|
1 /* |
|
2 ******************************************************************************* |
|
3 * Copyright (C) 1997-2013, International Business Machines Corporation and * |
|
4 * others. All Rights Reserved. * |
|
5 ******************************************************************************* |
|
6 * |
|
7 * File FMTABLE.CPP |
|
8 * |
|
9 * Modification History: |
|
10 * |
|
11 * Date Name Description |
|
12 * 03/25/97 clhuang Initial Implementation. |
|
13 ******************************************************************************** |
|
14 */ |
|
15 |
|
16 #include "unicode/utypes.h" |
|
17 |
|
18 #if !UCONFIG_NO_FORMATTING |
|
19 |
|
20 #include <math.h> |
|
21 #include "unicode/fmtable.h" |
|
22 #include "unicode/ustring.h" |
|
23 #include "unicode/measure.h" |
|
24 #include "unicode/curramt.h" |
|
25 #include "unicode/uformattable.h" |
|
26 #include "charstr.h" |
|
27 #include "cmemory.h" |
|
28 #include "cstring.h" |
|
29 #include "decNumber.h" |
|
30 #include "digitlst.h" |
|
31 |
|
32 // ***************************************************************************** |
|
33 // class Formattable |
|
34 // ***************************************************************************** |
|
35 |
|
36 U_NAMESPACE_BEGIN |
|
37 |
|
38 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable) |
|
39 |
|
40 #include "fmtableimp.h" |
|
41 |
|
42 //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
|
43 |
|
44 // NOTE: As of 3.0, there are limitations to the UObject API. It does |
|
45 // not (yet) support cloning, operator=, nor operator==. To |
|
46 // work around this, I implement some simple inlines here. Later |
|
47 // these can be modified or removed. [alan] |
|
48 |
|
49 // NOTE: These inlines assume that all fObjects are in fact instances |
|
50 // of the Measure class, which is true as of 3.0. [alan] |
|
51 |
|
52 // Return TRUE if *a == *b. |
|
53 static inline UBool objectEquals(const UObject* a, const UObject* b) { |
|
54 // LATER: return *a == *b; |
|
55 return *((const Measure*) a) == *((const Measure*) b); |
|
56 } |
|
57 |
|
58 // Return a clone of *a. |
|
59 static inline UObject* objectClone(const UObject* a) { |
|
60 // LATER: return a->clone(); |
|
61 return ((const Measure*) a)->clone(); |
|
62 } |
|
63 |
|
64 // Return TRUE if *a is an instance of Measure. |
|
65 static inline UBool instanceOfMeasure(const UObject* a) { |
|
66 return dynamic_cast<const Measure*>(a) != NULL; |
|
67 } |
|
68 |
|
69 /** |
|
70 * Creates a new Formattable array and copies the values from the specified |
|
71 * original. |
|
72 * @param array the original array |
|
73 * @param count the original array count |
|
74 * @return the new Formattable array. |
|
75 */ |
|
76 static Formattable* createArrayCopy(const Formattable* array, int32_t count) { |
|
77 Formattable *result = new Formattable[count]; |
|
78 if (result != NULL) { |
|
79 for (int32_t i=0; i<count; ++i) |
|
80 result[i] = array[i]; // Don't memcpy! |
|
81 } |
|
82 return result; |
|
83 } |
|
84 |
|
85 //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
|
86 |
|
87 /** |
|
88 * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode. |
|
89 */ |
|
90 static void setError(UErrorCode& ec, UErrorCode err) { |
|
91 if (U_SUCCESS(ec)) { |
|
92 ec = err; |
|
93 } |
|
94 } |
|
95 |
|
96 // |
|
97 // Common initialization code, shared by constructors. |
|
98 // Put everything into a known state. |
|
99 // |
|
100 void Formattable::init() { |
|
101 fValue.fInt64 = 0; |
|
102 fType = kLong; |
|
103 fDecimalStr = NULL; |
|
104 fDecimalNum = NULL; |
|
105 fBogus.setToBogus(); |
|
106 } |
|
107 |
|
108 // ------------------------------------- |
|
109 // default constructor. |
|
110 // Creates a formattable object with a long value 0. |
|
111 |
|
112 Formattable::Formattable() { |
|
113 init(); |
|
114 } |
|
115 |
|
116 // ------------------------------------- |
|
117 // Creates a formattable object with a Date instance. |
|
118 |
