 #if DECTRACE |
|
4593 decDumpAr('#', &var1[shift], var1units-shift); |
|
4594 #endif |
|
4595 /* var1 now probably has leading zeros; these are removed at the */ |
|
4596 /* top of the inner loop. */ |
|
4597 } /* inner loop */ |
|
4598 |
|
4599 /* The next unit has been calculated in full; unless it's a */ |
|
4600 /* leading zero, add to acc */ |
|
4601 if (accunits!=0 || thisunit!=0) { /* is first or non-zero */ |
|
4602 *accnext=thisunit; /* store in accumulator */ |
|
4603 /* account exactly for the new digits */ |
|
4604 if (accunits==0) { |
|
4605 accdigits++; /* at least one */ |
|
4606 for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; |
|
4607 } |
|
4608 else accdigits+=DECDPUN; |
|
4609 accunits++; /* update count */ |
|
4610 accnext--; /* ready for next */ |
|
4611 if (accdigits>reqdigits) break; /* have enough digits */ |
|
4612 } |
|
4613 |
|
4614 /* if the residue is zero, the operation is done (unless divide */ |
|
4615 /* or divideInteger and still not enough digits yet) */ |
|
4616 if (*var1==0 && var1units==1) { /* residue is 0 */ |
|
4617 if (op&(REMAINDER|REMNEAR)) break; |
|
4618 if ((op&DIVIDE) && (exponent<=maxexponent)) break; |
|
4619 /* [drop through if divideInteger] */ |
|
4620 } |
|
4621 /* also done enough if calculating remainder or integer */ |
|
4622 /* divide and just did the last ('units') unit */ |
|
4623 if (exponent==0 && !(op&DIVIDE)) break; |
|
4624 |
|
4625 /* to get here, var1 is less than var2, so divide var2 by the per- */ |
|
4626 /* Unit power of ten and go for the next digit */ |
|
4627 var2ulen--; /* shift down */ |
|
4628 exponent-=DECDPUN; /* update the exponent */ |
|
4629 } /* outer loop */ |
|
4630 |
|
4631 /* ---- division is complete --------------------------------------- */ |
|
4632 /* here: acc has at least reqdigits+1 of good results (or fewer */ |
|
4633 /* if early stop), starting at accnext+1 (its lsu) */ |
|
4634 /* var1 has any residue at the stopping point */ |
|
4635 /* accunits is the number of digits collected in acc */ |
|
4636 if (accunits==0) { /* acc is 0 */ |
|
4637 accunits=1; /* show have a unit .. */ |
|
4638 accdigits=1; /* .. */ |
|
4639 *accnext=0; /* .. whose value is 0 */ |
|
4640 } |
|
4641 else accnext++; /* back to last placed */ |
|
4642 /* accnext now -> lowest unit of result */ |
|
4643 |
|
4644 residue=0; /* assume no residue */ |
|
4645 if (op&DIVIDE) { |
|
4646 /* record the presence of any residue, for rounding */ |
|
4647 if (*var1!=0 || var1units>1) residue=1; |
|
4648 else { /* no residue */ |
|
4649 /* Had an exact division; clean up spurious trailing 0s. */ |
|
4650 /* There will be at most DECDPUN-1, from the final multiply, */ |
|
4651 /* and then only if the result is non-0 (and even) and the */ |
|
4652 /* exponent is 'loose'. */ |
|
4653 #if DECDPUN>1 |
|
4654 Unit lsu=*accnext; |
|
4655 if (!(lsu&0x01) && (lsu!=0)) { |
|
4656 /* count the trailing zeros */ |
|
4657 Int drop=0; |
|
4658 for (;; drop++) { /* [will terminate because lsu!=0] */ |
|
4659 if (exponent>=maxexponent) break; /* don't chop real 0s */ |
|
4660 #if DECDPUN<=4 |
|
4661 if ((lsu-QUOT10(lsu, drop+1) |
|
4662 *powers[drop+1])!=0) break; /* found non-0 digit */ |
|
4663 #else |
|
4664 if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */ |
|
4665 #endif |
|
4666 exponent++; |
|
4667 } |
|
4668 if (drop>0) { |
|
4669 accunits=decShiftToLeast(accnext, accunits, drop); |
|
4670 accdigits=decGetDigits(accnext, accunits); |
|
4671 accunits=D2U(accdigits); |
|
4672 /* [exponent was adjusted in the loop] */ |
|
4673 } |
|
4674 } /* neither odd nor 0 */ |
|
4675 #endif |
|
4676 } /* exact divide */ |
|
4677 } /* divide */ |
|
4678 else /* op!=DIVIDE */ { |
|
4679 /* check for coefficient overflow */ |
|
4680 if (accdigits+exponent>reqdigits) { |
|
4681 *status|=DEC_Division_impossible; |
|
4682 break; |
|
4683 } |
|
4684 if (op & (REMAINDER|REMNEAR)) { |
|
4685 /* [Here, the exponent will be 0, because var1 was adjusted */ |
|
4686 /* appropriately.] */ |
|
4687 Int postshift; /* work */ |
|
4688 Flag wasodd=0; /* integer was odd */ |
|
4689 Unit *quotlsu; /* for save */ |
|
4690 Int quotdigits; /* .. */ |
|
4691 |
|
4692 bits=lhs->bits; /* remainder sign is always as lhs */ |
|
4693 |
|
4694 /* Fastpath when residue is truly 0 is worthwhile [and */ |
|
4695 /* simplifies the code below] */ |
|
4696 if (*var1==0 && var1units==1) { /* residue is 0 */ |
|
4697 Int exp=lhs->exponent; /* save min(exponents) */ |
|
4698 if (rhs->exponent<exp) exp=rhs->exponent; |
|
4699 uprv_decNumberZero(res); /* 0 coefficient */ |
|
4700 #if DECSUBSET |
|
4701 if (set->extended) |
|
4702 #endif |
|
4703 res->exponent=exp; /* .. with proper exponent */ |
|
4704 res->bits=(uByte)(bits&DECNEG); /* [cleaned] */ |
|
4705 decFinish(res, set, &residue, status); /* might clamp */ |
|
4706 break; |
|
4707 } |
|
4708 /* note if the quotient was odd */ |
|
4709 if (*accnext & 0x01) wasodd=1; /* acc is odd */ |
|
4710 quotlsu=accnext; /* save in case need to reinspect */ |
|
4711 quotdigits=accdigits; /* .. */ |
|
4712 |
|
4713 /* treat the residue, in var1, as the value to return, via acc */ |
|
4714 /* calculate the unused zero digits. This is the smaller of: */ |
|
4715 /* var1 initial padding (saved above) */ |
|
4716 /* var2 residual padding, which happens to be given by: */ |
|
4717 postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; |
|
4718 /* [the 'exponent' term accounts for the shifts during divide] */ |
|
4719 if (var1initpad<postshift) postshift=var1initpad; |
|
4720 |
|
4721 /* shift var1 the requested amount, and adjust its digits */ |
|
4722 var1units=decShiftToLeast(var1, var1units, postshift); |
|
4723 accnext=var1; |
|
4724 accdigits=decGetDigits(var1, var1units); |
|
4725 accunits=D2U(accdigits); |
|
4726 |
|
4727 exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */ |
|
4728 if (rhs->exponent<exponent) exponent=rhs->exponent; |
|
4729 |
|
4730 /* Now correct the result if doing remainderNear; if it */ |
|
4731 /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */ |
|
4732 /* the integer was odd then the result should be rem-rhs. */ |
|
4733 if (op&REMNEAR) { |
|
4734 Int compare, tarunits; /* work */ |
|
4735 Unit *up; /* .. */ |
|
4736 /* calculate remainder*2 into the var1 buffer (which has */ |
|
4737 /* 'headroom' of an extra unit and hence enough space) */ |
|
4738 /* [a dedicated 'double' loop would be faster, here] */ |
|
4739 tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, |
|
4740 0, accnext, 1); |
|
4741 /* decDumpAr('r', accnext, tarunits); */ |
|
4742 |
|
4743 /* Here, accnext (var1) holds tarunits Units with twice the */ |
|
4744 /* remainder's coefficient, which must now be compared to the */ |
|
4745 /* RHS. The remainder's exponent may be smaller than the RHS's. */ |
|
4746 compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), |
|
4747 rhs->exponent-exponent); |
|
4748 if (compare==BADINT) { /* deep trouble */ |
|
4749 *status|=DEC_Insufficient_storage; |
|
4750 break;} |
|
4751 |
|
4752 /* now restore the remainder by dividing by two; the lsu */ |
|
4753 /* is known to be even. */ |
|
4754 for (up=accnext; up<accnext+tarunits; up++) { |
|
4755 Int half; /* half to add to lower unit */ |
|
4756 half=*up & 0x01; |
|
4757 *up/=2; /* [shift] */ |
|
4758 if (!half) continue; |
|
4759 *(up-1)+=(DECDPUNMAX+1)/2; |
|
4760 } |
|
4761 /* [accunits still describes the original remainder length] */ |
|
4762 |
|
4763 if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */ |
|
4764 Int exp, expunits, exprem; /* work */ |
|
4765 /* This is effectively causing round-up of the quotient, */ |
|
4766 /* so if it was the rare case where it was full and all */ |
|
4767 /* nines, it would overflow and hence division-impossible */ |
|
4768 /* should be raised */ |
|
4769 Flag allnines=0; /* 1 if quotient all nines */ |
|
4770 if (quotdigits==reqdigits) { /* could be borderline */ |
|
4771 for (up=quotlsu; ; up++) { |
|
4772 if (quotdigits>DECDPUN) { |
|
4773 if (*up!=DECDPUNMAX) break;/* non-nines */ |
|
4774 } |
|
4775 else { /* this is the last Unit */ |
|
4776 if (*up==powers[quotdigits]-1) allnines=1; |
|
4777 break; |
|
4778 } |
|
4779 quotdigits-=DECDPUN; /* checked those digits */ |
|
4780 } /* up */ |
|
4781 } /* borderline check */ |
|
4782 if (allnines) { |
|
4783 *status|=DEC_Division_impossible; |
|
4784 break;} |
|
4785 |
|
4786 /* rem-rhs is needed; the sign will invert. Again, var1 */ |
|
4787 /* can safely be used for the working Units array. */ |
|
4788 exp=rhs->exponent-exponent; /* RHS padding needed */ |
|
4789 /* Calculate units and remainder from exponent. */ |
|
4790 expunits=exp/DECDPUN; |
|
4791 exprem=exp%DECDPUN; |
|
4792 /* subtract [A+B*(-m)]; the result will always be negative */ |
|
4793 accunits=-decUnitAddSub(accnext, accunits, |
|
4794 rhs->lsu, D2U(rhs->digits), |
|
4795 expunits, accnext, -(Int)powers[exprem]); |
|
4796 accdigits=decGetDigits(accnext, accunits); /* count digits exactly */ |
|
4797 accunits=D2U(accdigits); /* and recalculate the units for copy */ |
|
4798 /* [exponent is as for original remainder] */ |
|
4799 bits^=DECNEG; /* flip the sign */ |
|
4800 } |
|
4801 } /* REMNEAR */ |
|
4802 } /* REMAINDER or REMNEAR */ |
|
4803 } /* not DIVIDE */ |
|
4804 |
|
4805 /* Set exponent and bits */ |
|
4806 res->exponent=exponent; |
|
4807 res->bits=(uByte)(bits&DECNEG); /* [cleaned] */ |
|
4808 |
|
4809 /* Now the coefficient. */ |
|
4810 decSetCoeff(res, set, accnext, accdigits, &residue, status); |
|
4811 |
|
4812 decFinish(res, set, &residue, status); /* final cleanup */ |
|
4813 |
|
4814 #if DECSUBSET |
|
4815 /* If a divide then strip trailing zeros if subset [after round] */ |
|
4816 if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped); |
|
4817 #endif |
|
4818 } while(0); /* end protected */ |
|
4819 |
|
4820 if (varalloc!=NULL) free(varalloc); /* drop any storage used */ |
|
4821 if (allocacc!=NULL) free(allocacc); /* .. */ |
|
4822 #if DECSUBSET |
|
4823 if (allocrhs!=NULL) free(allocrhs); /* .. */ |
|
4824 if (alloclhs!=NULL) free(alloclhs); /* .. */ |
|
4825 #endif |
|
4826 return res; |
|
4827 } /* decDivideOp */ |
|
4828 |
|
4829 /* ------------------------------------------------------------------ */ |
|
4830 /* decMultiplyOp -- multiplication operation */ |
|
4831 /* */ |
|
4832 /* This routine performs the multiplication C=A x B. */ |
|
4833 /* */ |
|
4834 /* res is C, the result. C may be A and/or B (e.g., X=X*X) */ |
|
4835 /* lhs is A */ |
|
4836 /* rhs is B */ |
|
4837 /* set is the context */ |
|
4838 /* status is the usual accumulator */ |
|
4839 /* */ |
|
4840 /* C must have space for set->digits digits. */ |
|
4841 /* */ |
|
4842 /* ------------------------------------------------------------------ */ |
|
4843 /* 'Classic' multiplication is used rather than Karatsuba, as the */ |
|
4844 /* latter would give only a minor improvement for the short numbers */ |
|
4845 /* expected to be handled most (and uses much more memory). */ |
|
4846 /* */ |
|
4847 /* There are two major paths here: the general-purpose ('old code') */ |
|
4848 /* path which handles all DECDPUN values, and a fastpath version */ |
|
4849 /* which is used if 64-bit ints are available, DECDPUN<=4, and more */ |
|
4850 /* than two calls to decUnitAddSub would be made. */ |
|
4851 /* */ |
|
4852 /* The fastpath version lumps units together into 8-digit or 9-digit */ |
|
4853 /* chunks, and also uses a lazy carry strategy to minimise expensive */ |
|
4854 /* 64-bit divisions. The chunks are then broken apart again into */ |
|
4855 /* units for continuing processing. Despite this overhead, the */ |
|
4856 /* fastpath can speed up some 16-digit operations by 10x (and much */ |
|
4857 /* more for higher-precision calculations). */ |
|
4858 /* */ |
|
4859 /* A buffer always has to be used for the accumulator; in the */ |
|
4860 /* fastpath, buffers are also always needed for the chunked copies of */ |
|
4861 /* of the operand coefficients. */ |
|
4862 /* Static buffers are larger than needed just for multiply, to allow */ |
|
4863 /* for calls from other operations (notably exp). */ |
|
4864 /* ------------------------------------------------------------------ */ |
|
4865 #define FASTMUL (DECUSE64 && DECDPUN<5) |
|
4866 static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, |
|
4867 const decNumber *rhs, decContext *set, |
|
4868 uInt *status) { |
|
4869 Int accunits; /* Units of accumulator in use */ |
|
4870 Int exponent; /* work */ |
|
4871 Int residue=0; /* rounding residue */ |
|
4872 uByte bits; /* result sign */ |
|
4873 Unit *acc; /* -> accumulator Unit array */ |
|
4874 Int needbytes; /* size calculator */ |
|
4875 void *allocacc=NULL; /* -> allocated accumulator, iff allocated */ |
|
4876 Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */ |
|
4877 /* *4 for calls from other operations) */ |
|
4878 const Unit *mer, *mermsup; /* work */ |
|
4879 Int madlength; /* Units in multiplicand */ |
|
4880 Int shift; /* Units to shift multiplicand by */ |
|
4881 |
|
4882 #if FASTMUL |
|
4883 /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */ |
|
4884 /* (DECDPUN is 2 or 4) then work in base 10**8 */ |
|
4885 #if DECDPUN & 1 /* odd */ |
|
4886 #define FASTBASE 1000000000 /* base */ |
|
4887 #define FASTDIGS 9 /* digits in base */ |
|
4888 #define FASTLAZY 18 /* carry resolution point [1->18] */ |
|
4889 #else |
|
4890 #define FASTBASE 100000000 |
|
4891 #define FASTDIGS 8 |
|
4892 #define FASTLAZY 1844 /* carry resolution point [1->1844] */ |
|
4893 #endif |
|
4894 /* three buffers are used, two for chunked copies of the operands */ |
|
4895 /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */ |
|
4896 /* lazy carry evaluation */ |
|
4897 uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ |
|
4898 uInt *zlhi=zlhibuff; /* -> lhs array */ |
|
4899 uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */ |
|
4900 uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ |
|
4901 uInt *zrhi=zrhibuff; /* -> rhs array */ |
|
4902 uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */ |
|
4903 uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */ |
|
4904 /* [allocacc is shared for both paths, as only one will run] */ |
|
4905 uLong *zacc=zaccbuff; /* -> accumulator array for exact result */ |
|
4906 #if DECDPUN==1 |
|
4907 Int zoff; /* accumulator offset */ |
|
4908 #endif |
|
4909 uInt *lip, *rip; /* item pointers */ |
|
4910 uInt *lmsi, *rmsi; /* most significant items */ |
|
4911 Int ilhs, irhs, iacc; /* item counts in the arrays */ |
|
4912 Int lazy; /* lazy carry counter */ |
|
4913 uLong lcarry; /* uLong carry */ |
|
4914 uInt carry; /* carry (NB not uLong) */ |
|
4915 Int count; /* work */ |
|
4916 const Unit *cup; /* .. */ |
|
4917 Unit *up; /* .. */ |
|
4918 uLong *lp; /* .. */ |
|
4919 Int p; /* .. */ |
|
4920 #endif |
|
4921 |
|
4922 #if DECSUBSET |
|
4923 decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */ |
|
4924 decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */ |
|
4925 #endif |
|
4926 |
|
4927 #if DECCHECK |
|
4928 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
4929 #endif |
|
4930 |
|
4931 /* precalculate result sign */ |
|
4932 bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); |
|
4933 |
|
4934 /* handle infinities and NaNs */ |
|
4935 if (SPECIALARGS) { /* a special bit set */ |
|
4936 if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ |
|
4937 decNaNs(res, lhs, rhs, set, status); |
|
4938 return res;} |
|
4939 /* one or two infinities; Infinity * 0 is invalid */ |
|
4940 if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) |
|
4941 ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { |
|
4942 *status|=DEC_Invalid_operation; |
|
4943 return res;} |
|
4944 uprv_decNumberZero(res); |
|
4945 res->bits=bits|DECINF; /* infinity */ |
|
4946 return res;} |
|
4947 |
|
4948 /* For best speed, as in DMSRCN [the original Rexx numerics */ |
|
4949 /* module], use the shorter number as the multiplier (rhs) and */ |
|
4950 /* the longer as the multiplicand (lhs) to minimise the number of */ |
|
4951 /* adds (partial products) */ |
|
4952 if (lhs->digits<rhs->digits) { /* swap... */ |
|
4953 const decNumber *hold=lhs; |
|
4954 lhs=rhs; |
|
4955 rhs=hold; |
|
4956 } |
|
4957 |
|
4958 do { /* protect allocated storage */ |
|
4959 #if DECSUBSET |
|
4960 if (!set->extended) { |
|
4961 /* reduce operands and set lostDigits status, as needed */ |
|
4962 if (lhs->digits>set->digits) { |
|
4963 alloclhs=decRoundOperand(lhs, set, status); |
|
4964 if (alloclhs==NULL) break; |
|
4965 lhs=alloclhs; |
|
4966 } |
|
4967 if (rhs->digits>set->digits) { |
|
4968 allocrhs=decRoundOperand(rhs, set, status); |
|
4969 if (allocrhs==NULL) break; |
|
4970 rhs=allocrhs; |
|
4971 } |
|
4972 } |
|
4973 #endif |
|
4974 /* [following code does not require input rounding] */ |
|
4975 |
|
4976 #if FASTMUL /* fastpath can be used */ |
|
4977 /* use the fast path if there are enough digits in the shorter */ |
|
4978 /* operand to make the setup and takedown worthwhile */ |
|
4979 #define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */ |
|
4980 if (rhs->digits>NEEDTWO) { /* use fastpath... */ |
|
4981 /* calculate the number of elements in each array */ |
|
4982 ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */ |
|
4983 irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */ |
|
4984 iacc=ilhs+irhs; |
|
4985 |
|
4986 /* allocate buffers if required, as usual */ |
|
4987 needbytes=ilhs*sizeof(uInt); |
|
4988 if (needbytes>(Int)sizeof(zlhibuff)) { |
|
4989 alloclhi=(uInt *)malloc(needbytes); |
|
4990 zlhi=alloclhi;} |
|
4991 needbytes=irhs*sizeof(uInt); |
|
4992 if (needbytes>(Int)sizeof(zrhibuff)) { |
|
4993 allocrhi=(uInt *)malloc(needbytes); |
|
4994 zrhi=allocrhi;} |
|
4995 |
|
4996 /* Allocating the accumulator space needs a special case when */ |
|
4997 /* DECDPUN=1 because when converting the accumulator to Units */ |
|
4998 /* after the multiplication each 8-byte item becomes 9 1-byte */ |
|
4999 /* units. Therefore iacc extra bytes are needed at the front */ |
|
5000 /* (rounded up to a multiple of 8 bytes), and the uLong */ |
|
5001 /* accumulator starts offset the appropriate number of units */ |
|
5002 /* to the right to avoid overwrite during the unchunking. */ |
|
5003 |
|
5004 /* Make sure no signed int overflow below. This is always true */ |
|
5005 /* if the given numbers have less digits than DEC_MAX_DIGITS. */ |
|
5006 U_ASSERT(iacc <= INT32_MAX/sizeof(uLong)); |
|
5007 needbytes=iacc*sizeof(uLong); |
|
5008 #if DECDPUN==1 |
|
5009 zoff=(iacc+7)/8; /* items to offset by */ |
|
5010 needbytes+=zoff*8; |
|
5011 #endif |
|
5012 if (needbytes>(Int)sizeof(zaccbuff)) { |
|
5013 allocacc=(uLong *)malloc(needbytes); |
|
5014 zacc=(uLong *)allocacc;} |
|
5015 if (zlhi==NULL||zrhi==NULL||zacc==NULL) { |
|
5016 *status|=DEC_Insufficient_storage; |
|
5017 break;} |
|
5018 |
|
5019 acc=(Unit *)zacc; /* -> target Unit array */ |
|
5020 #if DECDPUN==1 |
|
5021 zacc+=zoff; /* start uLong accumulator to right */ |
|
5022 #endif |
|
5023 |
|
5024 /* assemble the chunked copies of the left and right sides */ |
|
5025 for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) |
|
5026 for (p=0, *lip=0; p<FASTDIGS && count>0; |
|
5027 p+=DECDPUN, cup++, count-=DECDPUN) |
|
5028 *lip+=*cup*powers[p]; |
|
5029 lmsi=lip-1; /* save -> msi */ |
|
5030 for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) |
|
5031 for (p=0, *rip=0; p<FASTDIGS && count>0; |
|
5032 p+=DECDPUN, cup++, count-=DECDPUN) |
|
5033 *rip+=*cup*powers[p]; |
|
5034 rmsi=rip-1; /* save -> msi */ |
|
5035 |
|
5036 /* zero the accumulator */ |
|
5037 for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; |
|
5038 |
|
5039 /* Start the multiplication */ |
|
5040 /* Resolving carries can dominate the cost of accumulating the */ |
|
