|
1 /* |
|
2 ************************************************************************** |
|
3 * Copyright (C) 2002-2013 International Business Machines Corporation * |
|
4 * and others. All rights reserved. * |
|
5 ************************************************************************** |
|
6 */ |
|
7 // |
|
8 // file: rematch.cpp |
|
9 // |
|
10 // Contains the implementation of class RegexMatcher, |
|
11 // which is one of the main API classes for the ICU regular expression package. |
|
12 // |
|
13 |
|
14 #include "unicode/utypes.h" |
|
15 #if !UCONFIG_NO_REGULAR_EXPRESSIONS |
|
16 |
|
17 #include "unicode/regex.h" |
|
18 #include "unicode/uniset.h" |
|
19 #include "unicode/uchar.h" |
|
20 #include "unicode/ustring.h" |
|
21 #include "unicode/rbbi.h" |
|
22 #include "unicode/utf.h" |
|
23 #include "unicode/utf16.h" |
|
24 #include "uassert.h" |
|
25 #include "cmemory.h" |
|
26 #include "uvector.h" |
|
27 #include "uvectr32.h" |
|
28 #include "uvectr64.h" |
|
29 #include "regeximp.h" |
|
30 #include "regexst.h" |
|
31 #include "regextxt.h" |
|
32 #include "ucase.h" |
|
33 |
|
34 // #include <malloc.h> // Needed for heapcheck testing |
|
35 |
|
36 |
|
37 // Find progress callback |
|
38 // ---------------------- |
|
39 // Macro to inline test & call to ReportFindProgress(). Eliminates unnecessary function call. |
|
40 // |
|
41 #define REGEXFINDPROGRESS_INTERRUPT(pos, status) \ |
|
42 (fFindProgressCallbackFn != NULL) && (ReportFindProgress(pos, status) == FALSE) |
|
43 |
|
44 |
|
45 // Smart Backtracking |
|
46 // ------------------ |
|
47 // When a failure would go back to a LOOP_C instruction, |
|
48 // strings, characters, and setrefs scan backwards for a valid start |
|
49 // character themselves, pop the stack, and save state, emulating the |
|
50 // LOOP_C's effect but assured that the next character of input is a |
|
51 // possible matching character. |
|
52 // |
|
53 // Good idea in theory; unfortunately it only helps out a few specific |
|
54 // cases and slows the engine down a little in the rest. |
|
55 |
|
56 U_NAMESPACE_BEGIN |
|
57 |
|
58 // Default limit for the size of the back track stack, to avoid system |
|
59 // failures causedby heap exhaustion. Units are in 32 bit words, not bytes. |
|
60 // This value puts ICU's limits higher than most other regexp implementations, |
|
61 // which use recursion rather than the heap, and take more storage per |
|
62 // backtrack point. |
|
63 // |
|
64 static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000; |
|
65 |
|
66 // Time limit counter constant. |
|
67 // Time limits for expression evaluation are in terms of quanta of work by |
|
68 // the engine, each of which is 10,000 state saves. |
|
69 // This constant determines that state saves per tick number. |
|
70 static const int32_t TIMER_INITIAL_VALUE = 10000; |
|
71 |
|
72 //----------------------------------------------------------------------------- |
|
73 // |
|
74 // Constructor and Destructor |
|
75 // |
|
76 //----------------------------------------------------------------------------- |
|
77 RegexMatcher::RegexMatcher(const RegexPattern *pat) { |
|
78 fDeferredStatus = U_ZERO_ERROR; |
|
79 init(fDeferredStatus); |
|
80 if (U_FAILURE(fDeferredStatus)) { |
|
81 return; |
|
82 } |
|
83 if (pat==NULL) { |
|
84 fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; |
|
85 return; |
|
86 } |
|
87 fPattern = pat; |
|
88 init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus); |
|
89 } |
|
90 |
|
91 |
|
92 |
|
93 RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, |
|
94 uint32_t flags, UErrorCode &status) { |
|
95 init(status); |
|
96 if (U_FAILURE(status)) { |
|
97 return; |
|
98 } |
|
99 UParseError pe; |
|
100 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
|
101 fPattern = fPatternOwned; |
|
102 |
|
103 UText inputText = UTEXT_INITIALIZER; |
|
104 utext_openConstUnicodeString(&inputText, &input, &status); |
|
105 init2(&inputText, status); |
|
106 utext_close(&inputText); |
|
107 |
|
108 fInputUniStrMaybeMutable = TRUE; |
|
109 } |
|
110 |
|
111 |
|
112 RegexMatcher::RegexMatcher(UText *regexp, UText *input, |
|
113 uint32_t flags, UErrorCode &status) { |
|
114 init(status); |
|
115 if (U_FAILURE(status)) { |
|
116 return; |
|
117 } |
|
118 UParseError pe; |
|
119 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
|
120 if (U_FAILURE(status)) { |
|
121 return; |
|
122 } |
|
123 |
|
124 fPattern = fPatternOwned; |
|
125 init2(input, status); |
|
126 } |
|
127 |
|
128 |
|
129 RegexMatcher::RegexMatcher(const UnicodeString ®exp, |
|
130 uint32_t flags, UErrorCode &status) { |
|
131 init(status); |
|
132 if (U_FAILURE(status)) { |
|
133 return; |
|
134 } |
|
135 UParseError pe; |
|
136 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
|
137 if (U_FAILURE(status)) { |
|
138 return; |
|
139 } |
|
140 fPattern = fPatternOwned; |
|
141 init2(RegexStaticSets::gStaticSets->fEmptyText, status); |
|
142 } |
|
143 |
|
144 RegexMatcher::RegexMatcher(UText *regexp, |
|
145 uint32_t flags, UErrorCode &status) { |
|
146 init(status); |
|
147 if (U_FAILURE(status)) { |
|
148 return; |
|
149 } |
|
150 UParseError pe; |
|
151 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
|
152 if (U_FAILURE(status)) { |
|
153 return; |
|
154 } |
|
155 |
|
156 fPattern = fPatternOwned; |
|
157 init2(RegexStaticSets::gStaticSets->fEmptyText, status); |
|
158 } |
|
159 |
|
160 |
|
161 |
|
162 |
|
163 RegexMatcher::~RegexMatcher() { |
|
164 delete fStack; |
|
165 if (fData != fSmallData) { |
|
166 uprv_free(fData); |
|
167 fData = NULL; |
|
168 } |
|
169 if (fPatternOwned) { |
|
170 delete fPatternOwned; |
|
171 fPatternOwned = NULL; |
|
172 fPattern = NULL; |
|
173 } |
|
174 |
|
175 if (fInput) { |
|
176 delete fInput; |
|
177 } |
|
178 if (fInputText) { |
|
179 utext_close(fInputText); |
|
180 } |
|
181 if (fAltInputText) { |
|
182 utext_close(fAltInputText); |
|
183 } |
|
184 |
|
185 #if UCONFIG_NO_BREAK_ITERATION==0 |
|
186 delete fWordBreakItr; |
|
187 #endif |
|
188 } |
|
189 |
|
190 // |
|
191 // init() common initialization for use by all constructors. |
|
192 // Initialize all fields, get the object into a consistent state. |
|
193 // This must be done even when the initial status shows an error, |
|
194 // so that the object is initialized sufficiently well for the destructor |
|
195 // to run safely. |
|
196 // |
|
197 void RegexMatcher::init(UErrorCode &status) { |
|
198 fPattern = NULL; |
|
199 fPatternOwned = NULL; |
|
200 fFrameSize = 0; |
|
201 fRegionStart = 0; |
|
202 fRegionLimit = 0; |
|
203 fAnchorStart = 0; |
|
204 fAnchorLimit = 0; |
|
205 fLookStart = 0; |
|
206 fLookLimit = 0; |
|
207 fActiveStart = 0; |
|
208 fActiveLimit = 0; |
|
209 fTransparentBounds = FALSE; |
|
210 fAnchoringBounds = TRUE; |
|
211 fMatch = FALSE; |
|
212 fMatchStart = 0; |
|
213 fMatchEnd = 0; |
|
214 fLastMatchEnd = -1; |
|
215 fAppendPosition = 0; |
|
216 fHitEnd = FALSE; |
|
217 fRequireEnd = FALSE; |
|
218 fStack = NULL; |
|
219 fFrame = NULL; |
|
220 fTimeLimit = 0; |
|
221 fTime = 0; |
|
222 fTickCounter = 0; |
|
223 fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY; |
|
224 fCallbackFn = NULL; |
|
225 fCallbackContext = NULL; |
|
226 fFindProgressCallbackFn = NULL; |
|
227 fFindProgressCallbackContext = NULL; |
|
228 fTraceDebug = FALSE; |
|
229 fDeferredStatus = status; |
|
230 fData = fSmallData; |
|
231 fWordBreakItr = NULL; |
|
232 |
|
233 fStack = NULL; |
|
234 fInputText = NULL; |
|
235 fAltInputText = NULL; |
|
236 fInput = NULL; |
|
237 fInputLength = 0; |
|
238 fInputUniStrMaybeMutable = FALSE; |
|
239 |
|
240 if (U_FAILURE(status)) { |
|
241 fDeferredStatus = status; |
|
242 } |
|
243 } |
|
244 |
|
245 // |
|
246 // init2() Common initialization for use by RegexMatcher constructors, part 2. |
|
247 // This handles the common setup to be done after the Pattern is available. |
|
248 // |
|
249 void RegexMatcher::init2(UText *input, UErrorCode &status) { |
|
250 if (U_FAILURE(status)) { |
|
251 fDeferredStatus = status; |
|
252 return; |
|
253 } |
|
254 |
|
255 if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(fSmallData[0]))) { |
|
256 fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t)); |
|
257 if (fData == NULL) { |
|
258 status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
|
259 return; |
|
260 } |
|
261 } |
|
262 |
|
263 fStack = new UVector64(status); |
|
264 if (fStack == NULL) { |
|
265 status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
|
266 return; |
|
267 } |
|
268 |
|
269 reset(input); |
|
270 setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status); |
|
271 if (U_FAILURE(status)) { |
|
272 fDeferredStatus = status; |
|
273 return; |
|
274 } |
|
275 } |
|
276 |
|
277 |
|
278 static const UChar BACKSLASH = 0x5c; |
|
279 static const UChar DOLLARSIGN = 0x24; |
|
280 //-------------------------------------------------------------------------------- |
|
281 // |
|
282 // appendReplacement |
|
283 // |
|
284 //-------------------------------------------------------------------------------- |
|
285 RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, |
|
286 const UnicodeString &replacement, |
|
287 UErrorCode &status) { |
|
288 UText replacementText = UTEXT_INITIALIZER; |
|
289 |
|
290 utext_openConstUnicodeString(&replacementText, &replacement, &status); |
|
291 if (U_SUCCESS(status)) { |
|
292 UText resultText = UTEXT_INITIALIZER; |
|
293 utext_openUnicodeString(&resultText, &dest, &status); |
|
294 |
|
295 if (U_SUCCESS(status)) { |
|
296 appendReplacement(&resultText, &replacementText, status); |
|
297 utext_close(&resultText); |
|
298 } |
|
299 utext_close(&replacementText); |
|
300 } |
|
301 |
|
302 return *this; |
|
303 } |
|
304 |
|
305 // |
|
306 // appendReplacement, UText mode |
|
307 // |
|
308 RegexMatcher &RegexMatcher::appendReplacement(UText *dest, |
|
309 UText *replacement, |
|
310 UErrorCode &status) { |
|
311 if (U_FAILURE(status)) { |
|
312 return *this; |
|
313 } |
|
314 if (U_FAILURE(fDeferredStatus)) { |
|
315 status = fDeferredStatus; |
|
316 return *this; |
|
317 } |
|
318 if (fMatch == FALSE) { |
|
319 status = U_REGEX_INVALID_STATE; |
|
320 return *this; |
|
321 } |
|
322 |
|
323 // Copy input string from the end of previous match to start of current match |
|
324 int64_t destLen = utext_nativeLength(dest); |
|
325 if (fMatchStart > fAppendPosition) { |
|
326 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
327 destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, |
|
328 (int32_t)(fMatchStart-fAppendPosition), &status); |
|
329 } else { |
|
330 int32_t len16; |
|
331 if (UTEXT_USES_U16(fInputText)) { |
|
332 len16 = (int32_t)(fMatchStart-fAppendPosition); |
|
333 } else { |
|
334 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
335 len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus); |
|
336 } |
|
337 UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); |
|
338 if (inputChars == NULL) { |
|
339 status = U_MEMORY_ALLOCATION_ERROR; |
|
340 return *this; |
|
341 } |
|
342 utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status); |
|
343 destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status); |
|
344 uprv_free(inputChars); |
|
345 } |
|
346 } |
|
347 fAppendPosition = fMatchEnd; |
|
348 |
|
349 |
|
350 // scan the replacement text, looking for substitutions ($n) and \escapes. |
|
351 // TODO: optimize this loop by efficiently scanning for '$' or '\', |
|
352 // move entire ranges not containing substitutions. |
|
353 UTEXT_SETNATIVEINDEX(replacement, 0); |
|
354 UChar32 c = UTEXT_NEXT32(replacement); |
|
355 while (c != U_SENTINEL) { |
|
356 if (c == BACKSLASH) { |
|
357 // Backslash Escape. Copy the following char out without further checks. |
|
358 // Note: Surrogate pairs don't need any special handling |
|
359 // The second half wont be a '$' or a '\', and |
|
360 // will move to the dest normally on the next |
|
361 // loop iteration. |
|
362 c = UTEXT_CURRENT32(replacement); |
|
363 if (c == U_SENTINEL) { |
|
364 break; |
|
365 } |
|
366 |
|
367 if (c==0x55/*U*/ || c==0x75/*u*/) { |
|
368 // We have a \udddd or \Udddddddd escape sequence. |
|
369 int32_t offset = 0; |
|
370 struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement); |
|
371 UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context); |
|
372 if (escapedChar != (UChar32)0xFFFFFFFF) { |
|
373 if (U_IS_BMP(escapedChar)) { |
|
374 UChar c16 = (UChar)escapedChar; |
|
375 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
|
376 } else { |
|
377 UChar surrogate[2]; |
|
378 surrogate[0] = U16_LEAD(escapedChar); |
|
379 surrogate[1] = U16_TRAIL(escapedChar); |
|
380 if (U_SUCCESS(status)) { |
|
381 destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); |
|
382 } |
|
383 } |
|
384 // TODO: Report errors for mal-formed \u escapes? |
|
385 // As this is, the original sequence is output, which may be OK. |
|
386 if (context.lastOffset == offset) { |
|
387 (void)UTEXT_PREVIOUS32(replacement); |
|
388 } else if (context.lastOffset != offset-1) { |
|
389 utext_moveIndex32(replacement, offset - context.lastOffset - 1); |
|
390 } |
|
391 } |
|
392 } else { |
|
393 (void)UTEXT_NEXT32(replacement); |
|
394 // Plain backslash escape. Just put out the escaped character. |
|
395 if (U_IS_BMP(c)) { |
|
396 UChar c16 = (UChar)c; |
|
397 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
|
398 } else { |
|
399 UChar surrogate[2]; |
|
400 surrogate[0] = U16_LEAD(c); |
|
401 surrogate[1] = U16_TRAIL(c); |
|
402 if (U_SUCCESS(status)) { |
|
403 destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); |
|
404 } |
|
405 } |
|
406 } |
|
407 } else if (c != DOLLARSIGN) { |
|
408 // Normal char, not a $. Copy it out without further checks. |
|
409 if (U_IS_BMP(c)) { |
|
410 UChar c16 = (UChar)c; |
|
411 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
|
412 } else { |
|
413 UChar surrogate[2]; |
|
414 surrogate[0] = U16_LEAD(c); |
|
415 surrogate[1] = U16_TRAIL(c); |
|
416 if (U_SUCCESS(status)) { |
|
417 destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); |
|
418 } |
|
419 } |
|
420 } else { |
|
421 // We've got a $. Pick up a capture group number if one follows. |
|
422 // Consume at most the number of digits necessary for the largest capture |
|
423 // number that is valid for this pattern. |
|
424 |
|
425 int32_t numDigits = 0; |
|
426 int32_t groupNum = 0; |
|
427 UChar32 digitC; |
|
428 for (;;) { |
|
429 digitC = UTEXT_CURRENT32(replacement); |
|
430 if (digitC == U_SENTINEL) { |
|
431 break; |
|
432 } |
|
433 if (u_isdigit(digitC) == FALSE) { |
|
434 break; |
|
435 } |
|
436 (void)UTEXT_NEXT32(replacement); |
|
437 groupNum=groupNum*10 + u_charDigitValue(digitC); |
|
438 numDigits++; |
|
439 if (numDigits >= fPattern->fMaxCaptureDigits) { |
|
440 break; |
|
441 } |
|
442 } |
|
443 |
|
444 |
|
445 if (numDigits == 0) { |
|
446 // The $ didn't introduce a group number at all. |
|
447 // Treat it as just part of the substitution text. |
|
448 UChar c16 = DOLLARSIGN; |
|
449 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
|
450 } else { |
|
451 // Finally, append the capture group data to the destination. |
|
452 destLen += appendGroup(groupNum, dest, status); |
|
453 if (U_FAILURE(status)) { |
|
454 // Can fail if group number is out of range. |
|
455 break; |
|
456 } |
|
457 } |
|
458 } |
|
459 |
|
460 if (U_FAILURE(status)) { |
|
461 break; |
|
462 } else { |
|
463 c = UTEXT_NEXT32(replacement); |
|
464 } |
|
465 } |
|
466 |
|
467 return *this; |
|
468 } |
|
469 |
|
470 |
|
471 |
|
472 //-------------------------------------------------------------------------------- |
|
473 // |
|
474 // appendTail Intended to be used in conjunction with appendReplacement() |
|
475 // To the destination string, append everything following |
|
476 // the last match position from the input string. |
|
477 // |
|
478 // Note: Match ranges do not affect appendTail or appendReplacement |
|
479 // |
|
480 //-------------------------------------------------------------------------------- |
|
481 UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { |
|
482 UErrorCode status = U_ZERO_ERROR; |
|
483 UText resultText = UTEXT_INITIALIZER; |
|
484 utext_openUnicodeString(&resultText, &dest, &status); |
|
485 |
|
486 if (U_SUCCESS(status)) { |
|
487 appendTail(&resultText, status); |
|
488 utext_close(&resultText); |
|
489 } |
|
490 |
|
491 return dest; |
|
492 } |
|
493 |
|
494 // |
|
495 // appendTail, UText mode |
|
496 // |
|
497 UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) { |
|
498 UBool bailOut = FALSE; |
|
499 if (U_FAILURE(status)) { |
|
500 bailOut = TRUE; |
|
501 } |
|
502 if (U_FAILURE(fDeferredStatus)) { |
|
503 status = fDeferredStatus; |
|
504 bailOut = TRUE; |
|
505 } |
|
506 |
|
507 if (bailOut) { |
|
508 // dest must not be NULL |
|
509 if (dest) { |
|
510 utext_replace(dest, utext_nativeLength(dest), utext_nativeLength(dest), NULL, 0, &status); |
|
511 return dest; |
|
512 } |
|
513 } |
|
514 |
|
515 if (fInputLength > fAppendPosition) { |
|
516 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
517 int64_t destLen = utext_nativeLength(dest); |
|
518 utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, |
|
519 (int32_t)(fInputLength-fAppendPosition), &status); |
|
520 } else { |
|
521 int32_t len16; |
|
522 if (UTEXT_USES_U16(fInputText)) { |
|
523 len16 = (int32_t)(fInputLength-fAppendPosition); |
|
524 } else { |
|
525 len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status); |
|
526 status = U_ZERO_ERROR; // buffer overflow |
|
527 } |
|
528 |
|
529 UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16)); |
|
530 if (inputChars == NULL) { |
|
531 fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
|
532 } else { |
|
533 utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated |
|
534 int64_t destLen = utext_nativeLength(dest); |
|
535 utext_replace(dest, destLen, destLen, inputChars, len16, &status); |
|
536 uprv_free(inputChars); |
|
537 } |
|
538 } |
|
539 } |
|
540 return dest; |
|
541 } |
|
542 |
|
543 |
|
544 |
|
545 //-------------------------------------------------------------------------------- |
|
546 // |
|
547 // end |
|
548 // |
|
549 //-------------------------------------------------------------------------------- |
|
550 int32_t RegexMatcher::end(UErrorCode &err) const { |
|
551 return end(0, err); |
|
552 } |
|
553 |
|
554 int64_t RegexMatcher::end64(UErrorCode &err) const { |
|
555 return end64(0, err); |
|
556 } |
|
557 |
|
558 int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const { |
|
559 if (U_FAILURE(err)) { |
|
560 return -1; |
|
561 } |
|
562 if (fMatch == FALSE) { |
|
563 err = U_REGEX_INVALID_STATE; |
|
564 return -1; |
|
565 } |
|
566 if (group < 0 || group > fPattern->fGroupMap->size()) { |
|
567 err = U_INDEX_OUTOFBOUNDS_ERROR; |
|
568 return -1; |
|
569 } |
|
570 int64_t e = -1; |
|
571 if (group == 0) { |
|
572 e = fMatchEnd; |
|
573 } else { |
|
574 // Get the position within the stack frame of the variables for |
|
575 // this capture group. |
|
576 int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); |
|
577 U_ASSERT(groupOffset < fPattern->fFrameSize); |
|
578 U_ASSERT(groupOffset >= 0); |
|
579 e = fFrame->fExtra[groupOffset + 1]; |
|
580 } |
|
581 |
|
582 return e; |
|
583 } |
|
584 |
|
585 int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { |
|
586 return (int32_t)end64(group, err); |
|
587 } |
|
588 |
|
589 |
|
590 //-------------------------------------------------------------------------------- |
|
591 // |
|
592 // find() |
|
593 // |
|
594 //-------------------------------------------------------------------------------- |
|
595 UBool RegexMatcher::find() { |
|
596 // Start at the position of the last match end. (Will be zero if the |
|
597 // matcher has been reset.) |
|
598 // |
|
599 if (U_FAILURE(fDeferredStatus)) { |
|
600 return FALSE; |
|
601 } |
|
602 |
|
603 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
604 return findUsingChunk(); |
|
605 } |
|
606 |
|
607 int64_t startPos = fMatchEnd; |
|