|
119 Formattable::Formattable(UDate date, ISDATE /*isDate*/) |
|
120 { |
|
121 init(); |
|
122 fType = kDate; |
|
123 fValue.fDate = date; |
|
124 } |
|
125 |
|
126 // ------------------------------------- |
|
127 // Creates a formattable object with a double value. |
|
128 |
|
129 Formattable::Formattable(double value) |
|
130 { |
|
131 init(); |
|
132 fType = kDouble; |
|
133 fValue.fDouble = value; |
|
134 } |
|
135 |
|
136 // ------------------------------------- |
|
137 // Creates a formattable object with an int32_t value. |
|
138 |
|
139 Formattable::Formattable(int32_t value) |
|
140 { |
|
141 init(); |
|
142 fValue.fInt64 = value; |
|
143 } |
|
144 |
|
145 // ------------------------------------- |
|
146 // Creates a formattable object with an int64_t value. |
|
147 |
|
148 Formattable::Formattable(int64_t value) |
|
149 { |
|
150 init(); |
|
151 fType = kInt64; |
|
152 fValue.fInt64 = value; |
|
153 } |
|
154 |
|
155 // ------------------------------------- |
|
156 // Creates a formattable object with a decimal number value from a string. |
|
157 |
|
158 Formattable::Formattable(const StringPiece &number, UErrorCode &status) { |
|
159 init(); |
|
160 setDecimalNumber(number, status); |
|
161 } |
|
162 |
|
163 |
|
164 // ------------------------------------- |
|
165 // Creates a formattable object with a UnicodeString instance. |
|
166 |
|
167 Formattable::Formattable(const UnicodeString& stringToCopy) |
|
168 { |
|
169 init(); |
|
170 fType = kString; |
|
171 fValue.fString = new UnicodeString(stringToCopy); |
|
172 } |
|
173 |
|
174 // ------------------------------------- |
|
175 // Creates a formattable object with a UnicodeString* value. |
|
176 // (adopting symantics) |
|
177 |
|
178 Formattable::Formattable(UnicodeString* stringToAdopt) |
|
179 { |
|
180 init(); |
|
181 fType = kString; |
|
182 fValue.fString = stringToAdopt; |
|
183 } |
|
184 |
|
185 Formattable::Formattable(UObject* objectToAdopt) |
|
186 { |
|
187 init(); |
|
188 fType = kObject; |
|
189 fValue.fObject = objectToAdopt; |
|
190 } |
|
191 |
|
192 // ------------------------------------- |
|
193 |
|
194 Formattable::Formattable(const Formattable* arrayToCopy, int32_t count) |
|
195 : UObject(), fType(kArray) |
|
196 { |
|
197 init(); |
|
198 fType = kArray; |
|
199 fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count); |
|
200 fValue.fArrayAndCount.fCount = count; |
|
201 } |
|
202 |
|
203 // ------------------------------------- |
|
204 // copy constructor |
|
205 |
|
206 |
|
207 Formattable::Formattable(const Formattable &source) |
|
208 : UObject(*this) |
|
209 { |
|
210 init(); |
|
211 *this = source; |
|
212 } |
|
213 |
|
214 // ------------------------------------- |
|
215 // assignment operator |
|
216 |
|
217 Formattable& |
|
218 Formattable::operator=(const Formattable& source) |
|
219 { |
|
220 if (this != &source) |
|
221 { |
|
222 // Disposes the current formattable value/setting. |
|
223 dispose(); |
|
224 |
|
225 // Sets the correct data type for this value. |
|
226 fType = source.fType; |
|
227 switch (fType) |
|
228 { |
|
229 case kArray: |
|
230 // Sets each element in the array one by one and records the array count. |
|
231 fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount; |
|
232 fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray, |
|
233 source.fValue.fArrayAndCount.fCount); |
|
234 break; |
|
235 case kString: |
|
236 // Sets the string value. |
|
237 fValue.fString = new UnicodeString(*source.fValue.fString); |
|
238 break; |
|
239 case kDouble: |
|
240 // Sets the double value. |
|
241 fValue.fDouble = source.fValue.fDouble; |
|
242 break; |
|
243 case kLong: |
|
244 case kInt64: |
|
245 // Sets the long value. |
|
246 fValue.fInt64 = source.fValue.fInt64; |
|
247 break; |
|
248 case kDate: |
|
249 // Sets the Date value. |
|
250 fValue.fDate = source.fValue.fDate; |
|
251 break; |
|
252 case kObject: |
|
253 fValue.fObject = objectClone(source.fValue.fObject); |