5041 /* partial products, so this is only done when necessary. */ |
|
5042 /* Each uLong item in the accumulator can hold values up to */ |
|
5043 /* 2**64-1, and each partial product can be as large as */ |
|
5044 /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */ |
|
5045 /* itself 18.4 times in a uLong without overflowing, so during */ |
|
5046 /* the main calculation resolution is carried out every 18th */ |
|
5047 /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */ |
|
5048 /* partial products can be added to themselves 1844.6 times in */ |
|
5049 /* a uLong without overflowing, so intermediate carry */ |
|
5050 /* resolution occurs only every 14752 digits. Hence for common */ |
|
5051 /* short numbers usually only the one final carry resolution */ |
|
5052 /* occurs. */ |
|
5053 /* (The count is set via FASTLAZY to simplify experiments to */ |
|
5054 /* measure the value of this approach: a 35% improvement on a */ |
|
5055 /* [34x34] multiply.) */ |
|
5056 lazy=FASTLAZY; /* carry delay count */ |
|
5057 for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */ |
|
5058 lp=zacc+(rip-zrhi); /* where to add the lhs */ |
|
5059 for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */ |
|
5060 *lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */ |
|
5061 } /* lip loop */ |
|
5062 lazy--; |
|
5063 if (lazy>0 && rip!=rmsi) continue; |
|
5064 lazy=FASTLAZY; /* reset delay count */ |
|
5065 /* spin up the accumulator resolving overflows */ |
|
5066 for (lp=zacc; lp<zacc+iacc; lp++) { |
|
5067 if (*lp<FASTBASE) continue; /* it fits */ |
|
5068 lcarry=*lp/FASTBASE; /* top part [slow divide] */ |
|
5069 /* lcarry can exceed 2**32-1, so check again; this check */ |
|
5070 /* and occasional extra divide (slow) is well worth it, as */ |
|
5071 /* it allows FASTLAZY to be increased to 18 rather than 4 */ |
|
5072 /* in the FASTDIGS=9 case */ |
|
5073 if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */ |
|
5074 else { /* two-place carry [fairly rare] */ |
|
5075 uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */ |
|
5076 *(lp+2)+=carry2; /* add to item+2 */ |
|
5077 *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */ |
|
5078 carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */ |
|
5079 } |
|
5080 *(lp+1)+=carry; /* add to item above [inline] */ |
|
5081 *lp-=((uLong)FASTBASE*carry); /* [inline] */ |
|
5082 } /* carry resolution */ |
|
5083 } /* rip loop */ |
|
5084 |
|
5085 /* The multiplication is complete; time to convert back into */ |
|
5086 /* units. This can be done in-place in the accumulator and in */ |
|
5087 /* 32-bit operations, because carries were resolved after the */ |
|
5088 /* final add. This needs N-1 divides and multiplies for */ |
|
5089 /* each item in the accumulator (which will become up to N */ |
|
5090 /* units, where 2<=N<=9). */ |
|
5091 for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { |
|
5092 uInt item=(uInt)*lp; /* decapitate to uInt */ |
|
5093 for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) { |
|
5094 uInt part=item/(DECDPUNMAX+1); |
|
5095 *up=(Unit)(item-(part*(DECDPUNMAX+1))); |
|
5096 item=part; |
|
5097 } /* p */ |
|
5098 *up=(Unit)item; up++; /* [final needs no division] */ |
|
5099 } /* lp */ |
|
5100 accunits=up-acc; /* count of units */ |
|
5101 } |
|
5102 else { /* here to use units directly, without chunking ['old code'] */ |
|
5103 #endif |
|
5104 |
|
5105 /* if accumulator will be too long for local storage, then allocate */ |
|
5106 acc=accbuff; /* -> assume buffer for accumulator */ |
|
5107 needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); |
|
5108 if (needbytes>(Int)sizeof(accbuff)) { |
|
5109 allocacc=(Unit *)malloc(needbytes); |
|
5110 if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} |
|
5111 acc=(Unit *)allocacc; /* use the allocated space */ |
|
5112 } |
|
5113 |
|
5114 /* Now the main long multiplication loop */ |
|
5115 /* Unlike the equivalent in the IBM Java implementation, there */ |
|
5116 /* is no advantage in calculating from msu to lsu. So, do it */ |
|
5117 /* by the book, as it were. */ |
|
5118 /* Each iteration calculates ACC=ACC+MULTAND*MULT */ |
|
5119 accunits=1; /* accumulator starts at '0' */ |
|
5120 *acc=0; /* .. (lsu=0) */ |
|
5121 shift=0; /* no multiplicand shift at first */ |
|
5122 madlength=D2U(lhs->digits); /* this won't change */ |
|
5123 mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */ |
|
5124 |
|
5125 for (mer=rhs->lsu; mer<mermsup; mer++) { |
|
5126 /* Here, *mer is the next Unit in the multiplier to use */ |
|
5127 /* If non-zero [optimization] add it... */ |
|
5128 if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, |
|
5129 lhs->lsu, madlength, 0, |
|
5130 &acc[shift], *mer) |
|
5131 + shift; |
|
5132 else { /* extend acc with a 0; it will be used shortly */ |
|
5133 *(acc+accunits)=0; /* [this avoids length of <=0 later] */ |
|
5134 accunits++; |
|
5135 } |
|
5136 /* multiply multiplicand by 10**DECDPUN for next Unit to left */ |
|
5137 shift++; /* add this for 'logical length' */ |
|
5138 } /* n */ |
|
5139 #if FASTMUL |
|
5140 } /* unchunked units */ |
|
5141 #endif |
|
5142 /* common end-path */ |
|
5143 #if DECTRACE |
|
5144 decDumpAr('*', acc, accunits); /* Show exact result */ |
|
5145 #endif |
|
5146 |
|
5147 /* acc now contains the exact result of the multiplication, */ |
|
5148 /* possibly with a leading zero unit; build the decNumber from */ |
|
5149 /* it, noting if any residue */ |
|
5150 res->bits=bits; /* set sign */ |
|
5151 res->digits=decGetDigits(acc, accunits); /* count digits exactly */ |
|
5152 |
|
5153 /* There can be a 31-bit wrap in calculating the exponent. */ |
|
5154 /* This can only happen if both input exponents are negative and */ |
|
5155 /* both their magnitudes are large. If there was a wrap, set a */ |
|
5156 /* safe very negative exponent, from which decFinalize() will */ |
|
5157 /* raise a hard underflow shortly. */ |
|
5158 exponent=lhs->exponent+rhs->exponent; /* calculate exponent */ |
|
5159 if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) |
|
5160 exponent=-2*DECNUMMAXE; /* force underflow */ |
|
5161 res->exponent=exponent; /* OK to overwrite now */ |
|
5162 |
|
5163 |
|
5164 /* Set the coefficient. If any rounding, residue records */ |
|
5165 decSetCoeff(res, set, acc, res->digits, &residue, status); |
|
5166 decFinish(res, set, &residue, status); /* final cleanup */ |
|
5167 } while(0); /* end protected */ |
|
5168 |
|
5169 if (allocacc!=NULL) free(allocacc); /* drop any storage used */ |
|
5170 #if DECSUBSET |
|
5171 if (allocrhs!=NULL) free(allocrhs); /* .. */ |
|
5172 if (alloclhs!=NULL) free(alloclhs); /* .. */ |
|
5173 #endif |
|
5174 #if FASTMUL |
|
5175 if (allocrhi!=NULL) free(allocrhi); /* .. */ |
|
5176 if (alloclhi!=NULL) free(alloclhi); /* .. */ |
|
5177 #endif |
|
5178 return res; |
|
5179 } /* decMultiplyOp */ |
|
5180 |
|
5181 /* ------------------------------------------------------------------ */ |
|
5182 /* decExpOp -- effect exponentiation */ |
|
5183 /* */ |
|
5184 /* This computes C = exp(A) */ |
|
5185 /* */ |
|
5186 /* res is C, the result. C may be A */ |
|
5187 /* rhs is A */ |
|
5188 /* set is the context; note that rounding mode has no effect */ |
|
5189 /* */ |
|
5190 /* C must have space for set->digits digits. status is updated but */ |
|
5191 /* not set. */ |
|
5192 /* */ |
|
5193 /* Restrictions: */ |
|
5194 /* */ |
|
5195 /* digits, emax, and -emin in the context must be less than */ |
|
5196 /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ |
|
5197 /* bounds or a zero. This is an internal routine, so these */ |
|
5198 /* restrictions are contractual and not enforced. */ |
|
5199 /* */ |
|
5200 /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
|
5201 /* almost always be correctly rounded, but may be up to 1 ulp in */ |
|
5202 /* error in rare cases. */ |
|
5203 /* */ |
|
5204 /* Finite results will always be full precision and Inexact, except */ |
|
5205 /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
|
5206 /* ------------------------------------------------------------------ */ |
|
5207 /* This approach used here is similar to the algorithm described in */ |
|
5208 /* */ |
|
5209 /* Variable Precision Exponential Function, T. E. Hull and */ |
|
5210 /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ |
|
5211 /* pp79-91, ACM, June 1986. */ |
|
5212 /* */ |
|
5213 /* with the main difference being that the iterations in the series */ |
|
5214 /* evaluation are terminated dynamically (which does not require the */ |
|
5215 /* extra variable-precision variables which are expensive in this */ |
|
5216 /* context). */ |
|
5217 /* */ |
|
5218 /* The error analysis in Hull & Abrham's paper applies except for the */ |
|
5219 /* round-off error accumulation during the series evaluation. This */ |
|
5220 /* code does not precalculate the number of iterations and so cannot */ |
|
5221 /* use Horner's scheme. Instead, the accumulation is done at double- */ |
|
5222 /* precision, which ensures that the additions of the terms are exact */ |
|
5223 /* and do not accumulate round-off (and any round-off errors in the */ |
|
5224 /* terms themselves move 'to the right' faster than they can */ |
|
5225 /* accumulate). This code also extends the calculation by allowing, */ |
|
5226 /* in the spirit of other decNumber operators, the input to be more */ |
|
5227 /* precise than the result (the precision used is based on the more */ |
|
5228 /* precise of the input or requested result). */ |
|
5229 /* */ |
|
5230 /* Implementation notes: */ |
|
5231 /* */ |
|
5232 /* 1. This is separated out as decExpOp so it can be called from */ |
|
5233 /* other Mathematical functions (notably Ln) with a wider range */ |
|
5234 /* than normal. In particular, it can handle the slightly wider */ |
|
5235 /* (double) range needed by Ln (which has to be able to calculate */ |
|
5236 /* exp(-x) where x can be the tiniest number (Ntiny). */ |
|
5237 /* */ |
|
5238 /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ |
|
5239 /* iterations by appoximately a third with additional (although */ |
|
5240 /* diminishing) returns as the range is reduced to even smaller */ |
|
5241 /* fractions. However, h (the power of 10 used to correct the */ |
|
5242 /* result at the end, see below) must be kept <=8 as otherwise */ |
|
5243 /* the final result cannot be computed. Hence the leverage is a */ |
|
5244 /* sliding value (8-h), where potentially the range is reduced */ |
|
5245 /* more for smaller values. */ |
|
5246 /* */ |
|
5247 /* The leverage that can be applied in this way is severely */ |
|
5248 /* limited by the cost of the raise-to-the power at the end, */ |
|
5249 /* which dominates when the number of iterations is small (less */ |
|
5250 /* than ten) or when rhs is short. As an example, the adjustment */ |
|
5251 /* x**10,000,000 needs 31 multiplications, all but one full-width. */ |
|
5252 /* */ |
|
5253 /* 3. The restrictions (especially precision) could be raised with */ |
|
5254 /* care, but the full decNumber range seems very hard within the */ |
|
5255 /* 32-bit limits. */ |
|
5256 /* */ |
|
5257 /* 4. The working precisions for the static buffers are twice the */ |
|
5258 /* obvious size to allow for calls from decNumberPower. */ |
|
5259 /* ------------------------------------------------------------------ */ |
|
5260 decNumber * decExpOp(decNumber *res, const decNumber *rhs, |
|
5261 decContext *set, uInt *status) { |
|
5262 uInt ignore=0; /* working status */ |
|
5263 Int h; /* adjusted exponent for 0.xxxx */ |
|
5264 Int p; /* working precision */ |
|
5265 Int residue; /* rounding residue */ |
|
5266 uInt needbytes; /* for space calculations */ |
|
5267 const decNumber *x=rhs; /* (may point to safe copy later) */ |
|
5268 decContext aset, tset, dset; /* working contexts */ |
|
5269 Int comp; /* work */ |
|
5270 |
|
5271 /* the argument is often copied to normalize it, so (unusually) it */ |
|
5272 /* is treated like other buffers, using DECBUFFER, +1 in case */ |
|
5273 /* DECBUFFER is 0 */ |
|
5274 decNumber bufr[D2N(DECBUFFER*2+1)]; |
|
5275 decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */ |
|
5276 |
|
5277 /* the working precision will be no more than set->digits+8+1 */ |
|
5278 /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */ |
|
5279 /* is 0 (and twice that for the accumulator) */ |
|
5280 |
|
5281 /* buffer for t, term (working precision plus) */ |
|
5282 decNumber buft[D2N(DECBUFFER*2+9+1)]; |
|
5283 decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */ |
|
5284 decNumber *t=buft; /* term */ |
|
5285 /* buffer for a, accumulator (working precision * 2), at least 9 */ |
|
5286 decNumber bufa[D2N(DECBUFFER*4+18+1)]; |
|
5287 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
|
5288 decNumber *a=bufa; /* accumulator */ |
|
5289 /* decNumber for the divisor term; this needs at most 9 digits */ |
|
5290 /* and so can be fixed size [16 so can use standard context] */ |
|
5291 decNumber bufd[D2N(16)]; |
|
5292 decNumber *d=bufd; /* divisor */ |
|
5293 decNumber numone; /* constant 1 */ |
|
5294 |
|
5295 #if DECCHECK |
|
5296 Int iterations=0; /* for later sanity check */ |
|
5297 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
5298 #endif |
|
5299 |
|
5300 do { /* protect allocated storage */ |
|
5301 if (SPECIALARG) { /* handle infinities and NaNs */ |
|
5302 if (decNumberIsInfinite(rhs)) { /* an infinity */ |
|
5303 if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */ |
|
5304 uprv_decNumberZero(res); |
|
5305 else uprv_decNumberCopy(res, rhs); /* +Infinity -> self */ |
|
5306 } |
|
5307 else decNaNs(res, rhs, NULL, set, status); /* a NaN */ |
|
5308 break;} |
|
5309 |
|
5310 if (ISZERO(rhs)) { /* zeros -> exact 1 */ |
|
5311 uprv_decNumberZero(res); /* make clean 1 */ |
|
5312 *res->lsu=1; /* .. */ |
|
5313 break;} /* [no status to set] */ |
|
5314 |
|
5315 /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */ |
|
5316 /* positive and negative tiny cases which will result in inexact */ |
|
5317 /* 1. This also allows the later add-accumulate to always be */ |
|
5318 /* exact (because its length will never be more than twice the */ |
|
5319 /* working precision). */ |
|
5320 /* The comparator (tiny) needs just one digit, so use the */ |
|
5321 /* decNumber d for it (reused as the divisor, etc., below); its */ |
|
5322 /* exponent is such that if x is positive it will have */ |
|
5323 /* set->digits-1 zeros between the decimal point and the digit, */ |
|
5324 /* which is 4, and if x is negative one more zero there as the */ |
|
5325 /* more precise result will be of the form 0.9999999 rather than */ |
|
5326 /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */ |
|
5327 /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */ |
|
5328 /* this then the result will be 1.000000 */ |
|
5329 uprv_decNumberZero(d); /* clean */ |
|
5330 *d->lsu=4; /* set 4 .. */ |
|
5331 d->exponent=-set->digits; /* * 10**(-d) */ |
|
5332 if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */ |
|
5333 comp=decCompare(d, rhs, 1); /* signless compare */ |
|
5334 if (comp==BADINT) { |
|
5335 *status|=DEC_Insufficient_storage; |
|
5336 break;} |
|
5337 if (comp>=0) { /* rhs < d */ |
|
5338 Int shift=set->digits-1; |
|
5339 uprv_decNumberZero(res); /* set 1 */ |
|
5340 *res->lsu=1; /* .. */ |
|
5341 res->digits=decShiftToMost(res->lsu, 1, shift); |
|
5342 res->exponent=-shift; /* make 1.0000... */ |
|
5343 *status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */ |
|
5344 break;} /* tiny */ |
|
5345 |
|
5346 /* set up the context to be used for calculating a, as this is */ |
|
5347 /* used on both paths below */ |
|
5348 uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); |
|
5349 /* accumulator bounds are as requested (could underflow) */ |
|
5350 aset.emax=set->emax; /* usual bounds */ |
|
5351 aset.emin=set->emin; /* .. */ |
|
5352 aset.clamp=0; /* and no concrete format */ |
|
5353 |
|
5354 /* calculate the adjusted (Hull & Abrham) exponent (where the */ |
|
5355 /* decimal point is just to the left of the coefficient msd) */ |
|
5356 h=rhs->exponent+rhs->digits; |
|
5357 /* if h>8 then 10**h cannot be calculated safely; however, when */ |
|
5358 /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */ |
|
5359 /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */ |
|
5360 /* overflow (or underflow to 0) is guaranteed -- so this case can */ |
|
5361 /* be handled by simply forcing the appropriate excess */ |
|
5362 if (h>8) { /* overflow/underflow */ |
|
5363 /* set up here so Power call below will over or underflow to */ |
|
5364 /* zero; set accumulator to either 2 or 0.02 */ |
|
5365 /* [stack buffer for a is always big enough for this] */ |
|
5366 uprv_decNumberZero(a); |
|
5367 *a->lsu=2; /* not 1 but < exp(1) */ |
|
5368 if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */ |
|
5369 h=8; /* clamp so 10**h computable */ |
|
5370 p=9; /* set a working precision */ |
|
5371 } |
|
5372 else { /* h<=8 */ |
|
5373 Int maxlever=(rhs->digits>8?1:0); |
|
5374 /* [could/should increase this for precisions >40 or so, too] */ |
|
5375 |
|
5376 /* if h is 8, cannot normalize to a lower upper limit because */ |
|
5377 /* the final result will not be computable (see notes above), */ |
|
5378 /* but leverage can be applied whenever h is less than 8. */ |
|
5379 /* Apply as much as possible, up to a MAXLEVER digits, which */ |
|
5380 /* sets the tradeoff against the cost of the later a**(10**h). */ |
|
5381 /* As h is increased, the working precision below also */ |
|
5382 /* increases to compensate for the "constant digits at the */ |
|
5383 /* front" effect. */ |
|
5384 Int lever=MINI(8-h, maxlever); /* leverage attainable */ |
|
5385 Int use=-rhs->digits-lever; /* exponent to use for RHS */ |
|
5386 h+=lever; /* apply leverage selected */ |
|
5387 if (h<0) { /* clamp */ |
|
5388 use+=h; /* [may end up subnormal] */ |
|
5389 h=0; |
|
5390 } |
|
5391 /* Take a copy of RHS if it needs normalization (true whenever x>=1) */ |
|
5392 if (rhs->exponent!=use) { |
|
5393 decNumber *newrhs=bufr; /* assume will fit on stack */ |
|
5394 needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
|
5395 if (needbytes>sizeof(bufr)) { /* need malloc space */ |
|
5396 allocrhs=(decNumber *)malloc(needbytes); |
|
5397 if (allocrhs==NULL) { /* hopeless -- abandon */ |
|
5398 *status|=DEC_Insufficient_storage; |
|
5399 break;} |
|
5400 newrhs=allocrhs; /* use the allocated space */ |
|
5401 } |
|
5402 uprv_decNumberCopy(newrhs, rhs); /* copy to safe space */ |
|
5403 newrhs->exponent=use; /* normalize; now <1 */ |
|
5404 x=newrhs; /* ready for use */ |
|
5405 /* decNumberShow(x); */ |
|
5406 } |
|
5407 |
|
5408 /* Now use the usual power series to evaluate exp(x). The */ |
|
5409 /* series starts as 1 + x + x^2/2 ... so prime ready for the */ |
|
5410 /* third term by setting the term variable t=x, the accumulator */ |
|
5411 /* a=1, and the divisor d=2. */ |
|
5412 |
|
5413 /* First determine the working precision. From Hull & Abrham */ |
|
5414 /* this is set->digits+h+2. However, if x is 'over-precise' we */ |
|
5415 /* need to allow for all its digits to potentially participate */ |
|
5416 /* (consider an x where all the excess digits are 9s) so in */ |
|
5417 /* this case use x->digits+h+2 */ |
|
5418 p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */ |
|
5419 |
|
5420 /* a and t are variable precision, and depend on p, so space */ |
|
5421 /* must be allocated for them if necessary */ |
|
5422 |
|
5423 /* the accumulator needs to be able to hold 2p digits so that */ |
|
5424 /* the additions on the second and subsequent iterations are */ |
|
5425 /* sufficiently exact. */ |
|
5426 needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); |
|
5427 if (needbytes>sizeof(bufa)) { /* need malloc space */ |