608 if (startPos==0) { |
|
609 startPos = fActiveStart; |
|
610 } |
|
611 |
|
612 if (fMatch) { |
|
613 // Save the position of any previous successful match. |
|
614 fLastMatchEnd = fMatchEnd; |
|
615 |
|
616 if (fMatchStart == fMatchEnd) { |
|
617 // Previous match had zero length. Move start position up one position |
|
618 // to avoid sending find() into a loop on zero-length matches. |
|
619 if (startPos >= fActiveLimit) { |
|
620 fMatch = FALSE; |
|
621 fHitEnd = TRUE; |
|
622 return FALSE; |
|
623 } |
|
624 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
625 (void)UTEXT_NEXT32(fInputText); |
|
626 startPos = UTEXT_GETNATIVEINDEX(fInputText); |
|
627 } |
|
628 } else { |
|
629 if (fLastMatchEnd >= 0) { |
|
630 // A previous find() failed to match. Don't try again. |
|
631 // (without this test, a pattern with a zero-length match |
|
632 // could match again at the end of an input string.) |
|
633 fHitEnd = TRUE; |
|
634 return FALSE; |
|
635 } |
|
636 } |
|
637 |
|
638 |
|
639 // Compute the position in the input string beyond which a match can not begin, because |
|
640 // the minimum length match would extend past the end of the input. |
|
641 // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. |
|
642 // Be aware of possible overflows if making changes here. |
|
643 int64_t testStartLimit; |
|
644 if (UTEXT_USES_U16(fInputText)) { |
|
645 testStartLimit = fActiveLimit - fPattern->fMinMatchLen; |
|
646 if (startPos > testStartLimit) { |
|
647 fMatch = FALSE; |
|
648 fHitEnd = TRUE; |
|
649 return FALSE; |
|
650 } |
|
651 } else { |
|
652 // For now, let the matcher discover that it can't match on its own |
|
653 // We don't know how long the match len is in native characters |
|
654 testStartLimit = fActiveLimit; |
|
655 } |
|
656 |
|
657 UChar32 c; |
|
658 U_ASSERT(startPos >= 0); |
|
659 |
|
660 switch (fPattern->fStartType) { |
|
661 case START_NO_INFO: |
|
662 // No optimization was found. |
|
663 // Try a match at each input position. |
|
664 for (;;) { |
|
665 MatchAt(startPos, FALSE, fDeferredStatus); |
|
666 if (U_FAILURE(fDeferredStatus)) { |
|
667 return FALSE; |
|
668 } |
|
669 if (fMatch) { |
|
670 return TRUE; |
|
671 } |
|
672 if (startPos >= testStartLimit) { |
|
673 fHitEnd = TRUE; |
|
674 return FALSE; |
|
675 } |
|
676 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
677 (void)UTEXT_NEXT32(fInputText); |
|
678 startPos = UTEXT_GETNATIVEINDEX(fInputText); |
|
679 // Note that it's perfectly OK for a pattern to have a zero-length |
|
680 // match at the end of a string, so we must make sure that the loop |
|
681 // runs with startPos == testStartLimit the last time through. |
|
682 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
683 return FALSE; |
|
684 } |
|
685 U_ASSERT(FALSE); |
|
686 |
|
687 case START_START: |
|
688 // Matches are only possible at the start of the input string |
|
689 // (pattern begins with ^ or \A) |
|
690 if (startPos > fActiveStart) { |
|
691 fMatch = FALSE; |
|
692 return FALSE; |
|
693 } |
|
694 MatchAt(startPos, FALSE, fDeferredStatus); |
|
695 if (U_FAILURE(fDeferredStatus)) { |
|
696 return FALSE; |
|
697 } |
|
698 return fMatch; |
|
699 |
|
700 |
|
701 case START_SET: |
|
702 { |
|
703 // Match may start on any char from a pre-computed set. |
|
704 U_ASSERT(fPattern->fMinMatchLen > 0); |
|
705 int64_t pos; |
|
706 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
707 for (;;) { |
|
708 c = UTEXT_NEXT32(fInputText); |
|
709 pos = UTEXT_GETNATIVEINDEX(fInputText); |
|
710 // c will be -1 (U_SENTINEL) at end of text, in which case we |
|
711 // skip this next block (so we don't have a negative array index) |
|
712 // and handle end of text in the following block. |
|
713 if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) || |
|
714 (c>=256 && fPattern->fInitialChars->contains(c)))) { |
|
715 MatchAt(startPos, FALSE, fDeferredStatus); |
|
716 if (U_FAILURE(fDeferredStatus)) { |
|
717 return FALSE; |
|
718 } |
|
719 if (fMatch) { |
|
720 return TRUE; |
|
721 } |
|
722 UTEXT_SETNATIVEINDEX(fInputText, pos); |
|
723 } |
|
724 if (startPos >= testStartLimit) { |
|
725 fMatch = FALSE; |
|
726 fHitEnd = TRUE; |
|
727 return FALSE; |
|
728 } |
|
729 startPos = pos; |
|
730 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
731 return FALSE; |
|
732 } |
|
733 } |
|
734 U_ASSERT(FALSE); |
|
735 |
|
736 case START_STRING: |
|
737 case START_CHAR: |
|
738 { |
|
739 // Match starts on exactly one char. |
|
740 U_ASSERT(fPattern->fMinMatchLen > 0); |
|
741 UChar32 theChar = fPattern->fInitialChar; |
|
742 int64_t pos; |
|
743 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
744 for (;;) { |
|
745 c = UTEXT_NEXT32(fInputText); |
|
746 pos = UTEXT_GETNATIVEINDEX(fInputText); |
|
747 if (c == theChar) { |
|
748 MatchAt(startPos, FALSE, fDeferredStatus); |
|
749 if (U_FAILURE(fDeferredStatus)) { |
|
750 return FALSE; |
|
751 } |
|
752 if (fMatch) { |
|
753 return TRUE; |
|
754 } |
|
755 UTEXT_SETNATIVEINDEX(fInputText, pos); |
|
756 } |
|
757 if (startPos >= testStartLimit) { |
|
758 fMatch = FALSE; |
|
759 fHitEnd = TRUE; |
|
760 return FALSE; |
|
761 } |
|
762 startPos = pos; |
|
763 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
764 return FALSE; |
|
765 } |
|
766 } |
|
767 U_ASSERT(FALSE); |
|
768 |
|
769 case START_LINE: |
|
770 { |
|
771 UChar32 c; |
|
772 if (startPos == fAnchorStart) { |
|
773 MatchAt(startPos, FALSE, fDeferredStatus); |
|
774 if (U_FAILURE(fDeferredStatus)) { |
|
775 return FALSE; |
|
776 } |
|
777 if (fMatch) { |
|
778 return TRUE; |
|
779 } |
|
780 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
781 c = UTEXT_NEXT32(fInputText); |
|
782 startPos = UTEXT_GETNATIVEINDEX(fInputText); |
|
783 } else { |
|
784 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
785 c = UTEXT_PREVIOUS32(fInputText); |
|
786 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
787 } |
|
788 |
|
789 if (fPattern->fFlags & UREGEX_UNIX_LINES) { |
|
790 for (;;) { |
|
791 if (c == 0x0a) { |
|
792 MatchAt(startPos, FALSE, fDeferredStatus); |
|
793 if (U_FAILURE(fDeferredStatus)) { |
|
794 return FALSE; |
|
795 } |
|
796 if (fMatch) { |
|
797 return TRUE; |
|
798 } |
|
799 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
800 } |
|
801 if (startPos >= testStartLimit) { |
|
802 fMatch = FALSE; |
|
803 fHitEnd = TRUE; |
|
804 return FALSE; |
|
805 } |
|
806 c = UTEXT_NEXT32(fInputText); |
|
807 startPos = UTEXT_GETNATIVEINDEX(fInputText); |
|
808 // Note that it's perfectly OK for a pattern to have a zero-length |
|
809 // match at the end of a string, so we must make sure that the loop |
|
810 // runs with startPos == testStartLimit the last time through. |
|
811 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
812 return FALSE; |
|
813 } |
|
814 } else { |
|
815 for (;;) { |
|
816 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible |
|
817 ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) { |
|
818 if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { |
|
819 (void)UTEXT_NEXT32(fInputText); |
|
820 startPos = UTEXT_GETNATIVEINDEX(fInputText); |
|
821 } |
|
822 MatchAt(startPos, FALSE, fDeferredStatus); |
|
823 if (U_FAILURE(fDeferredStatus)) { |
|
824 return FALSE; |
|
825 } |
|
826 if (fMatch) { |
|
827 return TRUE; |
|
828 } |
|
829 UTEXT_SETNATIVEINDEX(fInputText, startPos); |
|
830 } |
|
831 if (startPos >= testStartLimit) { |
|
832 fMatch = FALSE; |
|
833 fHitEnd = TRUE; |
|
834 return FALSE; |
|
835 } |
|
836 c = UTEXT_NEXT32(fInputText); |
|
837 startPos = UTEXT_GETNATIVEINDEX(fInputText); |
|
838 // Note that it's perfectly OK for a pattern to have a zero-length |
|
839 // match at the end of a string, so we must make sure that the loop |
|
840 // runs with startPos == testStartLimit the last time through. |
|
841 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
842 return FALSE; |
|
843 } |
|
844 } |
|
845 } |
|
846 |
|
847 default: |
|
848 U_ASSERT(FALSE); |
|
849 } |
|
850 |
|
851 U_ASSERT(FALSE); |
|
852 return FALSE; |
|
853 } |
|
854 |
|
855 |
|
856 |
|
857 UBool RegexMatcher::find(int64_t start, UErrorCode &status) { |
|
858 if (U_FAILURE(status)) { |
|
859 return FALSE; |
|
860 } |
|
861 if (U_FAILURE(fDeferredStatus)) { |
|
862 status = fDeferredStatus; |
|
863 return FALSE; |
|
864 } |
|
865 this->reset(); // Note: Reset() is specified by Java Matcher documentation. |
|
866 // This will reset the region to be the full input length. |
|
867 if (start < 0) { |
|
868 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
869 return FALSE; |
|
870 } |
|
871 |
|
872 int64_t nativeStart = start; |
|
873 if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
|
874 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
875 return FALSE; |
|
876 } |
|
877 fMatchEnd = nativeStart; |
|
878 return find(); |
|
879 } |
|
880 |
|
881 |
|
882 //-------------------------------------------------------------------------------- |
|
883 // |
|
884 // findUsingChunk() -- like find(), but with the advance knowledge that the |
|
885 // entire string is available in the UText's chunk buffer. |
|
886 // |
|
887 //-------------------------------------------------------------------------------- |
|
888 UBool RegexMatcher::findUsingChunk() { |
|
889 // Start at the position of the last match end. (Will be zero if the |
|
890 // matcher has been reset. |
|
891 // |
|
892 |
|
893 int32_t startPos = (int32_t)fMatchEnd; |
|
894 if (startPos==0) { |
|
895 startPos = (int32_t)fActiveStart; |
|
896 } |
|
897 |
|
898 const UChar *inputBuf = fInputText->chunkContents; |
|
899 |
|
900 if (fMatch) { |
|
901 // Save the position of any previous successful match. |
|
902 fLastMatchEnd = fMatchEnd; |
|
903 |
|
904 if (fMatchStart == fMatchEnd) { |
|
905 // Previous match had zero length. Move start position up one position |
|
906 // to avoid sending find() into a loop on zero-length matches. |
|
907 if (startPos >= fActiveLimit) { |
|
908 fMatch = FALSE; |
|
909 fHitEnd = TRUE; |
|
910 return FALSE; |
|
911 } |
|
912 U16_FWD_1(inputBuf, startPos, fInputLength); |
|
913 } |
|
914 } else { |
|
915 if (fLastMatchEnd >= 0) { |
|
916 // A previous find() failed to match. Don't try again. |
|
917 // (without this test, a pattern with a zero-length match |
|
918 // could match again at the end of an input string.) |
|
919 fHitEnd = TRUE; |
|
920 return FALSE; |
|
921 } |
|
922 } |
|
923 |
|
924 |
|
925 // Compute the position in the input string beyond which a match can not begin, because |
|
926 // the minimum length match would extend past the end of the input. |
|
927 // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. |
|
928 // Be aware of possible overflows if making changes here. |
|
929 int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen); |
|
930 if (startPos > testLen) { |
|
931 fMatch = FALSE; |
|
932 fHitEnd = TRUE; |
|
933 return FALSE; |
|
934 } |
|
935 |
|
936 UChar32 c; |
|
937 U_ASSERT(startPos >= 0); |
|
938 |
|
939 switch (fPattern->fStartType) { |
|
940 case START_NO_INFO: |
|
941 // No optimization was found. |
|
942 // Try a match at each input position. |
|
943 for (;;) { |
|
944 MatchChunkAt(startPos, FALSE, fDeferredStatus); |
|
945 if (U_FAILURE(fDeferredStatus)) { |
|
946 return FALSE; |
|
947 } |
|
948 if (fMatch) { |
|
949 return TRUE; |
|
950 } |
|
951 if (startPos >= testLen) { |
|
952 fHitEnd = TRUE; |
|
953 return FALSE; |
|
954 } |
|
955 U16_FWD_1(inputBuf, startPos, fActiveLimit); |
|
956 // Note that it's perfectly OK for a pattern to have a zero-length |
|
957 // match at the end of a string, so we must make sure that the loop |
|
958 // runs with startPos == testLen the last time through. |
|
959 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
960 return FALSE; |
|
961 } |
|
962 U_ASSERT(FALSE); |
|
963 |
|
964 case START_START: |
|
965 // Matches are only possible at the start of the input string |
|
966 // (pattern begins with ^ or \A) |
|
967 if (startPos > fActiveStart) { |
|
968 fMatch = FALSE; |
|
969 return FALSE; |
|
970 } |
|
971 MatchChunkAt(startPos, FALSE, fDeferredStatus); |
|
972 if (U_FAILURE(fDeferredStatus)) { |
|
973 return FALSE; |
|
974 } |
|
975 return fMatch; |
|
976 |
|
977 |
|
978 case START_SET: |
|
979 { |
|
980 // Match may start on any char from a pre-computed set. |
|
981 U_ASSERT(fPattern->fMinMatchLen > 0); |
|
982 for (;;) { |
|
983 int32_t pos = startPos; |
|
984 U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; |
|
985 if ((c<256 && fPattern->fInitialChars8->contains(c)) || |
|
986 (c>=256 && fPattern->fInitialChars->contains(c))) { |
|
987 MatchChunkAt(pos, FALSE, fDeferredStatus); |
|
988 if (U_FAILURE(fDeferredStatus)) { |
|
989 return FALSE; |
|
990 } |
|
991 if (fMatch) { |
|
992 return TRUE; |
|
993 } |
|
994 } |
|
995 if (pos >= testLen) { |
|
996 fMatch = FALSE; |
|
997 fHitEnd = TRUE; |
|
998 return FALSE; |
|
999 } |
|
1000 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
1001 return FALSE; |
|
1002 } |
|
1003 } |
|
1004 U_ASSERT(FALSE); |
|
1005 |
|
1006 case START_STRING: |
|
1007 case START_CHAR: |
|
1008 { |
|
1009 // Match starts on exactly one char. |
|
1010 U_ASSERT(fPattern->fMinMatchLen > 0); |
|
1011 UChar32 theChar = fPattern->fInitialChar; |
|
1012 for (;;) { |
|
1013 int32_t pos = startPos; |
|
1014 U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; |
|
1015 if (c == theChar) { |
|
1016 MatchChunkAt(pos, FALSE, fDeferredStatus); |
|
1017 if (U_FAILURE(fDeferredStatus)) { |
|
1018 return FALSE; |
|
1019 } |
|
1020 if (fMatch) { |
|
1021 return TRUE; |
|
1022 } |
|
1023 } |
|
1024 if (pos >= testLen) { |
|
1025 fMatch = FALSE; |
|
1026 fHitEnd = TRUE; |
|
1027 return FALSE; |
|
1028 } |
|
1029 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
1030 return FALSE; |
|
1031 } |
|
1032 } |
|
1033 U_ASSERT(FALSE); |
|
1034 |
|
1035 case START_LINE: |
|
1036 { |
|
1037 UChar32 c; |
|
1038 if (startPos == fAnchorStart) { |
|
1039 MatchChunkAt(startPos, FALSE, fDeferredStatus); |
|
1040 if (U_FAILURE(fDeferredStatus)) { |
|
1041 return FALSE; |
|
1042 } |
|
1043 if (fMatch) { |
|
1044 return TRUE; |
|
1045 } |
|
1046 U16_FWD_1(inputBuf, startPos, fActiveLimit); |
|
1047 } |
|
1048 |
|
1049 if (fPattern->fFlags & UREGEX_UNIX_LINES) { |
|
1050 for (;;) { |
|
1051 c = inputBuf[startPos-1]; |
|
1052 if (c == 0x0a) { |
|
1053 MatchChunkAt(startPos, FALSE, fDeferredStatus); |
|
1054 if (U_FAILURE(fDeferredStatus)) { |
|
1055 return FALSE; |
|
1056 } |
|
1057 if (fMatch) { |
|
1058 return TRUE; |
|
1059 } |
|
1060 } |
|
1061 if (startPos >= testLen) { |
|
1062 fMatch = FALSE; |
|
1063 fHitEnd = TRUE; |
|
1064 return FALSE; |
|
1065 } |
|
1066 U16_FWD_1(inputBuf, startPos, fActiveLimit); |
|
1067 // Note that it's perfectly OK for a pattern to have a zero-length |
|
1068 // match at the end of a string, so we must make sure that the loop |
|
1069 // runs with startPos == testLen the last time through. |
|
1070 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
1071 return FALSE; |
|
1072 } |
|
1073 } else { |
|
1074 for (;;) { |
|
1075 c = inputBuf[startPos-1]; |
|
1076 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible |
|
1077 ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) { |
|
1078 if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) { |
|
1079 startPos++; |
|
1080 } |
|
1081 MatchChunkAt(startPos, FALSE, fDeferredStatus); |
|
1082 if (U_FAILURE(fDeferredStatus)) { |
|
1083 return FALSE; |
|
1084 } |
|
1085 if (fMatch) { |
|
1086 return TRUE; |
|
1087 } |
|
1088 } |
|
1089 if (startPos >= testLen) { |
|
1090 fMatch = FALSE; |
|
1091 fHitEnd = TRUE; |
|
1092 return FALSE; |
|
1093 } |
|
1094 U16_FWD_1(inputBuf, startPos, fActiveLimit); |
|
1095 // Note that it's perfectly OK for a pattern to have a zero-length |
|
1096 // match at the end of a string, so we must make sure that the loop |
|
1097 // runs with startPos == testLen the last time through. |
|
1098 if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus)) |
|
1099 return FALSE; |
|
1100 } |
|
1101 } |
|
1102 } |
|
1103 |
|
1104 default: |
|
1105 U_ASSERT(FALSE); |
|
1106 } |
|
1107 |
|
1108 U_ASSERT(FALSE); |
|
1109 return FALSE; |
|
1110 } |
|
1111 |
|
1112 |
|
1113 |
|
1114 //-------------------------------------------------------------------------------- |
|
1115 // |
|
1116 // group() |
|
1117 // |
|
1118 //-------------------------------------------------------------------------------- |
|
1119 UnicodeString RegexMatcher::group(UErrorCode &status) const { |
|
1120 return group(0, status); |
|
1121 } |
|
1122 |
|
1123 // Return immutable shallow clone |
|
1124 UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const { |
|
1125 return group(0, dest, group_len, status); |
|
1126 } |
|
1127 |
|
1128 // Return immutable shallow clone |
|
1129 UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const { |
|
1130 group_len = 0; |
|
1131 UBool bailOut = FALSE; |
|
1132 if (U_FAILURE(status)) { |
|
1133 return dest; |
|
1134 } |
|
1135 if (U_FAILURE(fDeferredStatus)) { |
|
1136 status = fDeferredStatus; |
|
1137 bailOut = TRUE; |
|
1138 } |
|
1139 if (fMatch == FALSE) { |
|
1140 status = U_REGEX_INVALID_STATE; |
|
1141 bailOut = TRUE; |
|
1142 } |
|
1143 if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
|
1144 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1145 bailOut = TRUE; |
|
1146 } |
|
1147 |
|
1148 if (bailOut) { |
|
1149 return (dest) ? dest : utext_openUChars(NULL, NULL, 0, &status); |
|
1150 } |
|
1151 |
|
1152 int64_t s, e; |
|
1153 if (groupNum == 0) { |
|
1154 s = fMatchStart; |
|
1155 e = fMatchEnd; |
|
1156 } else { |
|
1157 int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
|
1158 U_ASSERT(groupOffset < fPattern->fFrameSize); |
|
1159 U_ASSERT(groupOffset >= 0); |
|
1160 s = fFrame->fExtra[groupOffset]; |
|
1161 e = fFrame->fExtra[groupOffset+1]; |
|
1162 } |
|
1163 |
|
1164 if (s < 0) { |
|
1165 // A capture group wasn't part of the match |
|
1166 return utext_clone(dest, fInputText, FALSE, TRUE, &status); |
|
1167 } |
|
1168 U_ASSERT(s <= e); |
|
1169 group_len = e - s; |
|
1170 |
|
1171 dest = utext_clone(dest, fInputText, FALSE, TRUE, &status); |
|
1172 if (dest) |
|
1173 UTEXT_SETNATIVEINDEX(dest, s); |
|
1174 return dest; |
|
1175 } |
|
1176 |
|
1177 UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { |
|
1178 UnicodeString result; |
|
1179 if (U_FAILURE(status)) { |
|
1180 return result; |
|
1181 } |
|
1182 UText resultText = UTEXT_INITIALIZER; |
|
1183 utext_openUnicodeString(&resultText, &result, &status); |
|
1184 group(groupNum, &resultText, status); |
|
1185 utext_close(&resultText); |
|
1186 return result; |
|
1187 } |
|
1188 |
|
1189 |
|
1190 // Return deep (mutable) clone |
|
1191 // Technology Preview (as an API), but note that the UnicodeString API is implemented |
|
1192 // using this function. |
|
1193 UText *RegexMatcher::group(int32_t groupNum, UText *dest, UErrorCode &status) const { |
|
1194 UBool bailOut = FALSE; |
|
1195 if (U_FAILURE(status)) { |
|
1196 return dest; |
|
1197 } |
|
1198 if (U_FAILURE(fDeferredStatus)) { |
|
1199 status = fDeferredStatus; |
|
1200 bailOut = TRUE; |
|
1201 } |
|
1202 |
|
1203 if (fMatch == FALSE) { |
|
1204 status = U_REGEX_INVALID_STATE; |
|
1205 bailOut = TRUE; |
|
1206 } |
|
1207 if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
|
1208 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1209 bailOut = TRUE; |
|
1210 } |
|
1211 |
|
1212 if (bailOut) { |
|
1213 if (dest) { |
|
1214 utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status); |
|
1215 return dest; |
|
1216 } else { |
|
1217 return utext_openUChars(NULL, NULL, 0, &status); |
|
1218 } |
|
1219 } |
|
1220 |
|
1221 int64_t s, e; |
|
1222 if (groupNum == 0) { |
|
1223 s = fMatchStart; |
|
1224 e = fMatchEnd; |
|
1225 } else { |
|
1226 int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
|
1227 U_ASSERT(groupOffset < fPattern->fFrameSize); |
|
1228 U_ASSERT(groupOffset >= 0); |
|
1229 s = fFrame->fExtra[groupOffset]; |
|
1230 e = fFrame->fExtra[groupOffset+1]; |
|
1231 } |
|
1232 |