|
254 break; |
|
255 } |
|
256 |
|
257 UErrorCode status = U_ZERO_ERROR; |
|
258 if (source.fDecimalNum != NULL) { |
|
259 fDecimalNum = new DigitList(*source.fDecimalNum); // TODO: use internal digit list |
|
260 } |
|
261 if (source.fDecimalStr != NULL) { |
|
262 fDecimalStr = new CharString(*source.fDecimalStr, status); |
|
263 if (U_FAILURE(status)) { |
|
264 delete fDecimalStr; |
|
265 fDecimalStr = NULL; |
|
266 } |
|
267 } |
|
268 } |
|
269 return *this; |
|
270 } |
|
271 |
|
272 // ------------------------------------- |
|
273 |
|
274 UBool |
|
275 Formattable::operator==(const Formattable& that) const |
|
276 { |
|
277 int32_t i; |
|
278 |
|
279 if (this == &that) return TRUE; |
|
280 |
|
281 // Returns FALSE if the data types are different. |
|
282 if (fType != that.fType) return FALSE; |
|
283 |
|
284 // Compares the actual data values. |
|
285 UBool equal = TRUE; |
|
286 switch (fType) { |
|
287 case kDate: |
|
288 equal = (fValue.fDate == that.fValue.fDate); |
|
289 break; |
|
290 case kDouble: |
|
291 equal = (fValue.fDouble == that.fValue.fDouble); |
|
292 break; |
|
293 case kLong: |
|
294 case kInt64: |
|
295 equal = (fValue.fInt64 == that.fValue.fInt64); |
|
296 break; |
|
297 case kString: |
|
298 equal = (*(fValue.fString) == *(that.fValue.fString)); |
|
299 break; |
|
300 case kArray: |
|
301 if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) { |
|
302 equal = FALSE; |
|
303 break; |
|
304 } |
|
305 // Checks each element for equality. |
|
306 for (i=0; i<fValue.fArrayAndCount.fCount; ++i) { |
|
307 if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) { |
|
308 equal = FALSE; |
|
309 break; |
|
310 } |
|
311 } |
|
312 break; |
|
313 case kObject: |
|
314 if (fValue.fObject == NULL || that.fValue.fObject == NULL) { |
|
315 equal = FALSE; |
|
316 } else { |
|
317 equal = objectEquals(fValue.fObject, that.fValue.fObject); |
|
318 } |
|
319 break; |
|
320 } |
|
321 |
|
322 // TODO: compare digit lists if numeric. |
|
323 return equal; |
|
324 } |
|
325 |
|
326 // ------------------------------------- |
|
327 |
|
328 Formattable::~Formattable() |
|
329 { |
|
330 dispose(); |
|
331 } |
|
332 |
|
333 // ------------------------------------- |
|
334 |
|
335 void Formattable::dispose() |
|
336 { |
|
337 // Deletes the data value if necessary. |
|
338 switch (fType) { |
|
339 case kString: |
|
340 delete fValue.fString; |
|
341 break; |
|
342 case kArray: |
|
343 delete[] fValue.fArrayAndCount.fArray; |
|
344 break; |
|
345 case kObject: |
|
346 delete fValue.fObject; |
|
347 break; |
|
348 default: |
|
349 break; |
|
350 } |
|
351 |
|
352 fType = kLong; |
|
353 fValue.fInt64 = 0; |
|
354 |
|
355 delete fDecimalStr; |
|
356 fDecimalStr = NULL; |
|
357 |
|
358 FmtStackData *stackData = (FmtStackData*)fStackData; |
|
359 if(fDecimalNum != &(stackData->stackDecimalNum)) { |
|
360 delete fDecimalNum; |
|
361 } else { |
|
362 fDecimalNum->~DigitList(); // destruct, don't deallocate |
|
363 } |
|
364 fDecimalNum = NULL; |
|
365 } |
|
366 |
|
367 Formattable * |
|
368 Formattable::clone() const { |
|
369 return new Formattable(*this); |
|
370 } |
|
371 |
|
372 // ------------------------------------- |
|
373 // Gets the data type of this Formattable object. |
|
374 Formattable::Type |
|
375 Formattable::getType() const |
|
376 { |
|
377 return fType; |
|
378 } |
|
379 |
|
380 UBool |
|
381 Formattable::isNumeric() const { |
|
382 switch (fType) { |
|
383 case kDouble: |
|
384 case kLong: |
|
385 case kInt64: |
|
386 return TRUE; |
|
387 default: |
|
388 return FALSE; |
|
389 } |
|
390 } |
|
391 |
|
392 // ------------------------------------- |
|
393 int32_t |
|
394 //Formattable::getLong(UErrorCode* status) const |
|
395 Formattable::getLong(UErrorCode& status) const |
|
396 { |
|
397 if (U_FAILURE(status)) { |
|
398 return 0; |
|
399 } |
|
400 |
|
401 switch (fType) { |
|
402 case Formattable::kLong: |
|
403 return (int32_t)fValue.fInt64; |
|