|
5428 allocbufa=(decNumber *)malloc(needbytes); |
|
5429 if (allocbufa==NULL) { /* hopeless -- abandon */ |
|
5430 *status|=DEC_Insufficient_storage; |
|
5431 break;} |
|
5432 a=allocbufa; /* use the allocated space */ |
|
5433 } |
|
5434 /* the term needs to be able to hold p digits (which is */ |
|
5435 /* guaranteed to be larger than x->digits, so the initial copy */ |
|
5436 /* is safe); it may also be used for the raise-to-power */ |
|
5437 /* calculation below, which needs an extra two digits */ |
|
5438 needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); |
|
5439 if (needbytes>sizeof(buft)) { /* need malloc space */ |
|
5440 allocbuft=(decNumber *)malloc(needbytes); |
|
5441 if (allocbuft==NULL) { /* hopeless -- abandon */ |
|
5442 *status|=DEC_Insufficient_storage; |
|
5443 break;} |
|
5444 t=allocbuft; /* use the allocated space */ |
|
5445 } |
|
5446 |
|
5447 uprv_decNumberCopy(t, x); /* term=x */ |
|
5448 uprv_decNumberZero(a); *a->lsu=1; /* accumulator=1 */ |
|
5449 uprv_decNumberZero(d); *d->lsu=2; /* divisor=2 */ |
|
5450 uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */ |
|
5451 |
|
5452 /* set up the contexts for calculating a, t, and d */ |
|
5453 uprv_decContextDefault(&tset, DEC_INIT_DECIMAL64); |
|
5454 dset=tset; |
|
5455 /* accumulator bounds are set above, set precision now */ |
|
5456 aset.digits=p*2; /* double */ |
|
5457 /* term bounds avoid any underflow or overflow */ |
|
5458 tset.digits=p; |
|
5459 tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */ |
|
5460 /* [dset.digits=16, etc., are sufficient] */ |
|
5461 |
|
5462 /* finally ready to roll */ |
|
5463 for (;;) { |
|
5464 #if DECCHECK |
|
5465 iterations++; |
|
5466 #endif |
|
5467 /* only the status from the accumulation is interesting */ |
|
5468 /* [but it should remain unchanged after first add] */ |
|
5469 decAddOp(a, a, t, &aset, 0, status); /* a=a+t */ |
|
5470 decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */ |
|
5471 decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */ |
|
5472 /* the iteration ends when the term cannot affect the result, */ |
|
5473 /* if rounded to p digits, which is when its value is smaller */ |
|
5474 /* than the accumulator by p+1 digits. There must also be */ |
|
5475 /* full precision in a. */ |
|
5476 if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) |
|
5477 && (a->digits>=p)) break; |
|
5478 decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */ |
|
5479 } /* iterate */ |
|
5480 |
|
5481 #if DECCHECK |
|
5482 /* just a sanity check; comment out test to show always */ |
|
5483 if (iterations>p+3) |
|
5484 printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", |
|
5485 (LI)iterations, (LI)*status, (LI)p, (LI)x->digits); |
|
5486 #endif |
|
5487 } /* h<=8 */ |
|
5488 |
|
5489 /* apply postconditioning: a=a**(10**h) -- this is calculated */ |
|
5490 /* at a slightly higher precision than Hull & Abrham suggest */ |
|
5491 if (h>0) { |
|
5492 Int seenbit=0; /* set once a 1-bit is seen */ |
|
5493 Int i; /* counter */ |
|
5494 Int n=powers[h]; /* always positive */ |
|
5495 aset.digits=p+2; /* sufficient precision */ |
|
5496 /* avoid the overhead and many extra digits of decNumberPower */ |
|
5497 /* as all that is needed is the short 'multipliers' loop; here */ |
|
5498 /* accumulate the answer into t */ |
|
5499 uprv_decNumberZero(t); *t->lsu=1; /* acc=1 */ |
|
5500 for (i=1;;i++){ /* for each bit [top bit ignored] */ |
|
5501 /* abandon if have had overflow or terminal underflow */ |
|
5502 if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ |
|
5503 if (*status&DEC_Overflow || ISZERO(t)) break;} |
|
5504 n=n<<1; /* move next bit to testable position */ |
|
5505 if (n<0) { /* top bit is set */ |
|
5506 seenbit=1; /* OK, have a significant bit */ |
|
5507 decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */ |
|
5508 } |
|
5509 if (i==31) break; /* that was the last bit */ |
|
5510 if (!seenbit) continue; /* no need to square 1 */ |
|
5511 decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */ |
|
5512 } /*i*/ /* 32 bits */ |
|
5513 /* decNumberShow(t); */ |
|
5514 a=t; /* and carry on using t instead of a */ |
|
5515 } |
|
5516 |
|
5517 /* Copy and round the result to res */ |
|
5518 residue=1; /* indicate dirt to right .. */ |
|
5519 if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */ |
|
5520 aset.digits=set->digits; /* [use default rounding] */ |
|
5521 decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ |
|
5522 decFinish(res, set, &residue, status); /* cleanup/set flags */ |
|
5523 } while(0); /* end protected */ |
|
5524 |
|
5525 if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ |
|
5526 if (allocbufa!=NULL) free(allocbufa); /* .. */ |
|
5527 if (allocbuft!=NULL) free(allocbuft); /* .. */ |
|
5528 /* [status is handled by caller] */ |
|
5529 return res; |
|
5530 } /* decExpOp */ |
|
5531 |
|
5532 /* ------------------------------------------------------------------ */ |
|
5533 /* Initial-estimate natural logarithm table */ |
|
5534 /* */ |
|
5535 /* LNnn -- 90-entry 16-bit table for values from .10 through .99. */ |
|
5536 /* The result is a 4-digit encode of the coefficient (c=the */ |
|
5537 /* top 14 bits encoding 0-9999) and a 2-digit encode of the */ |
|
5538 /* exponent (e=the bottom 2 bits encoding 0-3) */ |
|
5539 /* */ |
|
5540 /* The resulting value is given by: */ |
|
5541 /* */ |
|
5542 /* v = -c * 10**(-e-3) */ |
|
5543 /* */ |
|
5544 /* where e and c are extracted from entry k = LNnn[x-10] */ |
|
5545 /* where x is truncated (NB) into the range 10 through 99, */ |
|
5546 /* and then c = k>>2 and e = k&3. */ |
|
5547 /* ------------------------------------------------------------------ */ |
|
5548 static const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208, |
|
5549 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312, |
|
5550 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032, |
|
5551 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, |
|
5552 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, |
|
5553 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, |
|
5554 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, |
|
5555 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801, |
|
5556 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, |
|
5557 10130, 6046, 20055}; |
|
5558 |
|
5559 /* ------------------------------------------------------------------ */ |
|
5560 /* decLnOp -- effect natural logarithm */ |
|
5561 /* */ |
|
5562 /* This computes C = ln(A) */ |
|
5563 /* */ |
|
5564 /* res is C, the result. C may be A */ |
|
5565 /* rhs is A */ |
|
5566 /* set is the context; note that rounding mode has no effect */ |
|
5567 /* */ |
|
5568 /* C must have space for set->digits digits. */ |
|
5569 /* */ |
|
5570 /* Notable cases: */ |
|
5571 /* A<0 -> Invalid */ |
|
5572 /* A=0 -> -Infinity (Exact) */ |
|
5573 /* A=+Infinity -> +Infinity (Exact) */ |
|
5574 /* A=1 exactly -> 0 (Exact) */ |
|
5575 /* */ |
|
5576 /* Restrictions (as for Exp): */ |
|
5577 /* */ |
|
5578 /* digits, emax, and -emin in the context must be less than */ |
|
5579 /* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */ |
|
5580 /* bounds or a zero. This is an internal routine, so these */ |
|
5581 /* restrictions are contractual and not enforced. */ |
|
5582 /* */ |
|
5583 /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
|
5584 /* almost always be correctly rounded, but may be up to 1 ulp in */ |
|
5585 /* error in rare cases. */ |
|
5586 /* ------------------------------------------------------------------ */ |
|
5587 /* The result is calculated using Newton's method, with each */ |
|
5588 /* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */ |
|
5589 /* Epperson 1989. */ |
|
5590 /* */ |
|
5591 /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ |
|
5592 /* This has to be calculated at the sum of the precision of x and the */ |
|
5593 /* working precision. */ |
|
5594 /* */ |
|
5595 /* Implementation notes: */ |
|
5596 /* */ |
|
5597 /* 1. This is separated out as decLnOp so it can be called from */ |
|
5598 /* other Mathematical functions (e.g., Log 10) with a wider range */ |
|
5599 /* than normal. In particular, it can handle the slightly wider */ |
|
5600 /* (+9+2) range needed by a power function. */ |
|
5601 /* */ |
|
5602 /* 2. The speed of this function is about 10x slower than exp, as */ |
|
5603 /* it typically needs 4-6 iterations for short numbers, and the */ |
|
5604 /* extra precision needed adds a squaring effect, twice. */ |
|
5605 /* */ |
|
5606 /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */ |
|
5607 /* as these are common requests. ln(10) is used by log10(x). */ |
|
5608 /* */ |
|
5609 /* 4. An iteration might be saved by widening the LNnn table, and */ |
|
5610 /* would certainly save at least one if it were made ten times */ |
|
5611 /* bigger, too (for truncated fractions 0.100 through 0.999). */ |
|
5612 /* However, for most practical evaluations, at least four or five */ |
|
5613 /* iterations will be neede -- so this would only speed up by */ |
|
5614 /* 20-25% and that probably does not justify increasing the table */ |
|
5615 /* size. */ |
|
5616 /* */ |
|
5617 /* 5. The static buffers are larger than might be expected to allow */ |
|
5618 /* for calls from decNumberPower. */ |
|
5619 /* ------------------------------------------------------------------ */ |
|
5620 #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 |
|
5621 #pragma GCC diagnostic push |
|
5622 #pragma GCC diagnostic ignored "-Warray-bounds" |
|
5623 #endif |
|
5624 decNumber * decLnOp(decNumber *res, const decNumber *rhs, |
|
5625 decContext *set, uInt *status) { |
|
5626 uInt ignore=0; /* working status accumulator */ |
|
5627 uInt needbytes; /* for space calculations */ |
|
5628 Int residue; /* rounding residue */ |
|
5629 Int r; /* rhs=f*10**r [see below] */ |
|
5630 Int p; /* working precision */ |
|
5631 Int pp; /* precision for iteration */ |
|
5632 Int t; /* work */ |
|
5633 |
|
5634 /* buffers for a (accumulator, typically precision+2) and b */ |
|
5635 /* (adjustment calculator, same size) */ |
|
5636 decNumber bufa[D2N(DECBUFFER+12)]; |
|
5637 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
|
5638 decNumber *a=bufa; /* accumulator/work */ |
|
5639 decNumber bufb[D2N(DECBUFFER*2+2)]; |
|
5640 decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */ |
|
5641 decNumber *b=bufb; /* adjustment/work */ |
|
5642 |
|
5643 decNumber numone; /* constant 1 */ |
|
5644 decNumber cmp; /* work */ |
|
5645 decContext aset, bset; /* working contexts */ |
|
5646 |
|
5647 #if DECCHECK |
|
5648 Int iterations=0; /* for later sanity check */ |
|
5649 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
|
5650 #endif |
|
5651 |
|
5652 do { /* protect allocated storage */ |
|
5653 if (SPECIALARG) { /* handle infinities and NaNs */ |
|
5654 if (decNumberIsInfinite(rhs)) { /* an infinity */ |
|
5655 if (decNumberIsNegative(rhs)) /* -Infinity -> error */ |
|
5656 *status|=DEC_Invalid_operation; |
|
5657 else uprv_decNumberCopy(res, rhs); /* +Infinity -> self */ |
|
5658 } |
|
5659 else decNaNs(res, rhs, NULL, set, status); /* a NaN */ |
|
5660 break;} |
|
5661 |
|
5662 if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */ |
|
5663 uprv_decNumberZero(res); /* make clean */ |
|
5664 res->bits=DECINF|DECNEG; /* set - infinity */ |
|
5665 break;} /* [no status to set] */ |
|
5666 |
|
5667 /* Non-zero negatives are bad... */ |
|
5668 if (decNumberIsNegative(rhs)) { /* -x -> error */ |
|
5669 *status|=DEC_Invalid_operation; |
|
5670 break;} |
|
5671 |
|
5672 /* Here, rhs is positive, finite, and in range */ |
|
5673 |
|
5674 /* lookaside fastpath code for ln(2) and ln(10) at common lengths */ |
|
5675 if (rhs->exponent==0 && set->digits<=40) { |
|
5676 #if DECDPUN==1 |
|
5677 if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */ |
|
5678 #else |
|
5679 if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */ |
|
5680 #endif |
|
5681 aset=*set; aset.round=DEC_ROUND_HALF_EVEN; |
|
5682 #define LN10 "2.302585092994045684017991454684364207601" |
|
5683 uprv_decNumberFromString(res, LN10, &aset); |
|
5684 *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */ |
|
5685 break;} |
|
5686 if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */ |
|
5687 aset=*set; aset.round=DEC_ROUND_HALF_EVEN; |
|
5688 #define LN2 "0.6931471805599453094172321214581765680755" |
|
5689 uprv_decNumberFromString(res, LN2, &aset); |
|
5690 *status|=(DEC_Inexact | DEC_Rounded); |
|
5691 break;} |
|
5692 } /* integer and short */ |
|
5693 |
|
5694 /* Determine the working precision. This is normally the */ |
|
5695 /* requested precision + 2, with a minimum of 9. However, if */ |
|
5696 /* the rhs is 'over-precise' then allow for all its digits to */ |
|
5697 /* potentially participate (consider an rhs where all the excess */ |
|
5698 /* digits are 9s) so in this case use rhs->digits+2. */ |
|
5699 p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; |
|
5700 |
|
5701 /* Allocate space for the accumulator and the high-precision */ |
|
5702 /* adjustment calculator, if necessary. The accumulator must */ |
|
5703 /* be able to hold p digits, and the adjustment up to */ |
|
5704 /* rhs->digits+p digits. They are also made big enough for 16 */ |
|
5705 /* digits so that they can be used for calculating the initial */ |
|
5706 /* estimate. */ |
|
5707 needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); |
|
5708 if (needbytes>sizeof(bufa)) { /* need malloc space */ |
|
5709 allocbufa=(decNumber *)malloc(needbytes); |
|
5710 if (allocbufa==NULL) { /* hopeless -- abandon */ |
|
5711 *status|=DEC_Insufficient_storage; |
|
5712 break;} |
|
5713 a=allocbufa; /* use the allocated space */ |
|
5714 } |
|
5715 pp=p+rhs->digits; |
|
5716 needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); |
|
5717 if (needbytes>sizeof(bufb)) { /* need malloc space */ |
|
5718 allocbufb=(decNumber *)malloc(needbytes); |
|
5719 if (allocbufb==NULL) { /* hopeless -- abandon */ |
|
5720 *status|=DEC_Insufficient_storage; |
|
5721 break;} |
|
5722 b=allocbufb; /* use the allocated space */ |
|
5723 } |
|
5724 |
|
5725 /* Prepare an initial estimate in acc. Calculate this by */ |
|
5726 /* considering the coefficient of x to be a normalized fraction, */ |
|
5727 /* f, with the decimal point at far left and multiplied by */ |
|
5728 /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */ |
|
5729 /* ln(x) = ln(f) + ln(10)*r */ |
|
5730 /* Get the initial estimate for ln(f) from a small lookup */ |
|
5731 /* table (see above) indexed by the first two digits of f, */ |
|
5732 /* truncated. */ |
|
5733 |
|
5734 uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */ |
|
5735 r=rhs->exponent+rhs->digits; /* 'normalised' exponent */ |
|
5736 uprv_decNumberFromInt32(a, r); /* a=r */ |
|
5737 uprv_decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */ |
|
5738 b->exponent=-6; /* .. */ |
|
5739 decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */ |
|
5740 /* now get top two digits of rhs into b by simple truncate and */ |
|
5741 /* force to integer */ |
|
5742 residue=0; /* (no residue) */ |
|
5743 aset.digits=2; aset.round=DEC_ROUND_DOWN; |
|
5744 decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */ |
|
5745 b->exponent=0; /* make integer */ |
|
5746 t=decGetInt(b); /* [cannot fail] */ |
|
5747 if (t<10) t=X10(t); /* adjust single-digit b */ |
|
5748 t=LNnn[t-10]; /* look up ln(b) */ |
|
5749 uprv_decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */ |
|
5750 b->exponent=-(t&3)-3; /* set exponent */ |
|
5751 b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */ |
|
5752 aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */ |
|
5753 decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */ |
|
5754 /* the initial estimate is now in a, with up to 4 digits correct. */ |
|
5755 /* When rhs is at or near Nmax the estimate will be low, so we */ |
|
5756 /* will approach it from below, avoiding overflow when calling exp. */ |
|
5757 |
|
5758 uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */ |
|
5759 |
|
5760 /* accumulator bounds are as requested (could underflow, but */ |
|
5761 /* cannot overflow) */ |
|
5762 aset.emax=set->emax; |
|
5763 aset.emin=set->emin; |
|
5764 aset.clamp=0; /* no concrete format */ |
|
5765 /* set up a context to be used for the multiply and subtract */ |
|
5766 bset=aset; |
|
5767 bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */ |
|
5768 bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */ |
|
5769 /* [see decExpOp call below] */ |
|
5770 /* for each iteration double the number of digits to calculate, */ |
|
5771 /* up to a maximum of p */ |
|
5772 pp=9; /* initial precision */ |
|
5773 /* [initially 9 as then the sequence starts 7+2, 16+2, and */ |
|
5774 /* 34+2, which is ideal for standard-sized numbers] */ |
|
5775 aset.digits=pp; /* working context */ |
|
5776 bset.digits=pp+rhs->digits; /* wider context */ |
|
5777 for (;;) { /* iterate */ |
|
5778 #if DECCHECK |
|
5779 iterations++; |
|
5780 if (iterations>24) break; /* consider 9 * 2**24 */ |
|
5781 #endif |
|
5782 /* calculate the adjustment (exp(-a)*x-1) into b. This is a */ |
|
5783 /* catastrophic subtraction but it really is the difference */ |
|
5784 /* from 1 that is of interest. */ |
|
5785 /* Use the internal entry point to Exp as it allows the double */ |
|
5786 /* range for calculating exp(-a) when a is the tiniest subnormal. */ |
|
5787 a->bits^=DECNEG; /* make -a */ |
|
5788 decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */ |
|
5789 a->bits^=DECNEG; /* restore sign of a */ |
|
5790 /* now multiply by rhs and subtract 1, at the wider precision */ |
|
5791 decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */ |
|
5792 decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */ |
|
5793 |
|
5794 /* the iteration ends when the adjustment cannot affect the */ |
|
5795 /* result by >=0.5 ulp (at the requested digits), which */ |
|
5796 /* is when its value is smaller than the accumulator by */ |
|
5797 /* set->digits+1 digits (or it is zero) -- this is a looser */ |
|
5798 /* requirement than for Exp because all that happens to the */ |
|
5799 /* accumulator after this is the final rounding (but note that */ |
|
5800 /* there must also be full precision in a, or a=0). */ |
|
5801 |
|
5802 if (decNumberIsZero(b) || |
|
5803 (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { |
|
5804 if (a->digits==p) break; |
|
5805 if (decNumberIsZero(a)) { |
|
5806 decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */ |
|
5807 if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */ |
|
5808 else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */ |
|
5809 break; |
|
5810 } |
|
5811 /* force padding if adjustment has gone to 0 before full length */ |
|
5812 if (decNumberIsZero(b)) b->exponent=a->exponent-p; |
|
5813 } |
|
5814 |
|
5815 /* not done yet ... */ |
|
5816 decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */ |
|
5817 if (pp==p) continue; /* precision is at maximum */ |
|
5818 /* lengthen the next calculation */ |
|
5819 pp=pp*2; /* double precision */ |
|
5820 if (pp>p) pp=p; /* clamp to maximum */ |
|
5821 aset.digits=pp; /* working context */ |
|
5822 bset.digits=pp+rhs->digits; /* wider context */ |
|
5823 } /* Newton's iteration */ |
|
5824 |
|
5825 #if DECCHECK |
|
5826 /* just a sanity check; remove the test to show always */ |
|
5827 if (iterations>24) |
|
5828 printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", |
|
5829 (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits); |
|
5830 #endif |
|
5831 |
|
5832 /* Copy and round the result to res */ |
|
5833 residue=1; /* indicate dirt to right */ |
|
5834 if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */ |
|