|
1233 if (s < 0) { |
|
1234 // A capture group wasn't part of the match |
|
1235 if (dest) { |
|
1236 utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status); |
|
1237 return dest; |
|
1238 } else { |
|
1239 return utext_openUChars(NULL, NULL, 0, &status); |
|
1240 } |
|
1241 } |
|
1242 U_ASSERT(s <= e); |
|
1243 |
|
1244 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1245 U_ASSERT(e <= fInputLength); |
|
1246 if (dest) { |
|
1247 utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents+s, (int32_t)(e-s), &status); |
|
1248 } else { |
|
1249 UText groupText = UTEXT_INITIALIZER; |
|
1250 utext_openUChars(&groupText, fInputText->chunkContents+s, e-s, &status); |
|
1251 dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status); |
|
1252 utext_close(&groupText); |
|
1253 } |
|
1254 } else { |
|
1255 int32_t len16; |
|
1256 if (UTEXT_USES_U16(fInputText)) { |
|
1257 len16 = (int32_t)(e-s); |
|
1258 } else { |
|
1259 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
1260 len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus); |
|
1261 } |
|
1262 UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); |
|
1263 if (groupChars == NULL) { |
|
1264 status = U_MEMORY_ALLOCATION_ERROR; |
|
1265 return dest; |
|
1266 } |
|
1267 utext_extract(fInputText, s, e, groupChars, len16+1, &status); |
|
1268 |
|
1269 if (dest) { |
|
1270 utext_replace(dest, 0, utext_nativeLength(dest), groupChars, len16, &status); |
|
1271 } else { |
|
1272 UText groupText = UTEXT_INITIALIZER; |
|
1273 utext_openUChars(&groupText, groupChars, len16, &status); |
|
1274 dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status); |
|
1275 utext_close(&groupText); |
|
1276 } |
|
1277 |
|
1278 uprv_free(groupChars); |
|
1279 } |
|
1280 return dest; |
|
1281 } |
|
1282 |
|
1283 //-------------------------------------------------------------------------------- |
|
1284 // |
|
1285 // appendGroup() -- currently internal only, appends a group to a UText rather |
|
1286 // than replacing its contents |
|
1287 // |
|
1288 //-------------------------------------------------------------------------------- |
|
1289 |
|
1290 int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const { |
|
1291 if (U_FAILURE(status)) { |
|
1292 return 0; |
|
1293 } |
|
1294 if (U_FAILURE(fDeferredStatus)) { |
|
1295 status = fDeferredStatus; |
|
1296 return 0; |
|
1297 } |
|
1298 int64_t destLen = utext_nativeLength(dest); |
|
1299 |
|
1300 if (fMatch == FALSE) { |
|
1301 status = U_REGEX_INVALID_STATE; |
|
1302 return utext_replace(dest, destLen, destLen, NULL, 0, &status); |
|
1303 } |
|
1304 if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
|
1305 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1306 return utext_replace(dest, destLen, destLen, NULL, 0, &status); |
|
1307 } |
|
1308 |
|
1309 int64_t s, e; |
|
1310 if (groupNum == 0) { |
|
1311 s = fMatchStart; |
|
1312 e = fMatchEnd; |
|
1313 } else { |
|
1314 int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
|
1315 U_ASSERT(groupOffset < fPattern->fFrameSize); |
|
1316 U_ASSERT(groupOffset >= 0); |
|
1317 s = fFrame->fExtra[groupOffset]; |
|
1318 e = fFrame->fExtra[groupOffset+1]; |
|
1319 } |
|
1320 |
|
1321 if (s < 0) { |
|
1322 // A capture group wasn't part of the match |
|
1323 return utext_replace(dest, destLen, destLen, NULL, 0, &status); |
|
1324 } |
|
1325 U_ASSERT(s <= e); |
|
1326 |
|
1327 int64_t deltaLen; |
|
1328 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1329 U_ASSERT(e <= fInputLength); |
|
1330 deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status); |
|
1331 } else { |
|
1332 int32_t len16; |
|
1333 if (UTEXT_USES_U16(fInputText)) { |
|
1334 len16 = (int32_t)(e-s); |
|
1335 } else { |
|
1336 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
1337 len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus); |
|
1338 } |
|
1339 UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); |
|
1340 if (groupChars == NULL) { |
|
1341 status = U_MEMORY_ALLOCATION_ERROR; |
|
1342 return 0; |
|
1343 } |
|
1344 utext_extract(fInputText, s, e, groupChars, len16+1, &status); |
|
1345 |
|
1346 deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status); |
|
1347 uprv_free(groupChars); |
|
1348 } |
|
1349 return deltaLen; |
|
1350 } |
|
1351 |
|
1352 |
|
1353 |
|
1354 //-------------------------------------------------------------------------------- |
|
1355 // |
|
1356 // groupCount() |
|
1357 // |
|
1358 //-------------------------------------------------------------------------------- |
|
1359 int32_t RegexMatcher::groupCount() const { |
|
1360 return fPattern->fGroupMap->size(); |
|
1361 } |
|
1362 |
|
1363 |
|
1364 |
|
1365 //-------------------------------------------------------------------------------- |
|
1366 // |
|
1367 // hasAnchoringBounds() |
|
1368 // |
|
1369 //-------------------------------------------------------------------------------- |
|
1370 UBool RegexMatcher::hasAnchoringBounds() const { |
|
1371 return fAnchoringBounds; |
|
1372 } |
|
1373 |
|
1374 |
|
1375 //-------------------------------------------------------------------------------- |
|
1376 // |
|
1377 // hasTransparentBounds() |
|
1378 // |
|
1379 //-------------------------------------------------------------------------------- |
|
1380 UBool RegexMatcher::hasTransparentBounds() const { |
|
1381 return fTransparentBounds; |
|
1382 } |
|
1383 |
|
1384 |
|
1385 |
|
1386 //-------------------------------------------------------------------------------- |
|
1387 // |
|
1388 // hitEnd() |
|
1389 // |
|
1390 //-------------------------------------------------------------------------------- |
|
1391 UBool RegexMatcher::hitEnd() const { |
|
1392 return fHitEnd; |
|
1393 } |
|
1394 |
|
1395 |
|
1396 //-------------------------------------------------------------------------------- |
|
1397 // |
|
1398 // input() |
|
1399 // |
|
1400 //-------------------------------------------------------------------------------- |
|
1401 const UnicodeString &RegexMatcher::input() const { |
|
1402 if (!fInput) { |
|
1403 UErrorCode status = U_ZERO_ERROR; |
|
1404 int32_t len16; |
|
1405 if (UTEXT_USES_U16(fInputText)) { |
|
1406 len16 = (int32_t)fInputLength; |
|
1407 } else { |
|
1408 len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status); |
|
1409 status = U_ZERO_ERROR; // overflow, length status |
|
1410 } |
|
1411 UnicodeString *result = new UnicodeString(len16, 0, 0); |
|
1412 |
|
1413 UChar *inputChars = result->getBuffer(len16); |
|
1414 utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning |
|
1415 result->releaseBuffer(len16); |
|
1416 |
|
1417 (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator= |
|
1418 } |
|
1419 |
|
1420 return *fInput; |
|
1421 } |
|
1422 |
|
1423 //-------------------------------------------------------------------------------- |
|
1424 // |
|
1425 // inputText() |
|
1426 // |
|
1427 //-------------------------------------------------------------------------------- |
|
1428 UText *RegexMatcher::inputText() const { |
|
1429 return fInputText; |
|
1430 } |
|
1431 |
|
1432 |
|
1433 //-------------------------------------------------------------------------------- |
|
1434 // |
|
1435 // getInput() -- like inputText(), but makes a clone or copies into another UText |
|
1436 // |
|
1437 //-------------------------------------------------------------------------------- |
|
1438 UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const { |
|
1439 UBool bailOut = FALSE; |
|
1440 if (U_FAILURE(status)) { |
|
1441 return dest; |
|
1442 } |
|
1443 if (U_FAILURE(fDeferredStatus)) { |
|
1444 status = fDeferredStatus; |
|
1445 bailOut = TRUE; |
|
1446 } |
|
1447 |
|
1448 if (bailOut) { |
|
1449 if (dest) { |
|
1450 utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status); |
|
1451 return dest; |
|
1452 } else { |
|
1453 return utext_clone(NULL, fInputText, FALSE, TRUE, &status); |
|
1454 } |
|
1455 } |
|
1456 |
|
1457 if (dest) { |
|
1458 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1459 utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status); |
|
1460 } else { |
|
1461 int32_t input16Len; |
|
1462 if (UTEXT_USES_U16(fInputText)) { |
|
1463 input16Len = (int32_t)fInputLength; |
|
1464 } else { |
|
1465 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
1466 input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error |
|
1467 } |
|
1468 UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len)); |
|
1469 if (inputChars == NULL) { |
|
1470 return dest; |
|
1471 } |
|
1472 |
|
1473 status = U_ZERO_ERROR; |
|
1474 utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning |
|
1475 status = U_ZERO_ERROR; |
|
1476 utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status); |
|
1477 |
|
1478 uprv_free(inputChars); |
|
1479 } |
|
1480 return dest; |
|
1481 } else { |
|
1482 return utext_clone(NULL, fInputText, FALSE, TRUE, &status); |
|
1483 } |
|
1484 } |
|
1485 |
|
1486 |
|
1487 static UBool compat_SyncMutableUTextContents(UText *ut); |
|
1488 static UBool compat_SyncMutableUTextContents(UText *ut) { |
|
1489 UBool retVal = FALSE; |
|
1490 |
|
1491 // In the following test, we're really only interested in whether the UText should switch |
|
1492 // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents |
|
1493 // will still point to the correct data. |
|
1494 if (utext_nativeLength(ut) != ut->nativeIndexingLimit) { |
|
1495 UnicodeString *us=(UnicodeString *)ut->context; |
|
1496 |
|
1497 // Update to the latest length. |
|
1498 // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit). |
|
1499 int32_t newLength = us->length(); |
|
1500 |
|
1501 // Update the chunk description. |
|
1502 // The buffer may have switched between stack- and heap-based. |
|
1503 ut->chunkContents = us->getBuffer(); |
|
1504 ut->chunkLength = newLength; |
|
1505 ut->chunkNativeLimit = newLength; |
|
1506 ut->nativeIndexingLimit = newLength; |
|
1507 retVal = TRUE; |
|
1508 } |
|
1509 |
|
1510 return retVal; |
|
1511 } |
|
1512 |
|
1513 //-------------------------------------------------------------------------------- |
|
1514 // |
|
1515 // lookingAt() |
|
1516 // |
|
1517 //-------------------------------------------------------------------------------- |
|
1518 UBool RegexMatcher::lookingAt(UErrorCode &status) { |
|
1519 if (U_FAILURE(status)) { |
|
1520 return FALSE; |
|
1521 } |
|
1522 if (U_FAILURE(fDeferredStatus)) { |
|
1523 status = fDeferredStatus; |
|
1524 return FALSE; |
|
1525 } |
|
1526 |
|
1527 if (fInputUniStrMaybeMutable) { |
|
1528 if (compat_SyncMutableUTextContents(fInputText)) { |
|
1529 fInputLength = utext_nativeLength(fInputText); |
|
1530 reset(); |
|
1531 } |
|
1532 } |
|
1533 else { |
|
1534 resetPreserveRegion(); |
|
1535 } |
|
1536 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1537 MatchChunkAt((int32_t)fActiveStart, FALSE, status); |
|
1538 } else { |
|
1539 MatchAt(fActiveStart, FALSE, status); |
|
1540 } |
|
1541 return fMatch; |
|
1542 } |
|
1543 |
|
1544 |
|
1545 UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) { |
|
1546 if (U_FAILURE(status)) { |
|
1547 return FALSE; |
|
1548 } |
|
1549 if (U_FAILURE(fDeferredStatus)) { |
|
1550 status = fDeferredStatus; |
|
1551 return FALSE; |
|
1552 } |
|
1553 reset(); |
|
1554 |
|
1555 if (start < 0) { |
|
1556 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1557 return FALSE; |
|
1558 } |
|
1559 |
|
1560 if (fInputUniStrMaybeMutable) { |
|
1561 if (compat_SyncMutableUTextContents(fInputText)) { |
|
1562 fInputLength = utext_nativeLength(fInputText); |
|
1563 reset(); |
|
1564 } |
|
1565 } |
|
1566 |
|
1567 int64_t nativeStart; |
|
1568 nativeStart = start; |
|
1569 if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
|
1570 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1571 return FALSE; |
|
1572 } |
|
1573 |
|
1574 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1575 MatchChunkAt((int32_t)nativeStart, FALSE, status); |
|
1576 } else { |
|
1577 MatchAt(nativeStart, FALSE, status); |
|
1578 } |
|
1579 return fMatch; |
|
1580 } |
|
1581 |
|
1582 |
|
1583 |
|
1584 //-------------------------------------------------------------------------------- |
|
1585 // |
|
1586 // matches() |
|
1587 // |
|
1588 //-------------------------------------------------------------------------------- |
|
1589 UBool RegexMatcher::matches(UErrorCode &status) { |
|
1590 if (U_FAILURE(status)) { |
|
1591 return FALSE; |
|
1592 } |
|
1593 if (U_FAILURE(fDeferredStatus)) { |
|
1594 status = fDeferredStatus; |
|
1595 return FALSE; |
|
1596 } |
|
1597 |
|
1598 if (fInputUniStrMaybeMutable) { |
|
1599 if (compat_SyncMutableUTextContents(fInputText)) { |
|
1600 fInputLength = utext_nativeLength(fInputText); |
|
1601 reset(); |
|
1602 } |
|
1603 } |
|
1604 else { |
|
1605 resetPreserveRegion(); |
|
1606 } |
|
1607 |
|
1608 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1609 MatchChunkAt((int32_t)fActiveStart, TRUE, status); |
|
1610 } else { |
|
1611 MatchAt(fActiveStart, TRUE, status); |
|
1612 } |
|
1613 return fMatch; |
|
1614 } |
|
1615 |
|
1616 |
|
1617 UBool RegexMatcher::matches(int64_t start, UErrorCode &status) { |
|
1618 if (U_FAILURE(status)) { |
|
1619 return FALSE; |
|
1620 } |
|
1621 if (U_FAILURE(fDeferredStatus)) { |
|
1622 status = fDeferredStatus; |
|
1623 return FALSE; |
|
1624 } |
|
1625 reset(); |
|
1626 |
|
1627 if (start < 0) { |
|
1628 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1629 return FALSE; |
|
1630 } |
|
1631 |
|
1632 if (fInputUniStrMaybeMutable) { |
|
1633 if (compat_SyncMutableUTextContents(fInputText)) { |
|
1634 fInputLength = utext_nativeLength(fInputText); |
|
1635 reset(); |
|
1636 } |
|
1637 } |
|
1638 |
|
1639 int64_t nativeStart; |
|
1640 nativeStart = start; |
|
1641 if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
|
1642 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1643 return FALSE; |
|
1644 } |
|
1645 |
|
1646 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
|
1647 MatchChunkAt((int32_t)nativeStart, TRUE, status); |
|
1648 } else { |
|
1649 MatchAt(nativeStart, TRUE, status); |
|
1650 } |
|
1651 return fMatch; |
|
1652 } |
|
1653 |
|
1654 |
|
1655 |
|
1656 //-------------------------------------------------------------------------------- |
|
1657 // |
|
1658 // pattern |
|
1659 // |
|
1660 //-------------------------------------------------------------------------------- |
|
1661 const RegexPattern &RegexMatcher::pattern() const { |
|
1662 return *fPattern; |
|
1663 } |
|
1664 |
|
1665 |
|
1666 |
|
1667 //-------------------------------------------------------------------------------- |
|
1668 // |
|
1669 // region |
|
1670 // |
|
1671 //-------------------------------------------------------------------------------- |
|
1672 RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) { |
|
1673 if (U_FAILURE(status)) { |
|
1674 return *this; |
|
1675 } |
|
1676 |
|
1677 if (regionStart>regionLimit || regionStart<0 || regionLimit<0) { |
|
1678 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
1679 } |
|
1680 |
|
1681 int64_t nativeStart = regionStart; |
|
1682 int64_t nativeLimit = regionLimit; |
|
1683 if (nativeStart > fInputLength || nativeLimit > fInputLength) { |
|
1684 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
1685 } |
|
1686 |
|
1687 if (startIndex == -1) |
|
1688 this->reset(); |
|
1689 else |
|
1690 resetPreserveRegion(); |
|
1691 |
|
1692 fRegionStart = nativeStart; |
|
1693 fRegionLimit = nativeLimit; |
|
1694 fActiveStart = nativeStart; |
|
1695 fActiveLimit = nativeLimit; |
|
1696 |
|
1697 if (startIndex != -1) { |
|
1698 if (startIndex < fActiveStart || startIndex > fActiveLimit) { |
|
1699 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1700 } |
|
1701 fMatchEnd = startIndex; |
|
1702 } |
|
1703 |
|
1704 if (!fTransparentBounds) { |
|
1705 fLookStart = nativeStart; |
|
1706 fLookLimit = nativeLimit; |
|
1707 } |
|
1708 if (fAnchoringBounds) { |
|
1709 fAnchorStart = nativeStart; |
|
1710 fAnchorLimit = nativeLimit; |
|
1711 } |
|
1712 return *this; |
|
1713 } |
|
1714 |
|
1715 RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) { |
|
1716 return region(start, limit, -1, status); |
|
1717 } |
|
1718 |
|
1719 //-------------------------------------------------------------------------------- |
|
1720 // |
|
1721 // regionEnd |
|
1722 // |
|
1723 //-------------------------------------------------------------------------------- |
|
1724 int32_t RegexMatcher::regionEnd() const { |
|
1725 return (int32_t)fRegionLimit; |
|
1726 } |
|
1727 |
|
1728 int64_t RegexMatcher::regionEnd64() const { |
|
1729 return fRegionLimit; |
|
1730 } |
|
1731 |
|
1732 //-------------------------------------------------------------------------------- |
|
1733 // |
|
1734 // regionStart |
|
1735 // |
|
1736 //-------------------------------------------------------------------------------- |
|
1737 int32_t RegexMatcher::regionStart() const { |
|
1738 return (int32_t)fRegionStart; |
|
1739 } |
|
1740 |
|
1741 int64_t RegexMatcher::regionStart64() const { |
|
1742 return fRegionStart; |
|
1743 } |
|
1744 |
|
1745 |
|
1746 //-------------------------------------------------------------------------------- |
|
1747 // |
|
1748 // replaceAll |
|
1749 // |
|
1750 //-------------------------------------------------------------------------------- |
|
1751 UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { |
|
1752 UText replacementText = UTEXT_INITIALIZER; |
|
1753 UText resultText = UTEXT_INITIALIZER; |
|
1754 UnicodeString resultString; |
|
1755 if (U_FAILURE(status)) { |
|
1756 return resultString; |
|
1757 } |
|
1758 |
|
1759 utext_openConstUnicodeString(&replacementText, &replacement, &status); |
|
1760 utext_openUnicodeString(&resultText, &resultString, &status); |
|
1761 |
|
1762 replaceAll(&replacementText, &resultText, status); |
|
1763 |
|
1764 utext_close(&resultText); |
|
1765 utext_close(&replacementText); |
|
1766 |
|
1767 return resultString; |
|
1768 } |
|
1769 |
|
1770 |
|
1771 // |
|
1772 // replaceAll, UText mode |
|
1773 // |
|
1774 UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) { |
|
1775 if (U_FAILURE(status)) { |
|
1776 return dest; |
|
1777 } |
|
1778 if (U_FAILURE(fDeferredStatus)) { |
|
1779 status = fDeferredStatus; |
|
1780 return dest; |
|
1781 } |
|
1782 |
|
1783 if (dest == NULL) { |
|
1784 UnicodeString emptyString; |
|
1785 UText empty = UTEXT_INITIALIZER; |
|
1786 |
|
1787 utext_openUnicodeString(&empty, &emptyString, &status); |
|
1788 dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); |
|
1789 utext_close(&empty); |
|
1790 } |
|
1791 |
|
1792 if (U_SUCCESS(status)) { |
|
1793 reset(); |
|
1794 while (find()) { |
|
1795 appendReplacement(dest, replacement, status); |
|
1796 if (U_FAILURE(status)) { |
|
1797 break; |
|
1798 } |
|
1799 } |
|
1800 appendTail(dest, status); |
|
1801 } |
|
1802 |
|
1803 return dest; |
|
1804 } |
|
1805 |
|
1806 |
|
1807 //-------------------------------------------------------------------------------- |
|
1808 // |
|
1809 // replaceFirst |
|
1810 // |
|
1811 //-------------------------------------------------------------------------------- |
|
1812 UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { |
|
1813 UText replacementText = UTEXT_INITIALIZER; |
|
1814 UText resultText = UTEXT_INITIALIZER; |
|
1815 UnicodeString resultString; |
|
1816 |
|
1817 utext_openConstUnicodeString(&replacementText, &replacement, &status); |
|
1818 utext_openUnicodeString(&resultText, &resultString, &status); |
|
1819 |
|
1820 replaceFirst(&replacementText, &resultText, status); |
|
1821 |
|
1822 utext_close(&resultText); |
|
1823 utext_close(&replacementText); |
|
1824 |
|
1825 return resultString; |
|
1826 } |
|
1827 |
|
1828 // |
|
1829 // replaceFirst, UText mode |
|
1830 // |
|
1831 UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) { |
|
1832 if (U_FAILURE(status)) { |
|
1833 return dest; |
|
1834 } |
|
1835 if (U_FAILURE(fDeferredStatus)) { |
|
1836 status = fDeferredStatus; |
|
1837 return dest; |
|
1838 } |
|
1839 |
|
1840 reset(); |