404 case Formattable::kInt64: |
|
405 if (fValue.fInt64 > INT32_MAX) { |
|
406 status = U_INVALID_FORMAT_ERROR; |
|
407 return INT32_MAX; |
|
408 } else if (fValue.fInt64 < INT32_MIN) { |
|
409 status = U_INVALID_FORMAT_ERROR; |
|
410 return INT32_MIN; |
|
411 } else { |
|
412 return (int32_t)fValue.fInt64; |
|
413 } |
|
414 case Formattable::kDouble: |
|
415 if (fValue.fDouble > INT32_MAX) { |
|
416 status = U_INVALID_FORMAT_ERROR; |
|
417 return INT32_MAX; |
|
418 } else if (fValue.fDouble < INT32_MIN) { |
|
419 status = U_INVALID_FORMAT_ERROR; |
|
420 return INT32_MIN; |
|
421 } else { |
|
422 return (int32_t)fValue.fDouble; // loses fraction |
|
423 } |
|
424 case Formattable::kObject: |
|
425 if (fValue.fObject == NULL) { |
|
426 status = U_MEMORY_ALLOCATION_ERROR; |
|
427 return 0; |
|
428 } |
|
429 // TODO Later replace this with instanceof call |
|
430 if (instanceOfMeasure(fValue.fObject)) { |
|
431 return ((const Measure*) fValue.fObject)-> |
|
432 getNumber().getLong(status); |
|
433 } |
|
434 default: |
|
435 status = U_INVALID_FORMAT_ERROR; |
|
436 return 0; |
|
437 } |
|
438 } |
|
439 |
|
440 // ------------------------------------- |
|
441 // Maximum int that can be represented exactly in a double. (53 bits) |
|
442 // Larger ints may be rounded to a near-by value as not all are representable. |
|
443 // TODO: move this constant elsewhere, possibly configure it for different |
|
444 // floating point formats, if any non-standard ones are still in use. |
|
445 static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL; |
|
446 |
|
447 int64_t |
|
448 Formattable::getInt64(UErrorCode& status) const |
|
449 { |
|
450 if (U_FAILURE(status)) { |
|
451 return 0; |
|
452 } |
|
453 |
|
454 switch (fType) { |
|
455 case Formattable::kLong: |
|
456 case Formattable::kInt64: |
|
457 return fValue.fInt64; |
|
458 case Formattable::kDouble: |
|
459 if (fValue.fDouble > (double)U_INT64_MAX) { |
|
460 status = U_INVALID_FORMAT_ERROR; |
|
461 return U_INT64_MAX; |
|
462 } else if (fValue.fDouble < (double)U_INT64_MIN) { |
|
463 status = U_INVALID_FORMAT_ERROR; |
|
464 return U_INT64_MIN; |
|
465 } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalNum != NULL) { |
|
466 int64_t val = fDecimalNum->getInt64(); |
|
467 if (val != 0) { |
|
468 return val; |
|
469 } else { |
|
470 status = U_INVALID_FORMAT_ERROR; |
|
471 return fValue.fDouble > 0 ? U_INT64_MAX : U_INT64_MIN; |
|
472 } |
|
473 } else { |
|
474 return (int64_t)fValue.fDouble; |
|
475 } |
|
476 case Formattable::kObject: |
|
477 if (fValue.fObject == NULL) { |
|
478 status = U_MEMORY_ALLOCATION_ERROR; |
|
479 return 0; |
|
480 } |
|
481 if (instanceOfMeasure(fValue.fObject)) { |
|
482 return ((const Measure*) fValue.fObject)-> |
|
483 getNumber().getInt64(status); |
|
484 } |
|
485 default: |
|
486 status = U_INVALID_FORMAT_ERROR; |
|
487 return 0; |
|
488 } |
|
489 } |
|
490 |
|
491 // ------------------------------------- |
|
492 double |
|
493 Formattable::getDouble(UErrorCode& status) const |
|
494 { |
|
495 if (U_FAILURE(status)) { |
|
496 return 0; |
|
497 } |
|
498 |
|
499 switch (fType) { |
|
500 case Formattable::kLong: |
|
501 case Formattable::kInt64: // loses precision |
|
502 return (double)fValue.fInt64; |
|
503 case Formattable::kDouble: |
|
504 return fValue.fDouble; |
|
505 case Formattable::kObject: |
|
506 if (fValue.fObject == NULL) { |
|
507 status = U_MEMORY_ALLOCATION_ERROR; |
|
508 return 0; |
|
509 } |
|
510 // TODO Later replace this with instanceof call |
|
511 if (instanceOfMeasure(fValue.fObject)) { |
|
512 return ((const Measure*) fValue.fObject)-> |
|
513 getNumber().getDouble(status); |
|
514 } |
|
515 default: |
|
516 status = U_INVALID_FORMAT_ERROR; |
|
517 return 0; |
|
518 } |
|
519 } |
|
520 |
|
521 const UObject* |
|
522 Formattable::getObject() const { |
|
523 return (fType == kObject) ? fValue.fObject : NULL; |
|
524 } |
|
525 |
|
526 // ------------------------------------- |
|