5835 aset.digits=set->digits; /* [use default rounding] */ |
|
5836 decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ |
|
5837 decFinish(res, set, &residue, status); /* cleanup/set flags */ |
|
5838 } while(0); /* end protected */ |
|
5839 |
|
5840 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
|
5841 if (allocbufb!=NULL) free(allocbufb); /* .. */ |
|
5842 /* [status is handled by caller] */ |
|
5843 return res; |
|
5844 } /* decLnOp */ |
|
5845 #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 |
|
5846 #pragma GCC diagnostic pop |
|
5847 #endif |
|
5848 |
|
5849 /* ------------------------------------------------------------------ */ |
|
5850 /* decQuantizeOp -- force exponent to requested value */ |
|
5851 /* */ |
|
5852 /* This computes C = op(A, B), where op adjusts the coefficient */ |
|
5853 /* of C (by rounding or shifting) such that the exponent (-scale) */ |
|
5854 /* of C has the value B or matches the exponent of B. */ |
|
5855 /* The numerical value of C will equal A, except for the effects of */ |
|
5856 /* any rounding that occurred. */ |
|
5857 /* */ |
|
5858 /* res is C, the result. C may be A or B */ |
|
5859 /* lhs is A, the number to adjust */ |
|
5860 /* rhs is B, the requested exponent */ |
|
5861 /* set is the context */ |
|
5862 /* quant is 1 for quantize or 0 for rescale */ |
|
5863 /* status is the status accumulator (this can be called without */ |
|
5864 /* risk of control loss) */ |
|
5865 /* */ |
|
5866 /* C must have space for set->digits digits. */ |
|
5867 /* */ |
|
5868 /* Unless there is an error or the result is infinite, the exponent */ |
|
5869 /* after the operation is guaranteed to be that requested. */ |
|
5870 /* ------------------------------------------------------------------ */ |
|
5871 static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, |
|
5872 const decNumber *rhs, decContext *set, |
|
5873 Flag quant, uInt *status) { |
|
5874 #if DECSUBSET |
|
5875 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
|
5876 decNumber *allocrhs=NULL; /* .., rhs */ |
|
5877 #endif |
|
5878 const decNumber *inrhs=rhs; /* save original rhs */ |
|
5879 Int reqdigits=set->digits; /* requested DIGITS */ |
|
5880 Int reqexp; /* requested exponent [-scale] */ |
|
5881 Int residue=0; /* rounding residue */ |
|
5882 Int etiny=set->emin-(reqdigits-1); |
|
5883 |
|
5884 #if DECCHECK |
|
5885 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
5886 #endif |
|
5887 |
|
5888 do { /* protect allocated storage */ |
|
5889 #if DECSUBSET |
|
5890 if (!set->extended) { |
|
5891 /* reduce operands and set lostDigits status, as needed */ |
|
5892 if (lhs->digits>reqdigits) { |
|
5893 alloclhs=decRoundOperand(lhs, set, status); |
|
5894 if (alloclhs==NULL) break; |
|
5895 lhs=alloclhs; |
|
5896 } |
|
5897 if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */ |
|
5898 allocrhs=decRoundOperand(rhs, set, status); |
|
5899 if (allocrhs==NULL) break; |
|
5900 rhs=allocrhs; |
|
5901 } |
|
5902 } |
|
5903 #endif |
|
5904 /* [following code does not require input rounding] */ |
|
5905 |
|
5906 /* Handle special values */ |
|
5907 if (SPECIALARGS) { |
|
5908 /* NaNs get usual processing */ |
|
5909 if (SPECIALARGS & (DECSNAN | DECNAN)) |
|
5910 decNaNs(res, lhs, rhs, set, status); |
|
5911 /* one infinity but not both is bad */ |
|
5912 else if ((lhs->bits ^ rhs->bits) & DECINF) |
|
5913 *status|=DEC_Invalid_operation; |
|
5914 /* both infinity: return lhs */ |
|
5915 else uprv_decNumberCopy(res, lhs); /* [nop if in place] */ |
|
5916 break; |
|
5917 } |
|
5918 |
|
5919 /* set requested exponent */ |
|
5920 if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */ |
|
5921 else { /* rescale -- use value of rhs */ |
|
5922 /* Original rhs must be an integer that fits and is in range, */ |
|
5923 /* which could be from -1999999997 to +999999999, thanks to */ |
|
5924 /* subnormals */ |
|
5925 reqexp=decGetInt(inrhs); /* [cannot fail] */ |
|
5926 } |
|
5927 |
|
5928 #if DECSUBSET |
|
5929 if (!set->extended) etiny=set->emin; /* no subnormals */ |
|
5930 #endif |
|
5931 |
|
5932 if (reqexp==BADINT /* bad (rescale only) or .. */ |
|
5933 || reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */ |
|
5934 || (reqexp<etiny) /* < lowest */ |
|
5935 || (reqexp>set->emax)) { /* > emax */ |
|
5936 *status|=DEC_Invalid_operation; |
|
5937 break;} |
|
5938 |
|
5939 /* the RHS has been processed, so it can be overwritten now if necessary */ |
|
5940 if (ISZERO(lhs)) { /* zero coefficient unchanged */ |
|
5941 uprv_decNumberCopy(res, lhs); /* [nop if in place] */ |
|
5942 res->exponent=reqexp; /* .. just set exponent */ |
|
5943 #if DECSUBSET |
|
5944 if (!set->extended) res->bits=0; /* subset specification; no -0 */ |
|
5945 #endif |
|
5946 } |
|
5947 else { /* non-zero lhs */ |
|
5948 Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */ |
|
5949 /* if adjusted coefficient will definitely not fit, give up now */ |
|
5950 if ((lhs->digits-adjust)>reqdigits) { |
|
5951 *status|=DEC_Invalid_operation; |
|
5952 break; |
|
5953 } |
|
5954 |
|
5955 if (adjust>0) { /* increasing exponent */ |
|
5956 /* this will decrease the length of the coefficient by adjust */ |
|
5957 /* digits, and must round as it does so */ |
|
5958 decContext workset; /* work */ |
|
5959 workset=*set; /* clone rounding, etc. */ |
|
5960 workset.digits=lhs->digits-adjust; /* set requested length */ |
|
5961 /* [note that the latter can be <1, here] */ |
|
5962 decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */ |
|
5963 decApplyRound(res, &workset, residue, status); /* .. and round */ |
|
5964 residue=0; /* [used] */ |
|
5965 /* If just rounded a 999s case, exponent will be off by one; */ |
|
5966 /* adjust back (after checking space), if so. */ |
|
5967 if (res->exponent>reqexp) { |
|
5968 /* re-check needed, e.g., for quantize(0.9999, 0.001) under */ |
|
5969 /* set->digits==3 */ |
|
5970 if (res->digits==reqdigits) { /* cannot shift by 1 */ |
|
5971 *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */ |
|
5972 *status|=DEC_Invalid_operation; |
|
5973 break; |
|
5974 } |
|
5975 res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */ |
|
5976 res->exponent--; /* (re)adjust the exponent. */ |
|
5977 } |
|
5978 #if DECSUBSET |
|
5979 if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */ |
|
5980 #endif |
|
5981 } /* increase */ |
|
5982 else /* adjust<=0 */ { /* decreasing or = exponent */ |
|
5983 /* this will increase the length of the coefficient by -adjust */ |
|
5984 /* digits, by adding zero or more trailing zeros; this is */ |
|
5985 /* already checked for fit, above */ |
|
5986 uprv_decNumberCopy(res, lhs); /* [it will fit] */ |
|
5987 /* if padding needed (adjust<0), add it now... */ |
|
5988 if (adjust<0) { |
|
5989 res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
|
5990 res->exponent+=adjust; /* adjust the exponent */ |
|
5991 } |
|
5992 } /* decrease */ |
|
5993 } /* non-zero */ |
|
5994 |
|
5995 /* Check for overflow [do not use Finalize in this case, as an */ |
|
5996 /* overflow here is a "don't fit" situation] */ |
|
5997 if (res->exponent>set->emax-res->digits+1) { /* too big */ |
|
5998 *status|=DEC_Invalid_operation; |
|
5999 break; |
|
6000 } |
|
6001 else { |
|
6002 decFinalize(res, set, &residue, status); /* set subnormal flags */ |
|
6003 *status&=~DEC_Underflow; /* suppress Underflow [as per 754] */ |
|
6004 } |
|
6005 } while(0); /* end protected */ |
|
6006 |
|
6007 #if DECSUBSET |
|
6008 if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */ |
|
6009 if (alloclhs!=NULL) free(alloclhs); /* .. */ |
|
6010 #endif |
|
6011 return res; |
|
6012 } /* decQuantizeOp */ |
|
6013 |
|
6014 /* ------------------------------------------------------------------ */ |
|
6015 /* decCompareOp -- compare, min, or max two Numbers */ |
|
6016 /* */ |
|
6017 /* This computes C = A ? B and carries out one of four operations: */ |
|
6018 /* COMPARE -- returns the signum (as a number) giving the */ |
|
6019 /* result of a comparison unless one or both */ |
|
6020 /* operands is a NaN (in which case a NaN results) */ |
|
6021 /* COMPSIG -- as COMPARE except that a quiet NaN raises */ |
|
6022 /* Invalid operation. */ |
|
6023 /* COMPMAX -- returns the larger of the operands, using the */ |
|
6024 /* 754 maxnum operation */ |
|
6025 /* COMPMAXMAG -- ditto, comparing absolute values */ |
|
6026 /* COMPMIN -- the 754 minnum operation */ |
|
6027 /* COMPMINMAG -- ditto, comparing absolute values */ |
|
6028 /* COMTOTAL -- returns the signum (as a number) giving the */ |
|
6029 /* result of a comparison using 754 total ordering */ |
|
6030 /* */ |
|
6031 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
|
6032 /* lhs is A */ |
|
6033 /* rhs is B */ |
|
6034 /* set is the context */ |
|
6035 /* op is the operation flag */ |
|
6036 /* status is the usual accumulator */ |
|
6037 /* */ |
|
6038 /* C must have space for one digit for COMPARE or set->digits for */ |
|
6039 /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */ |
|
6040 /* ------------------------------------------------------------------ */ |
|
6041 /* The emphasis here is on speed for common cases, and avoiding */ |
|
6042 /* coefficient comparison if possible. */ |
|
6043 /* ------------------------------------------------------------------ */ |
|
6044 static decNumber * decCompareOp(decNumber *res, const decNumber *lhs, |
|
6045 const decNumber *rhs, decContext *set, |
|
6046 Flag op, uInt *status) { |
|
6047 #if DECSUBSET |
|
6048 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
|
6049 decNumber *allocrhs=NULL; /* .., rhs */ |
|
6050 #endif |
|
6051 Int result=0; /* default result value */ |
|
6052 uByte merged; /* work */ |
|
6053 |
|
6054 #if DECCHECK |
|
6055 if (decCheckOperands(res, lhs, rhs, set)) return res; |
|
6056 #endif |
|
6057 |
|
6058 do { /* protect allocated storage */ |
|
6059 #if DECSUBSET |
|
6060 if (!set->extended) { |
|
6061 /* reduce operands and set lostDigits status, as needed */ |
|
6062 if (lhs->digits>set->digits) { |
|
6063 alloclhs=decRoundOperand(lhs, set, status); |
|
6064 if (alloclhs==NULL) {result=BADINT; break;} |
|
6065 lhs=alloclhs; |
|
6066 } |
|
6067 if (rhs->digits>set->digits) { |
|
6068 allocrhs=decRoundOperand(rhs, set, status); |
|
6069 if (allocrhs==NULL) {result=BADINT; break;} |
|
6070 rhs=allocrhs; |
|
6071 } |
|
6072 } |
|
6073 #endif |
|
6074 /* [following code does not require input rounding] */ |
|
6075 |
|
6076 /* If total ordering then handle differing signs 'up front' */ |
|
6077 if (op==COMPTOTAL) { /* total ordering */ |
|
6078 if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) { |
|
6079 result=-1; |
|
6080 break; |
|
6081 } |
|
6082 if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) { |
|
6083 result=+1; |
|
6084 break; |
|
6085 } |
|
6086 } |
|
6087 |
|
6088 /* handle NaNs specially; let infinities drop through */ |
|
6089 /* This assumes sNaN (even just one) leads to NaN. */ |
|
6090 merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); |
|
6091 if (merged) { /* a NaN bit set */ |
|
6092 if (op==COMPARE); /* result will be NaN */ |
|
6093 else if (op==COMPSIG) /* treat qNaN as sNaN */ |
|
6094 *status|=DEC_Invalid_operation | DEC_sNaN; |
|
6095 else if (op==COMPTOTAL) { /* total ordering, always finite */ |
|
6096 /* signs are known to be the same; compute the ordering here */ |
|
6097 /* as if the signs are both positive, then invert for negatives */ |
|
6098 if (!decNumberIsNaN(lhs)) result=-1; |
|
6099 else if (!decNumberIsNaN(rhs)) result=+1; |
|
6100 /* here if both NaNs */ |
|
6101 else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; |
|
6102 else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; |
|
6103 else { /* both NaN or both sNaN */ |
|
6104 /* now it just depends on the payload */ |
|
6105 result=decUnitCompare(lhs->lsu, D2U(lhs->digits), |
|
6106 rhs->lsu, D2U(rhs->digits), 0); |
|
6107 /* [Error not possible, as these are 'aligned'] */ |
|
6108 } /* both same NaNs */ |
|
6109 if (decNumberIsNegative(lhs)) result=-result; |
|
6110 break; |
|
6111 } /* total order */ |
|
6112 |
|
6113 else if (merged & DECSNAN); /* sNaN -> qNaN */ |
|
6114 else { /* here if MIN or MAX and one or two quiet NaNs */ |
|
6115 /* min or max -- 754 rules ignore single NaN */ |
|
6116 if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { |
|
6117 /* just one NaN; force choice to be the non-NaN operand */ |
|
6118 op=COMPMAX; |
|
6119 if (lhs->bits & DECNAN) result=-1; /* pick rhs */ |
|
6120 else result=+1; /* pick lhs */ |
|
6121 break; |
|
6122 } |
|
6123 } /* max or min */ |
|
6124 op=COMPNAN; /* use special path */ |
|
6125 decNaNs(res, lhs, rhs, set, status); /* propagate NaN */ |
|
6126 break; |
|
6127 } |
|
6128 /* have numbers */ |
|
6129 if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); |
|
6130 else result=decCompare(lhs, rhs, 0); /* sign matters */ |
|
6131 } while(0); /* end protected */ |
|
6132 |
|
6133 if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */ |
|
6134 else { |
|
6135 if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */ |
|
6136 if (op==COMPTOTAL && result==0) { |
|
6137 /* operands are numerically equal or same NaN (and same sign, */ |
|
6138 /* tested first); if identical, leave result 0 */ |
|
6139 if (lhs->exponent!=rhs->exponent) { |
|
6140 if (lhs->exponent<rhs->exponent) result=-1; |
|
6141 else result=+1; |
|
6142 if (decNumberIsNegative(lhs)) result=-result; |
|
6143 } /* lexp!=rexp */ |
|
6144 } /* total-order by exponent */ |
|
6145 uprv_decNumberZero(res); /* [always a valid result] */ |
|
6146 if (result!=0) { /* must be -1 or +1 */ |
|
6147 *res->lsu=1; |
|
6148 if (result<0) res->bits=DECNEG; |
|
6149 } |
|
6150 } |
|
6151 else if (op==COMPNAN); /* special, drop through */ |
|
6152 else { /* MAX or MIN, non-NaN result */ |
|
6153 Int residue=0; /* rounding accumulator */ |
|
6154 /* choose the operand for the result */ |
|
6155 const decNumber *choice; |
|
6156 if (result==0) { /* operands are numerically equal */ |
|
6157 /* choose according to sign then exponent (see 754) */ |
|
6158 uByte slhs=(lhs->bits & DECNEG); |
|
6159 uByte srhs=(rhs->bits & DECNEG); |
|
6160 #if DECSUBSET |
|
6161 if (!set->extended) { /* subset: force left-hand */ |
|
6162 op=COMPMAX; |
|
6163 result=+1; |
|
6164 } |
|
6165 else |
|
6166 #endif |
|
6167 if (slhs!=srhs) { /* signs differ */ |
|
6168 if (slhs) result=-1; /* rhs is max */ |
|
6169 else result=+1; /* lhs is max */ |
|
6170 } |
|
6171 else if (slhs && srhs) { /* both negative */ |
|
6172 if (lhs->exponent<rhs->exponent) result=+1; |
|
6173 else result=-1; |
|
6174 /* [if equal, use lhs, technically identical] */ |
|
6175 } |
|
6176 else { /* both positive */ |
|
6177 if (lhs->exponent>rhs->exponent) result=+1; |
|
6178 else result=-1; |
|
6179 /* [ditto] */ |
|
6180 } |
|
6181 } /* numerically equal */ |
|
6182 /* here result will be non-0; reverse if looking for MIN */ |
|
6183 if (op==COMPMIN || op==COMPMINMAG) result=-result; |
|
6184 choice=(result>0 ? lhs : rhs); /* choose */ |
|
6185 /* copy chosen to result, rounding if need be */ |
|
6186 decCopyFit(res, choice, set, &residue, status); |
|
6187 decFinish(res, set, &residue, status); |
|
6188 } |
|
6189 } |
|
6190 #if DECSUBSET |
|
6191 if (allocrhs!=NULL) free(allocrhs); /* free any storage used */ |
|
6192 if (alloclhs!=NULL) free(alloclhs); /* .. */ |
|
6193 #endif |
|
6194 return res; |
|
6195 } /* decCompareOp */ |
|
6196 |
|
6197 /* ------------------------------------------------------------------ */ |
|
6198 /* decCompare -- compare two decNumbers by numerical value */ |
|
6199 /* */ |
|
6200 /* This routine compares A ? B without altering them. */ |
|
6201 /* */ |
|
6202 /* Arg1 is A, a decNumber which is not a NaN */ |
|
6203 /* Arg2 is B, a decNumber which is not a NaN */ |
|
6204 /* Arg3 is 1 for a sign-independent compare, 0 otherwise */ |
|
6205 /* */ |
|
6206 /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ |
|
6207 /* (the only possible failure is an allocation error) */ |
|
6208 /* ------------------------------------------------------------------ */ |
|
6209 static Int decCompare(const decNumber *lhs, const decNumber *rhs, |
|
6210 Flag abs_c) { |
|
6211 Int result; /* result value */ |
|
6212 Int sigr; /* rhs signum */ |
|
6213 Int compare; /* work */ |
|
6214 |
|
6215 result=1; /* assume signum(lhs) */ |
|
6216 if (ISZERO(lhs)) result=0; |
|
6217 if (abs_c) { |
|
6218 if (ISZERO(rhs)) return result; /* LHS wins or both 0 */ |
|
6219 /* RHS is non-zero */ |
|
6220 if (result==0) return -1; /* LHS is 0; RHS wins */ |
|
6221 /* [here, both non-zero, result=1] */ |
|
6222 } |
|
6223 else { /* signs matter */ |
|
6224 if (result && decNumberIsNegative(lhs)) result=-1; |
|
6225 sigr=1; /* compute signum(rhs) */ |
|
6226 if (ISZERO(rhs)) sigr=0; |
|
6227 else if (decNumberIsNegative(rhs)) sigr=-1; |
|
6228 if (result > sigr) return +1; /* L > R, return 1 */ |
|
6229 if (result < sigr) return -1; /* L < R, return -1 */ |
|
6230 if (result==0) return 0; /* both 0 */ |
|
6231 } |
|
6232 |
|
6233 /* signums are the same; both are non-zero */ |
|
6234 if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */ |
|
6235 if (decNumberIsInfinite(rhs)) { |
|
6236 if (decNumberIsInfinite(lhs)) result=0;/* both infinite */ |
|
6237 else result=-result; /* only rhs infinite */ |
|
6238 } |
|
6239 return result; |
|
6240 } |
|
6241 /* must compare the coefficients, allowing for exponents */ |
|
6242 if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */ |
|
6243 /* swap sides, and sign */ |
|
6244 const decNumber *temp=lhs; |
|
6245 lhs=rhs; |
|
6246 rhs=temp; |
|
6247 result=-result; |
|
6248 } |
|
6249 compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), |
|
6250 rhs->lsu, D2U(rhs->digits), |
|
6251 rhs->exponent-lhs->exponent); |
|
6252 if (compare!=BADINT) compare*=result; /* comparison succeeded */ |
|
6253 return compare; |
|
6254 } /* decCompare */ |
|
6255 |
|
6256 /* ------------------------------------------------------------------ */ |
|
6257 /* decUnitCompare -- compare two >=0 integers in Unit arrays */ |
|
6258 /* */ |
|
6259 /* This routine compares A ? B*10**E where A and B are unit arrays */ |
|
6260 /* A is a plain integer */ |
|
6261 /* B has an exponent of E (which must be non-negative) */ |
|
6262 /* */ |
|
6263 /* Arg1 is A first Unit (lsu) */ |
|
6264 /* Arg2 is A length in Units */ |
|
6265 /* Arg3 is B first Unit (lsu) */ |
|
6266 /* Arg4 is B length in Units */ |
|
6267 /* Arg5 is E (0 if the units are aligned) */ |
|
6268 /* */ |
|
6269 /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ |
|
6270 /* (the only possible failure is an allocation error, which can */ |
|
6271 /* only occur if E!=0) */ |
|
6272 /* ------------------------------------------------------------------ */ |
|
6273 static Int decUnitCompare(const Unit *a, Int alength, |
|
6274 const Unit *b, Int blength, Int exp) { |
|
6275 Unit *acc; /* accumulator for result */ |
|
6276 Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */ |
|
6277 Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */ |
|
6278 Int accunits, need; /* units in use or needed for acc */ |
|
6279 const Unit *l, *r, *u; /* work */ |
|
6280 Int expunits, exprem, result; /* .. */ |
|
6281 |
|
6282 if (exp==0) { /* aligned; fastpath */ |
|
6283 if (alength>blength) return 1; |
|
6284 if (alength<blength) return -1; |
|
6285 /* same number of units in both -- need unit-by-unit compare */ |
|
6286 l=a+alength-1; |
|
6287 r=b+alength-1; |
|
6288 for (;l>=a; l--, r--) { |
|
6289 if (*l>*r) return 1; |
|
6290 if (*l<*r) return -1; |
|
6291 } |
|
6292 return 0; /* all units match */ |
|
6293 } /* aligned */ |
|
6294 |
|
6295 /* Unaligned. If one is >1 unit longer than the other, padded */ |
|
6296 /* approximately, then can return easily */ |
|
6297 if (alength>blength+(Int)D2U(exp)) return 1; |