|
1841 if (!find()) { |
|
1842 return getInput(dest, status); |
|
1843 } |
|
1844 |
|
1845 if (dest == NULL) { |
|
1846 UnicodeString emptyString; |
|
1847 UText empty = UTEXT_INITIALIZER; |
|
1848 |
|
1849 utext_openUnicodeString(&empty, &emptyString, &status); |
|
1850 dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); |
|
1851 utext_close(&empty); |
|
1852 } |
|
1853 |
|
1854 appendReplacement(dest, replacement, status); |
|
1855 appendTail(dest, status); |
|
1856 |
|
1857 return dest; |
|
1858 } |
|
1859 |
|
1860 |
|
1861 //-------------------------------------------------------------------------------- |
|
1862 // |
|
1863 // requireEnd |
|
1864 // |
|
1865 //-------------------------------------------------------------------------------- |
|
1866 UBool RegexMatcher::requireEnd() const { |
|
1867 return fRequireEnd; |
|
1868 } |
|
1869 |
|
1870 |
|
1871 //-------------------------------------------------------------------------------- |
|
1872 // |
|
1873 // reset |
|
1874 // |
|
1875 //-------------------------------------------------------------------------------- |
|
1876 RegexMatcher &RegexMatcher::reset() { |
|
1877 fRegionStart = 0; |
|
1878 fRegionLimit = fInputLength; |
|
1879 fActiveStart = 0; |
|
1880 fActiveLimit = fInputLength; |
|
1881 fAnchorStart = 0; |
|
1882 fAnchorLimit = fInputLength; |
|
1883 fLookStart = 0; |
|
1884 fLookLimit = fInputLength; |
|
1885 resetPreserveRegion(); |
|
1886 return *this; |
|
1887 } |
|
1888 |
|
1889 |
|
1890 |
|
1891 void RegexMatcher::resetPreserveRegion() { |
|
1892 fMatchStart = 0; |
|
1893 fMatchEnd = 0; |
|
1894 fLastMatchEnd = -1; |
|
1895 fAppendPosition = 0; |
|
1896 fMatch = FALSE; |
|
1897 fHitEnd = FALSE; |
|
1898 fRequireEnd = FALSE; |
|
1899 fTime = 0; |
|
1900 fTickCounter = TIMER_INITIAL_VALUE; |
|
1901 //resetStack(); // more expensive than it looks... |
|
1902 } |
|
1903 |
|
1904 |
|
1905 RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { |
|
1906 fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus); |
|
1907 if (fPattern->fNeedsAltInput) { |
|
1908 fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); |
|
1909 } |
|
1910 fInputLength = utext_nativeLength(fInputText); |
|
1911 |
|
1912 reset(); |
|
1913 delete fInput; |
|
1914 fInput = NULL; |
|
1915 |
|
1916 // Do the following for any UnicodeString. |
|
1917 // This is for compatibility for those clients who modify the input string "live" during regex operations. |
|
1918 fInputUniStrMaybeMutable = TRUE; |
|
1919 |
|
1920 if (fWordBreakItr != NULL) { |
|
1921 #if UCONFIG_NO_BREAK_ITERATION==0 |
|
1922 UErrorCode status = U_ZERO_ERROR; |
|
1923 fWordBreakItr->setText(fInputText, status); |
|
1924 #endif |
|
1925 } |
|
1926 return *this; |
|
1927 } |
|
1928 |
|
1929 |
|
1930 RegexMatcher &RegexMatcher::reset(UText *input) { |
|
1931 if (fInputText != input) { |
|
1932 fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus); |
|
1933 if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); |
|
1934 fInputLength = utext_nativeLength(fInputText); |
|
1935 |
|
1936 delete fInput; |
|
1937 fInput = NULL; |
|
1938 |
|
1939 if (fWordBreakItr != NULL) { |
|
1940 #if UCONFIG_NO_BREAK_ITERATION==0 |
|
1941 UErrorCode status = U_ZERO_ERROR; |
|
1942 fWordBreakItr->setText(input, status); |
|
1943 #endif |
|
1944 } |
|
1945 } |
|
1946 reset(); |
|
1947 fInputUniStrMaybeMutable = FALSE; |
|
1948 |
|
1949 return *this; |
|
1950 } |
|
1951 |
|
1952 /*RegexMatcher &RegexMatcher::reset(const UChar *) { |
|
1953 fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; |
|
1954 return *this; |
|
1955 }*/ |
|
1956 |
|
1957 RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) { |
|
1958 if (U_FAILURE(status)) { |
|
1959 return *this; |
|
1960 } |
|
1961 reset(); // Reset also resets the region to be the entire string. |
|
1962 |
|
1963 if (position < 0 || position > fActiveLimit) { |
|
1964 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
1965 return *this; |
|
1966 } |
|
1967 fMatchEnd = position; |
|
1968 return *this; |
|
1969 } |
|
1970 |
|
1971 |
|
1972 //-------------------------------------------------------------------------------- |
|
1973 // |
|
1974 // refresh |
|
1975 // |
|
1976 //-------------------------------------------------------------------------------- |
|
1977 RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) { |
|
1978 if (U_FAILURE(status)) { |
|
1979 return *this; |
|
1980 } |
|
1981 if (input == NULL) { |
|
1982 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
1983 return *this; |
|
1984 } |
|
1985 if (utext_nativeLength(fInputText) != utext_nativeLength(input)) { |
|
1986 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
1987 return *this; |
|
1988 } |
|
1989 int64_t pos = utext_getNativeIndex(fInputText); |
|
1990 // Shallow read-only clone of the new UText into the existing input UText |
|
1991 fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status); |
|
1992 if (U_FAILURE(status)) { |
|
1993 return *this; |
|
1994 } |
|
1995 utext_setNativeIndex(fInputText, pos); |
|
1996 |
|
1997 if (fAltInputText != NULL) { |
|
1998 pos = utext_getNativeIndex(fAltInputText); |
|
1999 fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status); |
|
2000 if (U_FAILURE(status)) { |
|
2001 return *this; |
|
2002 } |
|
2003 utext_setNativeIndex(fAltInputText, pos); |
|
2004 } |
|
2005 return *this; |
|
2006 } |
|
2007 |
|
2008 |
|
2009 |
|
2010 //-------------------------------------------------------------------------------- |
|
2011 // |
|
2012 // setTrace |
|
2013 // |
|
2014 //-------------------------------------------------------------------------------- |
|
2015 void RegexMatcher::setTrace(UBool state) { |
|
2016 fTraceDebug = state; |
|
2017 } |
|
2018 |
|
2019 |
|
2020 |
|
2021 //--------------------------------------------------------------------- |
|
2022 // |
|
2023 // split |
|
2024 // |
|
2025 //--------------------------------------------------------------------- |
|
2026 int32_t RegexMatcher::split(const UnicodeString &input, |
|
2027 UnicodeString dest[], |
|
2028 int32_t destCapacity, |
|
2029 UErrorCode &status) |
|
2030 { |
|
2031 UText inputText = UTEXT_INITIALIZER; |
|
2032 utext_openConstUnicodeString(&inputText, &input, &status); |
|
2033 if (U_FAILURE(status)) { |
|
2034 return 0; |
|
2035 } |
|
2036 |
|
2037 UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity); |
|
2038 if (destText == NULL) { |
|
2039 status = U_MEMORY_ALLOCATION_ERROR; |
|
2040 return 0; |
|
2041 } |
|
2042 int32_t i; |
|
2043 for (i = 0; i < destCapacity; i++) { |
|
2044 destText[i] = utext_openUnicodeString(NULL, &dest[i], &status); |
|
2045 } |
|
2046 |
|
2047 int32_t fieldCount = split(&inputText, destText, destCapacity, status); |
|
2048 |
|
2049 for (i = 0; i < destCapacity; i++) { |
|
2050 utext_close(destText[i]); |
|
2051 } |
|
2052 |
|
2053 uprv_free(destText); |
|
2054 utext_close(&inputText); |
|
2055 return fieldCount; |
|
2056 } |
|
2057 |
|
2058 // |
|
2059 // split, UText mode |
|
2060 // |
|
2061 int32_t RegexMatcher::split(UText *input, |
|
2062 UText *dest[], |
|
2063 int32_t destCapacity, |
|
2064 UErrorCode &status) |
|
2065 { |
|
2066 // |
|
2067 // Check arguements for validity |
|
2068 // |
|
2069 if (U_FAILURE(status)) { |
|
2070 return 0; |
|
2071 }; |
|
2072 |
|
2073 if (destCapacity < 1) { |
|
2074 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
2075 return 0; |
|
2076 } |
|
2077 |
|
2078 // |
|
2079 // Reset for the input text |
|
2080 // |
|
2081 reset(input); |
|
2082 int64_t nextOutputStringStart = 0; |
|
2083 if (fActiveLimit == 0) { |
|
2084 return 0; |
|
2085 } |
|
2086 |
|
2087 // |
|
2088 // Loop through the input text, searching for the delimiter pattern |
|
2089 // |
|
2090 int32_t i; |
|
2091 int32_t numCaptureGroups = fPattern->fGroupMap->size(); |
|
2092 for (i=0; ; i++) { |
|
2093 if (i>=destCapacity-1) { |
|
2094 // There is one or zero output string left. |
|
2095 // Fill the last output string with whatever is left from the input, then exit the loop. |
|
2096 // ( i will be == destCapacity if we filled the output array while processing |
|
2097 // capture groups of the delimiter expression, in which case we will discard the |
|
2098 // last capture group saved in favor of the unprocessed remainder of the |
|
2099 // input string.) |
|
2100 i = destCapacity-1; |
|
2101 if (fActiveLimit > nextOutputStringStart) { |
|
2102 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { |
|
2103 if (dest[i]) { |
|
2104 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), |
|
2105 input->chunkContents+nextOutputStringStart, |
|
2106 (int32_t)(fActiveLimit-nextOutputStringStart), &status); |
|
2107 } else { |
|
2108 UText remainingText = UTEXT_INITIALIZER; |
|
2109 utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, |
|
2110 fActiveLimit-nextOutputStringStart, &status); |
|
2111 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
|
2112 utext_close(&remainingText); |
|
2113 } |
|
2114 } else { |
|
2115 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
2116 int32_t remaining16Length = |
|
2117 utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); |
|
2118 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); |
|
2119 if (remainingChars == NULL) { |
|
2120 status = U_MEMORY_ALLOCATION_ERROR; |
|
2121 break; |
|
2122 } |
|
2123 |
|
2124 utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); |
|
2125 if (dest[i]) { |
|
2126 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); |
|
2127 } else { |
|
2128 UText remainingText = UTEXT_INITIALIZER; |
|
2129 utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); |
|
2130 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
|
2131 utext_close(&remainingText); |
|
2132 } |
|
2133 |
|
2134 uprv_free(remainingChars); |
|
2135 } |
|
2136 } |
|
2137 break; |
|
2138 } |
|
2139 if (find()) { |
|
2140 // We found another delimiter. Move everything from where we started looking |
|
2141 // up until the start of the delimiter into the next output string. |
|
2142 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { |
|
2143 if (dest[i]) { |
|
2144 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), |
|
2145 input->chunkContents+nextOutputStringStart, |
|
2146 (int32_t)(fMatchStart-nextOutputStringStart), &status); |
|
2147 } else { |
|
2148 UText remainingText = UTEXT_INITIALIZER; |
|
2149 utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, |
|
2150 fMatchStart-nextOutputStringStart, &status); |
|
2151 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
|
2152 utext_close(&remainingText); |
|
2153 } |
|
2154 } else { |
|
2155 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
2156 int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus); |
|
2157 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); |
|
2158 if (remainingChars == NULL) { |
|
2159 status = U_MEMORY_ALLOCATION_ERROR; |
|
2160 break; |
|
2161 } |
|
2162 utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status); |
|
2163 if (dest[i]) { |
|
2164 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); |
|
2165 } else { |
|
2166 UText remainingText = UTEXT_INITIALIZER; |
|
2167 utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); |
|
2168 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
|
2169 utext_close(&remainingText); |
|
2170 } |
|
2171 |
|
2172 uprv_free(remainingChars); |
|
2173 } |
|
2174 nextOutputStringStart = fMatchEnd; |
|
2175 |
|
2176 // If the delimiter pattern has capturing parentheses, the captured |
|
2177 // text goes out into the next n destination strings. |
|
2178 int32_t groupNum; |
|
2179 for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { |
|
2180 if (i >= destCapacity-2) { |
|
2181 // Never fill the last available output string with capture group text. |
|
2182 // It will filled with the last field, the remainder of the |
|
2183 // unsplit input text. |
|
2184 break; |
|
2185 } |
|
2186 i++; |
|
2187 dest[i] = group(groupNum, dest[i], status); |
|
2188 } |
|
2189 |
|
2190 if (nextOutputStringStart == fActiveLimit) { |
|
2191 // The delimiter was at the end of the string. We're done, but first |
|
2192 // we output one last empty string, for the empty field following |
|
2193 // the delimiter at the end of input. |
|
2194 if (i+1 < destCapacity) { |
|
2195 ++i; |
|
2196 if (dest[i] == NULL) { |
|
2197 dest[i] = utext_openUChars(NULL, NULL, 0, &status); |
|
2198 } else { |
|
2199 static UChar emptyString[] = {(UChar)0}; |
|
2200 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status); |
|
2201 } |
|
2202 } |
|
2203 break; |
|
2204 |
|
2205 } |
|
2206 } |
|
2207 else |
|
2208 { |
|
2209 // We ran off the end of the input while looking for the next delimiter. |
|
2210 // All the remaining text goes into the current output string. |
|
2211 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { |
|
2212 if (dest[i]) { |
|
2213 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), |
|
2214 input->chunkContents+nextOutputStringStart, |
|
2215 (int32_t)(fActiveLimit-nextOutputStringStart), &status); |
|
2216 } else { |
|
2217 UText remainingText = UTEXT_INITIALIZER; |
|
2218 utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, |
|
2219 fActiveLimit-nextOutputStringStart, &status); |
|
2220 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
|
2221 utext_close(&remainingText); |
|
2222 } |
|
2223 } else { |
|
2224 UErrorCode lengthStatus = U_ZERO_ERROR; |
|
2225 int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); |
|
2226 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); |
|
2227 if (remainingChars == NULL) { |
|
2228 status = U_MEMORY_ALLOCATION_ERROR; |
|
2229 break; |
|
2230 } |
|
2231 |
|
2232 utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); |
|
2233 if (dest[i]) { |
|
2234 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); |
|
2235 } else { |
|
2236 UText remainingText = UTEXT_INITIALIZER; |
|
2237 utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); |
|
2238 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
|
2239 utext_close(&remainingText); |
|
2240 } |
|
2241 |
|
2242 uprv_free(remainingChars); |
|
2243 } |
|
2244 break; |
|
2245 } |
|
2246 if (U_FAILURE(status)) { |
|
2247 break; |
|
2248 } |
|
2249 } // end of for loop |
|
2250 return i+1; |
|
2251 } |
|
2252 |
|
2253 |
|
2254 //-------------------------------------------------------------------------------- |
|
2255 // |
|
2256 // start |
|
2257 // |
|
2258 //-------------------------------------------------------------------------------- |
|
2259 int32_t RegexMatcher::start(UErrorCode &status) const { |
|
2260 return start(0, status); |
|
2261 } |
|
2262 |
|
2263 int64_t RegexMatcher::start64(UErrorCode &status) const { |
|
2264 return start64(0, status); |
|
2265 } |
|
2266 |
|
2267 //-------------------------------------------------------------------------------- |
|
2268 // |
|
2269 // start(int32_t group, UErrorCode &status) |
|
2270 // |
|
2271 //-------------------------------------------------------------------------------- |
|
2272 |
|
2273 int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const { |
|
2274 if (U_FAILURE(status)) { |
|
2275 return -1; |
|
2276 } |
|
2277 if (U_FAILURE(fDeferredStatus)) { |
|
2278 status = fDeferredStatus; |
|
2279 return -1; |
|
2280 } |
|
2281 if (fMatch == FALSE) { |
|
2282 status = U_REGEX_INVALID_STATE; |
|
2283 return -1; |
|
2284 } |
|
2285 if (group < 0 || group > fPattern->fGroupMap->size()) { |
|
2286 status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
2287 return -1; |
|
2288 } |
|
2289 int64_t s; |
|
2290 if (group == 0) { |
|
2291 s = fMatchStart; |
|
2292 } else { |
|
2293 int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); |
|
2294 U_ASSERT(groupOffset < fPattern->fFrameSize); |
|
2295 U_ASSERT(groupOffset >= 0); |
|
2296 s = fFrame->fExtra[groupOffset]; |
|
2297 } |
|
2298 |
|
2299 return s; |
|
2300 } |
|
2301 |
|
2302 |
|
2303 int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { |
|
2304 return (int32_t)start64(group, status); |
|
2305 } |
|
2306 |
|
2307 //-------------------------------------------------------------------------------- |
|
2308 // |
|
2309 // useAnchoringBounds |
|
2310 // |
|
2311 //-------------------------------------------------------------------------------- |
|
2312 RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) { |
|
2313 fAnchoringBounds = b; |
|
2314 fAnchorStart = (fAnchoringBounds ? fRegionStart : 0); |
|
2315 fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength); |
|
2316 return *this; |
|
2317 } |
|
2318 |
|
2319 |
|
2320 //-------------------------------------------------------------------------------- |
|
2321 // |
|
2322 // useTransparentBounds |
|
2323 // |
|
2324 //-------------------------------------------------------------------------------- |
|
2325 RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) { |
|
2326 fTransparentBounds = b; |
|
2327 fLookStart = (fTransparentBounds ? 0 : fRegionStart); |
|
2328 fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit); |
|
2329 return *this; |
|
2330 } |
|
2331 |
|
2332 //-------------------------------------------------------------------------------- |
|
2333 // |
|
2334 // setTimeLimit |
|
2335 // |
|
2336 //-------------------------------------------------------------------------------- |
|
2337 void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) { |
|
2338 if (U_FAILURE(status)) { |
|
2339 return; |
|
2340 } |
|
2341 if (U_FAILURE(fDeferredStatus)) { |
|
2342 status = fDeferredStatus; |
|
2343 return; |
|
2344 } |
|
2345 if (limit < 0) { |
|
2346 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
2347 return; |
|
2348 } |
|
2349 fTimeLimit = limit; |
|
2350 } |
|
2351 |
|
2352 |
|
2353 //-------------------------------------------------------------------------------- |
|
2354 // |
|
2355 // getTimeLimit |
|
2356 // |
|
2357 //-------------------------------------------------------------------------------- |
|
2358 int32_t RegexMatcher::getTimeLimit() const { |
|
2359 return fTimeLimit; |
|
2360 } |
|
2361 |
|
2362 |
|
2363 //-------------------------------------------------------------------------------- |
|
2364 // |
|
2365 // setStackLimit |
|
2366 // |
|
2367 //-------------------------------------------------------------------------------- |
|
2368 void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) { |
|
2369 if (U_FAILURE(status)) { |
|
2370 return; |
|
2371 } |
|
2372 if (U_FAILURE(fDeferredStatus)) { |
|
2373 status = fDeferredStatus; |
|
2374 return; |
|
2375 } |
|
2376 if (limit < 0) { |
|
2377 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
2378 return; |
|
2379 } |
|
2380 |
|
2381 // Reset the matcher. This is needed here in case there is a current match |
|
2382 // whose final stack frame (containing the match results, pointed to by fFrame) |
|
2383 // would be lost by resizing to a smaller stack size. |
|
2384 reset(); |
|
2385 |
|
2386 if (limit == 0) { |
|
2387 // Unlimited stack expansion |
|
2388 fStack->setMaxCapacity(0); |
|
2389 } else { |
|
2390 // Change the units of the limit from bytes to ints, and bump the size up |
|
2391 // to be big enough to hold at least one stack frame for the pattern, |
|
2392 // if it isn't there already. |
|
2393 int32_t adjustedLimit = limit / sizeof(int32_t); |
|
2394 if (adjustedLimit < fPattern->fFrameSize) { |
|
2395 adjustedLimit = fPattern->fFrameSize; |
|
2396 } |
|
2397 fStack->setMaxCapacity(adjustedLimit); |
|
2398 } |
|
2399 fStackLimit = limit; |
|
2400 } |
|
2401 |
|
2402 |
|
2403 //-------------------------------------------------------------------------------- |
|
2404 // |
|
2405 // getStackLimit |
|
2406 // |
|
2407 //-------------------------------------------------------------------------------- |
|
2408 int32_t RegexMatcher::getStackLimit() const { |
|
2409 return fStackLimit; |
|
2410 } |
|
2411 |
|
2412 |
|
2413 //-------------------------------------------------------------------------------- |
|
2414 // |
|
2415 // setMatchCallback |
|
2416 // |
|