527 // Sets the value to a double value d. |
|
528 |
|
529 void |
|
530 Formattable::setDouble(double d) |
|
531 { |
|
532 dispose(); |
|
533 fType = kDouble; |
|
534 fValue.fDouble = d; |
|
535 } |
|
536 |
|
537 // ------------------------------------- |
|
538 // Sets the value to a long value l. |
|
539 |
|
540 void |
|
541 Formattable::setLong(int32_t l) |
|
542 { |
|
543 dispose(); |
|
544 fType = kLong; |
|
545 fValue.fInt64 = l; |
|
546 } |
|
547 |
|
548 // ------------------------------------- |
|
549 // Sets the value to an int64 value ll. |
|
550 |
|
551 void |
|
552 Formattable::setInt64(int64_t ll) |
|
553 { |
|
554 dispose(); |
|
555 fType = kInt64; |
|
556 fValue.fInt64 = ll; |
|
557 } |
|
558 |
|
559 // ------------------------------------- |
|
560 // Sets the value to a Date instance d. |
|
561 |
|
562 void |
|
563 Formattable::setDate(UDate d) |
|
564 { |
|
565 dispose(); |
|
566 fType = kDate; |
|
567 fValue.fDate = d; |
|
568 } |
|
569 |
|
570 // ------------------------------------- |
|
571 // Sets the value to a string value stringToCopy. |
|
572 |
|
573 void |
|
574 Formattable::setString(const UnicodeString& stringToCopy) |
|
575 { |
|
576 dispose(); |
|
577 fType = kString; |
|
578 fValue.fString = new UnicodeString(stringToCopy); |
|
579 } |
|
580 |
|
581 // ------------------------------------- |
|
582 // Sets the value to an array of Formattable objects. |
|
583 |
|
584 void |
|
585 Formattable::setArray(const Formattable* array, int32_t count) |
|
586 { |
|
587 dispose(); |
|
588 fType = kArray; |
|
589 fValue.fArrayAndCount.fArray = createArrayCopy(array, count); |
|
590 fValue.fArrayAndCount.fCount = count; |
|
591 } |
|
592 |
|
593 // ------------------------------------- |
|
594 // Adopts the stringToAdopt value. |
|
595 |
|
596 void |
|
597 Formattable::adoptString(UnicodeString* stringToAdopt) |
|
598 { |
|
599 dispose(); |
|
600 fType = kString; |
|
601 fValue.fString = stringToAdopt; |
|
602 } |
|
603 |
|
604 // ------------------------------------- |
|
605 // Adopts the array value and its count. |
|
606 |
|
607 void |
|
608 Formattable::adoptArray(Formattable* array, int32_t count) |
|
609 { |
|
610 dispose(); |
|
611 fType = kArray; |
|
612 fValue.fArrayAndCount.fArray = array; |
|
613 fValue.fArrayAndCount.fCount = count; |
|
614 } |
|
615 |
|
616 void |
|
617 Formattable::adoptObject(UObject* objectToAdopt) { |
|
618 dispose(); |
|
619 fType = kObject; |
|
620 fValue.fObject = objectToAdopt; |
|
621 } |
|
622 |
|
623 // ------------------------------------- |
|
624 UnicodeString& |
|
625 Formattable::getString(UnicodeString& result, UErrorCode& status) const |
|
626 { |
|
627 if (fType != kString) { |
|
628 setError(status, U_INVALID_FORMAT_ERROR); |
|
629 result.setToBogus(); |
|
630 } else { |
|
631 if (fValue.fString == NULL) { |
|
632 setError(status, U_MEMORY_ALLOCATION_ERROR); |
|
633 } else { |
|
634 result = *fValue.fString; |
|
635 } |
|
636 } |
|
637 return result; |
|
638 } |
|
639 |
|
640 // ------------------------------------- |
|
641 const UnicodeString& |
|
642 Formattable::getString(UErrorCode& status) const |
|
643 { |
|
644 if (fType != kString) { |
|
645 setError(status, U_INVALID_FORMAT_ERROR); |
|
646 return *getBogus(); |
|
647 } |
|
648 if (fValue.fString == NULL) { |
|
649 setError(status, U_MEMORY_ALLOCATION_ERROR); |
|
650 return *getBogus(); |
|
651 } |
|
652 return *fValue.fString; |
|
653 } |
|
654 |
|
655 // ------------------------------------- |
|
656 UnicodeString& |
|
657 Formattable::getString(UErrorCode& status) |
|
658 { |
|
659 if (fType != kString) { |
|
660 setError(status, U_INVALID_FORMAT_ERROR); |
|
661 return *getBogus(); |
|
662 } |
|
663 if (fValue.fString == NULL) { |
|
664 setError(status, U_MEMORY_ALLOCATION_ERROR); |
|
665 return *getBogus(); |
|
666 } |
|
667 return *fValue.fString; |
|
668 } |
|
669 |
|
670 // ------------------------------------- |
|
671 const Formattable* |
|