|
6298 if (alength+1<blength+(Int)D2U(exp)) return -1; |
|
6299 |
|
6300 /* Need to do a real subtract. For this, a result buffer is needed */ |
|
6301 /* even though only the sign is of interest. Its length needs */ |
|
6302 /* to be the larger of alength and padded blength, +2 */ |
|
6303 need=blength+D2U(exp); /* maximum real length of B */ |
|
6304 if (need<alength) need=alength; |
|
6305 need+=2; |
|
6306 acc=accbuff; /* assume use local buffer */ |
|
6307 if (need*sizeof(Unit)>sizeof(accbuff)) { |
|
6308 allocacc=(Unit *)malloc(need*sizeof(Unit)); |
|
6309 if (allocacc==NULL) return BADINT; /* hopeless -- abandon */ |
|
6310 acc=allocacc; |
|
6311 } |
|
6312 /* Calculate units and remainder from exponent. */ |
|
6313 expunits=exp/DECDPUN; |
|
6314 exprem=exp%DECDPUN; |
|
6315 /* subtract [A+B*(-m)] */ |
|
6316 accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, |
|
6317 -(Int)powers[exprem]); |
|
6318 /* [UnitAddSub result may have leading zeros, even on zero] */ |
|
6319 if (accunits<0) result=-1; /* negative result */ |
|
6320 else { /* non-negative result */ |
|
6321 /* check units of the result before freeing any storage */ |
|
6322 for (u=acc; u<acc+accunits-1 && *u==0;) u++; |
|
6323 result=(*u==0 ? 0 : +1); |
|
6324 } |
|
6325 /* clean up and return the result */ |
|
6326 if (allocacc!=NULL) free(allocacc); /* drop any storage used */ |
|
6327 return result; |
|
6328 } /* decUnitCompare */ |
|
6329 |
|
6330 /* ------------------------------------------------------------------ */ |
|
6331 /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */ |
|
6332 /* */ |
|
6333 /* This routine performs the calculation: */ |
|
6334 /* */ |
|
6335 /* C=A+(B*M) */ |
|
6336 /* */ |
|
6337 /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */ |
|
6338 /* */ |
|
6339 /* A may be shorter or longer than B. */ |
|
6340 /* */ |
|
6341 /* Leading zeros are not removed after a calculation. The result is */ |
|
6342 /* either the same length as the longer of A and B (adding any */ |
|
6343 /* shift), or one Unit longer than that (if a Unit carry occurred). */ |
|
6344 /* */ |
|
6345 /* A and B content are not altered unless C is also A or B. */ |
|
6346 /* C may be the same array as A or B, but only if no zero padding is */ |
|
6347 /* requested (that is, C may be B only if bshift==0). */ |
|
6348 /* C is filled from the lsu; only those units necessary to complete */ |
|
6349 /* the calculation are referenced. */ |
|
6350 /* */ |
|
6351 /* Arg1 is A first Unit (lsu) */ |
|
6352 /* Arg2 is A length in Units */ |
|
6353 /* Arg3 is B first Unit (lsu) */ |
|
6354 /* Arg4 is B length in Units */ |
|
6355 /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */ |
|
6356 /* Arg6 is C first Unit (lsu) */ |
|
6357 /* Arg7 is M, the multiplier */ |
|
6358 /* */ |
|
6359 /* returns the count of Units written to C, which will be non-zero */ |
|
6360 /* and negated if the result is negative. That is, the sign of the */ |
|
6361 /* returned Int is the sign of the result (positive for zero) and */ |
|
6362 /* the absolute value of the Int is the count of Units. */ |
|
6363 /* */ |
|
6364 /* It is the caller's responsibility to make sure that C size is */ |
|
6365 /* safe, allowing space if necessary for a one-Unit carry. */ |
|
6366 /* */ |
|
6367 /* This routine is severely performance-critical; *any* change here */ |
|
6368 /* must be measured (timed) to assure no performance degradation. */ |
|
6369 /* In particular, trickery here tends to be counter-productive, as */ |
|
6370 /* increased complexity of code hurts register optimizations on */ |
|
6371 /* register-poor architectures. Avoiding divisions is nearly */ |
|
6372 /* always a Good Idea, however. */ |
|
6373 /* */ |
|
6374 /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */ |
|
6375 /* (IBM Warwick, UK) for some of the ideas used in this routine. */ |
|
6376 /* ------------------------------------------------------------------ */ |
|
6377 static Int decUnitAddSub(const Unit *a, Int alength, |
|
6378 const Unit *b, Int blength, Int bshift, |
|
6379 Unit *c, Int m) { |
|
6380 const Unit *alsu=a; /* A lsu [need to remember it] */ |
|
6381 Unit *clsu=c; /* C ditto */ |
|
6382 Unit *minC; /* low water mark for C */ |
|
6383 Unit *maxC; /* high water mark for C */ |
|
6384 eInt carry=0; /* carry integer (could be Long) */ |
|
6385 Int add; /* work */ |
|
6386 #if DECDPUN<=4 /* myriadal, millenary, etc. */ |
|
6387 Int est; /* estimated quotient */ |
|
6388 #endif |
|
6389 |
|
6390 #if DECTRACE |
|
6391 if (alength<1 || blength<1) |
|
6392 printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); |
|
6393 #endif |
|
6394 |
|
6395 maxC=c+alength; /* A is usually the longer */ |
|
6396 minC=c+blength; /* .. and B the shorter */ |
|
6397 if (bshift!=0) { /* B is shifted; low As copy across */ |
|
6398 minC+=bshift; |
|
6399 /* if in place [common], skip copy unless there's a gap [rare] */ |
|
6400 if (a==c && bshift<=alength) { |
|
6401 c+=bshift; |
|
6402 a+=bshift; |
|
6403 } |
|
6404 else for (; c<clsu+bshift; a++, c++) { /* copy needed */ |
|
6405 if (a<alsu+alength) *c=*a; |
|
6406 else *c=0; |
|
6407 } |
|
6408 } |
|
6409 if (minC>maxC) { /* swap */ |
|
6410 Unit *hold=minC; |
|
6411 minC=maxC; |
|
6412 maxC=hold; |
|
6413 } |
|
6414 |
|
6415 /* For speed, do the addition as two loops; the first where both A */ |
|
6416 /* and B contribute, and the second (if necessary) where only one or */ |
|
6417 /* other of the numbers contribute. */ |
|
6418 /* Carry handling is the same (i.e., duplicated) in each case. */ |
|
6419 for (; c<minC; c++) { |
|
6420 carry+=*a; |
|
6421 a++; |
|
6422 carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */ |
|
6423 b++; /* here is not a win] */ |
|
6424 /* here carry is new Unit of digits; it could be +ve or -ve */ |
|
6425 if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */ |
|
6426 *c=(Unit)carry; |
|
6427 carry=0; |
|
6428 continue; |
|
6429 } |
|
6430 #if DECDPUN==4 /* use divide-by-multiply */ |
|
6431 if (carry>=0) { |
|
6432 est=(((ueInt)carry>>11)*53687)>>18; |
|
6433 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
|
6434 carry=est; /* likely quotient [89%] */ |
|
6435 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
|
6436 carry++; |
|
6437 *c-=DECDPUNMAX+1; |
|
6438 continue; |
|
6439 } |
|
6440 /* negative case */ |
|
6441 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6442 est=(((ueInt)carry>>11)*53687)>>18; |
|
6443 *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
|
6444 carry=est-(DECDPUNMAX+1); /* correctly negative */ |
|
6445 if (*c<DECDPUNMAX+1) continue; /* was OK */ |
|
6446 carry++; |
|
6447 *c-=DECDPUNMAX+1; |
|
6448 #elif DECDPUN==3 |
|
6449 if (carry>=0) { |
|
6450 est=(((ueInt)carry>>3)*16777)>>21; |
|
6451 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
|
6452 carry=est; /* likely quotient [99%] */ |
|
6453 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
|
6454 carry++; |
|
6455 *c-=DECDPUNMAX+1; |
|
6456 continue; |
|
6457 } |
|
6458 /* negative case */ |
|
6459 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6460 est=(((ueInt)carry>>3)*16777)>>21; |
|
6461 *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
|
6462 carry=est-(DECDPUNMAX+1); /* correctly negative */ |
|
6463 if (*c<DECDPUNMAX+1) continue; /* was OK */ |
|
6464 carry++; |
|
6465 *c-=DECDPUNMAX+1; |
|
6466 #elif DECDPUN<=2 |
|
6467 /* Can use QUOT10 as carry <= 4 digits */ |
|
6468 if (carry>=0) { |
|
6469 est=QUOT10(carry, DECDPUN); |
|
6470 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
|
6471 carry=est; /* quotient */ |
|
6472 continue; |
|
6473 } |
|
6474 /* negative case */ |
|
6475 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6476 est=QUOT10(carry, DECDPUN); |
|
6477 *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
|
6478 carry=est-(DECDPUNMAX+1); /* correctly negative */ |
|
6479 #else |
|
6480 /* remainder operator is undefined if negative, so must test */ |
|
6481 if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */ |
|
6482 *c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */ |
|
6483 carry=1; |
|
6484 continue; |
|
6485 } |
|
6486 if (carry>=0) { |
|
6487 *c=(Unit)(carry%(DECDPUNMAX+1)); |
|
6488 carry=carry/(DECDPUNMAX+1); |
|
6489 continue; |
|
6490 } |
|
6491 /* negative case */ |
|
6492 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6493 *c=(Unit)(carry%(DECDPUNMAX+1)); |
|
6494 carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); |
|
6495 #endif |
|
6496 } /* c */ |
|
6497 |
|
6498 /* now may have one or other to complete */ |
|
6499 /* [pretest to avoid loop setup/shutdown] */ |
|
6500 if (c<maxC) for (; c<maxC; c++) { |
|
6501 if (a<alsu+alength) { /* still in A */ |
|
6502 carry+=*a; |
|
6503 a++; |
|
6504 } |
|
6505 else { /* inside B */ |
|
6506 carry+=((eInt)*b)*m; |
|
6507 b++; |
|
6508 } |
|
6509 /* here carry is new Unit of digits; it could be +ve or -ve and */ |
|
6510 /* magnitude up to DECDPUNMAX squared */ |
|
6511 if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */ |
|
6512 *c=(Unit)carry; |
|
6513 carry=0; |
|
6514 continue; |
|
6515 } |
|
6516 /* result for this unit is negative or >DECDPUNMAX */ |
|
6517 #if DECDPUN==4 /* use divide-by-multiply */ |
|
6518 if (carry>=0) { |
|
6519 est=(((ueInt)carry>>11)*53687)>>18; |
|
6520 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
|
6521 carry=est; /* likely quotient [79.7%] */ |
|
6522 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
|
6523 carry++; |
|
6524 *c-=DECDPUNMAX+1; |
|
6525 continue; |
|
6526 } |
|
6527 /* negative case */ |
|
6528 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6529 est=(((ueInt)carry>>11)*53687)>>18; |
|
6530 *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
|
6531 carry=est-(DECDPUNMAX+1); /* correctly negative */ |
|
6532 if (*c<DECDPUNMAX+1) continue; /* was OK */ |
|
6533 carry++; |
|
6534 *c-=DECDPUNMAX+1; |
|
6535 #elif DECDPUN==3 |
|
6536 if (carry>=0) { |
|
6537 est=(((ueInt)carry>>3)*16777)>>21; |
|
6538 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
|
6539 carry=est; /* likely quotient [99%] */ |
|
6540 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
|
6541 carry++; |
|
6542 *c-=DECDPUNMAX+1; |
|
6543 continue; |
|
6544 } |
|
6545 /* negative case */ |
|
6546 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6547 est=(((ueInt)carry>>3)*16777)>>21; |
|
6548 *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
|
6549 carry=est-(DECDPUNMAX+1); /* correctly negative */ |
|
6550 if (*c<DECDPUNMAX+1) continue; /* was OK */ |
|
6551 carry++; |
|
6552 *c-=DECDPUNMAX+1; |
|
6553 #elif DECDPUN<=2 |
|
6554 if (carry>=0) { |
|
6555 est=QUOT10(carry, DECDPUN); |
|
6556 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
|
6557 carry=est; /* quotient */ |
|
6558 continue; |
|
6559 } |
|
6560 /* negative case */ |
|
6561 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6562 est=QUOT10(carry, DECDPUN); |
|
6563 *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
|
6564 carry=est-(DECDPUNMAX+1); /* correctly negative */ |
|
6565 #else |
|
6566 if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */ |
|
6567 *c=(Unit)(carry-(DECDPUNMAX+1)); |
|
6568 carry=1; |
|
6569 continue; |
|
6570 } |
|
6571 /* remainder operator is undefined if negative, so must test */ |
|
6572 if (carry>=0) { |
|
6573 *c=(Unit)(carry%(DECDPUNMAX+1)); |
|
6574 carry=carry/(DECDPUNMAX+1); |
|
6575 continue; |
|
6576 } |
|
6577 /* negative case */ |
|
6578 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
|
6579 *c=(Unit)(carry%(DECDPUNMAX+1)); |
|
6580 carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); |
|
6581 #endif |
|
6582 } /* c */ |
|
6583 |
|
6584 /* OK, all A and B processed; might still have carry or borrow */ |
|
6585 /* return number of Units in the result, negated if a borrow */ |
|
6586 if (carry==0) return c-clsu; /* no carry, so no more to do */ |
|
6587 if (carry>0) { /* positive carry */ |
|
6588 *c=(Unit)carry; /* place as new unit */ |
|
6589 c++; /* .. */ |
|
6590 return c-clsu; |
|
6591 } |
|
6592 /* -ve carry: it's a borrow; complement needed */ |
|
6593 add=1; /* temporary carry... */ |
|
6594 for (c=clsu; c<maxC; c++) { |
|
6595 add=DECDPUNMAX+add-*c; |
|
6596 if (add<=DECDPUNMAX) { |
|
6597 *c=(Unit)add; |
|
6598 add=0; |
|
6599 } |
|
6600 else { |
|
6601 *c=0; |
|
6602 add=1; |
|
6603 } |
|
6604 } |
|
6605 /* add an extra unit iff it would be non-zero */ |
|
6606 #if DECTRACE |
|
6607 printf("UAS borrow: add %ld, carry %ld\n", add, carry); |
|
6608 #endif |
|
6609 if ((add-carry-1)!=0) { |
|
6610 *c=(Unit)(add-carry-1); |
|
6611 c++; /* interesting, include it */ |
|
6612 } |
|
6613 return clsu-c; /* -ve result indicates borrowed */ |
|
6614 } /* decUnitAddSub */ |
|
6615 |
|
6616 /* ------------------------------------------------------------------ */ |
|
6617 /* decTrim -- trim trailing zeros or normalize */ |
|
6618 /* */ |
|
6619 /* dn is the number to trim or normalize */ |
|
6620 /* set is the context to use to check for clamp */ |
|
6621 /* all is 1 to remove all trailing zeros, 0 for just fraction ones */ |
|
6622 /* noclamp is 1 to unconditional (unclamped) trim */ |
|
6623 /* dropped returns the number of discarded trailing zeros */ |
|
6624 /* returns dn */ |
|
6625 /* */ |
|
6626 /* If clamp is set in the context then the number of zeros trimmed */ |
|
6627 /* may be limited if the exponent is high. */ |
|
6628 /* All fields are updated as required. This is a utility operation, */ |
|
6629 /* so special values are unchanged and no error is possible. */ |
|
6630 /* ------------------------------------------------------------------ */ |
|
6631 static decNumber * decTrim(decNumber *dn, decContext *set, Flag all, |
|
6632 Flag noclamp, Int *dropped) { |
|
6633 Int d, exp; /* work */ |
|
6634 uInt cut; /* .. */ |
|
6635 Unit *up; /* -> current Unit */ |
|
6636 |
|
6637 #if DECCHECK |
|
6638 if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
|
6639 #endif |
|
6640 |
|
6641 *dropped=0; /* assume no zeros dropped */ |
|
6642 if ((dn->bits & DECSPECIAL) /* fast exit if special .. */ |
|
6643 || (*dn->lsu & 0x01)) return dn; /* .. or odd */ |
|
6644 if (ISZERO(dn)) { /* .. or 0 */ |
|
6645 dn->exponent=0; /* (sign is preserved) */ |
|
6646 return dn; |
|
6647 } |
|
6648 |
|
6649 /* have a finite number which is even */ |
|
6650 exp=dn->exponent; |
|
6651 cut=1; /* digit (1-DECDPUN) in Unit */ |
|
6652 up=dn->lsu; /* -> current Unit */ |
|
6653 for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */ |
|
6654 /* slice by powers */ |
|
6655 #if DECDPUN<=4 |
|
6656 uInt quot=QUOT10(*up, cut); |
|
6657 if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */ |
|
6658 #else |
|
6659 if (*up%powers[cut]!=0) break; /* found non-0 digit */ |
|
6660 #endif |
|
6661 /* have a trailing 0 */ |
|
6662 if (!all) { /* trimming */ |
|
6663 /* [if exp>0 then all trailing 0s are significant for trim] */ |
|
6664 if (exp<=0) { /* if digit might be significant */ |
|
6665 if (exp==0) break; /* then quit */ |
|
6666 exp++; /* next digit might be significant */ |
|
6667 } |
|
6668 } |
|
6669 cut++; /* next power */ |
|
6670 if (cut>DECDPUN) { /* need new Unit */ |
|
6671 up++; |
|
6672 cut=1; |
|
6673 } |
|
6674 } /* d */ |
|
6675 if (d==0) return dn; /* none to drop */ |
|
6676 |
|
6677 /* may need to limit drop if clamping */ |
|
6678 if (set->clamp && !noclamp) { |
|
6679 Int maxd=set->emax-set->digits+1-dn->exponent; |
|
6680 if (maxd<=0) return dn; /* nothing possible */ |
|
6681 if (d>maxd) d=maxd; |
|
6682 } |
|
6683 |
|
6684 /* effect the drop */ |
|
6685 decShiftToLeast(dn->lsu, D2U(dn->digits), d); |
|
6686 dn->exponent+=d; /* maintain numerical value */ |
|
6687 dn->digits-=d; /* new length */ |
|
6688 *dropped=d; /* report the count */ |
|
6689 return dn; |
|
6690 } /* decTrim */ |
|
6691 |
|
6692 /* ------------------------------------------------------------------ */ |
|
6693 /* decReverse -- reverse a Unit array in place */ |
|
6694 /* */ |
|
6695 /* ulo is the start of the array */ |
|
6696 /* uhi is the end of the array (highest Unit to include) */ |
|
6697 /* */ |
|
6698 /* The units ulo through uhi are reversed in place (if the number */ |
|
6699 /* of units is odd, the middle one is untouched). Note that the */ |
|
6700 /* digit(s) in each unit are unaffected. */ |
|
6701 /* ------------------------------------------------------------------ */ |
|
6702 static void decReverse(Unit *ulo, Unit *uhi) { |
|
6703 Unit temp; |
|
6704 for (; ulo<uhi; ulo++, uhi--) { |
|
6705 temp=*ulo; |
|
6706 *ulo=*uhi; |
|
6707 *uhi=temp; |
|
6708 } |
|
6709 return; |
|
6710 } /* decReverse */ |
|
6711 |
|
6712 /* ------------------------------------------------------------------ */ |
|
6713 /* decShiftToMost -- shift digits in array towards most significant */ |
|
6714 /* */ |
|
6715 /* uar is the array */ |
|
6716 /* digits is the count of digits in use in the array */ |
|
6717 /* shift is the number of zeros to pad with (least significant); */ |
|
6718 /* it must be zero or positive */ |
|
6719 /* */ |
|
6720 /* returns the new length of the integer in the array, in digits */ |
|
6721 /* */ |
|
6722 /* No overflow is permitted (that is, the uar array must be known to */ |
|
6723 /* be large enough to hold the result, after shifting). */ |
|
6724 /* ------------------------------------------------------------------ */ |
|
6725 static Int decShiftToMost(Unit *uar, Int digits, Int shift) { |
|
6726 Unit *target, *source, *first; /* work */ |
|
6727 Int cut; /* odd 0's to add */ |
|
6728 uInt next; /* work */ |
|
6729 |
|
6730 if (shift==0) return digits; /* [fastpath] nothing to do */ |
|
6731 if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */ |
|
6732 *uar=(Unit)(*uar*powers[shift]); |
|
6733 return digits+shift; |
|
6734 } |
|
6735 |
|
6736 next=0; /* all paths */ |
|
6737 source=uar+D2U(digits)-1; /* where msu comes from */ |
|
6738 target=source+D2U(shift); /* where upper part of first cut goes */ |
|
6739 cut=DECDPUN-MSUDIGITS(shift); /* where to slice */ |
|
6740 if (cut==0) { /* unit-boundary case */ |
|
6741 for (; source>=uar; source--, target--) *target=*source; |
|
6742 } |
|
6743 else { |
|
6744 first=uar+D2U(digits+shift)-1; /* where msu of source will end up */ |
|
6745 for (; source>=uar; source--, target--) { |
|
6746 /* split the source Unit and accumulate remainder for next */ |
|
6747 #if DECDPUN<=4 |
|
6748 uInt quot=QUOT10(*source, cut); |
|
6749 uInt rem=*source-quot*powers[cut]; |
|
6750 next+=quot; |
|
6751 #else |
|
6752 uInt rem=*source%powers[cut]; |
|
6753 next+=*source/powers[cut]; |
|
6754 #endif |
|
6755 if (target<=first) *target=(Unit)next; /* write to target iff valid */ |
|
6756 next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */ |
|
6757 } |
|
6758 } /* shift-move */ |
|
6759 |
|
6760 /* propagate any partial unit to one below and clear the rest */ |
|
6761 for (; target>=uar; target--) { |
|
6762 *target=(Unit)next; |
|
6763 next=0; |
|
6764 } |
|
6765 return digits+shift; |
|
6766 } /* decShiftToMost */ |
|
6767 |
|
6768 /* ------------------------------------------------------------------ */ |
|
6769 /* decShiftToLeast -- shift digits in array towards least significant */ |
|
6770 /* */ |
|
6771 /* uar is the array */ |
|
6772 /* units is length of the array, in units */ |
|
6773 /* shift is the number of digits to remove from the lsu end; it */ |
|
6774 /* must be zero or positive and <= than units*DECDPUN. */ |
|
6775 /* */ |
|
6776 /* returns the new length of the integer in the array, in units */ |
|
6777 /* */ |
|
6778 /* Removed digits are discarded (lost). Units not required to hold */ |
|
6779 /* the final result are unchanged. */ |
|
6780 /* ------------------------------------------------------------------ */ |
|
6781 static Int decShiftToLeast(Unit *uar, Int units, Int shift) { |