2417 //-------------------------------------------------------------------------------- |
|
2418 void RegexMatcher::setMatchCallback(URegexMatchCallback *callback, |
|
2419 const void *context, |
|
2420 UErrorCode &status) { |
|
2421 if (U_FAILURE(status)) { |
|
2422 return; |
|
2423 } |
|
2424 fCallbackFn = callback; |
|
2425 fCallbackContext = context; |
|
2426 } |
|
2427 |
|
2428 |
|
2429 //-------------------------------------------------------------------------------- |
|
2430 // |
|
2431 // getMatchCallback |
|
2432 // |
|
2433 //-------------------------------------------------------------------------------- |
|
2434 void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback, |
|
2435 const void *&context, |
|
2436 UErrorCode &status) { |
|
2437 if (U_FAILURE(status)) { |
|
2438 return; |
|
2439 } |
|
2440 callback = fCallbackFn; |
|
2441 context = fCallbackContext; |
|
2442 } |
|
2443 |
|
2444 |
|
2445 //-------------------------------------------------------------------------------- |
|
2446 // |
|
2447 // setMatchCallback |
|
2448 // |
|
2449 //-------------------------------------------------------------------------------- |
|
2450 void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback, |
|
2451 const void *context, |
|
2452 UErrorCode &status) { |
|
2453 if (U_FAILURE(status)) { |
|
2454 return; |
|
2455 } |
|
2456 fFindProgressCallbackFn = callback; |
|
2457 fFindProgressCallbackContext = context; |
|
2458 } |
|
2459 |
|
2460 |
|
2461 //-------------------------------------------------------------------------------- |
|
2462 // |
|
2463 // getMatchCallback |
|
2464 // |
|
2465 //-------------------------------------------------------------------------------- |
|
2466 void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback, |
|
2467 const void *&context, |
|
2468 UErrorCode &status) { |
|
2469 if (U_FAILURE(status)) { |
|
2470 return; |
|
2471 } |
|
2472 callback = fFindProgressCallbackFn; |
|
2473 context = fFindProgressCallbackContext; |
|
2474 } |
|
2475 |
|
2476 |
|
2477 //================================================================================ |
|
2478 // |
|
2479 // Code following this point in this file is the internal |
|
2480 // Match Engine Implementation. |
|
2481 // |
|
2482 //================================================================================ |
|
2483 |
|
2484 |
|
2485 //-------------------------------------------------------------------------------- |
|
2486 // |
|
2487 // resetStack |
|
2488 // Discard any previous contents of the state save stack, and initialize a |
|
2489 // new stack frame to all -1. The -1s are needed for capture group limits, |
|
2490 // where they indicate that a group has not yet matched anything. |
|
2491 //-------------------------------------------------------------------------------- |
|
2492 REStackFrame *RegexMatcher::resetStack() { |
|
2493 // Discard any previous contents of the state save stack, and initialize a |
|
2494 // new stack frame with all -1 data. The -1s are needed for capture group limits, |
|
2495 // where they indicate that a group has not yet matched anything. |
|
2496 fStack->removeAllElements(); |
|
2497 |
|
2498 REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); |
|
2499 int32_t i; |
|
2500 for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) { |
|
2501 iFrame->fExtra[i] = -1; |
|
2502 } |
|
2503 return iFrame; |
|
2504 } |
|
2505 |
|
2506 |
|
2507 |
|
2508 //-------------------------------------------------------------------------------- |
|
2509 // |
|
2510 // isWordBoundary |
|
2511 // in perl, "xab..cd..", \b is true at positions 0,3,5,7 |
|
2512 // For us, |
|
2513 // If the current char is a combining mark, |
|
2514 // \b is FALSE. |
|
2515 // Else Scan backwards to the first non-combining char. |
|
2516 // We are at a boundary if the this char and the original chars are |
|
2517 // opposite in membership in \w set |
|
2518 // |
|
2519 // parameters: pos - the current position in the input buffer |
|
2520 // |
|
2521 // TODO: double-check edge cases at region boundaries. |
|
2522 // |
|
2523 //-------------------------------------------------------------------------------- |
|
2524 UBool RegexMatcher::isWordBoundary(int64_t pos) { |
|
2525 UBool isBoundary = FALSE; |
|
2526 UBool cIsWord = FALSE; |
|
2527 |
|
2528 if (pos >= fLookLimit) { |
|
2529 fHitEnd = TRUE; |
|
2530 } else { |
|
2531 // Determine whether char c at current position is a member of the word set of chars. |
|
2532 // If we're off the end of the string, behave as though we're not at a word char. |
|
2533 UTEXT_SETNATIVEINDEX(fInputText, pos); |
|
2534 UChar32 c = UTEXT_CURRENT32(fInputText); |
|
2535 if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { |
|
2536 // Current char is a combining one. Not a boundary. |
|
2537 return FALSE; |
|
2538 } |
|
2539 cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); |
|
2540 } |
|
2541 |
|
2542 // Back up until we come to a non-combining char, determine whether |
|
2543 // that char is a word char. |
|
2544 UBool prevCIsWord = FALSE; |
|
2545 for (;;) { |
|
2546 if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) { |
|
2547 break; |
|
2548 } |
|
2549 UChar32 prevChar = UTEXT_PREVIOUS32(fInputText); |
|
2550 if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) |
|
2551 || u_charType(prevChar) == U_FORMAT_CHAR)) { |
|
2552 prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); |
|
2553 break; |
|
2554 } |
|
2555 } |
|
2556 isBoundary = cIsWord ^ prevCIsWord; |
|
2557 return isBoundary; |
|
2558 } |
|
2559 |
|
2560 UBool RegexMatcher::isChunkWordBoundary(int32_t pos) { |
|
2561 UBool isBoundary = FALSE; |
|
2562 UBool cIsWord = FALSE; |
|
2563 |
|
2564 const UChar *inputBuf = fInputText->chunkContents; |
|
2565 |
|
2566 if (pos >= fLookLimit) { |
|
2567 fHitEnd = TRUE; |
|
2568 } else { |
|
2569 // Determine whether char c at current position is a member of the word set of chars. |
|
2570 // If we're off the end of the string, behave as though we're not at a word char. |
|
2571 UChar32 c; |
|
2572 U16_GET(inputBuf, fLookStart, pos, fLookLimit, c); |
|
2573 if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { |
|
2574 // Current char is a combining one. Not a boundary. |
|
2575 return FALSE; |
|
2576 } |
|
2577 cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); |
|
2578 } |
|
2579 |
|
2580 // Back up until we come to a non-combining char, determine whether |
|
2581 // that char is a word char. |
|
2582 UBool prevCIsWord = FALSE; |
|
2583 for (;;) { |
|
2584 if (pos <= fLookStart) { |
|
2585 break; |
|
2586 } |
|
2587 UChar32 prevChar; |
|
2588 U16_PREV(inputBuf, fLookStart, pos, prevChar); |
|
2589 if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) |
|
2590 || u_charType(prevChar) == U_FORMAT_CHAR)) { |
|
2591 prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); |
|
2592 break; |
|
2593 } |
|
2594 } |
|
2595 isBoundary = cIsWord ^ prevCIsWord; |
|
2596 return isBoundary; |
|
2597 } |
|
2598 |
|
2599 //-------------------------------------------------------------------------------- |
|
2600 // |
|
2601 // isUWordBoundary |
|
2602 // |
|
2603 // Test for a word boundary using RBBI word break. |
|
2604 // |
|
2605 // parameters: pos - the current position in the input buffer |
|
2606 // |
|
2607 //-------------------------------------------------------------------------------- |
|
2608 UBool RegexMatcher::isUWordBoundary(int64_t pos) { |
|
2609 UBool returnVal = FALSE; |
|
2610 #if UCONFIG_NO_BREAK_ITERATION==0 |
|
2611 |
|
2612 // If we haven't yet created a break iterator for this matcher, do it now. |
|
2613 if (fWordBreakItr == NULL) { |
|
2614 fWordBreakItr = |
|
2615 (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus); |
|
2616 if (U_FAILURE(fDeferredStatus)) { |
|
2617 return FALSE; |
|
2618 } |
|
2619 fWordBreakItr->setText(fInputText, fDeferredStatus); |
|
2620 } |
|
2621 |
|
2622 if (pos >= fLookLimit) { |
|
2623 fHitEnd = TRUE; |
|
2624 returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real" |
|
2625 // words are not boundaries. All non-word chars stand by themselves, |
|
2626 // with word boundaries on both sides. |
|
2627 } else { |
|
2628 if (!UTEXT_USES_U16(fInputText)) { |
|
2629 // !!!: Would like a better way to do this! |
|
2630 UErrorCode status = U_ZERO_ERROR; |
|
2631 pos = utext_extract(fInputText, 0, pos, NULL, 0, &status); |
|
2632 } |
|
2633 returnVal = fWordBreakItr->isBoundary((int32_t)pos); |
|
2634 } |
|
2635 #endif |
|
2636 return returnVal; |
|
2637 } |
|
2638 |
|
2639 //-------------------------------------------------------------------------------- |
|
2640 // |
|
2641 // IncrementTime This function is called once each TIMER_INITIAL_VALUE state |
|
2642 // saves. Increment the "time" counter, and call the |
|
2643 // user callback function if there is one installed. |
|
2644 // |
|
2645 // If the match operation needs to be aborted, either for a time-out |
|
2646 // or because the user callback asked for it, just set an error status. |
|
2647 // The engine will pick that up and stop in its outer loop. |
|
2648 // |
|
2649 //-------------------------------------------------------------------------------- |
|
2650 void RegexMatcher::IncrementTime(UErrorCode &status) { |
|
2651 fTickCounter = TIMER_INITIAL_VALUE; |
|
2652 fTime++; |
|
2653 if (fCallbackFn != NULL) { |
|
2654 if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) { |
|
2655 status = U_REGEX_STOPPED_BY_CALLER; |
|
2656 return; |
|
2657 } |
|
2658 } |
|
2659 if (fTimeLimit > 0 && fTime >= fTimeLimit) { |
|
2660 status = U_REGEX_TIME_OUT; |
|
2661 } |
|
2662 } |
|
2663 |
|
2664 //-------------------------------------------------------------------------------- |
|
2665 // |
|
2666 // ReportFindProgress This function is called once for each advance in the target |
|
2667 // string from the find() function, and calls the user progress callback |
|
2668 // function if there is one installed. |
|
2669 // |
|
2670 // NOTE: |
|
2671 // |
|
2672 // If the match operation needs to be aborted because the user |
|
2673 // callback asked for it, just set an error status. |
|
2674 // The engine will pick that up and stop in its outer loop. |
|
2675 // |
|
2676 //-------------------------------------------------------------------------------- |
|
2677 UBool RegexMatcher::ReportFindProgress(int64_t matchIndex, UErrorCode &status) { |
|
2678 if (fFindProgressCallbackFn != NULL) { |
|
2679 if ((*fFindProgressCallbackFn)(fFindProgressCallbackContext, matchIndex) == FALSE) { |
|
2680 status = U_ZERO_ERROR /*U_REGEX_STOPPED_BY_CALLER*/; |
|
2681 return FALSE; |
|
2682 } |
|
2683 } |
|
2684 return TRUE; |
|
2685 } |
|
2686 |
|
2687 //-------------------------------------------------------------------------------- |
|
2688 // |
|
2689 // StateSave |
|
2690 // Make a new stack frame, initialized as a copy of the current stack frame. |
|
2691 // Set the pattern index in the original stack frame from the operand value |
|
2692 // in the opcode. Execution of the engine continues with the state in |
|
2693 // the newly created stack frame |
|
2694 // |
|
2695 // Note that reserveBlock() may grow the stack, resulting in the |
|
2696 // whole thing being relocated in memory. |
|
2697 // |
|
2698 // Parameters: |
|
2699 // fp The top frame pointer when called. At return, a new |
|
2700 // fame will be present |
|
2701 // savePatIdx An index into the compiled pattern. Goes into the original |
|
2702 // (not new) frame. If execution ever back-tracks out of the |
|
2703 // new frame, this will be where we continue from in the pattern. |
|
2704 // Return |
|
2705 // The new frame pointer. |
|
2706 // |
|
2707 //-------------------------------------------------------------------------------- |
|
2708 inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) { |
|
2709 // push storage for a new frame. |
|
2710 int64_t *newFP = fStack->reserveBlock(fFrameSize, status); |
|
2711 if (newFP == NULL) { |
|
2712 // Failure on attempted stack expansion. |
|
2713 // Stack function set some other error code, change it to a more |
|
2714 // specific one for regular expressions. |
|
2715 status = U_REGEX_STACK_OVERFLOW; |
|
2716 // We need to return a writable stack frame, so just return the |
|
2717 // previous frame. The match operation will stop quickly |
|
2718 // because of the error status, after which the frame will never |
|
2719 // be looked at again. |
|
2720 return fp; |
|
2721 } |
|
2722 fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack. |
|
2723 |
|
2724 // New stack frame = copy of old top frame. |
|
2725 int64_t *source = (int64_t *)fp; |
|
2726 int64_t *dest = newFP; |
|
2727 for (;;) { |
|
2728 *dest++ = *source++; |
|
2729 if (source == newFP) { |
|
2730 break; |
|
2731 } |
|
2732 } |
|
2733 |
|
2734 fTickCounter--; |
|
2735 if (fTickCounter <= 0) { |
|
2736 IncrementTime(status); // Re-initializes fTickCounter |
|
2737 } |
|
2738 fp->fPatIdx = savePatIdx; |
|
2739 return (REStackFrame *)newFP; |
|
2740 } |
|
2741 |
|
2742 |
|
2743 //-------------------------------------------------------------------------------- |
|
2744 // |
|
2745 // MatchAt This is the actual matching engine. |
|
2746 // |
|
2747 // startIdx: begin matching a this index. |
|
2748 // toEnd: if true, match must extend to end of the input region |
|
2749 // |
|
2750 //-------------------------------------------------------------------------------- |
|
2751 void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) { |
|
2752 UBool isMatch = FALSE; // True if the we have a match. |
|
2753 |
|
2754 int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards |
|
2755 |
|
2756 int32_t op; // Operation from the compiled pattern, split into |
|
2757 int32_t opType; // the opcode |
|
2758 int32_t opValue; // and the operand value. |
|
2759 |
|
2760 #ifdef REGEX_RUN_DEBUG |
|
2761 if (fTraceDebug) |
|
2762 { |
|
2763 printf("MatchAt(startIdx=%ld)\n", startIdx); |
|
2764 printf("Original Pattern: "); |
|
2765 UChar32 c = utext_next32From(fPattern->fPattern, 0); |
|
2766 while (c != U_SENTINEL) { |
|
2767 if (c<32 || c>256) { |
|
2768 c = '.'; |
|
2769 } |
|
2770 REGEX_DUMP_DEBUG_PRINTF(("%c", c)); |
|
2771 |
|
2772 c = UTEXT_NEXT32(fPattern->fPattern); |
|
2773 } |
|
2774 printf("\n"); |
|
2775 printf("Input String: "); |
|
2776 c = utext_next32From(fInputText, 0); |
|
2777 while (c != U_SENTINEL) { |
|
2778 if (c<32 || c>256) { |
|
2779 c = '.'; |
|
2780 } |
|
2781 printf("%c", c); |
|
2782 |
|
2783 c = UTEXT_NEXT32(fInputText); |
|
2784 } |
|
2785 printf("\n"); |
|
2786 printf("\n"); |
|
2787 } |
|
2788 #endif |
|
2789 |
|
2790 if (U_FAILURE(status)) { |
|
2791 return; |
|
2792 } |
|
2793 |
|
2794 // Cache frequently referenced items from the compiled pattern |
|
2795 // |
|
2796 int64_t *pat = fPattern->fCompiledPat->getBuffer(); |
|
2797 |
|
2798 const UChar *litText = fPattern->fLiteralText.getBuffer(); |
|
2799 UVector *sets = fPattern->fSets; |
|
2800 |
|
2801 fFrameSize = fPattern->fFrameSize; |
|
2802 REStackFrame *fp = resetStack(); |
|
2803 |
|
2804 fp->fPatIdx = 0; |
|
2805 fp->fInputIdx = startIdx; |
|
2806 |
|
2807 // Zero out the pattern's static data |
|
2808 int32_t i; |
|
2809 for (i = 0; i<fPattern->fDataSize; i++) { |
|
2810 fData[i] = 0; |
|
2811 } |
|
2812 |
|
2813 // |
|
2814 // Main loop for interpreting the compiled pattern. |
|
2815 // One iteration of the loop per pattern operation performed. |
|
2816 // |
|
2817 for (;;) { |
|
2818 #if 0 |
|
2819 if (_heapchk() != _HEAPOK) { |
|
2820 fprintf(stderr, "Heap Trouble\n"); |
|
2821 } |
|
2822 #endif |
|
2823 |
|
2824 op = (int32_t)pat[fp->fPatIdx]; |
|
2825 opType = URX_TYPE(op); |
|
2826 opValue = URX_VAL(op); |
|
2827 #ifdef REGEX_RUN_DEBUG |
|
2828 if (fTraceDebug) { |
|
2829 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
2830 printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, |
|
2831 UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); |
|
2832 fPattern->dumpOp(fp->fPatIdx); |
|
2833 } |
|
2834 #endif |
|
2835 fp->fPatIdx++; |
|
2836 |
|
2837 switch (opType) { |
|
2838 |
|
2839 |
|
2840 case URX_NOP: |
|
2841 break; |
|
2842 |
|
2843 |
|
2844 case URX_BACKTRACK: |
|
2845 // Force a backtrack. In some circumstances, the pattern compiler |
|
2846 // will notice that the pattern can't possibly match anything, and will |
|
2847 // emit one of these at that point. |
|
2848 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
2849 break; |
|
2850 |
|
2851 |
|
2852 case URX_ONECHAR: |
|
2853 if (fp->fInputIdx < fActiveLimit) { |
|
2854 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
2855 UChar32 c = UTEXT_NEXT32(fInputText); |
|
2856 if (c == opValue) { |
|
2857 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
2858 break; |
|
2859 } |
|
2860 } else { |
|
2861 fHitEnd = TRUE; |
|
2862 } |
|
2863 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
2864 break; |
|
2865 |
|
2866 |
|
2867 case URX_STRING: |
|
2868 { |
|
2869 // Test input against a literal string. |
|
2870 // Strings require two slots in the compiled pattern, one for the |
|
2871 // offset to the string text, and one for the length. |
|
2872 |
|
2873 int32_t stringStartIdx = opValue; |
|
2874 op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand |
|
2875 fp->fPatIdx++; |
|
2876 opType = URX_TYPE(op); |
|
2877 int32_t stringLen = URX_VAL(op); |
|
2878 U_ASSERT(opType == URX_STRING_LEN); |
|
2879 U_ASSERT(stringLen >= 2); |
|
2880 |
|
2881 const UChar *patternString = litText+stringStartIdx; |
|
2882 int32_t patternStringIndex = 0; |
|
2883 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
2884 UChar32 inputChar; |
|
2885 UChar32 patternChar; |
|
2886 UBool success = TRUE; |
|
2887 while (patternStringIndex < stringLen) { |
|
2888 if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { |
|
2889 success = FALSE; |
|
2890 fHitEnd = TRUE; |
|
2891 break; |
|
2892 } |
|
2893 inputChar = UTEXT_NEXT32(fInputText); |
|
2894 U16_NEXT(patternString, patternStringIndex, stringLen, patternChar); |
|
2895 if (patternChar != inputChar) { |
|
2896 success = FALSE; |
|
2897 break; |
|
2898 } |
|
2899 } |
|
2900 |
|
2901 if (success) { |
|
2902 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
2903 } else { |
|
2904 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
2905 } |
|
2906 } |
|
2907 break; |
|
2908 |
|
2909 |
|
2910 case URX_STATE_SAVE: |
|
2911 fp = StateSave(fp, opValue, status); |
|
2912 break; |
|
2913 |
|
2914 |
|
2915 case URX_END: |
|
2916 // The match loop will exit via this path on a successful match, |
|
2917 // when we reach the end of the pattern. |
|
2918 if (toEnd && fp->fInputIdx != fActiveLimit) { |
|
2919 // The pattern matched, but not to the end of input. Try some more. |
|
2920 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
2921 break; |
|
2922 } |
|
2923 isMatch = TRUE; |
|
2924 goto breakFromLoop; |
|
2925 |
|
2926 // Start and End Capture stack frame variables are laid out out like this: |
|
2927 // fp->fExtra[opValue] - The start of a completed capture group |
|
2928 // opValue+1 - The end of a completed capture group |
|
2929 // opValue+2 - the start of a capture group whose end |
|
2930 // has not yet been reached (and might not ever be). |
|
2931 case URX_START_CAPTURE: |
|
2932 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
|
2933 fp->fExtra[opValue+2] = fp->fInputIdx; |
|
2934 break; |
|
2935 |
|
2936 |
|
2937 case URX_END_CAPTURE: |
|
2938 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
|
2939 U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. |
|
2940 fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. |
|
2941 fp->fExtra[opValue+1] = fp->fInputIdx; // End position |
|
2942 U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); |
|
2943 break; |
|
2944 |
|
2945 |
|
2946 case URX_DOLLAR: // $, test for End of line |
|
2947 // or for position before new line at end of input |
|
2948 { |
|
2949 if (fp->fInputIdx >= fAnchorLimit) { |
|
2950 // We really are at the end of input. Success. |
|