672 Formattable::getArray(int32_t& count, UErrorCode& status) const |
|
673 { |
|
674 if (fType != kArray) { |
|
675 setError(status, U_INVALID_FORMAT_ERROR); |
|
676 count = 0; |
|
677 return NULL; |
|
678 } |
|
679 count = fValue.fArrayAndCount.fCount; |
|
680 return fValue.fArrayAndCount.fArray; |
|
681 } |
|
682 |
|
683 // ------------------------------------- |
|
684 // Gets the bogus string, ensures mondo bogosity. |
|
685 |
|
686 UnicodeString* |
|
687 Formattable::getBogus() const |
|
688 { |
|
689 return (UnicodeString*)&fBogus; /* cast away const :-( */ |
|
690 } |
|
691 |
|
692 |
|
693 // -------------------------------------- |
|
694 StringPiece Formattable::getDecimalNumber(UErrorCode &status) { |
|
695 if (U_FAILURE(status)) { |
|
696 return ""; |
|
697 } |
|
698 if (fDecimalStr != NULL) { |
|
699 return fDecimalStr->toStringPiece(); |
|
700 } |
|
701 |
|
702 CharString *decimalStr = internalGetCharString(status); |
|
703 if(decimalStr == NULL) { |
|
704 return ""; // getDecimalNumber returns "" for error cases |
|
705 } else { |
|
706 return decimalStr->toStringPiece(); |
|
707 } |
|
708 } |
|
709 |
|
710 CharString *Formattable::internalGetCharString(UErrorCode &status) { |
|
711 if(fDecimalStr == NULL) { |
|
712 if (fDecimalNum == NULL) { |
|
713 // No decimal number for the formattable yet. Which means the value was |
|
714 // set directly by the user as an int, int64 or double. If the value came |
|
715 // from parsing, or from the user setting a decimal number, fDecimalNum |
|
716 // would already be set. |
|
717 // |
|
718 fDecimalNum = new DigitList; // TODO: use internal digit list |
|
719 if (fDecimalNum == NULL) { |
|
720 status = U_MEMORY_ALLOCATION_ERROR; |
|
721 return NULL; |
|
722 } |
|
723 |
|
724 switch (fType) { |
|
725 case kDouble: |
|
726 fDecimalNum->set(this->getDouble()); |
|
727 break; |
|
728 case kLong: |
|
729 fDecimalNum->set(this->getLong()); |
|
730 break; |
|
731 case kInt64: |
|
732 fDecimalNum->set(this->getInt64()); |
|
733 break; |
|
734 default: |
|
735 // The formattable's value is not a numeric type. |
|
736 status = U_INVALID_STATE_ERROR; |
|
737 return NULL; |
|
738 } |
|
739 } |
|
740 |
|
741 fDecimalStr = new CharString; |
|
742 if (fDecimalStr == NULL) { |
|
743 status = U_MEMORY_ALLOCATION_ERROR; |
|
744 return NULL; |
|
745 } |
|
746 fDecimalNum->getDecimal(*fDecimalStr, status); |
|
747 } |
|
748 return fDecimalStr; |
|
749 } |
|
750 |
|
751 |
|
752 DigitList * |
|
753 Formattable::getInternalDigitList() { |
|
754 FmtStackData *stackData = (FmtStackData*)fStackData; |
|
755 if(fDecimalNum != &(stackData->stackDecimalNum)) { |
|
756 delete fDecimalNum; |
|
757 fDecimalNum = new (&(stackData->stackDecimalNum), kOnStack) DigitList(); |
|
758 } else { |
|
759 fDecimalNum->clear(); |
|
760 } |
|
761 return fDecimalNum; |
|
762 } |
|
763 |
|
764 // --------------------------------------- |
|
765 void |
|
766 Formattable::adoptDigitList(DigitList *dl) { |
|
767 if(fDecimalNum==dl) { |
|
768 fDecimalNum = NULL; // don't delete |
|
769 } |
|
770 dispose(); |
|
771 |
|
772 fDecimalNum = dl; |
|
773 |
|
774 if(dl==NULL) { // allow adoptDigitList(NULL) to clear |
|
775 return; |
|
776 } |
|
777 |
|
778 // Set the value into the Union of simple type values. |
|
779 // Cannot use the set() functions because they would delete the fDecimalNum value, |
|
780 |
|
781 if (fDecimalNum->fitsIntoLong(FALSE)) { |
|
782 fType = kLong; |
|
783 fValue.fInt64 = fDecimalNum->getLong(); |
|
784 } else if (fDecimalNum->fitsIntoInt64(FALSE)) { |
|
785 fType = kInt64; |
|
786 fValue.fInt64 = fDecimalNum->getInt64(); |
|
787 } else { |
|
788 fType = kDouble; |
|
789 fValue.fDouble = fDecimalNum->getDouble(); |
|
790 } |
|
791 } |
|
792 |
|
793 |
|
794 // --------------------------------------- |
|
795 void |
|
796 Formattable::setDecimalNumber(const StringPiece &numberString, UErrorCode &status) { |
|
797 if (U_FAILURE(status)) { |
|
798 return; |
|
799 } |
|
800 dispose(); |
|
801 |