|
6782 Unit *target, *up; /* work */ |
|
6783 Int cut, count; /* work */ |
|
6784 Int quot, rem; /* for division */ |
|
6785 |
|
6786 if (shift==0) return units; /* [fastpath] nothing to do */ |
|
6787 if (shift==units*DECDPUN) { /* [fastpath] little to do */ |
|
6788 *uar=0; /* all digits cleared gives zero */ |
|
6789 return 1; /* leaves just the one */ |
|
6790 } |
|
6791 |
|
6792 target=uar; /* both paths */ |
|
6793 cut=MSUDIGITS(shift); |
|
6794 if (cut==DECDPUN) { /* unit-boundary case; easy */ |
|
6795 up=uar+D2U(shift); |
|
6796 for (; up<uar+units; target++, up++) *target=*up; |
|
6797 return target-uar; |
|
6798 } |
|
6799 |
|
6800 /* messier */ |
|
6801 up=uar+D2U(shift-cut); /* source; correct to whole Units */ |
|
6802 count=units*DECDPUN-shift; /* the maximum new length */ |
|
6803 #if DECDPUN<=4 |
|
6804 quot=QUOT10(*up, cut); |
|
6805 #else |
|
6806 quot=*up/powers[cut]; |
|
6807 #endif |
|
6808 for (; ; target++) { |
|
6809 *target=(Unit)quot; |
|
6810 count-=(DECDPUN-cut); |
|
6811 if (count<=0) break; |
|
6812 up++; |
|
6813 quot=*up; |
|
6814 #if DECDPUN<=4 |
|
6815 quot=QUOT10(quot, cut); |
|
6816 rem=*up-quot*powers[cut]; |
|
6817 #else |
|
6818 rem=quot%powers[cut]; |
|
6819 quot=quot/powers[cut]; |
|
6820 #endif |
|
6821 *target=(Unit)(*target+rem*powers[DECDPUN-cut]); |
|
6822 count-=cut; |
|
6823 if (count<=0) break; |
|
6824 } |
|
6825 return target-uar+1; |
|
6826 } /* decShiftToLeast */ |
|
6827 |
|
6828 #if DECSUBSET |
|
6829 /* ------------------------------------------------------------------ */ |
|
6830 /* decRoundOperand -- round an operand [used for subset only] */ |
|
6831 /* */ |
|
6832 /* dn is the number to round (dn->digits is > set->digits) */ |
|
6833 /* set is the relevant context */ |
|
6834 /* status is the status accumulator */ |
|
6835 /* */ |
|
6836 /* returns an allocated decNumber with the rounded result. */ |
|
6837 /* */ |
|
6838 /* lostDigits and other status may be set by this. */ |
|
6839 /* */ |
|
6840 /* Since the input is an operand, it must not be modified. */ |
|
6841 /* Instead, return an allocated decNumber, rounded as required. */ |
|
6842 /* It is the caller's responsibility to free the allocated storage. */ |
|
6843 /* */ |
|
6844 /* If no storage is available then the result cannot be used, so NULL */ |
|
6845 /* is returned. */ |
|
6846 /* ------------------------------------------------------------------ */ |
|
6847 static decNumber *decRoundOperand(const decNumber *dn, decContext *set, |
|
6848 uInt *status) { |
|
6849 decNumber *res; /* result structure */ |
|
6850 uInt newstatus=0; /* status from round */ |
|
6851 Int residue=0; /* rounding accumulator */ |
|
6852 |
|
6853 /* Allocate storage for the returned decNumber, big enough for the */ |
|
6854 /* length specified by the context */ |
|
6855 res=(decNumber *)malloc(sizeof(decNumber) |
|
6856 +(D2U(set->digits)-1)*sizeof(Unit)); |
|
6857 if (res==NULL) { |
|
6858 *status|=DEC_Insufficient_storage; |
|
6859 return NULL; |
|
6860 } |
|
6861 decCopyFit(res, dn, set, &residue, &newstatus); |
|
6862 decApplyRound(res, set, residue, &newstatus); |
|
6863 |
|
6864 /* If that set Inexact then "lost digits" is raised... */ |
|
6865 if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; |
|
6866 *status|=newstatus; |
|
6867 return res; |
|
6868 } /* decRoundOperand */ |
|
6869 #endif |
|
6870 |
|
6871 /* ------------------------------------------------------------------ */ |
|
6872 /* decCopyFit -- copy a number, truncating the coefficient if needed */ |
|
6873 /* */ |
|
6874 /* dest is the target decNumber */ |
|
6875 /* src is the source decNumber */ |
|
6876 /* set is the context [used for length (digits) and rounding mode] */ |
|
6877 /* residue is the residue accumulator */ |
|
6878 /* status contains the current status to be updated */ |
|
6879 /* */ |
|
6880 /* (dest==src is allowed and will be a no-op if fits) */ |
|
6881 /* All fields are updated as required. */ |
|
6882 /* ------------------------------------------------------------------ */ |
|
6883 static void decCopyFit(decNumber *dest, const decNumber *src, |
|
6884 decContext *set, Int *residue, uInt *status) { |
|
6885 dest->bits=src->bits; |
|
6886 dest->exponent=src->exponent; |
|
6887 decSetCoeff(dest, set, src->lsu, src->digits, residue, status); |
|
6888 } /* decCopyFit */ |
|
6889 |
|
6890 /* ------------------------------------------------------------------ */ |
|
6891 /* decSetCoeff -- set the coefficient of a number */ |
|
6892 /* */ |
|
6893 /* dn is the number whose coefficient array is to be set. */ |
|
6894 /* It must have space for set->digits digits */ |
|
6895 /* set is the context [for size] */ |
|
6896 /* lsu -> lsu of the source coefficient [may be dn->lsu] */ |
|
6897 /* len is digits in the source coefficient [may be dn->digits] */ |
|
6898 /* residue is the residue accumulator. This has values as in */ |
|
6899 /* decApplyRound, and will be unchanged unless the */ |
|
6900 /* target size is less than len. In this case, the */ |
|
6901 /* coefficient is truncated and the residue is updated to */ |
|
6902 /* reflect the previous residue and the dropped digits. */ |
|
6903 /* status is the status accumulator, as usual */ |
|
6904 /* */ |
|
6905 /* The coefficient may already be in the number, or it can be an */ |
|
6906 /* external intermediate array. If it is in the number, lsu must == */ |
|
6907 /* dn->lsu and len must == dn->digits. */ |
|
6908 /* */ |
|
6909 /* Note that the coefficient length (len) may be < set->digits, and */ |
|
6910 /* in this case this merely copies the coefficient (or is a no-op */ |
|
6911 /* if dn->lsu==lsu). */ |
|
6912 /* */ |
|
6913 /* Note also that (only internally, from decQuantizeOp and */ |
|
6914 /* decSetSubnormal) the value of set->digits may be less than one, */ |
|
6915 /* indicating a round to left. This routine handles that case */ |
|
6916 /* correctly; caller ensures space. */ |
|
6917 /* */ |
|
6918 /* dn->digits, dn->lsu (and as required), and dn->exponent are */ |
|
6919 /* updated as necessary. dn->bits (sign) is unchanged. */ |
|
6920 /* */ |
|
6921 /* DEC_Rounded status is set if any digits are discarded. */ |
|
6922 /* DEC_Inexact status is set if any non-zero digits are discarded, or */ |
|
6923 /* incoming residue was non-0 (implies rounded) */ |
|
6924 /* ------------------------------------------------------------------ */ |
|
6925 /* mapping array: maps 0-9 to canonical residues, so that a residue */ |
|
6926 /* can be adjusted in the range [-1, +1] and achieve correct rounding */ |
|
6927 /* 0 1 2 3 4 5 6 7 8 9 */ |
|
6928 static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; |
|
6929 static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, |
|
6930 Int len, Int *residue, uInt *status) { |
|
6931 Int discard; /* number of digits to discard */ |
|
6932 uInt cut; /* cut point in Unit */ |
|
6933 const Unit *up; /* work */ |
|
6934 Unit *target; /* .. */ |
|
6935 Int count; /* .. */ |
|
6936 #if DECDPUN<=4 |
|
6937 uInt temp; /* .. */ |
|
6938 #endif |
|
6939 |
|
6940 discard=len-set->digits; /* digits to discard */ |
|
6941 if (discard<=0) { /* no digits are being discarded */ |
|
6942 if (dn->lsu!=lsu) { /* copy needed */ |
|
6943 /* copy the coefficient array to the result number; no shift needed */ |
|
6944 count=len; /* avoids D2U */ |
|
6945 up=lsu; |
|
6946 for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) |
|
6947 *target=*up; |
|
6948 dn->digits=len; /* set the new length */ |
|
6949 } |
|
6950 /* dn->exponent and residue are unchanged, record any inexactitude */ |
|
6951 if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); |
|
6952 return; |
|
6953 } |
|
6954 |
|
6955 /* some digits must be discarded ... */ |
|
6956 dn->exponent+=discard; /* maintain numerical value */ |
|
6957 *status|=DEC_Rounded; /* accumulate Rounded status */ |
|
6958 if (*residue>1) *residue=1; /* previous residue now to right, so reduce */ |
|
6959 |
|
6960 if (discard>len) { /* everything, +1, is being discarded */ |
|
6961 /* guard digit is 0 */ |
|
6962 /* residue is all the number [NB could be all 0s] */ |
|
6963 if (*residue<=0) { /* not already positive */ |
|
6964 count=len; /* avoids D2U */ |
|
6965 for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */ |
|
6966 *residue=1; |
|
6967 break; /* no need to check any others */ |
|
6968 } |
|
6969 } |
|
6970 if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ |
|
6971 *dn->lsu=0; /* coefficient will now be 0 */ |
|
6972 dn->digits=1; /* .. */ |
|
6973 return; |
|
6974 } /* total discard */ |
|
6975 |
|
6976 /* partial discard [most common case] */ |
|
6977 /* here, at least the first (most significant) discarded digit exists */ |
|
6978 |
|
6979 /* spin up the number, noting residue during the spin, until get to */ |
|
6980 /* the Unit with the first discarded digit. When reach it, extract */ |
|
6981 /* it and remember its position */ |
|
6982 count=0; |
|
6983 for (up=lsu;; up++) { |
|
6984 count+=DECDPUN; |
|
6985 if (count>=discard) break; /* full ones all checked */ |
|
6986 if (*up!=0) *residue=1; |
|
6987 } /* up */ |
|
6988 |
|
6989 /* here up -> Unit with first discarded digit */ |
|
6990 cut=discard-(count-DECDPUN)-1; |
|
6991 if (cut==DECDPUN-1) { /* unit-boundary case (fast) */ |
|
6992 Unit half=(Unit)powers[DECDPUN]>>1; |
|
6993 /* set residue directly */ |
|
6994 if (*up>=half) { |
|
6995 if (*up>half) *residue=7; |
|
6996 else *residue+=5; /* add sticky bit */ |
|
6997 } |
|
6998 else { /* <half */ |
|
6999 if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */ |
|
7000 } |
|
7001 if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ |
|
7002 *dn->lsu=0; /* .. result is 0 */ |
|
7003 dn->digits=1; /* .. */ |
|
7004 } |
|
7005 else { /* shift to least */ |
|
7006 count=set->digits; /* now digits to end up with */ |
|
7007 dn->digits=count; /* set the new length */ |
|
7008 up++; /* move to next */ |
|
7009 /* on unit boundary, so shift-down copy loop is simple */ |
|
7010 for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) |
|
7011 *target=*up; |
|
7012 } |
|
7013 } /* unit-boundary case */ |
|
7014 |
|
7015 else { /* discard digit is in low digit(s), and not top digit */ |
|
7016 uInt discard1; /* first discarded digit */ |
|
7017 uInt quot, rem; /* for divisions */ |
|
7018 if (cut==0) quot=*up; /* is at bottom of unit */ |
|
7019 else /* cut>0 */ { /* it's not at bottom of unit */ |
|
7020 #if DECDPUN<=4 |
|
7021 U_ASSERT(/* cut >= 0 &&*/ cut <= 4); |
|
7022 quot=QUOT10(*up, cut); |
|
7023 rem=*up-quot*powers[cut]; |
|
7024 #else |
|
7025 rem=*up%powers[cut]; |
|
7026 quot=*up/powers[cut]; |
|
7027 #endif |
|
7028 if (rem!=0) *residue=1; |
|
7029 } |
|
7030 /* discard digit is now at bottom of quot */ |
|
7031 #if DECDPUN<=4 |
|
7032 temp=(quot*6554)>>16; /* fast /10 */ |
|
7033 /* Vowels algorithm here not a win (9 instructions) */ |
|
7034 discard1=quot-X10(temp); |
|
7035 quot=temp; |
|
7036 #else |
|
7037 discard1=quot%10; |
|
7038 quot=quot/10; |
|
7039 #endif |
|
7040 /* here, discard1 is the guard digit, and residue is everything */ |
|
7041 /* else [use mapping array to accumulate residue safely] */ |
|
7042 *residue+=resmap[discard1]; |
|
7043 cut++; /* update cut */ |
|
7044 /* here: up -> Unit of the array with bottom digit */ |
|
7045 /* cut is the division point for each Unit */ |
|
7046 /* quot holds the uncut high-order digits for the current unit */ |
|
7047 if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ |
|
7048 *dn->lsu=0; /* .. result is 0 */ |
|
7049 dn->digits=1; /* .. */ |
|
7050 } |
|
7051 else { /* shift to least needed */ |
|
7052 count=set->digits; /* now digits to end up with */ |
|
7053 dn->digits=count; /* set the new length */ |
|
7054 /* shift-copy the coefficient array to the result number */ |
|
7055 for (target=dn->lsu; ; target++) { |
|
7056 *target=(Unit)quot; |
|
7057 count-=(DECDPUN-cut); |
|
7058 if (count<=0) break; |
|
7059 up++; |
|
7060 quot=*up; |
|
7061 #if DECDPUN<=4 |
|
7062 quot=QUOT10(quot, cut); |
|
7063 rem=*up-quot*powers[cut]; |
|
7064 #else |
|
7065 rem=quot%powers[cut]; |
|
7066 quot=quot/powers[cut]; |
|
7067 #endif |
|
7068 *target=(Unit)(*target+rem*powers[DECDPUN-cut]); |
|
7069 count-=cut; |
|
7070 if (count<=0) break; |
|
7071 } /* shift-copy loop */ |
|
7072 } /* shift to least */ |
|
7073 } /* not unit boundary */ |
|
7074 |
|
7075 if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ |
|
7076 return; |
|
7077 } /* decSetCoeff */ |
|
7078 |
|
7079 /* ------------------------------------------------------------------ */ |
|
7080 /* decApplyRound -- apply pending rounding to a number */ |
|
7081 /* */ |
|
7082 /* dn is the number, with space for set->digits digits */ |
|
7083 /* set is the context [for size and rounding mode] */ |
|
7084 /* residue indicates pending rounding, being any accumulated */ |
|
7085 /* guard and sticky information. It may be: */ |
|
7086 /* 6-9: rounding digit is >5 */ |
|
7087 /* 5: rounding digit is exactly half-way */ |
|
7088 /* 1-4: rounding digit is <5 and >0 */ |
|
7089 /* 0: the coefficient is exact */ |
|
7090 /* -1: as 1, but the hidden digits are subtractive, that */ |
|
7091 /* is, of the opposite sign to dn. In this case the */ |
|
7092 /* coefficient must be non-0. This case occurs when */ |
|
7093 /* subtracting a small number (which can be reduced to */ |
|
7094 /* a sticky bit); see decAddOp. */ |
|
7095 /* status is the status accumulator, as usual */ |
|
7096 /* */ |
|
7097 /* This routine applies rounding while keeping the length of the */ |
|
7098 /* coefficient constant. The exponent and status are unchanged */ |
|
7099 /* except if: */ |
|
7100 /* */ |
|
7101 /* -- the coefficient was increased and is all nines (in which */ |
|
7102 /* case Overflow could occur, and is handled directly here so */ |
|
7103 /* the caller does not need to re-test for overflow) */ |
|
7104 /* */ |
|
7105 /* -- the coefficient was decreased and becomes all nines (in which */ |
|
7106 /* case Underflow could occur, and is also handled directly). */ |
|
7107 /* */ |
|
7108 /* All fields in dn are updated as required. */ |
|
7109 /* */ |
|
7110 /* ------------------------------------------------------------------ */ |
|
7111 static void decApplyRound(decNumber *dn, decContext *set, Int residue, |
|
7112 uInt *status) { |
|
7113 Int bump; /* 1 if coefficient needs to be incremented */ |
|
7114 /* -1 if coefficient needs to be decremented */ |
|
7115 |
|
7116 if (residue==0) return; /* nothing to apply */ |
|
7117 |
|
7118 bump=0; /* assume a smooth ride */ |
|
7119 |
|
7120 /* now decide whether, and how, to round, depending on mode */ |
|
7121 switch (set->round) { |
|
7122 case DEC_ROUND_05UP: { /* round zero or five up (for reround) */ |
|
7123 /* This is the same as DEC_ROUND_DOWN unless there is a */ |
|
7124 /* positive residue and the lsd of dn is 0 or 5, in which case */ |
|
7125 /* it is bumped; when residue is <0, the number is therefore */ |
|
7126 /* bumped down unless the final digit was 1 or 6 (in which */ |
|
7127 /* case it is bumped down and then up -- a no-op) */ |
|
7128 Int lsd5=*dn->lsu%5; /* get lsd and quintate */ |
|
7129 if (residue<0 && lsd5!=1) bump=-1; |
|
7130 else if (residue>0 && lsd5==0) bump=1; |
|
7131 /* [bump==1 could be applied directly; use common path for clarity] */ |
|
7132 break;} /* r-05 */ |
|
7133 |
|
7134 case DEC_ROUND_DOWN: { |
|
7135 /* no change, except if negative residue */ |
|
7136 if (residue<0) bump=-1; |
|
7137 break;} /* r-d */ |
|
7138 |
|
7139 case DEC_ROUND_HALF_DOWN: { |
|
7140 if (residue>5) bump=1; |
|
7141 break;} /* r-h-d */ |
|
7142 |
|
7143 case DEC_ROUND_HALF_EVEN: { |
|
7144 if (residue>5) bump=1; /* >0.5 goes up */ |
|
7145 else if (residue==5) { /* exactly 0.5000... */ |
|
7146 /* 0.5 goes up iff [new] lsd is odd */ |
|
7147 if (*dn->lsu & 0x01) bump=1; |
|
7148 } |
|
7149 break;} /* r-h-e */ |
|
7150 |
|
7151 case DEC_ROUND_HALF_UP: { |
|
7152 if (residue>=5) bump=1; |
|
7153 break;} /* r-h-u */ |
|
7154 |
|
7155 case DEC_ROUND_UP: { |
|
7156 if (residue>0) bump=1; |
|
7157 break;} /* r-u */ |
|
7158 |
|
7159 case DEC_ROUND_CEILING: { |
|
7160 /* same as _UP for positive numbers, and as _DOWN for negatives */ |
|
7161 /* [negative residue cannot occur on 0] */ |
|
7162 if (decNumberIsNegative(dn)) { |
|
7163 if (residue<0) bump=-1; |
|
7164 } |
|
7165 else { |
|
7166 if (residue>0) bump=1; |
|
7167 } |
|
7168 break;} /* r-c */ |
|
7169 |
|
7170 case DEC_ROUND_FLOOR: { |
|
7171 /* same as _UP for negative numbers, and as _DOWN for positive */ |
|
7172 /* [negative residue cannot occur on 0] */ |
|
7173 if (!decNumberIsNegative(dn)) { |
|
7174 if (residue<0) bump=-1; |
|
7175 } |
|
7176 else { |
|
7177 if (residue>0) bump=1; |
|
7178 } |
|
7179 break;} /* r-f */ |
|
7180 |
|
7181 default: { /* e.g., DEC_ROUND_MAX */ |
|
7182 *status|=DEC_Invalid_context; |
|
7183 #if DECTRACE || (DECCHECK && DECVERB) |
|
7184 printf("Unknown rounding mode: %d\n", set->round); |
|
7185 #endif |
|
7186 break;} |
|
7187 } /* switch */ |
|
7188 |
|
7189 /* now bump the number, up or down, if need be */ |
|
7190 if (bump==0) return; /* no action required */ |
|
7191 |
|
7192 /* Simply use decUnitAddSub unless bumping up and the number is */ |
|
7193 /* all nines. In this special case set to 100... explicitly */ |
|
7194 /* and adjust the exponent by one (as otherwise could overflow */ |
|
7195 /* the array) */ |
|
7196 /* Similarly handle all-nines result if bumping down. */ |
|
7197 if (bump>0) { |
|
7198 Unit *up; /* work */ |
|
7199 uInt count=dn->digits; /* digits to be checked */ |
|
7200 for (up=dn->lsu; ; up++) { |
|
7201 if (count<=DECDPUN) { |
|
7202 /* this is the last Unit (the msu) */ |
|
7203 if (*up!=powers[count]-1) break; /* not still 9s */ |
|
7204 /* here if it, too, is all nines */ |
|
7205 *up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */ |
|
7206 for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */ |
|
7207 dn->exponent++; /* and bump exponent */ |
|
7208 /* [which, very rarely, could cause Overflow...] */ |
|
7209 if ((dn->exponent+dn->digits)>set->emax+1) { |
|
7210 decSetOverflow(dn, set, status); |
|
7211 } |
|
7212 return; /* done */ |
|
7213 } |
|
7214 /* a full unit to check, with more to come */ |
|
7215 if (*up!=DECDPUNMAX) break; /* not still 9s */ |
|
7216 count-=DECDPUN; |
|
7217 } /* up */ |
|
7218 } /* bump>0 */ |
|
7219 else { /* -1 */ |
|
7220 /* here checking for a pre-bump of 1000... (leading 1, all */ |
|
7221 /* other digits zero) */ |
|
7222 Unit *up, *sup; /* work */ |
|
7223 uInt count=dn->digits; /* digits to be checked */ |
|
7224 for (up=dn->lsu; ; up++) { |
|
7225 if (count<=DECDPUN) { |
|
7226 /* this is the last Unit (the msu) */ |
|
7227 if (*up!=powers[count-1]) break; /* not 100.. */ |
|
7228 /* here if have the 1000... case */ |
|
7229 sup=up; /* save msu pointer */ |
|
7230 *up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */ |
|
7231 /* others all to all-nines, too */ |
|
7232 for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; |
|
7233 dn->exponent--; /* and bump exponent */ |
|
7234 |
|
7235 /* iff the number was at the subnormal boundary (exponent=etiny) */ |
|
7236 /* then the exponent is now out of range, so it will in fact get */ |
|
7237 /* clamped to etiny and the final 9 dropped. */ |
|
7238 /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */ |
|
7239 /* dn->exponent, set->digits); */ |
|
7240 if (dn->exponent+1==set->emin-set->digits+1) { |
|
7241 if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */ |
|
7242 else { |
|
7243 *sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */ |
|
7244 dn->digits--; |
|
7245 } |
|
7246 dn->exponent++; |
|
7247 *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; |
|
7248 } |
|
7249 return; /* done */ |
|
7250 } |
|