2951 fHitEnd = TRUE; |
|
2952 fRequireEnd = TRUE; |
|
2953 break; |
|
2954 } |
|
2955 |
|
2956 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
2957 |
|
2958 // If we are positioned just before a new-line that is located at the |
|
2959 // end of input, succeed. |
|
2960 UChar32 c = UTEXT_NEXT32(fInputText); |
|
2961 if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { |
|
2962 if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) { |
|
2963 // If not in the middle of a CR/LF sequence |
|
2964 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) { |
|
2965 // At new-line at end of input. Success |
|
2966 fHitEnd = TRUE; |
|
2967 fRequireEnd = TRUE; |
|
2968 |
|
2969 break; |
|
2970 } |
|
2971 } |
|
2972 } else { |
|
2973 UChar32 nextC = UTEXT_NEXT32(fInputText); |
|
2974 if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { |
|
2975 fHitEnd = TRUE; |
|
2976 fRequireEnd = TRUE; |
|
2977 break; // At CR/LF at end of input. Success |
|
2978 } |
|
2979 } |
|
2980 |
|
2981 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
2982 } |
|
2983 break; |
|
2984 |
|
2985 |
|
2986 case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. |
|
2987 if (fp->fInputIdx >= fAnchorLimit) { |
|
2988 // Off the end of input. Success. |
|
2989 fHitEnd = TRUE; |
|
2990 fRequireEnd = TRUE; |
|
2991 break; |
|
2992 } else { |
|
2993 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
2994 UChar32 c = UTEXT_NEXT32(fInputText); |
|
2995 // Either at the last character of input, or off the end. |
|
2996 if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) { |
|
2997 fHitEnd = TRUE; |
|
2998 fRequireEnd = TRUE; |
|
2999 break; |
|
3000 } |
|
3001 } |
|
3002 |
|
3003 // Not at end of input. Back-track out. |
|
3004 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3005 break; |
|
3006 |
|
3007 |
|
3008 case URX_DOLLAR_M: // $, test for End of line in multi-line mode |
|
3009 { |
|
3010 if (fp->fInputIdx >= fAnchorLimit) { |
|
3011 // We really are at the end of input. Success. |
|
3012 fHitEnd = TRUE; |
|
3013 fRequireEnd = TRUE; |
|
3014 break; |
|
3015 } |
|
3016 // If we are positioned just before a new-line, succeed. |
|
3017 // It makes no difference where the new-line is within the input. |
|
3018 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3019 UChar32 c = UTEXT_CURRENT32(fInputText); |
|
3020 if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) { |
|
3021 // At a line end, except for the odd chance of being in the middle of a CR/LF sequence |
|
3022 // In multi-line mode, hitting a new-line just before the end of input does not |
|
3023 // set the hitEnd or requireEnd flags |
|
3024 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) { |
|
3025 break; |
|
3026 } |
|
3027 } |
|
3028 // not at a new line. Fail. |
|
3029 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3030 } |
|
3031 break; |
|
3032 |
|
3033 |
|
3034 case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode |
|
3035 { |
|
3036 if (fp->fInputIdx >= fAnchorLimit) { |
|
3037 // We really are at the end of input. Success. |
|
3038 fHitEnd = TRUE; |
|
3039 fRequireEnd = TRUE; // Java set requireEnd in this case, even though |
|
3040 break; // adding a new-line would not lose the match. |
|
3041 } |
|
3042 // If we are not positioned just before a new-line, the test fails; backtrack out. |
|
3043 // It makes no difference where the new-line is within the input. |
|
3044 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3045 if (UTEXT_CURRENT32(fInputText) != 0x0a) { |
|
3046 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3047 } |
|
3048 } |
|
3049 break; |
|
3050 |
|
3051 |
|
3052 case URX_CARET: // ^, test for start of line |
|
3053 if (fp->fInputIdx != fAnchorStart) { |
|
3054 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3055 } |
|
3056 break; |
|
3057 |
|
3058 |
|
3059 case URX_CARET_M: // ^, test for start of line in mulit-line mode |
|
3060 { |
|
3061 if (fp->fInputIdx == fAnchorStart) { |
|
3062 // We are at the start input. Success. |
|
3063 break; |
|
3064 } |
|
3065 // Check whether character just before the current pos is a new-line |
|
3066 // unless we are at the end of input |
|
3067 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3068 UChar32 c = UTEXT_PREVIOUS32(fInputText); |
|
3069 if ((fp->fInputIdx < fAnchorLimit) && |
|
3070 ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { |
|
3071 // It's a new-line. ^ is true. Success. |
|
3072 // TODO: what should be done with positions between a CR and LF? |
|
3073 break; |
|
3074 } |
|
3075 // Not at the start of a line. Fail. |
|
3076 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3077 } |
|
3078 break; |
|
3079 |
|
3080 |
|
3081 case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode |
|
3082 { |
|
3083 U_ASSERT(fp->fInputIdx >= fAnchorStart); |
|
3084 if (fp->fInputIdx <= fAnchorStart) { |
|
3085 // We are at the start input. Success. |
|
3086 break; |
|
3087 } |
|
3088 // Check whether character just before the current pos is a new-line |
|
3089 U_ASSERT(fp->fInputIdx <= fAnchorLimit); |
|
3090 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3091 UChar32 c = UTEXT_PREVIOUS32(fInputText); |
|
3092 if (c != 0x0a) { |
|
3093 // Not at the start of a line. Back-track out. |
|
3094 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3095 } |
|
3096 } |
|
3097 break; |
|
3098 |
|
3099 case URX_BACKSLASH_B: // Test for word boundaries |
|
3100 { |
|
3101 UBool success = isWordBoundary(fp->fInputIdx); |
|
3102 success ^= (UBool)(opValue != 0); // flip sense for \B |
|
3103 if (!success) { |
|
3104 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3105 } |
|
3106 } |
|
3107 break; |
|
3108 |
|
3109 |
|
3110 case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style |
|
3111 { |
|
3112 UBool success = isUWordBoundary(fp->fInputIdx); |
|
3113 success ^= (UBool)(opValue != 0); // flip sense for \B |
|
3114 if (!success) { |
|
3115 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3116 } |
|
3117 } |
|
3118 break; |
|
3119 |
|
3120 |
|
3121 case URX_BACKSLASH_D: // Test for decimal digit |
|
3122 { |
|
3123 if (fp->fInputIdx >= fActiveLimit) { |
|
3124 fHitEnd = TRUE; |
|
3125 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3126 break; |
|
3127 } |
|
3128 |
|
3129 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3130 |
|
3131 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3132 int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. |
|
3133 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); |
|
3134 success ^= (UBool)(opValue != 0); // flip sense for \D |
|
3135 if (success) { |
|
3136 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3137 } else { |
|
3138 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3139 } |
|
3140 } |
|
3141 break; |
|
3142 |
|
3143 |
|
3144 case URX_BACKSLASH_G: // Test for position at end of previous match |
|
3145 if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { |
|
3146 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3147 } |
|
3148 break; |
|
3149 |
|
3150 |
|
3151 case URX_BACKSLASH_X: |
|
3152 // Match a Grapheme, as defined by Unicode TR 29. |
|
3153 // Differs slightly from Perl, which consumes combining marks independently |
|
3154 // of context. |
|
3155 { |
|
3156 |
|
3157 // Fail if at end of input |
|
3158 if (fp->fInputIdx >= fActiveLimit) { |
|
3159 fHitEnd = TRUE; |
|
3160 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3161 break; |
|
3162 } |
|
3163 |
|
3164 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3165 |
|
3166 // Examine (and consume) the current char. |
|
3167 // Dispatch into a little state machine, based on the char. |
|
3168 UChar32 c; |
|
3169 c = UTEXT_NEXT32(fInputText); |
|
3170 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3171 UnicodeSet **sets = fPattern->fStaticSets; |
|
3172 if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; |
|
3173 if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; |
|
3174 if (sets[URX_GC_L]->contains(c)) goto GC_L; |
|
3175 if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
|
3176 if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
|
3177 if (sets[URX_GC_V]->contains(c)) goto GC_V; |
|
3178 if (sets[URX_GC_T]->contains(c)) goto GC_T; |
|
3179 goto GC_Extend; |
|
3180 |
|
3181 |
|
3182 |
|
3183 GC_L: |
|
3184 if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
|
3185 c = UTEXT_NEXT32(fInputText); |
|
3186 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3187 if (sets[URX_GC_L]->contains(c)) goto GC_L; |
|
3188 if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
|
3189 if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
|
3190 if (sets[URX_GC_V]->contains(c)) goto GC_V; |
|
3191 (void)UTEXT_PREVIOUS32(fInputText); |
|
3192 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3193 goto GC_Extend; |
|
3194 |
|
3195 GC_V: |
|
3196 if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
|
3197 c = UTEXT_NEXT32(fInputText); |
|
3198 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3199 if (sets[URX_GC_V]->contains(c)) goto GC_V; |
|
3200 if (sets[URX_GC_T]->contains(c)) goto GC_T; |
|
3201 (void)UTEXT_PREVIOUS32(fInputText); |
|
3202 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3203 goto GC_Extend; |
|
3204 |
|
3205 GC_T: |
|
3206 if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
|
3207 c = UTEXT_NEXT32(fInputText); |
|
3208 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3209 if (sets[URX_GC_T]->contains(c)) goto GC_T; |
|
3210 (void)UTEXT_PREVIOUS32(fInputText); |
|
3211 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3212 goto GC_Extend; |
|
3213 |
|
3214 GC_Extend: |
|
3215 // Combining characters are consumed here |
|
3216 for (;;) { |
|
3217 if (fp->fInputIdx >= fActiveLimit) { |
|
3218 break; |
|
3219 } |
|
3220 c = UTEXT_CURRENT32(fInputText); |
|
3221 if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { |
|
3222 break; |
|
3223 } |
|
3224 (void)UTEXT_NEXT32(fInputText); |
|
3225 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3226 } |
|
3227 goto GC_Done; |
|
3228 |
|
3229 GC_Control: |
|
3230 // Most control chars stand alone (don't combine with combining chars), |
|
3231 // except for that CR/LF sequence is a single grapheme cluster. |
|
3232 if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { |
|
3233 c = UTEXT_NEXT32(fInputText); |
|
3234 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3235 } |
|
3236 |
|
3237 GC_Done: |
|
3238 if (fp->fInputIdx >= fActiveLimit) { |
|
3239 fHitEnd = TRUE; |
|
3240 } |
|
3241 break; |
|
3242 } |
|
3243 |
|
3244 |
|
3245 |
|
3246 |
|
3247 case URX_BACKSLASH_Z: // Test for end of Input |
|
3248 if (fp->fInputIdx < fAnchorLimit) { |
|
3249 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3250 } else { |
|
3251 fHitEnd = TRUE; |
|
3252 fRequireEnd = TRUE; |
|
3253 } |
|
3254 break; |
|
3255 |
|
3256 |
|
3257 |
|
3258 case URX_STATIC_SETREF: |
|
3259 { |
|
3260 // Test input character against one of the predefined sets |
|
3261 // (Word Characters, for example) |
|
3262 // The high bit of the op value is a flag for the match polarity. |
|
3263 // 0: success if input char is in set. |
|
3264 // 1: success if input char is not in set. |
|
3265 if (fp->fInputIdx >= fActiveLimit) { |
|
3266 fHitEnd = TRUE; |
|
3267 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3268 break; |
|
3269 } |
|
3270 |
|
3271 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); |
|
3272 opValue &= ~URX_NEG_SET; |
|
3273 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
|
3274 |
|
3275 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3276 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3277 if (c < 256) { |
|
3278 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
|
3279 if (s8->contains(c)) { |
|
3280 success = !success; |
|
3281 } |
|
3282 } else { |
|
3283 const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
|
3284 if (s->contains(c)) { |
|
3285 success = !success; |
|
3286 } |
|
3287 } |
|
3288 if (success) { |
|
3289 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3290 } else { |
|
3291 // the character wasn't in the set. |
|
3292 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3293 } |
|
3294 } |
|
3295 break; |
|
3296 |
|
3297 |
|
3298 case URX_STAT_SETREF_N: |
|
3299 { |
|
3300 // Test input character for NOT being a member of one of |
|
3301 // the predefined sets (Word Characters, for example) |
|
3302 if (fp->fInputIdx >= fActiveLimit) { |
|
3303 fHitEnd = TRUE; |
|
3304 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3305 break; |
|
3306 } |
|
3307 |
|
3308 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
|
3309 |
|
3310 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3311 |
|
3312 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3313 if (c < 256) { |
|
3314 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
|
3315 if (s8->contains(c) == FALSE) { |
|
3316 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3317 break; |
|
3318 } |
|
3319 } else { |
|
3320 const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
|
3321 if (s->contains(c) == FALSE) { |
|
3322 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3323 break; |
|
3324 } |
|
3325 } |
|
3326 // the character wasn't in the set. |
|
3327 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3328 } |
|
3329 break; |
|
3330 |
|
3331 |
|
3332 case URX_SETREF: |
|
3333 if (fp->fInputIdx >= fActiveLimit) { |
|
3334 fHitEnd = TRUE; |
|
3335 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3336 break; |
|
3337 } else { |
|
3338 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3339 |
|
3340 // There is input left. Pick up one char and test it for set membership. |
|
3341 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3342 U_ASSERT(opValue > 0 && opValue < sets->size()); |
|
3343 if (c<256) { |
|
3344 Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
|
3345 if (s8->contains(c)) { |
|
3346 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3347 break; |
|
3348 } |
|
3349 } else { |
|
3350 UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); |
|
3351 if (s->contains(c)) { |
|
3352 // The character is in the set. A Match. |
|
3353 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3354 break; |
|
3355 } |
|
3356 } |
|
3357 |
|
3358 // the character wasn't in the set. |
|
3359 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3360 } |
|
3361 break; |
|
3362 |
|
3363 |
|
3364 case URX_DOTANY: |
|
3365 { |
|
3366 // . matches anything, but stops at end-of-line. |
|
3367 if (fp->fInputIdx >= fActiveLimit) { |
|
3368 // At end of input. Match failed. Backtrack out. |
|
3369 fHitEnd = TRUE; |
|
3370 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3371 break; |
|
3372 } |
|
3373 |
|
3374 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3375 |
|
3376 // There is input left. Advance over one char, unless we've hit end-of-line |
|
3377 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3378 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible |
|
3379 ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { |
|
3380 // End of line in normal mode. . does not match. |
|
3381 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3382 break; |
|
3383 } |
|
3384 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3385 } |
|
3386 break; |
|
3387 |
|
3388 |
|
3389 case URX_DOTANY_ALL: |
|
3390 { |
|
3391 // ., in dot-matches-all (including new lines) mode |
|
3392 if (fp->fInputIdx >= fActiveLimit) { |
|
3393 // At end of input. Match failed. Backtrack out. |
|
3394 fHitEnd = TRUE; |
|
3395 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3396 break; |
|
3397 } |
|
3398 |
|
3399 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3400 |
|
3401 // There is input left. Advance over one char, except if we are |
|
3402 // at a cr/lf, advance over both of them. |
|
3403 UChar32 c; |
|
3404 c = UTEXT_NEXT32(fInputText); |
|
3405 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3406 if (c==0x0d && fp->fInputIdx < fActiveLimit) { |
|
3407 // In the case of a CR/LF, we need to advance over both. |
|
3408 UChar32 nextc = UTEXT_CURRENT32(fInputText); |
|
3409 if (nextc == 0x0a) { |
|
3410 (void)UTEXT_NEXT32(fInputText); |
|
3411 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3412 } |
|
3413 } |
|
3414 } |
|
3415 break; |
|
3416 |
|
3417 |
|
3418 case URX_DOTANY_UNIX: |
|
3419 { |
|
3420 // '.' operator, matches all, but stops at end-of-line. |
|
3421 // UNIX_LINES mode, so 0x0a is the only recognized line ending. |
|
3422 if (fp->fInputIdx >= fActiveLimit) { |
|
3423 // At end of input. Match failed. Backtrack out. |
|
3424 fHitEnd = TRUE; |
|
3425 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3426 break; |
|
3427 } |
|
3428 |
|
3429 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3430 |
|
3431 // There is input left. Advance over one char, unless we've hit end-of-line |
|
3432 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3433 if (c == 0x0a) { |
|
3434 // End of line in normal mode. '.' does not match the \n |
|
3435 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3436 } else { |
|
3437 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3438 } |
|
3439 } |
|
3440 break; |
|
3441 |
|
3442 |
|
3443 case URX_JMP: |
|
3444 fp->fPatIdx = opValue; |
|
3445 break; |
|
3446 |
|
3447 case URX_FAIL: |
|
3448 isMatch = FALSE; |
|
3449 goto breakFromLoop; |
|
3450 |
|
3451 case URX_JMP_SAV: |
|
3452 U_ASSERT(opValue < fPattern->fCompiledPat->size()); |
|
3453 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
|
3454 fp->fPatIdx = opValue; // Then JMP. |
|
3455 break; |
|
3456 |
|
3457 case URX_JMP_SAV_X: |
|
3458 // This opcode is used with (x)+, when x can match a zero length string. |
|
3459 // Same as JMP_SAV, except conditional on the match having made forward progress. |
|
3460 // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the |
|
3461 // data address of the input position at the start of the loop. |
|
3462 { |
|
3463 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); |
|
3464 int32_t stoOp = (int32_t)pat[opValue-1]; |
|
3465 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); |
|
3466 int32_t frameLoc = URX_VAL(stoOp); |
|
3467 U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); |
|
3468 int64_t prevInputIdx = fp->fExtra[frameLoc]; |
|
3469 U_ASSERT(prevInputIdx <= fp->fInputIdx); |
|
3470 if (prevInputIdx < fp->fInputIdx) { |
|
3471 // The match did make progress. Repeat the loop. |
|
3472 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
|
3473 fp->fPatIdx = opValue; |
|
3474 fp->fExtra[frameLoc] = fp->fInputIdx; |
|
3475 } |
|
3476 // If the input position did not advance, we do nothing here, |
|
3477 // execution will fall out of the loop. |
|
3478 } |
|
3479 break; |
|
3480 |
|
3481 case URX_CTR_INIT: |
|
3482 { |
|
3483 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
|
3484 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
|
3485 |
|
3486 // Pick up the three extra operands that CTR_INIT has, and |
|
3487 // skip the pattern location counter past |
|
3488 int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
|
3489 fp->fPatIdx += 3; |
|
3490 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
|
3491 int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
|
3492 int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
|
3493 U_ASSERT(minCount>=0); |
|
3494 U_ASSERT(maxCount>=minCount || maxCount==-1); |
|
3495 U_ASSERT(loopLoc>=fp->fPatIdx); |
|
3496 |
|
3497 if (minCount == 0) { |
|
3498 fp = StateSave(fp, loopLoc+1, status); |
|
3499 } |
|
3500 if (maxCount == -1) { |
|
3501 fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. |
|
3502 } else if (maxCount == 0) { |
|
3503 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3504 } |
|
3505 } |
|
3506 break; |
|
3507 |
|
3508 case URX_CTR_LOOP: |
|
3509 { |
|
3510 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
|
3511 int32_t initOp = (int32_t)pat[opValue]; |
|
3512 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); |
|