|
802 // Copy the input string and nul-terminate it. |
|
803 // The decNumber library requires nul-terminated input. StringPiece input |
|
804 // is not guaranteed nul-terminated. Too bad. |
|
805 // CharString automatically adds the nul. |
|
806 DigitList *dnum = new DigitList(); // TODO: use getInternalDigitList |
|
807 if (dnum == NULL) { |
|
808 status = U_MEMORY_ALLOCATION_ERROR; |
|
809 return; |
|
810 } |
|
811 dnum->set(CharString(numberString, status).toStringPiece(), status); |
|
812 if (U_FAILURE(status)) { |
|
813 delete dnum; |
|
814 return; // String didn't contain a decimal number. |
|
815 } |
|
816 adoptDigitList(dnum); |
|
817 |
|
818 // Note that we do not hang on to the caller's input string. |
|
819 // If we are asked for the string, we will regenerate one from fDecimalNum. |
|
820 } |
|
821 |
|
822 #if 0 |
|
823 //---------------------------------------------------- |
|
824 // console I/O |
|
825 //---------------------------------------------------- |
|
826 #ifdef _DEBUG |
|
827 |
|
828 #include <iostream> |
|
829 using namespace std; |
|
830 |
|
831 #include "unicode/datefmt.h" |
|
832 #include "unistrm.h" |
|
833 |
|
834 class FormattableStreamer /* not : public UObject because all methods are static */ { |
|
835 public: |
|
836 static void streamOut(ostream& stream, const Formattable& obj); |
|
837 |
|
838 private: |
|
839 FormattableStreamer() {} // private - forbid instantiation |
|
840 }; |
|
841 |
|
842 // This is for debugging purposes only. This will send a displayable |
|
843 // form of the Formattable object to the output stream. |
|
844 |
|
845 void |
|
846 FormattableStreamer::streamOut(ostream& stream, const Formattable& obj) |
|
847 { |
|
848 static DateFormat *defDateFormat = 0; |
|
849 |
|
850 UnicodeString buffer; |
|
851 switch(obj.getType()) { |
|
852 case Formattable::kDate : |
|
853 // Creates a DateFormat instance for formatting the |
|
854 // Date instance. |
|
855 if (defDateFormat == 0) { |
|
856 defDateFormat = DateFormat::createInstance(); |
|
857 } |
|
858 defDateFormat->format(obj.getDate(), buffer); |
|
859 stream << buffer; |
|
860 break; |
|
861 case Formattable::kDouble : |
|
862 // Output the double as is. |
|
863 stream << obj.getDouble() << 'D'; |
|
864 break; |
|
865 case Formattable::kLong : |
|
866 // Output the double as is. |
|
867 stream << obj.getLong() << 'L'; |
|
868 break; |
|
869 case Formattable::kString: |
|
870 // Output the double as is. Please see UnicodeString console |
|
871 // I/O routine for more details. |
|
872 stream << '"' << obj.getString(buffer) << '"'; |
|
873 break; |
|
874 case Formattable::kArray: |
|
875 int32_t i, count; |
|
876 const Formattable* array; |
|
877 array = obj.getArray(count); |
|
878 stream << '['; |
|
879 // Recursively calling the console I/O routine for each element in the array. |
|
880 for (i=0; i<count; ++i) { |
|
881 FormattableStreamer::streamOut(stream, array[i]); |
|
882 stream << ( (i==(count-1)) ? "" : ", " ); |
|
883 } |
|
884 stream << ']'; |
|
885 break; |
|
886 default: |
|
887 // Not a recognizable Formattable object. |
|
888 stream << "INVALID_Formattable"; |
|
889 } |
|
890 stream.flush(); |
|
891 } |
|
892 #endif |
|
893 |
|
894 #endif |
|
895 |
|
896 U_NAMESPACE_END |
|
897 |
|
898 /* ---- UFormattable implementation ---- */ |
|
899 |
|
900 U_NAMESPACE_USE |
|
901 |
|
902 U_DRAFT UFormattable* U_EXPORT2 |
|
903 ufmt_open(UErrorCode *status) { |
|
904 if( U_FAILURE(*status) ) { |
|
905 return NULL; |
|
906 } |
|
907 UFormattable *fmt = (new Formattable())->toUFormattable(); |
|
908 |
|
909 if( fmt == NULL ) { |
|
910 *status = U_MEMORY_ALLOCATION_ERROR; |
|
911 } |
|
912 return fmt; |
|
913 } |
|
914 |
|
915 U_DRAFT void U_EXPORT2 |
|
916 ufmt_close(UFormattable *fmt) { |
|
917 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
918 |
|
919 delete obj; |
|
920 } |
|
921 |
|
922 U_INTERNAL UFormattableType U_EXPORT2 |
|
923 ufmt_getType(const UFormattable *fmt, UErrorCode *status) { |