7251 |
|
7252 /* a full unit to check, with more to come */ |
|
7253 if (*up!=0) break; /* not still 0s */ |
|
7254 count-=DECDPUN; |
|
7255 } /* up */ |
|
7256 |
|
7257 } /* bump<0 */ |
|
7258 |
|
7259 /* Actual bump needed. Do it. */ |
|
7260 decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); |
|
7261 } /* decApplyRound */ |
|
7262 |
|
7263 #if DECSUBSET |
|
7264 /* ------------------------------------------------------------------ */ |
|
7265 /* decFinish -- finish processing a number */ |
|
7266 /* */ |
|
7267 /* dn is the number */ |
|
7268 /* set is the context */ |
|
7269 /* residue is the rounding accumulator (as in decApplyRound) */ |
|
7270 /* status is the accumulator */ |
|
7271 /* */ |
|
7272 /* This finishes off the current number by: */ |
|
7273 /* 1. If not extended: */ |
|
7274 /* a. Converting a zero result to clean '0' */ |
|
7275 /* b. Reducing positive exponents to 0, if would fit in digits */ |
|
7276 /* 2. Checking for overflow and subnormals (always) */ |
|
7277 /* Note this is just Finalize when no subset arithmetic. */ |
|
7278 /* All fields are updated as required. */ |
|
7279 /* ------------------------------------------------------------------ */ |
|
7280 static void decFinish(decNumber *dn, decContext *set, Int *residue, |
|
7281 uInt *status) { |
|
7282 if (!set->extended) { |
|
7283 if ISZERO(dn) { /* value is zero */ |
|
7284 dn->exponent=0; /* clean exponent .. */ |
|
7285 dn->bits=0; /* .. and sign */ |
|
7286 return; /* no error possible */ |
|
7287 } |
|
7288 if (dn->exponent>=0) { /* non-negative exponent */ |
|
7289 /* >0; reduce to integer if possible */ |
|
7290 if (set->digits >= (dn->exponent+dn->digits)) { |
|
7291 dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); |
|
7292 dn->exponent=0; |
|
7293 } |
|
7294 } |
|
7295 } /* !extended */ |
|
7296 |
|
7297 decFinalize(dn, set, residue, status); |
|
7298 } /* decFinish */ |
|
7299 #endif |
|
7300 |
|
7301 /* ------------------------------------------------------------------ */ |
|
7302 /* decFinalize -- final check, clamp, and round of a number */ |
|
7303 /* */ |
|
7304 /* dn is the number */ |
|
7305 /* set is the context */ |
|
7306 /* residue is the rounding accumulator (as in decApplyRound) */ |
|
7307 /* status is the status accumulator */ |
|
7308 /* */ |
|
7309 /* This finishes off the current number by checking for subnormal */ |
|
7310 /* results, applying any pending rounding, checking for overflow, */ |
|
7311 /* and applying any clamping. */ |
|
7312 /* Underflow and overflow conditions are raised as appropriate. */ |
|
7313 /* All fields are updated as required. */ |
|
7314 /* ------------------------------------------------------------------ */ |
|
7315 static void decFinalize(decNumber *dn, decContext *set, Int *residue, |
|
7316 uInt *status) { |
|
7317 Int shift; /* shift needed if clamping */ |
|
7318 Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */ |
|
7319 |
|
7320 /* Must be careful, here, when checking the exponent as the */ |
|
7321 /* adjusted exponent could overflow 31 bits [because it may already */ |
|
7322 /* be up to twice the expected]. */ |
|
7323 |
|
7324 /* First test for subnormal. This must be done before any final */ |
|
7325 /* round as the result could be rounded to Nmin or 0. */ |
|
7326 if (dn->exponent<=tinyexp) { /* prefilter */ |
|
7327 Int comp; |
|
7328 decNumber nmin; |
|
7329 /* A very nasty case here is dn == Nmin and residue<0 */ |
|
7330 if (dn->exponent<tinyexp) { |
|
7331 /* Go handle subnormals; this will apply round if needed. */ |
|
7332 decSetSubnormal(dn, set, residue, status); |
|
7333 return; |
|
7334 } |
|
7335 /* Equals case: only subnormal if dn=Nmin and negative residue */ |
|
7336 uprv_decNumberZero(&nmin); |
|
7337 nmin.lsu[0]=1; |
|
7338 nmin.exponent=set->emin; |
|
7339 comp=decCompare(dn, &nmin, 1); /* (signless compare) */ |
|
7340 if (comp==BADINT) { /* oops */ |
|
7341 *status|=DEC_Insufficient_storage; /* abandon... */ |
|
7342 return; |
|
7343 } |
|
7344 if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */ |
|
7345 decApplyRound(dn, set, *residue, status); /* might force down */ |
|
7346 decSetSubnormal(dn, set, residue, status); |
|
7347 return; |
|
7348 } |
|
7349 } |
|
7350 |
|
7351 /* now apply any pending round (this could raise overflow). */ |
|
7352 if (*residue!=0) decApplyRound(dn, set, *residue, status); |
|
7353 |
|
7354 /* Check for overflow [redundant in the 'rare' case] or clamp */ |
|
7355 if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */ |
|
7356 |
|
7357 |
|
7358 /* here when might have an overflow or clamp to do */ |
|
7359 if (dn->exponent>set->emax-dn->digits+1) { /* too big */ |
|
7360 decSetOverflow(dn, set, status); |
|
7361 return; |
|
7362 } |
|
7363 /* here when the result is normal but in clamp range */ |
|
7364 if (!set->clamp) return; |
|
7365 |
|
7366 /* here when need to apply the IEEE exponent clamp (fold-down) */ |
|
7367 shift=dn->exponent-(set->emax-set->digits+1); |
|
7368 |
|
7369 /* shift coefficient (if non-zero) */ |
|
7370 if (!ISZERO(dn)) { |
|
7371 dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); |
|
7372 } |
|
7373 dn->exponent-=shift; /* adjust the exponent to match */ |
|
7374 *status|=DEC_Clamped; /* and record the dirty deed */ |
|
7375 return; |
|
7376 } /* decFinalize */ |
|
7377 |
|
7378 /* ------------------------------------------------------------------ */ |
|
7379 /* decSetOverflow -- set number to proper overflow value */ |
|
7380 /* */ |
|
7381 /* dn is the number (used for sign [only] and result) */ |
|
7382 /* set is the context [used for the rounding mode, etc.] */ |
|
7383 /* status contains the current status to be updated */ |
|
7384 /* */ |
|
7385 /* This sets the sign of a number and sets its value to either */ |
|
7386 /* Infinity or the maximum finite value, depending on the sign of */ |
|
7387 /* dn and the rounding mode, following IEEE 754 rules. */ |
|
7388 /* ------------------------------------------------------------------ */ |
|
7389 static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { |
|
7390 Flag needmax=0; /* result is maximum finite value */ |
|
7391 uByte sign=dn->bits&DECNEG; /* clean and save sign bit */ |
|
7392 |
|
7393 if (ISZERO(dn)) { /* zero does not overflow magnitude */ |
|
7394 Int emax=set->emax; /* limit value */ |
|
7395 if (set->clamp) emax-=set->digits-1; /* lower if clamping */ |
|
7396 if (dn->exponent>emax) { /* clamp required */ |
|
7397 dn->exponent=emax; |
|
7398 *status|=DEC_Clamped; |
|
7399 } |
|
7400 return; |
|
7401 } |
|
7402 |
|
7403 uprv_decNumberZero(dn); |
|
7404 switch (set->round) { |
|
7405 case DEC_ROUND_DOWN: { |
|
7406 needmax=1; /* never Infinity */ |
|
7407 break;} /* r-d */ |
|
7408 case DEC_ROUND_05UP: { |
|
7409 needmax=1; /* never Infinity */ |
|
7410 break;} /* r-05 */ |
|
7411 case DEC_ROUND_CEILING: { |
|
7412 if (sign) needmax=1; /* Infinity if non-negative */ |
|
7413 break;} /* r-c */ |
|
7414 case DEC_ROUND_FLOOR: { |
|
7415 if (!sign) needmax=1; /* Infinity if negative */ |
|
7416 break;} /* r-f */ |
|
7417 default: break; /* Infinity in all other cases */ |
|
7418 } |
|
7419 if (needmax) { |
|
7420 decSetMaxValue(dn, set); |
|
7421 dn->bits=sign; /* set sign */ |
|
7422 } |
|
7423 else dn->bits=sign|DECINF; /* Value is +/-Infinity */ |
|
7424 *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; |
|
7425 } /* decSetOverflow */ |
|
7426 |
|
7427 /* ------------------------------------------------------------------ */ |
|
7428 /* decSetMaxValue -- set number to +Nmax (maximum normal value) */ |
|
7429 /* */ |
|
7430 /* dn is the number to set */ |
|
7431 /* set is the context [used for digits and emax] */ |
|
7432 /* */ |
|
7433 /* This sets the number to the maximum positive value. */ |
|
7434 /* ------------------------------------------------------------------ */ |
|
7435 static void decSetMaxValue(decNumber *dn, decContext *set) { |
|
7436 Unit *up; /* work */ |
|
7437 Int count=set->digits; /* nines to add */ |
|
7438 dn->digits=count; |
|
7439 /* fill in all nines to set maximum value */ |
|
7440 for (up=dn->lsu; ; up++) { |
|
7441 if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */ |
|
7442 else { /* this is the msu */ |
|
7443 *up=(Unit)(powers[count]-1); |
|
7444 break; |
|
7445 } |
|
7446 count-=DECDPUN; /* filled those digits */ |
|
7447 } /* up */ |
|
7448 dn->bits=0; /* + sign */ |
|
7449 dn->exponent=set->emax-set->digits+1; |
|
7450 } /* decSetMaxValue */ |
|
7451 |
|
7452 /* ------------------------------------------------------------------ */ |
|
7453 /* decSetSubnormal -- process value whose exponent is <Emin */ |
|
7454 /* */ |
|
7455 /* dn is the number (used as input as well as output; it may have */ |
|
7456 /* an allowed subnormal value, which may need to be rounded) */ |
|
7457 /* set is the context [used for the rounding mode] */ |
|
7458 /* residue is any pending residue */ |
|
7459 /* status contains the current status to be updated */ |
|
7460 /* */ |
|
7461 /* If subset mode, set result to zero and set Underflow flags. */ |
|
7462 /* */ |
|
7463 /* Value may be zero with a low exponent; this does not set Subnormal */ |
|
7464 /* but the exponent will be clamped to Etiny. */ |
|
7465 /* */ |
|
7466 /* Otherwise ensure exponent is not out of range, and round as */ |
|
7467 /* necessary. Underflow is set if the result is Inexact. */ |
|
7468 /* ------------------------------------------------------------------ */ |
|
7469 static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue, |
|
7470 uInt *status) { |
|
7471 decContext workset; /* work */ |
|
7472 Int etiny, adjust; /* .. */ |
|
7473 |
|
7474 #if DECSUBSET |
|
7475 /* simple set to zero and 'hard underflow' for subset */ |
|
7476 if (!set->extended) { |
|
7477 uprv_decNumberZero(dn); |
|
7478 /* always full overflow */ |
|
7479 *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; |
|
7480 return; |
|
7481 } |
|
7482 #endif |
|
7483 |
|
7484 /* Full arithmetic -- allow subnormals, rounded to minimum exponent */ |
|
7485 /* (Etiny) if needed */ |
|
7486 etiny=set->emin-(set->digits-1); /* smallest allowed exponent */ |
|
7487 |
|
7488 if ISZERO(dn) { /* value is zero */ |
|
7489 /* residue can never be non-zero here */ |
|
7490 #if DECCHECK |
|
7491 if (*residue!=0) { |
|
7492 printf("++ Subnormal 0 residue %ld\n", (LI)*residue); |
|
7493 *status|=DEC_Invalid_operation; |
|
7494 } |
|
7495 #endif |
|
7496 if (dn->exponent<etiny) { /* clamp required */ |
|
7497 dn->exponent=etiny; |
|
7498 *status|=DEC_Clamped; |
|
7499 } |
|
7500 return; |
|
7501 } |
|
7502 |
|
7503 *status|=DEC_Subnormal; /* have a non-zero subnormal */ |
|
7504 adjust=etiny-dn->exponent; /* calculate digits to remove */ |
|
7505 if (adjust<=0) { /* not out of range; unrounded */ |
|
7506 /* residue can never be non-zero here, except in the Nmin-residue */ |
|
7507 /* case (which is a subnormal result), so can take fast-path here */ |
|
7508 /* it may already be inexact (from setting the coefficient) */ |
|
7509 if (*status&DEC_Inexact) *status|=DEC_Underflow; |
|
7510 return; |
|
7511 } |
|
7512 |
|
7513 /* adjust>0, so need to rescale the result so exponent becomes Etiny */ |
|
7514 /* [this code is similar to that in rescale] */ |
|
7515 workset=*set; /* clone rounding, etc. */ |
|
7516 workset.digits=dn->digits-adjust; /* set requested length */ |
|
7517 workset.emin-=adjust; /* and adjust emin to match */ |
|
7518 /* [note that the latter can be <1, here, similar to Rescale case] */ |
|
7519 decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); |
|
7520 decApplyRound(dn, &workset, *residue, status); |
|
7521 |
|
7522 /* Use 754 default rule: Underflow is set iff Inexact */ |
|
7523 /* [independent of whether trapped] */ |
|
7524 if (*status&DEC_Inexact) *status|=DEC_Underflow; |
|
7525 |
|
7526 /* if rounded up a 999s case, exponent will be off by one; adjust */ |
|
7527 /* back if so [it will fit, because it was shortened earlier] */ |
|
7528 if (dn->exponent>etiny) { |
|
7529 dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); |
|
7530 dn->exponent--; /* (re)adjust the exponent. */ |
|
7531 } |
|
7532 |
|
7533 /* if rounded to zero, it is by definition clamped... */ |
|
7534 if (ISZERO(dn)) *status|=DEC_Clamped; |
|
7535 } /* decSetSubnormal */ |
|
7536 |
|
7537 /* ------------------------------------------------------------------ */ |
|
7538 /* decCheckMath - check entry conditions for a math function */ |
|
7539 /* */ |
|
7540 /* This checks the context and the operand */ |
|
7541 /* */ |
|
7542 /* rhs is the operand to check */ |
|
7543 /* set is the context to check */ |
|
7544 /* status is unchanged if both are good */ |
|
7545 /* */ |
|
7546 /* returns non-zero if status is changed, 0 otherwise */ |
|
7547 /* */ |
|
7548 /* Restrictions enforced: */ |
|
7549 /* */ |
|
7550 /* digits, emax, and -emin in the context must be less than */ |
|
7551 /* DEC_MAX_MATH (999999), and A must be within these bounds if */ |
|
7552 /* non-zero. Invalid_operation is set in the status if a */ |
|
7553 /* restriction is violated. */ |
|
7554 /* ------------------------------------------------------------------ */ |
|
7555 static uInt decCheckMath(const decNumber *rhs, decContext *set, |
|
7556 uInt *status) { |
|
7557 uInt save=*status; /* record */ |
|
7558 if (set->digits>DEC_MAX_MATH |
|
7559 || set->emax>DEC_MAX_MATH |
|
7560 || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; |
|
7561 else if ((rhs->digits>DEC_MAX_MATH |
|
7562 || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 |
|
7563 || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) |
|
7564 && !ISZERO(rhs)) *status|=DEC_Invalid_operation; |
|
7565 return (*status!=save); |
|
7566 } /* decCheckMath */ |
|
7567 |
|
7568 /* ------------------------------------------------------------------ */ |
|
7569 /* decGetInt -- get integer from a number */ |
|
7570 /* */ |
|
7571 /* dn is the number [which will not be altered] */ |
|
7572 /* */ |
|
7573 /* returns one of: */ |
|
7574 /* BADINT if there is a non-zero fraction */ |
|
7575 /* the converted integer */ |
|
7576 /* BIGEVEN if the integer is even and magnitude > 2*10**9 */ |
|
7577 /* BIGODD if the integer is odd and magnitude > 2*10**9 */ |
|
7578 /* */ |
|
7579 /* This checks and gets a whole number from the input decNumber. */ |
|
7580 /* The sign can be determined from dn by the caller when BIGEVEN or */ |
|
7581 /* BIGODD is returned. */ |
|
7582 /* ------------------------------------------------------------------ */ |
|
7583 static Int decGetInt(const decNumber *dn) { |
|
7584 Int theInt; /* result accumulator */ |
|
7585 const Unit *up; /* work */ |
|
7586 Int got; /* digits (real or not) processed */ |
|
7587 Int ilength=dn->digits+dn->exponent; /* integral length */ |
|
7588 Flag neg=decNumberIsNegative(dn); /* 1 if -ve */ |
|
7589 |
|
7590 /* The number must be an integer that fits in 10 digits */ |
|
7591 /* Assert, here, that 10 is enough for any rescale Etiny */ |
|
7592 #if DEC_MAX_EMAX > 999999999 |
|
7593 #error GetInt may need updating [for Emax] |
|
7594 #endif |
|
7595 #if DEC_MIN_EMIN < -999999999 |
|
7596 #error GetInt may need updating [for Emin] |
|
7597 #endif |
|
7598 if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */ |
|
7599 |
|
7600 up=dn->lsu; /* ready for lsu */ |
|
7601 theInt=0; /* ready to accumulate */ |
|
7602 if (dn->exponent>=0) { /* relatively easy */ |
|
7603 /* no fractional part [usual]; allow for positive exponent */ |
|
7604 got=dn->exponent; |
|
7605 } |
|
7606 else { /* -ve exponent; some fractional part to check and discard */ |
|
7607 Int count=-dn->exponent; /* digits to discard */ |
|
7608 /* spin up whole units until reach the Unit with the unit digit */ |
|
7609 for (; count>=DECDPUN; up++) { |
|
7610 if (*up!=0) return BADINT; /* non-zero Unit to discard */ |
|
7611 count-=DECDPUN; |
|
7612 } |
|
7613 if (count==0) got=0; /* [a multiple of DECDPUN] */ |
|
7614 else { /* [not multiple of DECDPUN] */ |
|
7615 Int rem; /* work */ |
|
7616 /* slice off fraction digits and check for non-zero */ |
|
7617 #if DECDPUN<=4 |
|
7618 theInt=QUOT10(*up, count); |
|
7619 rem=*up-theInt*powers[count]; |
|
7620 #else |
|
7621 rem=*up%powers[count]; /* slice off discards */ |
|
7622 theInt=*up/powers[count]; |
|
7623 #endif |
|
7624 if (rem!=0) return BADINT; /* non-zero fraction */ |
|
7625 /* it looks good */ |
|
7626 got=DECDPUN-count; /* number of digits so far */ |
|
7627 up++; /* ready for next */ |
|
7628 } |
|
7629 } |
|
7630 /* now it's known there's no fractional part */ |
|
7631 |
|
7632 /* tricky code now, to accumulate up to 9.3 digits */ |
|
7633 if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */ |
|
7634 |
|
7635 if (ilength<11) { |
|
7636 Int save=theInt; |
|
7637 /* collect any remaining unit(s) */ |
|
7638 for (; got<ilength; up++) { |
|
7639 theInt+=*up*powers[got]; |
|
7640 got+=DECDPUN; |
|
7641 } |
|
7642 if (ilength==10) { /* need to check for wrap */ |
|
7643 if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11; |
|
7644 /* [that test also disallows the BADINT result case] */ |
|
7645 else if (neg && theInt>1999999997) ilength=11; |
|
7646 else if (!neg && theInt>999999999) ilength=11; |
|
7647 if (ilength==11) theInt=save; /* restore correct low bit */ |
|
7648 } |
|
7649 } |
|
7650 |
|
7651 if (ilength>10) { /* too big */ |
|
7652 if (theInt&1) return BIGODD; /* bottom bit 1 */ |
|
7653 return BIGEVEN; /* bottom bit 0 */ |
|
7654 } |
|
7655 |
|
7656 if (neg) theInt=-theInt; /* apply sign */ |
|
7657 return theInt; |
|
7658 } /* decGetInt */ |
|
7659 |
|
7660 /* ------------------------------------------------------------------ */ |
|
7661 /* decDecap -- decapitate the coefficient of a number */ |
|
7662 /* */ |
|
7663 /* dn is the number to be decapitated */ |
|
7664 /* drop is the number of digits to be removed from the left of dn; */ |
|
7665 /* this must be <= dn->digits (if equal, the coefficient is */ |
|
7666 /* set to 0) */ |
|
7667 /* */ |
|
7668 /* Returns dn; dn->digits will be <= the initial digits less drop */ |
|
7669 /* (after removing drop digits there may be leading zero digits */ |
|
7670 /* which will also be removed). Only dn->lsu and dn->digits change. */ |
|
7671 /* ------------------------------------------------------------------ */ |
|
7672 static decNumber *decDecap(decNumber *dn, Int drop) { |
|
7673 Unit *msu; /* -> target cut point */ |
|
7674 Int cut; /* work */ |
|
7675 if (drop>=dn->digits) { /* losing the whole thing */ |
|
7676 #if DECCHECK |
|
7677 if (drop>dn->digits) |
|
7678 printf("decDecap called with drop>digits [%ld>%ld]\n", |
|
7679 (LI)drop, (LI)dn->digits); |
|
7680 #endif |
|
7681 dn->lsu[0]=0; |
|
7682 dn->digits=1; |
|
7683 return dn; |
|
7684 } |
|
7685 msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */ |
|
7686 cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */ |
|
7687 if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */ |
|
7688 /* that may have left leading zero digits, so do a proper count... */ |
|
7689 dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1); |
|
7690 return dn; |
|
7691 } /* decDecap */ |
|
7692 |
|
7693 /* ------------------------------------------------------------------ */ |
|
7694 /* decBiStr -- compare string with pairwise options */ |
|
7695 /* */ |
|
7696 /* targ is the string to compare */ |
|
7697 /* str1 is one of the strings to compare against (length may be 0) */ |
|
7698 /* str2 is the other; it must be the same length as str1 */ |
|
7699 /* */ |
|
7700 /* returns 1 if strings compare equal, (that is, it is the same */ |
|
7701 /* length as str1 and str2, and each character of targ is in either */ |
|
7702 /* str1 or str2 in the corresponding position), or 0 otherwise */ |
|
7703 /* */ |
|
7704 /* This is used for generic caseless compare, including the awkward */ |