3513 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
|
3514 int32_t minCount = (int32_t)pat[opValue+2]; |
|
3515 int32_t maxCount = (int32_t)pat[opValue+3]; |
|
3516 (*pCounter)++; |
|
3517 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
|
3518 U_ASSERT(*pCounter == maxCount); |
|
3519 break; |
|
3520 } |
|
3521 if (*pCounter >= minCount) { |
|
3522 if (maxCount == -1) { |
|
3523 // Loop has no hard upper bound. |
|
3524 // Check that it is progressing through the input, break if it is not. |
|
3525 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
|
3526 if (fp->fInputIdx == *pLastInputIdx) { |
|
3527 break; |
|
3528 } else { |
|
3529 *pLastInputIdx = fp->fInputIdx; |
|
3530 } |
|
3531 } |
|
3532 fp = StateSave(fp, fp->fPatIdx, status); |
|
3533 } |
|
3534 fp->fPatIdx = opValue + 4; // Loop back. |
|
3535 } |
|
3536 break; |
|
3537 |
|
3538 case URX_CTR_INIT_NG: |
|
3539 { |
|
3540 // Initialize a non-greedy loop |
|
3541 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
|
3542 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
|
3543 |
|
3544 // Pick up the three extra operands that CTR_INIT_NG has, and |
|
3545 // skip the pattern location counter past |
|
3546 int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
|
3547 fp->fPatIdx += 3; |
|
3548 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
|
3549 int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
|
3550 int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
|
3551 U_ASSERT(minCount>=0); |
|
3552 U_ASSERT(maxCount>=minCount || maxCount==-1); |
|
3553 U_ASSERT(loopLoc>fp->fPatIdx); |
|
3554 if (maxCount == -1) { |
|
3555 fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. |
|
3556 } |
|
3557 |
|
3558 if (minCount == 0) { |
|
3559 if (maxCount != 0) { |
|
3560 fp = StateSave(fp, fp->fPatIdx, status); |
|
3561 } |
|
3562 fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block |
|
3563 } |
|
3564 } |
|
3565 break; |
|
3566 |
|
3567 case URX_CTR_LOOP_NG: |
|
3568 { |
|
3569 // Non-greedy {min, max} loops |
|
3570 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
|
3571 int32_t initOp = (int32_t)pat[opValue]; |
|
3572 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); |
|
3573 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
|
3574 int32_t minCount = (int32_t)pat[opValue+2]; |
|
3575 int32_t maxCount = (int32_t)pat[opValue+3]; |
|
3576 |
|
3577 (*pCounter)++; |
|
3578 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
|
3579 // The loop has matched the maximum permitted number of times. |
|
3580 // Break out of here with no action. Matching will |
|
3581 // continue with the following pattern. |
|
3582 U_ASSERT(*pCounter == maxCount); |
|
3583 break; |
|
3584 } |
|
3585 |
|
3586 if (*pCounter < minCount) { |
|
3587 // We haven't met the minimum number of matches yet. |
|
3588 // Loop back for another one. |
|
3589 fp->fPatIdx = opValue + 4; // Loop back. |
|
3590 } else { |
|
3591 // We do have the minimum number of matches. |
|
3592 |
|
3593 // If there is no upper bound on the loop iterations, check that the input index |
|
3594 // is progressing, and stop the loop if it is not. |
|
3595 if (maxCount == -1) { |
|
3596 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
|
3597 if (fp->fInputIdx == *pLastInputIdx) { |
|
3598 break; |
|
3599 } |
|
3600 *pLastInputIdx = fp->fInputIdx; |
|
3601 } |
|
3602 |
|
3603 // Loop Continuation: we will fall into the pattern following the loop |
|
3604 // (non-greedy, don't execute loop body first), but first do |
|
3605 // a state save to the top of the loop, so that a match failure |
|
3606 // in the following pattern will try another iteration of the loop. |
|
3607 fp = StateSave(fp, opValue + 4, status); |
|
3608 } |
|
3609 } |
|
3610 break; |
|
3611 |
|
3612 case URX_STO_SP: |
|
3613 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
|
3614 fData[opValue] = fStack->size(); |
|
3615 break; |
|
3616 |
|
3617 case URX_LD_SP: |
|
3618 { |
|
3619 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
|
3620 int32_t newStackSize = (int32_t)fData[opValue]; |
|
3621 U_ASSERT(newStackSize <= fStack->size()); |
|
3622 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
|
3623 if (newFP == (int64_t *)fp) { |
|
3624 break; |
|
3625 } |
|
3626 int32_t i; |
|
3627 for (i=0; i<fFrameSize; i++) { |
|
3628 newFP[i] = ((int64_t *)fp)[i]; |
|
3629 } |
|
3630 fp = (REStackFrame *)newFP; |
|
3631 fStack->setSize(newStackSize); |
|
3632 } |
|
3633 break; |
|
3634 |
|
3635 case URX_BACKREF: |
|
3636 { |
|
3637 U_ASSERT(opValue < fFrameSize); |
|
3638 int64_t groupStartIdx = fp->fExtra[opValue]; |
|
3639 int64_t groupEndIdx = fp->fExtra[opValue+1]; |
|
3640 U_ASSERT(groupStartIdx <= groupEndIdx); |
|
3641 if (groupStartIdx < 0) { |
|
3642 // This capture group has not participated in the match thus far, |
|
3643 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
|
3644 break; |
|
3645 } |
|
3646 UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx); |
|
3647 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3648 |
|
3649 // Note: if the capture group match was of an empty string the backref |
|
3650 // match succeeds. Verified by testing: Perl matches succeed |
|
3651 // in this case, so we do too. |
|
3652 |
|
3653 UBool success = TRUE; |
|
3654 for (;;) { |
|
3655 if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) { |
|
3656 success = TRUE; |
|
3657 break; |
|
3658 } |
|
3659 if (utext_getNativeIndex(fInputText) >= fActiveLimit) { |
|
3660 success = FALSE; |
|
3661 fHitEnd = TRUE; |
|
3662 break; |
|
3663 } |
|
3664 UChar32 captureGroupChar = utext_next32(fAltInputText); |
|
3665 UChar32 inputChar = utext_next32(fInputText); |
|
3666 if (inputChar != captureGroupChar) { |
|
3667 success = FALSE; |
|
3668 break; |
|
3669 } |
|
3670 } |
|
3671 |
|
3672 if (success) { |
|
3673 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3674 } else { |
|
3675 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3676 } |
|
3677 } |
|
3678 break; |
|
3679 |
|
3680 |
|
3681 |
|
3682 case URX_BACKREF_I: |
|
3683 { |
|
3684 U_ASSERT(opValue < fFrameSize); |
|
3685 int64_t groupStartIdx = fp->fExtra[opValue]; |
|
3686 int64_t groupEndIdx = fp->fExtra[opValue+1]; |
|
3687 U_ASSERT(groupStartIdx <= groupEndIdx); |
|
3688 if (groupStartIdx < 0) { |
|
3689 // This capture group has not participated in the match thus far, |
|
3690 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
|
3691 break; |
|
3692 } |
|
3693 utext_setNativeIndex(fAltInputText, groupStartIdx); |
|
3694 utext_setNativeIndex(fInputText, fp->fInputIdx); |
|
3695 CaseFoldingUTextIterator captureGroupItr(*fAltInputText); |
|
3696 CaseFoldingUTextIterator inputItr(*fInputText); |
|
3697 |
|
3698 // Note: if the capture group match was of an empty string the backref |
|
3699 // match succeeds. Verified by testing: Perl matches succeed |
|
3700 // in this case, so we do too. |
|
3701 |
|
3702 UBool success = TRUE; |
|
3703 for (;;) { |
|
3704 if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) { |
|
3705 success = TRUE; |
|
3706 break; |
|
3707 } |
|
3708 if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) { |
|
3709 success = FALSE; |
|
3710 fHitEnd = TRUE; |
|
3711 break; |
|
3712 } |
|
3713 UChar32 captureGroupChar = captureGroupItr.next(); |
|
3714 UChar32 inputChar = inputItr.next(); |
|
3715 if (inputChar != captureGroupChar) { |
|
3716 success = FALSE; |
|
3717 break; |
|
3718 } |
|
3719 } |
|
3720 |
|
3721 if (success && inputItr.inExpansion()) { |
|
3722 // We otained a match by consuming part of a string obtained from |
|
3723 // case-folding a single code point of the input text. |
|
3724 // This does not count as an overall match. |
|
3725 success = FALSE; |
|
3726 } |
|
3727 |
|
3728 if (success) { |
|
3729 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3730 } else { |
|
3731 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3732 } |
|
3733 |
|
3734 } |
|
3735 break; |
|
3736 |
|
3737 case URX_STO_INP_LOC: |
|
3738 { |
|
3739 U_ASSERT(opValue >= 0 && opValue < fFrameSize); |
|
3740 fp->fExtra[opValue] = fp->fInputIdx; |
|
3741 } |
|
3742 break; |
|
3743 |
|
3744 case URX_JMPX: |
|
3745 { |
|
3746 int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
|
3747 fp->fPatIdx += 1; |
|
3748 int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); |
|
3749 U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); |
|
3750 int64_t savedInputIdx = fp->fExtra[dataLoc]; |
|
3751 U_ASSERT(savedInputIdx <= fp->fInputIdx); |
|
3752 if (savedInputIdx < fp->fInputIdx) { |
|
3753 fp->fPatIdx = opValue; // JMP |
|
3754 } else { |
|
3755 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. |
|
3756 } |
|
3757 } |
|
3758 break; |
|
3759 |
|
3760 case URX_LA_START: |
|
3761 { |
|
3762 // Entering a lookahead block. |
|
3763 // Save Stack Ptr, Input Pos. |
|
3764 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
3765 fData[opValue] = fStack->size(); |
|
3766 fData[opValue+1] = fp->fInputIdx; |
|
3767 fActiveStart = fLookStart; // Set the match region change for |
|
3768 fActiveLimit = fLookLimit; // transparent bounds. |
|
3769 } |
|
3770 break; |
|
3771 |
|
3772 case URX_LA_END: |
|
3773 { |
|
3774 // Leaving a look-ahead block. |
|
3775 // restore Stack Ptr, Input Pos to positions they had on entry to block. |
|
3776 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
3777 int32_t stackSize = fStack->size(); |
|
3778 int32_t newStackSize =(int32_t)fData[opValue]; |
|
3779 U_ASSERT(stackSize >= newStackSize); |
|
3780 if (stackSize > newStackSize) { |
|
3781 // Copy the current top frame back to the new (cut back) top frame. |
|
3782 // This makes the capture groups from within the look-ahead |
|
3783 // expression available. |
|
3784 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
|
3785 int32_t i; |
|
3786 for (i=0; i<fFrameSize; i++) { |
|
3787 newFP[i] = ((int64_t *)fp)[i]; |
|
3788 } |
|
3789 fp = (REStackFrame *)newFP; |
|
3790 fStack->setSize(newStackSize); |
|
3791 } |
|
3792 fp->fInputIdx = fData[opValue+1]; |
|
3793 |
|
3794 // Restore the active region bounds in the input string; they may have |
|
3795 // been changed because of transparent bounds on a Region. |
|
3796 fActiveStart = fRegionStart; |
|
3797 fActiveLimit = fRegionLimit; |
|
3798 } |
|
3799 break; |
|
3800 |
|
3801 case URX_ONECHAR_I: |
|
3802 // Case insensitive one char. The char from the pattern is already case folded. |
|
3803 // Input text is not, but case folding the input can not reduce two or more code |
|
3804 // points to one. |
|
3805 if (fp->fInputIdx < fActiveLimit) { |
|
3806 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3807 |
|
3808 UChar32 c = UTEXT_NEXT32(fInputText); |
|
3809 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { |
|
3810 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3811 break; |
|
3812 } |
|
3813 } else { |
|
3814 fHitEnd = TRUE; |
|
3815 } |
|
3816 |
|
3817 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3818 break; |
|
3819 |
|
3820 case URX_STRING_I: |
|
3821 { |
|
3822 // Case-insensitive test input against a literal string. |
|
3823 // Strings require two slots in the compiled pattern, one for the |
|
3824 // offset to the string text, and one for the length. |
|
3825 // The compiled string has already been case folded. |
|
3826 { |
|
3827 const UChar *patternString = litText + opValue; |
|
3828 int32_t patternStringIdx = 0; |
|
3829 |
|
3830 op = (int32_t)pat[fp->fPatIdx]; |
|
3831 fp->fPatIdx++; |
|
3832 opType = URX_TYPE(op); |
|
3833 opValue = URX_VAL(op); |
|
3834 U_ASSERT(opType == URX_STRING_LEN); |
|
3835 int32_t patternStringLen = opValue; // Length of the string from the pattern. |
|
3836 |
|
3837 |
|
3838 UChar32 cPattern; |
|
3839 UChar32 cText; |
|
3840 UBool success = TRUE; |
|
3841 |
|
3842 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
3843 CaseFoldingUTextIterator inputIterator(*fInputText); |
|
3844 while (patternStringIdx < patternStringLen) { |
|
3845 if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { |
|
3846 success = FALSE; |
|
3847 fHitEnd = TRUE; |
|
3848 break; |
|
3849 } |
|
3850 U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); |
|
3851 cText = inputIterator.next(); |
|
3852 if (cText != cPattern) { |
|
3853 success = FALSE; |
|
3854 break; |
|
3855 } |
|
3856 } |
|
3857 if (inputIterator.inExpansion()) { |
|
3858 success = FALSE; |
|
3859 } |
|
3860 |
|
3861 if (success) { |
|
3862 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3863 } else { |
|
3864 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3865 } |
|
3866 } |
|
3867 } |
|
3868 break; |
|
3869 |
|
3870 case URX_LB_START: |
|
3871 { |
|
3872 // Entering a look-behind block. |
|
3873 // Save Stack Ptr, Input Pos. |
|
3874 // TODO: implement transparent bounds. Ticket #6067 |
|
3875 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
3876 fData[opValue] = fStack->size(); |
|
3877 fData[opValue+1] = fp->fInputIdx; |
|
3878 // Init the variable containing the start index for attempted matches. |
|
3879 fData[opValue+2] = -1; |
|
3880 // Save input string length, then reset to pin any matches to end at |
|
3881 // the current position. |
|
3882 fData[opValue+3] = fActiveLimit; |
|
3883 fActiveLimit = fp->fInputIdx; |
|
3884 } |
|
3885 break; |
|
3886 |
|
3887 |
|
3888 case URX_LB_CONT: |
|
3889 { |
|
3890 // Positive Look-Behind, at top of loop checking for matches of LB expression |
|
3891 // at all possible input starting positions. |
|
3892 |
|
3893 // Fetch the min and max possible match lengths. They are the operands |
|
3894 // of this op in the pattern. |
|
3895 int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
|
3896 int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
|
3897 U_ASSERT(minML <= maxML); |
|
3898 U_ASSERT(minML >= 0); |
|
3899 |
|
3900 // Fetch (from data) the last input index where a match was attempted. |
|
3901 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
3902 int64_t *lbStartIdx = &fData[opValue+2]; |
|
3903 if (*lbStartIdx < 0) { |
|
3904 // First time through loop. |
|
3905 *lbStartIdx = fp->fInputIdx - minML; |
|
3906 } else { |
|
3907 // 2nd through nth time through the loop. |
|
3908 // Back up start position for match by one. |
|
3909 if (*lbStartIdx == 0) { |
|
3910 (*lbStartIdx)--; |
|
3911 } else { |
|
3912 UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx); |
|
3913 (void)UTEXT_PREVIOUS32(fInputText); |
|
3914 *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3915 } |
|
3916 } |
|
3917 |
|
3918 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) { |
|
3919 // We have tried all potential match starting points without |
|
3920 // getting a match. Backtrack out, and out of the |
|
3921 // Look Behind altogether. |
|
3922 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3923 int64_t restoreInputLen = fData[opValue+3]; |
|
3924 U_ASSERT(restoreInputLen >= fActiveLimit); |
|
3925 U_ASSERT(restoreInputLen <= fInputLength); |
|
3926 fActiveLimit = restoreInputLen; |
|
3927 break; |
|
3928 } |
|
3929 |
|
3930 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
|
3931 // (successful match will fall off the end of the loop.) |
|
3932 fp = StateSave(fp, fp->fPatIdx-3, status); |
|
3933 fp->fInputIdx = *lbStartIdx; |
|
3934 } |
|
3935 break; |
|
3936 |
|
3937 case URX_LB_END: |
|
3938 // End of a look-behind block, after a successful match. |
|
3939 { |
|
3940 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
3941 if (fp->fInputIdx != fActiveLimit) { |
|
3942 // The look-behind expression matched, but the match did not |
|
3943 // extend all the way to the point that we are looking behind from. |
|
3944 // FAIL out of here, which will take us back to the LB_CONT, which |
|
3945 // will retry the match starting at another position or fail |
|
3946 // the look-behind altogether, whichever is appropriate. |
|
3947 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
3948 break; |
|
3949 } |
|
3950 |
|
3951 // Look-behind match is good. Restore the orignal input string length, |
|
3952 // which had been truncated to pin the end of the lookbehind match to the |
|
3953 // position being looked-behind. |
|
3954 int64_t originalInputLen = fData[opValue+3]; |
|
3955 U_ASSERT(originalInputLen >= fActiveLimit); |
|
3956 U_ASSERT(originalInputLen <= fInputLength); |
|
3957 fActiveLimit = originalInputLen; |
|
3958 } |
|
3959 break; |
|
3960 |
|
3961 |
|
3962 case URX_LBN_CONT: |
|
3963 { |
|
3964 // Negative Look-Behind, at top of loop checking for matches of LB expression |
|
3965 // at all possible input starting positions. |
|
3966 |
|
3967 // Fetch the extra parameters of this op. |
|
3968 int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
|
3969 int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
|
3970 int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; |
|
3971 continueLoc = URX_VAL(continueLoc); |
|
3972 U_ASSERT(minML <= maxML); |
|
3973 U_ASSERT(minML >= 0); |
|
3974 U_ASSERT(continueLoc > fp->fPatIdx); |
|
3975 |
|
3976 // Fetch (from data) the last input index where a match was attempted. |
|
3977 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
3978 int64_t *lbStartIdx = &fData[opValue+2]; |
|
3979 if (*lbStartIdx < 0) { |
|
3980 // First time through loop. |
|
3981 *lbStartIdx = fp->fInputIdx - minML; |
|
3982 } else { |
|
3983 // 2nd through nth time through the loop. |
|
3984 // Back up start position for match by one. |
|
3985 if (*lbStartIdx == 0) { |
|
3986 (*lbStartIdx)--; |
|
3987 } else { |
|
3988 UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx); |
|
3989 (void)UTEXT_PREVIOUS32(fInputText); |
|
3990 *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
3991 } |
|
3992 } |
|
3993 |
|
3994 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) { |
|
3995 // We have tried all potential match starting points without |
|
3996 // getting a match, which means that the negative lookbehind as |
|
3997 // a whole has succeeded. Jump forward to the continue location |
|
3998 int64_t restoreInputLen = fData[opValue+3]; |
|
3999 U_ASSERT(restoreInputLen >= fActiveLimit); |
|
4000 U_ASSERT(restoreInputLen <= fInputLength); |
|
4001 fActiveLimit = restoreInputLen; |
|
4002 fp->fPatIdx = continueLoc; |
|
4003 break; |
|
4004 } |
|
4005 |
|
4006 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
|
4007 // (successful match will cause a FAIL out of the loop altogether.) |
|
4008 fp = StateSave(fp, fp->fPatIdx-4, status); |
|
4009 fp->fInputIdx = *lbStartIdx; |
|
4010 } |
|
4011 break; |
|
4012 |
|
4013 case URX_LBN_END: |
|
4014 // End of a negative look-behind block, after a successful match. |
|
4015 { |
|
4016 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
4017 if (fp->fInputIdx != fActiveLimit) { |
|
4018 // The look-behind expression matched, but the match did not |
|
4019 // extend all the way to the point that we are looking behind from. |
|
4020 // FAIL out of here, which will take us back to the LB_CONT, which |
|
4021 // will retry the match starting at another position or succeed |
|
4022 // the look-behind altogether, whichever is appropriate. |
|
4023 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4024 break; |
|
4025 } |
|
4026 |
|
4027 // Look-behind expression matched, which means look-behind test as |
|
4028 // a whole Fails |
|
4029 |
|
4030 // Restore the orignal input string length, which had been truncated |
|
4031 // inorder to pin the end of the lookbehind match |
|
4032 // to the position being looked-behind. |
|
4033 int64_t originalInputLen = fData[opValue+3]; |
|
4034 U_ASSERT(originalInputLen >= fActiveLimit); |
|
4035 U_ASSERT(originalInputLen <= fInputLength); |
|
4036 fActiveLimit = originalInputLen; |
|
4037 |
|
4038 // Restore original stack position, discarding any state saved |
|
4039 // by the successful pattern match. |
|
4040 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
4041 int32_t newStackSize = (int32_t)fData[opValue]; |
|
4042 U_ASSERT(fStack->size() > newStackSize); |
|
4043 fStack->setSize(newStackSize); |