|
924 if(U_FAILURE(*status)) { |
|
925 return (UFormattableType)UFMT_COUNT; |
|
926 } |
|
927 const Formattable *obj = Formattable::fromUFormattable(fmt); |
|
928 return (UFormattableType)obj->getType(); |
|
929 } |
|
930 |
|
931 |
|
932 U_INTERNAL UBool U_EXPORT2 |
|
933 ufmt_isNumeric(const UFormattable *fmt) { |
|
934 const Formattable *obj = Formattable::fromUFormattable(fmt); |
|
935 return obj->isNumeric(); |
|
936 } |
|
937 |
|
938 U_DRAFT UDate U_EXPORT2 |
|
939 ufmt_getDate(const UFormattable *fmt, UErrorCode *status) { |
|
940 const Formattable *obj = Formattable::fromUFormattable(fmt); |
|
941 |
|
942 return obj->getDate(*status); |
|
943 } |
|
944 |
|
945 U_DRAFT double U_EXPORT2 |
|
946 ufmt_getDouble(UFormattable *fmt, UErrorCode *status) { |
|
947 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
948 |
|
949 return obj->getDouble(*status); |
|
950 } |
|
951 |
|
952 U_DRAFT int32_t U_EXPORT2 |
|
953 ufmt_getLong(UFormattable *fmt, UErrorCode *status) { |
|
954 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
955 |
|
956 return obj->getLong(*status); |
|
957 } |
|
958 |
|
959 |
|
960 U_DRAFT const void *U_EXPORT2 |
|
961 ufmt_getObject(const UFormattable *fmt, UErrorCode *status) { |
|
962 const Formattable *obj = Formattable::fromUFormattable(fmt); |
|
963 |
|
964 const void *ret = obj->getObject(); |
|
965 if( ret==NULL && |
|
966 (obj->getType() != Formattable::kObject) && |
|
967 U_SUCCESS( *status )) { |
|
968 *status = U_INVALID_FORMAT_ERROR; |
|
969 } |
|
970 return ret; |
|
971 } |
|
972 |
|
973 U_DRAFT const UChar* U_EXPORT2 |
|
974 ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
|
975 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
976 |
|
977 // avoid bogosity by checking the type first. |
|
978 if( obj->getType() != Formattable::kString ) { |
|
979 if( U_SUCCESS(*status) ){ |
|
980 *status = U_INVALID_FORMAT_ERROR; |
|
981 } |
|
982 return NULL; |
|
983 } |
|
984 |
|
985 // This should return a valid string |
|
986 UnicodeString &str = obj->getString(*status); |
|
987 if( U_SUCCESS(*status) && len != NULL ) { |
|
988 *len = str.length(); |
|
989 } |
|
990 return str.getTerminatedBuffer(); |
|
991 } |
|
992 |
|
993 U_DRAFT int32_t U_EXPORT2 |
|
994 ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) { |
|
995 const Formattable *obj = Formattable::fromUFormattable(fmt); |
|
996 |
|
997 int32_t count; |
|
998 (void)obj->getArray(count, *status); |
|
999 return count; |
|
1000 } |
|
1001 |
|
1002 U_DRAFT UFormattable * U_EXPORT2 |
|
1003 ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) { |
|
1004 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
1005 int32_t count; |
|
1006 (void)obj->getArray(count, *status); |
|
1007 if(U_FAILURE(*status)) { |
|
1008 return NULL; |
|
1009 } else if(n<0 || n>=count) { |
|
1010 setError(*status, U_INDEX_OUTOFBOUNDS_ERROR); |
|
1011 return NULL; |
|
1012 } else { |
|
1013 return (*obj)[n].toUFormattable(); // returns non-const Formattable |
|
1014 } |
|
1015 } |
|
1016 |
|
1017 U_DRAFT const char * U_EXPORT2 |
|
1018 ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
|
1019 if(U_FAILURE(*status)) { |
|
1020 return ""; |
|
1021 } |
|
1022 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
1023 CharString *charString = obj->internalGetCharString(*status); |
|
1024 if(U_FAILURE(*status)) { |
|
1025 return ""; |
|
1026 } |
|
1027 if(charString == NULL) { |
|
1028 *status = U_MEMORY_ALLOCATION_ERROR; |
|
1029 return ""; |
|
1030 } else { |
|
1031 if(len!=NULL) { |
|
1032 *len = charString->length(); |
|
1033 } |
|
1034 return charString->data(); |
|
1035 } |
|
1036 } |
|
1037 |
|
1038 U_DRAFT int64_t U_EXPORT2 |
|
1039 ufmt_getInt64(UFormattable *fmt, UErrorCode *status) { |
|
1040 Formattable *obj = Formattable::fromUFormattable(fmt); |
|
1041 return obj->getInt64(*status); |
|
1042 } |
|
1043 |
|
1044 #endif /* #if !UCONFIG_NO_FORMATTING */ |
|
1045 |
|
1046 //eof |