|
7705 /* case of the Turkish dotted and dotless Is. Use as (for example): */ |
|
7706 /* if (decBiStr(test, "mike", "MIKE")) ... */ |
|
7707 /* ------------------------------------------------------------------ */ |
|
7708 static Flag decBiStr(const char *targ, const char *str1, const char *str2) { |
|
7709 for (;;targ++, str1++, str2++) { |
|
7710 if (*targ!=*str1 && *targ!=*str2) return 0; |
|
7711 /* *targ has a match in one (or both, if terminator) */ |
|
7712 if (*targ=='\0') break; |
|
7713 } /* forever */ |
|
7714 return 1; |
|
7715 } /* decBiStr */ |
|
7716 |
|
7717 /* ------------------------------------------------------------------ */ |
|
7718 /* decNaNs -- handle NaN operand or operands */ |
|
7719 /* */ |
|
7720 /* res is the result number */ |
|
7721 /* lhs is the first operand */ |
|
7722 /* rhs is the second operand, or NULL if none */ |
|
7723 /* context is used to limit payload length */ |
|
7724 /* status contains the current status */ |
|
7725 /* returns res in case convenient */ |
|
7726 /* */ |
|
7727 /* Called when one or both operands is a NaN, and propagates the */ |
|
7728 /* appropriate result to res. When an sNaN is found, it is changed */ |
|
7729 /* to a qNaN and Invalid operation is set. */ |
|
7730 /* ------------------------------------------------------------------ */ |
|
7731 static decNumber * decNaNs(decNumber *res, const decNumber *lhs, |
|
7732 const decNumber *rhs, decContext *set, |
|
7733 uInt *status) { |
|
7734 /* This decision tree ends up with LHS being the source pointer, */ |
|
7735 /* and status updated if need be */ |
|
7736 if (lhs->bits & DECSNAN) |
|
7737 *status|=DEC_Invalid_operation | DEC_sNaN; |
|
7738 else if (rhs==NULL); |
|
7739 else if (rhs->bits & DECSNAN) { |
|
7740 lhs=rhs; |
|
7741 *status|=DEC_Invalid_operation | DEC_sNaN; |
|
7742 } |
|
7743 else if (lhs->bits & DECNAN); |
|
7744 else lhs=rhs; |
|
7745 |
|
7746 /* propagate the payload */ |
|
7747 if (lhs->digits<=set->digits) uprv_decNumberCopy(res, lhs); /* easy */ |
|
7748 else { /* too long */ |
|
7749 const Unit *ul; |
|
7750 Unit *ur, *uresp1; |
|
7751 /* copy safe number of units, then decapitate */ |
|
7752 res->bits=lhs->bits; /* need sign etc. */ |
|
7753 uresp1=res->lsu+D2U(set->digits); |
|
7754 for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul; |
|
7755 res->digits=D2U(set->digits)*DECDPUN; |
|
7756 /* maybe still too long */ |
|
7757 if (res->digits>set->digits) decDecap(res, res->digits-set->digits); |
|
7758 } |
|
7759 |
|
7760 res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */ |
|
7761 res->bits|=DECNAN; /* .. preserving sign */ |
|
7762 res->exponent=0; /* clean exponent */ |
|
7763 /* [coefficient was copied/decapitated] */ |
|
7764 return res; |
|
7765 } /* decNaNs */ |
|
7766 |
|
7767 /* ------------------------------------------------------------------ */ |
|
7768 /* decStatus -- apply non-zero status */ |
|
7769 /* */ |
|
7770 /* dn is the number to set if error */ |
|
7771 /* status contains the current status (not yet in context) */ |
|
7772 /* set is the context */ |
|
7773 /* */ |
|
7774 /* If the status is an error status, the number is set to a NaN, */ |
|
7775 /* unless the error was an overflow, divide-by-zero, or underflow, */ |
|
7776 /* in which case the number will have already been set. */ |
|
7777 /* */ |
|
7778 /* The context status is then updated with the new status. Note that */ |
|
7779 /* this may raise a signal, so control may never return from this */ |
|
7780 /* routine (hence resources must be recovered before it is called). */ |
|
7781 /* ------------------------------------------------------------------ */ |
|
7782 static void decStatus(decNumber *dn, uInt status, decContext *set) { |
|
7783 if (status & DEC_NaNs) { /* error status -> NaN */ |
|
7784 /* if cause was an sNaN, clear and propagate [NaN is already set up] */ |
|
7785 if (status & DEC_sNaN) status&=~DEC_sNaN; |
|
7786 else { |
|
7787 uprv_decNumberZero(dn); /* other error: clean throughout */ |
|
7788 dn->bits=DECNAN; /* and make a quiet NaN */ |
|
7789 } |
|
7790 } |
|
7791 uprv_decContextSetStatus(set, status); /* [may not return] */ |
|
7792 return; |
|
7793 } /* decStatus */ |
|
7794 |
|
7795 /* ------------------------------------------------------------------ */ |
|
7796 /* decGetDigits -- count digits in a Units array */ |
|
7797 /* */ |
|
7798 /* uar is the Unit array holding the number (this is often an */ |
|
7799 /* accumulator of some sort) */ |
|
7800 /* len is the length of the array in units [>=1] */ |
|
7801 /* */ |
|
7802 /* returns the number of (significant) digits in the array */ |
|
7803 /* */ |
|
7804 /* All leading zeros are excluded, except the last if the array has */ |
|
7805 /* only zero Units. */ |
|
7806 /* ------------------------------------------------------------------ */ |
|
7807 /* This may be called twice during some operations. */ |
|
7808 static Int decGetDigits(Unit *uar, Int len) { |
|
7809 Unit *up=uar+(len-1); /* -> msu */ |
|
7810 Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */ |
|
7811 #if DECDPUN>4 |
|
7812 uInt const *pow; /* work */ |
|
7813 #endif |
|
7814 /* (at least 1 in final msu) */ |
|
7815 #if DECCHECK |
|
7816 if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); |
|
7817 #endif |
|
7818 |
|
7819 for (; up>=uar; up--) { |
|
7820 if (*up==0) { /* unit is all 0s */ |
|
7821 if (digits==1) break; /* a zero has one digit */ |
|
7822 digits-=DECDPUN; /* adjust for 0 unit */ |
|
7823 continue;} |
|
7824 /* found the first (most significant) non-zero Unit */ |
|
7825 #if DECDPUN>1 /* not done yet */ |
|
7826 if (*up<10) break; /* is 1-9 */ |
|
7827 digits++; |
|
7828 #if DECDPUN>2 /* not done yet */ |
|
7829 if (*up<100) break; /* is 10-99 */ |
|
7830 digits++; |
|
7831 #if DECDPUN>3 /* not done yet */ |
|
7832 if (*up<1000) break; /* is 100-999 */ |
|
7833 digits++; |
|
7834 #if DECDPUN>4 /* count the rest ... */ |
|
7835 for (pow=&powers[4]; *up>=*pow; pow++) digits++; |
|
7836 #endif |
|
7837 #endif |
|
7838 #endif |
|
7839 #endif |
|
7840 break; |
|
7841 } /* up */ |
|
7842 return digits; |
|
7843 } /* decGetDigits */ |
|
7844 |
|
7845 #if DECTRACE | DECCHECK |
|
7846 /* ------------------------------------------------------------------ */ |
|
7847 /* decNumberShow -- display a number [debug aid] */ |
|
7848 /* dn is the number to show */ |
|
7849 /* */ |
|
7850 /* Shows: sign, exponent, coefficient (msu first), digits */ |
|
7851 /* or: sign, special-value */ |
|
7852 /* ------------------------------------------------------------------ */ |
|
7853 /* this is public so other modules can use it */ |
|
7854 void uprv_decNumberShow(const decNumber *dn) { |
|
7855 const Unit *up; /* work */ |
|
7856 uInt u, d; /* .. */ |
|
7857 Int cut; /* .. */ |
|
7858 char isign='+'; /* main sign */ |
|
7859 if (dn==NULL) { |
|
7860 printf("NULL\n"); |
|
7861 return;} |
|
7862 if (decNumberIsNegative(dn)) isign='-'; |
|
7863 printf(" >> %c ", isign); |
|
7864 if (dn->bits&DECSPECIAL) { /* Is a special value */ |
|
7865 if (decNumberIsInfinite(dn)) printf("Infinity"); |
|
7866 else { /* a NaN */ |
|
7867 if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */ |
|
7868 else printf("NaN"); |
|
7869 } |
|
7870 /* if coefficient and exponent are 0, no more to do */ |
|
7871 if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { |
|
7872 printf("\n"); |
|
7873 return;} |
|
7874 /* drop through to report other information */ |
|
7875 printf(" "); |
|
7876 } |
|
7877 |
|
7878 /* now carefully display the coefficient */ |
|
7879 up=dn->lsu+D2U(dn->digits)-1; /* msu */ |
|
7880 printf("%ld", (LI)*up); |
|
7881 for (up=up-1; up>=dn->lsu; up--) { |
|
7882 u=*up; |
|
7883 printf(":"); |
|
7884 for (cut=DECDPUN-1; cut>=0; cut--) { |
|
7885 d=u/powers[cut]; |
|
7886 u-=d*powers[cut]; |
|
7887 printf("%ld", (LI)d); |
|
7888 } /* cut */ |
|
7889 } /* up */ |
|
7890 if (dn->exponent!=0) { |
|
7891 char esign='+'; |
|
7892 if (dn->exponent<0) esign='-'; |
|
7893 printf(" E%c%ld", esign, (LI)abs(dn->exponent)); |
|
7894 } |
|
7895 printf(" [%ld]\n", (LI)dn->digits); |
|
7896 } /* decNumberShow */ |
|
7897 #endif |
|
7898 |
|
7899 #if DECTRACE || DECCHECK |
|
7900 /* ------------------------------------------------------------------ */ |
|
7901 /* decDumpAr -- display a unit array [debug/check aid] */ |
|
7902 /* name is a single-character tag name */ |
|
7903 /* ar is the array to display */ |
|
7904 /* len is the length of the array in Units */ |
|
7905 /* ------------------------------------------------------------------ */ |
|
7906 static void decDumpAr(char name, const Unit *ar, Int len) { |
|
7907 Int i; |
|
7908 const char *spec; |
|
7909 #if DECDPUN==9 |
|
7910 spec="%09d "; |
|
7911 #elif DECDPUN==8 |
|
7912 spec="%08d "; |
|
7913 #elif DECDPUN==7 |
|
7914 spec="%07d "; |
|
7915 #elif DECDPUN==6 |
|
7916 spec="%06d "; |
|
7917 #elif DECDPUN==5 |
|
7918 spec="%05d "; |
|
7919 #elif DECDPUN==4 |
|
7920 spec="%04d "; |
|
7921 #elif DECDPUN==3 |
|
7922 spec="%03d "; |
|
7923 #elif DECDPUN==2 |
|
7924 spec="%02d "; |
|
7925 #else |
|
7926 spec="%d "; |
|
7927 #endif |
|
7928 printf(" :%c: ", name); |
|
7929 for (i=len-1; i>=0; i--) { |
|
7930 if (i==len-1) printf("%ld ", (LI)ar[i]); |
|
7931 else printf(spec, ar[i]); |
|
7932 } |
|
7933 printf("\n"); |
|
7934 return;} |
|
7935 #endif |
|
7936 |
|
7937 #if DECCHECK |
|
7938 /* ------------------------------------------------------------------ */ |
|
7939 /* decCheckOperands -- check operand(s) to a routine */ |
|
7940 /* res is the result structure (not checked; it will be set to */ |
|
7941 /* quiet NaN if error found (and it is not NULL)) */ |
|
7942 /* lhs is the first operand (may be DECUNRESU) */ |
|
7943 /* rhs is the second (may be DECUNUSED) */ |
|
7944 /* set is the context (may be DECUNCONT) */ |
|
7945 /* returns 0 if both operands, and the context are clean, or 1 */ |
|
7946 /* otherwise (in which case the context will show an error, */ |
|
7947 /* unless NULL). Note that res is not cleaned; caller should */ |
|
7948 /* handle this so res=NULL case is safe. */ |
|
7949 /* The caller is expected to abandon immediately if 1 is returned. */ |
|
7950 /* ------------------------------------------------------------------ */ |
|
7951 static Flag decCheckOperands(decNumber *res, const decNumber *lhs, |
|
7952 const decNumber *rhs, decContext *set) { |
|
7953 Flag bad=0; |
|
7954 if (set==NULL) { /* oops; hopeless */ |
|
7955 #if DECTRACE || DECVERB |
|
7956 printf("Reference to context is NULL.\n"); |
|
7957 #endif |
|
7958 bad=1; |
|
7959 return 1;} |
|
7960 else if (set!=DECUNCONT |
|
7961 && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { |
|
7962 bad=1; |
|
7963 #if DECTRACE || DECVERB |
|
7964 printf("Bad context [digits=%ld round=%ld].\n", |
|
7965 (LI)set->digits, (LI)set->round); |
|
7966 #endif |
|
7967 } |
|
7968 else { |
|
7969 if (res==NULL) { |
|
7970 bad=1; |
|
7971 #if DECTRACE |
|
7972 /* this one not DECVERB as standard tests include NULL */ |
|
7973 printf("Reference to result is NULL.\n"); |
|
7974 #endif |
|
7975 } |
|
7976 if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); |
|
7977 if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); |
|
7978 } |
|
7979 if (bad) { |
|
7980 if (set!=DECUNCONT) uprv_decContextSetStatus(set, DEC_Invalid_operation); |
|
7981 if (res!=DECUNRESU && res!=NULL) { |
|
7982 uprv_decNumberZero(res); |
|
7983 res->bits=DECNAN; /* qNaN */ |
|
7984 } |
|
7985 } |
|
7986 return bad; |
|
7987 } /* decCheckOperands */ |
|
7988 |
|
7989 /* ------------------------------------------------------------------ */ |
|
7990 /* decCheckNumber -- check a number */ |
|
7991 /* dn is the number to check */ |
|
7992 /* returns 0 if the number is clean, or 1 otherwise */ |
|
7993 /* */ |
|
7994 /* The number is considered valid if it could be a result from some */ |
|
7995 /* operation in some valid context. */ |
|
7996 /* ------------------------------------------------------------------ */ |
|
7997 static Flag decCheckNumber(const decNumber *dn) { |
|
7998 const Unit *up; /* work */ |
|
7999 uInt maxuint; /* .. */ |
|
8000 Int ae, d, digits; /* .. */ |
|
8001 Int emin, emax; /* .. */ |
|
8002 |
|
8003 if (dn==NULL) { /* hopeless */ |
|
8004 #if DECTRACE |
|
8005 /* this one not DECVERB as standard tests include NULL */ |
|
8006 printf("Reference to decNumber is NULL.\n"); |
|
8007 #endif |
|
8008 return 1;} |
|
8009 |
|
8010 /* check special values */ |
|
8011 if (dn->bits & DECSPECIAL) { |
|
8012 if (dn->exponent!=0) { |
|
8013 #if DECTRACE || DECVERB |
|
8014 printf("Exponent %ld (not 0) for a special value [%02x].\n", |
|
8015 (LI)dn->exponent, dn->bits); |
|
8016 #endif |
|
8017 return 1;} |
|
8018 |
|
8019 /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */ |
|
8020 if (decNumberIsInfinite(dn)) { |
|
8021 if (dn->digits!=1) { |
|
8022 #if DECTRACE || DECVERB |
|
8023 printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); |
|
8024 #endif |
|
8025 return 1;} |
|
8026 if (*dn->lsu!=0) { |
|
8027 #if DECTRACE || DECVERB |
|
8028 printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); |
|
8029 #endif |
|
8030 decDumpAr('I', dn->lsu, D2U(dn->digits)); |
|
8031 return 1;} |
|
8032 } /* Inf */ |
|
8033 /* 2002.12.26: negative NaNs can now appear through proposed IEEE */ |
|
8034 /* concrete formats (decimal64, etc.). */ |
|
8035 return 0; |
|
8036 } |
|
8037 |
|
8038 /* check the coefficient */ |
|
8039 if (dn->digits<1 || dn->digits>DECNUMMAXP) { |
|
8040 #if DECTRACE || DECVERB |
|
8041 printf("Digits %ld in number.\n", (LI)dn->digits); |
|
8042 #endif |
|
8043 return 1;} |
|
8044 |
|
8045 d=dn->digits; |
|
8046 |
|
8047 for (up=dn->lsu; d>0; up++) { |
|
8048 if (d>DECDPUN) maxuint=DECDPUNMAX; |
|
8049 else { /* reached the msu */ |
|
8050 maxuint=powers[d]-1; |
|
8051 if (dn->digits>1 && *up<powers[d-1]) { |
|
8052 #if DECTRACE || DECVERB |
|
8053 printf("Leading 0 in number.\n"); |
|
8054 uprv_decNumberShow(dn); |
|
8055 #endif |
|
8056 return 1;} |
|
8057 } |
|
8058 if (*up>maxuint) { |
|
8059 #if DECTRACE || DECVERB |
|
8060 printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", |
|
8061 (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); |
|
8062 #endif |
|
8063 return 1;} |
|
8064 d-=DECDPUN; |
|
8065 } |
|
8066 |
|
8067 /* check the exponent. Note that input operands can have exponents */ |
|
8068 /* which are out of the set->emin/set->emax and set->digits range */ |
|
8069 /* (just as they can have more digits than set->digits). */ |
|
8070 ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
|
8071 emax=DECNUMMAXE; |
|
8072 emin=DECNUMMINE; |
|
8073 digits=DECNUMMAXP; |
|
8074 if (ae<emin-(digits-1)) { |
|
8075 #if DECTRACE || DECVERB |
|
8076 printf("Adjusted exponent underflow [%ld].\n", (LI)ae); |
|
8077 uprv_decNumberShow(dn); |
|
8078 #endif |
|
8079 return 1;} |
|
8080 if (ae>+emax) { |
|
8081 #if DECTRACE || DECVERB |
|
8082 printf("Adjusted exponent overflow [%ld].\n", (LI)ae); |
|
8083 uprv_decNumberShow(dn); |
|
8084 #endif |
|
8085 return 1;} |
|
8086 |
|
8087 return 0; /* it's OK */ |
|
8088 } /* decCheckNumber */ |
|
8089 |
|
8090 /* ------------------------------------------------------------------ */ |
|
8091 /* decCheckInexact -- check a normal finite inexact result has digits */ |
|
8092 /* dn is the number to check */ |
|
8093 /* set is the context (for status and precision) */ |
|
8094 /* sets Invalid operation, etc., if some digits are missing */ |
|
8095 /* [this check is not made for DECSUBSET compilation or when */ |
|
8096 /* subnormal is not set] */ |
|
8097 /* ------------------------------------------------------------------ */ |
|
8098 static void decCheckInexact(const decNumber *dn, decContext *set) { |
|
8099 #if !DECSUBSET && DECEXTFLAG |
|
8100 if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact |
|
8101 && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { |
|
8102 #if DECTRACE || DECVERB |
|
8103 printf("Insufficient digits [%ld] on normal Inexact result.\n", |
|
8104 (LI)dn->digits); |
|
8105 uprv_decNumberShow(dn); |
|
8106 #endif |
|
8107 uprv_decContextSetStatus(set, DEC_Invalid_operation); |
|
8108 } |
|
8109 #else |
|
8110 /* next is a noop for quiet compiler */ |
|
8111 if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; |
|
8112 #endif |
|
8113 return; |
|
8114 } /* decCheckInexact */ |
|
8115 #endif |
|
8116 |
|
8117 #if DECALLOC |
|
8118 #undef malloc |
|
8119 #undef free |
|
8120 /* ------------------------------------------------------------------ */ |
|
8121 /* decMalloc -- accountable allocation routine */ |
|
8122 /* n is the number of bytes to allocate */ |
|
8123 /* */ |
|
8124 /* Semantics is the same as the stdlib malloc routine, but bytes */ |
|
8125 /* allocated are accounted for globally, and corruption fences are */ |
|
8126 /* added before and after the 'actual' storage. */ |
|
8127 /* ------------------------------------------------------------------ */ |
|
8128 /* This routine allocates storage with an extra twelve bytes; 8 are */ |
|
8129 /* at the start and hold: */ |
|
8130 /* 0-3 the original length requested */ |
|
8131 /* 4-7 buffer corruption detection fence (DECFENCE, x4) */ |
|
8132 /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ |
|
8133 /* ------------------------------------------------------------------ */ |
|
8134 static void *decMalloc(size_t n) { |
|
8135 uInt size=n+12; /* true size */ |
|
8136 void *alloc; /* -> allocated storage */ |
|
8137 uByte *b, *b0; /* work */ |
|
8138 uInt uiwork; /* for macros */ |
|
8139 |
|
8140 alloc=malloc(size); /* -> allocated storage */ |
|
8141 if (alloc==NULL) return NULL; /* out of strorage */ |
|
8142 b0=(uByte *)alloc; /* as bytes */ |
|
8143 decAllocBytes+=n; /* account for storage */ |
|
8144 UBFROMUI(alloc, n); /* save n */ |
|
8145 /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); */ |
|
8146 for (b=b0+4; b<b0+8; b++) *b=DECFENCE; |
|
8147 for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE; |
|
8148 return b0+8; /* -> play area */ |
|
8149 } /* decMalloc */ |
|
8150 |
|
8151 /* ------------------------------------------------------------------ */ |
|
8152 /* decFree -- accountable free routine */ |
|
8153 /* alloc is the storage to free */ |
|
8154 /* */ |
|
8155 /* Semantics is the same as the stdlib malloc routine, except that */ |
|
8156 /* the global storage accounting is updated and the fences are */ |
|
8157 /* checked to ensure that no routine has written 'out of bounds'. */ |
|
8158 /* ------------------------------------------------------------------ */ |
|
8159 /* This routine first checks that the fences have not been corrupted. */ |
|
8160 /* It then frees the storage using the 'truw' storage address (that */ |
|
8161 /* is, offset by 8). */ |
|
8162 /* ------------------------------------------------------------------ */ |
|
8163 static void decFree(void *alloc) { |
|
8164 uInt n; /* original length */ |
|
8165 uByte *b, *b0; /* work */ |
|
8166 uInt uiwork; /* for macros */ |
|
8167 |
|
8168 if (alloc==NULL) return; /* allowed; it's a nop */ |
|
8169 b0=(uByte *)alloc; /* as bytes */ |
|
8170 b0-=8; /* -> true start of storage */ |
|
8171 n=UBTOUI(b0); /* lift length */ |
|
8172 for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE) |
|
8173 printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, |
|
8174 b-b0-8, (LI)b0); |
|
8175 for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE) |
|
8176 printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, |
|
8177 b-b0-8, (LI)b0, (LI)n); |
|
8178 free(b0); /* drop the storage */ |
|
8179 decAllocBytes-=n; /* account for storage */ |
|
8180 /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */ |
|
8181 } /* decFree */ |
|
8182 #define malloc(a) decMalloc(a) |
|
8183 #define free(a) decFree(a) |
|
8184 #endif |