|
4044 |
|
4045 // FAIL, which will take control back to someplace |
|
4046 // prior to entering the look-behind test. |
|
4047 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4048 } |
|
4049 break; |
|
4050 |
|
4051 |
|
4052 case URX_LOOP_SR_I: |
|
4053 // Loop Initialization for the optimized implementation of |
|
4054 // [some character set]* |
|
4055 // This op scans through all matching input. |
|
4056 // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
|
4057 { |
|
4058 U_ASSERT(opValue > 0 && opValue < sets->size()); |
|
4059 Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
|
4060 UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); |
|
4061 |
|
4062 // Loop through input, until either the input is exhausted or |
|
4063 // we reach a character that is not a member of the set. |
|
4064 int64_t ix = fp->fInputIdx; |
|
4065 UTEXT_SETNATIVEINDEX(fInputText, ix); |
|
4066 for (;;) { |
|
4067 if (ix >= fActiveLimit) { |
|
4068 fHitEnd = TRUE; |
|
4069 break; |
|
4070 } |
|
4071 UChar32 c = UTEXT_NEXT32(fInputText); |
|
4072 if (c<256) { |
|
4073 if (s8->contains(c) == FALSE) { |
|
4074 break; |
|
4075 } |
|
4076 } else { |
|
4077 if (s->contains(c) == FALSE) { |
|
4078 break; |
|
4079 } |
|
4080 } |
|
4081 ix = UTEXT_GETNATIVEINDEX(fInputText); |
|
4082 } |
|
4083 |
|
4084 // If there were no matching characters, skip over the loop altogether. |
|
4085 // The loop doesn't run at all, a * op always succeeds. |
|
4086 if (ix == fp->fInputIdx) { |
|
4087 fp->fPatIdx++; // skip the URX_LOOP_C op. |
|
4088 break; |
|
4089 } |
|
4090 |
|
4091 // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
|
4092 // must follow. It's operand is the stack location |
|
4093 // that holds the starting input index for the match of this [set]* |
|
4094 int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
|
4095 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
|
4096 int32_t stackLoc = URX_VAL(loopcOp); |
|
4097 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
|
4098 fp->fExtra[stackLoc] = fp->fInputIdx; |
|
4099 fp->fInputIdx = ix; |
|
4100 |
|
4101 // Save State to the URX_LOOP_C op that follows this one, |
|
4102 // so that match failures in the following code will return to there. |
|
4103 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
|
4104 fp = StateSave(fp, fp->fPatIdx, status); |
|
4105 fp->fPatIdx++; |
|
4106 } |
|
4107 break; |
|
4108 |
|
4109 |
|
4110 case URX_LOOP_DOT_I: |
|
4111 // Loop Initialization for the optimized implementation of .* |
|
4112 // This op scans through all remaining input. |
|
4113 // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
|
4114 { |
|
4115 // Loop through input until the input is exhausted (we reach an end-of-line) |
|
4116 // In DOTALL mode, we can just go straight to the end of the input. |
|
4117 int64_t ix; |
|
4118 if ((opValue & 1) == 1) { |
|
4119 // Dot-matches-All mode. Jump straight to the end of the string. |
|
4120 ix = fActiveLimit; |
|
4121 fHitEnd = TRUE; |
|
4122 } else { |
|
4123 // NOT DOT ALL mode. Line endings do not match '.' |
|
4124 // Scan forward until a line ending or end of input. |
|
4125 ix = fp->fInputIdx; |
|
4126 UTEXT_SETNATIVEINDEX(fInputText, ix); |
|
4127 for (;;) { |
|
4128 if (ix >= fActiveLimit) { |
|
4129 fHitEnd = TRUE; |
|
4130 break; |
|
4131 } |
|
4132 UChar32 c = UTEXT_NEXT32(fInputText); |
|
4133 if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s |
|
4134 if ((c == 0x0a) || // 0x0a is newline in both modes. |
|
4135 (((opValue & 2) == 0) && // IF not UNIX_LINES mode |
|
4136 (c<=0x0d && c>=0x0a)) || c==0x85 ||c==0x2028 || c==0x2029) { |
|
4137 // char is a line ending. Exit the scanning loop. |
|
4138 break; |
|
4139 } |
|
4140 } |
|
4141 ix = UTEXT_GETNATIVEINDEX(fInputText); |
|
4142 } |
|
4143 } |
|
4144 |
|
4145 // If there were no matching characters, skip over the loop altogether. |
|
4146 // The loop doesn't run at all, a * op always succeeds. |
|
4147 if (ix == fp->fInputIdx) { |
|
4148 fp->fPatIdx++; // skip the URX_LOOP_C op. |
|
4149 break; |
|
4150 } |
|
4151 |
|
4152 // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
|
4153 // must follow. It's operand is the stack location |
|
4154 // that holds the starting input index for the match of this .* |
|
4155 int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
|
4156 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
|
4157 int32_t stackLoc = URX_VAL(loopcOp); |
|
4158 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
|
4159 fp->fExtra[stackLoc] = fp->fInputIdx; |
|
4160 fp->fInputIdx = ix; |
|
4161 |
|
4162 // Save State to the URX_LOOP_C op that follows this one, |
|
4163 // so that match failures in the following code will return to there. |
|
4164 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
|
4165 fp = StateSave(fp, fp->fPatIdx, status); |
|
4166 fp->fPatIdx++; |
|
4167 } |
|
4168 break; |
|
4169 |
|
4170 |
|
4171 case URX_LOOP_C: |
|
4172 { |
|
4173 U_ASSERT(opValue>=0 && opValue<fFrameSize); |
|
4174 backSearchIndex = fp->fExtra[opValue]; |
|
4175 U_ASSERT(backSearchIndex <= fp->fInputIdx); |
|
4176 if (backSearchIndex == fp->fInputIdx) { |
|
4177 // We've backed up the input idx to the point that the loop started. |
|
4178 // The loop is done. Leave here without saving state. |
|
4179 // Subsequent failures won't come back here. |
|
4180 break; |
|
4181 } |
|
4182 // Set up for the next iteration of the loop, with input index |
|
4183 // backed up by one from the last time through, |
|
4184 // and a state save to this instruction in case the following code fails again. |
|
4185 // (We're going backwards because this loop emulates stack unwinding, not |
|
4186 // the initial scan forward.) |
|
4187 U_ASSERT(fp->fInputIdx > 0); |
|
4188 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
4189 UChar32 prevC = UTEXT_PREVIOUS32(fInputText); |
|
4190 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
4191 |
|
4192 UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText); |
|
4193 if (prevC == 0x0a && |
|
4194 fp->fInputIdx > backSearchIndex && |
|
4195 twoPrevC == 0x0d) { |
|
4196 int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; |
|
4197 if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { |
|
4198 // .*, stepping back over CRLF pair. |
|
4199 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
|
4200 } |
|
4201 } |
|
4202 |
|
4203 |
|
4204 fp = StateSave(fp, fp->fPatIdx-1, status); |
|
4205 } |
|
4206 break; |
|
4207 |
|
4208 |
|
4209 |
|
4210 default: |
|
4211 // Trouble. The compiled pattern contains an entry with an |
|
4212 // unrecognized type tag. |
|
4213 U_ASSERT(FALSE); |
|
4214 } |
|
4215 |
|
4216 if (U_FAILURE(status)) { |
|
4217 isMatch = FALSE; |
|
4218 break; |
|
4219 } |
|
4220 } |
|
4221 |
|
4222 breakFromLoop: |
|
4223 fMatch = isMatch; |
|
4224 if (isMatch) { |
|
4225 fLastMatchEnd = fMatchEnd; |
|
4226 fMatchStart = startIdx; |
|
4227 fMatchEnd = fp->fInputIdx; |
|
4228 if (fTraceDebug) { |
|
4229 REGEX_RUN_DEBUG_PRINTF(("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd)); |
|
4230 } |
|
4231 } |
|
4232 else |
|
4233 { |
|
4234 if (fTraceDebug) { |
|
4235 REGEX_RUN_DEBUG_PRINTF(("No match\n\n")); |
|
4236 } |
|
4237 } |
|
4238 |
|
4239 fFrame = fp; // The active stack frame when the engine stopped. |
|
4240 // Contains the capture group results that we need to |
|
4241 // access later. |
|
4242 return; |
|
4243 } |
|
4244 |
|
4245 |
|
4246 //-------------------------------------------------------------------------------- |
|
4247 // |
|
4248 // MatchChunkAt This is the actual matching engine. Like MatchAt, but with the |
|
4249 // assumption that the entire string is available in the UText's |
|
4250 // chunk buffer. For now, that means we can use int32_t indexes, |
|
4251 // except for anything that needs to be saved (like group starts |
|
4252 // and ends). |
|
4253 // |
|
4254 // startIdx: begin matching a this index. |
|
4255 // toEnd: if true, match must extend to end of the input region |
|
4256 // |
|
4257 //-------------------------------------------------------------------------------- |
|
4258 void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) { |
|
4259 UBool isMatch = FALSE; // True if the we have a match. |
|
4260 |
|
4261 int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards |
|
4262 |
|
4263 int32_t op; // Operation from the compiled pattern, split into |
|
4264 int32_t opType; // the opcode |
|
4265 int32_t opValue; // and the operand value. |
|
4266 |
|
4267 #ifdef REGEX_RUN_DEBUG |
|
4268 if (fTraceDebug) |
|
4269 { |
|
4270 printf("MatchAt(startIdx=%d)\n", startIdx); |
|
4271 printf("Original Pattern: "); |
|
4272 UChar32 c = utext_next32From(fPattern->fPattern, 0); |
|
4273 while (c != U_SENTINEL) { |
|
4274 if (c<32 || c>256) { |
|
4275 c = '.'; |
|
4276 } |
|
4277 REGEX_DUMP_DEBUG_PRINTF(("%c", c)); |
|
4278 |
|
4279 c = UTEXT_NEXT32(fPattern->fPattern); |
|
4280 } |
|
4281 printf("\n"); |
|
4282 printf("Input String: "); |
|
4283 c = utext_next32From(fInputText, 0); |
|
4284 while (c != U_SENTINEL) { |
|
4285 if (c<32 || c>256) { |
|
4286 c = '.'; |
|
4287 } |
|
4288 printf("%c", c); |
|
4289 |
|
4290 c = UTEXT_NEXT32(fInputText); |
|
4291 } |
|
4292 printf("\n"); |
|
4293 printf("\n"); |
|
4294 } |
|
4295 #endif |
|
4296 |
|
4297 if (U_FAILURE(status)) { |
|
4298 return; |
|
4299 } |
|
4300 |
|
4301 // Cache frequently referenced items from the compiled pattern |
|
4302 // |
|
4303 int64_t *pat = fPattern->fCompiledPat->getBuffer(); |
|
4304 |
|
4305 const UChar *litText = fPattern->fLiteralText.getBuffer(); |
|
4306 UVector *sets = fPattern->fSets; |
|
4307 |
|
4308 const UChar *inputBuf = fInputText->chunkContents; |
|
4309 |
|
4310 fFrameSize = fPattern->fFrameSize; |
|
4311 REStackFrame *fp = resetStack(); |
|
4312 |
|
4313 fp->fPatIdx = 0; |
|
4314 fp->fInputIdx = startIdx; |
|
4315 |
|
4316 // Zero out the pattern's static data |
|
4317 int32_t i; |
|
4318 for (i = 0; i<fPattern->fDataSize; i++) { |
|
4319 fData[i] = 0; |
|
4320 } |
|
4321 |
|
4322 // |
|
4323 // Main loop for interpreting the compiled pattern. |
|
4324 // One iteration of the loop per pattern operation performed. |
|
4325 // |
|
4326 for (;;) { |
|
4327 #if 0 |
|
4328 if (_heapchk() != _HEAPOK) { |
|
4329 fprintf(stderr, "Heap Trouble\n"); |
|
4330 } |
|
4331 #endif |
|
4332 |
|
4333 op = (int32_t)pat[fp->fPatIdx]; |
|
4334 opType = URX_TYPE(op); |
|
4335 opValue = URX_VAL(op); |
|
4336 #ifdef REGEX_RUN_DEBUG |
|
4337 if (fTraceDebug) { |
|
4338 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
|
4339 printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, |
|
4340 UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); |
|
4341 fPattern->dumpOp(fp->fPatIdx); |
|
4342 } |
|
4343 #endif |
|
4344 fp->fPatIdx++; |
|
4345 |
|
4346 switch (opType) { |
|
4347 |
|
4348 |
|
4349 case URX_NOP: |
|
4350 break; |
|
4351 |
|
4352 |
|
4353 case URX_BACKTRACK: |
|
4354 // Force a backtrack. In some circumstances, the pattern compiler |
|
4355 // will notice that the pattern can't possibly match anything, and will |
|
4356 // emit one of these at that point. |
|
4357 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4358 break; |
|
4359 |
|
4360 |
|
4361 case URX_ONECHAR: |
|
4362 if (fp->fInputIdx < fActiveLimit) { |
|
4363 UChar32 c; |
|
4364 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4365 if (c == opValue) { |
|
4366 break; |
|
4367 } |
|
4368 } else { |
|
4369 fHitEnd = TRUE; |
|
4370 } |
|
4371 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4372 break; |
|
4373 |
|
4374 |
|
4375 case URX_STRING: |
|
4376 { |
|
4377 // Test input against a literal string. |
|
4378 // Strings require two slots in the compiled pattern, one for the |
|
4379 // offset to the string text, and one for the length. |
|
4380 int32_t stringStartIdx = opValue; |
|
4381 int32_t stringLen; |
|
4382 |
|
4383 op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand |
|
4384 fp->fPatIdx++; |
|
4385 opType = URX_TYPE(op); |
|
4386 stringLen = URX_VAL(op); |
|
4387 U_ASSERT(opType == URX_STRING_LEN); |
|
4388 U_ASSERT(stringLen >= 2); |
|
4389 |
|
4390 const UChar * pInp = inputBuf + fp->fInputIdx; |
|
4391 const UChar * pInpLimit = inputBuf + fActiveLimit; |
|
4392 const UChar * pPat = litText+stringStartIdx; |
|
4393 const UChar * pEnd = pInp + stringLen; |
|
4394 UBool success = TRUE; |
|
4395 while (pInp < pEnd) { |
|
4396 if (pInp >= pInpLimit) { |
|
4397 fHitEnd = TRUE; |
|
4398 success = FALSE; |
|
4399 break; |
|
4400 } |
|
4401 if (*pInp++ != *pPat++) { |
|
4402 success = FALSE; |
|
4403 break; |
|
4404 } |
|
4405 } |
|
4406 |
|
4407 if (success) { |
|
4408 fp->fInputIdx += stringLen; |
|
4409 } else { |
|
4410 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4411 } |
|
4412 } |
|
4413 break; |
|
4414 |
|
4415 |
|
4416 case URX_STATE_SAVE: |
|
4417 fp = StateSave(fp, opValue, status); |
|
4418 break; |
|
4419 |
|
4420 |
|
4421 case URX_END: |
|
4422 // The match loop will exit via this path on a successful match, |
|
4423 // when we reach the end of the pattern. |
|
4424 if (toEnd && fp->fInputIdx != fActiveLimit) { |
|
4425 // The pattern matched, but not to the end of input. Try some more. |
|
4426 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4427 break; |
|
4428 } |
|
4429 isMatch = TRUE; |
|
4430 goto breakFromLoop; |
|
4431 |
|
4432 // Start and End Capture stack frame variables are laid out out like this: |
|
4433 // fp->fExtra[opValue] - The start of a completed capture group |
|
4434 // opValue+1 - The end of a completed capture group |
|
4435 // opValue+2 - the start of a capture group whose end |
|
4436 // has not yet been reached (and might not ever be). |
|
4437 case URX_START_CAPTURE: |
|
4438 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
|
4439 fp->fExtra[opValue+2] = fp->fInputIdx; |
|
4440 break; |
|
4441 |
|
4442 |
|
4443 case URX_END_CAPTURE: |
|
4444 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
|
4445 U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. |
|
4446 fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. |
|
4447 fp->fExtra[opValue+1] = fp->fInputIdx; // End position |
|
4448 U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); |
|
4449 break; |
|
4450 |
|
4451 |
|
4452 case URX_DOLLAR: // $, test for End of line |
|
4453 // or for position before new line at end of input |
|
4454 if (fp->fInputIdx < fAnchorLimit-2) { |
|
4455 // We are no where near the end of input. Fail. |
|
4456 // This is the common case. Keep it first. |
|
4457 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4458 break; |
|
4459 } |
|
4460 if (fp->fInputIdx >= fAnchorLimit) { |
|
4461 // We really are at the end of input. Success. |
|
4462 fHitEnd = TRUE; |
|
4463 fRequireEnd = TRUE; |
|
4464 break; |
|
4465 } |
|
4466 |
|
4467 // If we are positioned just before a new-line that is located at the |
|
4468 // end of input, succeed. |
|
4469 if (fp->fInputIdx == fAnchorLimit-1) { |
|
4470 UChar32 c; |
|
4471 U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c); |
|
4472 |
|
4473 if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) { |
|
4474 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { |
|
4475 // At new-line at end of input. Success |
|
4476 fHitEnd = TRUE; |
|
4477 fRequireEnd = TRUE; |
|
4478 break; |
|
4479 } |
|
4480 } |
|
4481 } else if (fp->fInputIdx == fAnchorLimit-2 && |
|
4482 inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) { |
|
4483 fHitEnd = TRUE; |
|
4484 fRequireEnd = TRUE; |
|
4485 break; // At CR/LF at end of input. Success |
|
4486 } |
|
4487 |
|
4488 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4489 |
|
4490 break; |
|
4491 |
|
4492 |
|
4493 case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. |
|
4494 if (fp->fInputIdx >= fAnchorLimit-1) { |
|
4495 // Either at the last character of input, or off the end. |
|
4496 if (fp->fInputIdx == fAnchorLimit-1) { |
|
4497 // At last char of input. Success if it's a new line. |
|
4498 if (inputBuf[fp->fInputIdx] == 0x0a) { |
|
4499 fHitEnd = TRUE; |
|
4500 fRequireEnd = TRUE; |
|
4501 break; |
|
4502 } |
|
4503 } else { |
|
4504 // Off the end of input. Success. |
|
4505 fHitEnd = TRUE; |
|
4506 fRequireEnd = TRUE; |
|
4507 break; |
|
4508 } |
|
4509 } |
|
4510 |
|
4511 // Not at end of input. Back-track out. |
|
4512 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4513 break; |
|
4514 |
|
4515 |
|
4516 case URX_DOLLAR_M: // $, test for End of line in multi-line mode |
|
4517 { |
|
4518 if (fp->fInputIdx >= fAnchorLimit) { |
|
4519 // We really are at the end of input. Success. |
|
4520 fHitEnd = TRUE; |
|
4521 fRequireEnd = TRUE; |
|
4522 break; |
|
4523 } |
|
4524 // If we are positioned just before a new-line, succeed. |
|
4525 // It makes no difference where the new-line is within the input. |
|
4526 UChar32 c = inputBuf[fp->fInputIdx]; |
|
4527 if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) { |
|
4528 // At a line end, except for the odd chance of being in the middle of a CR/LF sequence |
|
4529 // In multi-line mode, hitting a new-line just before the end of input does not |
|
4530 // set the hitEnd or requireEnd flags |
|
4531 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { |
|
4532 break; |
|
4533 } |
|
4534 } |
|
4535 // not at a new line. Fail. |
|
4536 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4537 } |
|
4538 break; |
|
4539 |
|
4540 |
|
4541 case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode |
|
4542 { |
|
4543 if (fp->fInputIdx >= fAnchorLimit) { |
|
4544 // We really are at the end of input. Success. |
|
4545 fHitEnd = TRUE; |
|
4546 fRequireEnd = TRUE; // Java set requireEnd in this case, even though |
|
4547 break; // adding a new-line would not lose the match. |
|
4548 } |
|
4549 // If we are not positioned just before a new-line, the test fails; backtrack out. |
|
4550 // It makes no difference where the new-line is within the input. |
|
4551 if (inputBuf[fp->fInputIdx] != 0x0a) { |
|
4552 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4553 } |
|
4554 } |
|
4555 break; |
|
4556 |
|
4557 |
|
4558 case URX_CARET: // ^, test for start of line |
|
4559 if (fp->fInputIdx != fAnchorStart) { |
|
4560 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4561 } |
|
4562 break; |
|
4563 |
|
4564 |
|
4565 case URX_CARET_M: // ^, test for start of line in mulit-line mode |
|
4566 { |
|
4567 if (fp->fInputIdx == fAnchorStart) { |
|
4568 // We are at the start input. Success. |
|
4569 break; |
|
4570 } |
|
4571 // Check whether character just before the current pos is a new-line |
|
4572 // unless we are at the end of input |
|
4573 UChar c = inputBuf[fp->fInputIdx - 1]; |
|
4574 if ((fp->fInputIdx < fAnchorLimit) && |
|
4575 ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { |
|
4576 // It's a new-line. ^ is true. Success. |
|
4577 // TODO: what should be done with positions between a CR and LF? |
|
4578 break; |
|
4579 } |
|
4580 // Not at the start of a line. Fail. |
|
4581 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4582 } |
|
4583 break; |
|
4584 |
|
4585 |
|
4586 case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode |
|
4587 { |
|
4588 U_ASSERT(fp->fInputIdx >= fAnchorStart); |
|
4589 if (fp->fInputIdx <= fAnchorStart) { |
|
4590 // We are at the start input. Success. |
|
4591 break; |
|
4592 } |
|
4593 // Check whether character just before the current pos is a new-line |
|
4594 U_ASSERT(fp->fInputIdx <= fAnchorLimit); |
|
4595 UChar c = inputBuf[fp->fInputIdx - 1]; |
|
4596 if (c != 0x0a) { |
|
4597 // Not at the start of a line. Back-track out. |
|
4598 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4599 } |
|
4600 } |
|
4601 break; |
|
4602 |
|
4603 case URX_BACKSLASH_B: // Test for word boundaries |
|
4604 { |
|
4605 UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx); |
|
4606 success ^= (UBool)(opValue != 0); // flip sense for \B |
|
4607 if (!success) { |
|
4608 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4609 } |
|
4610 } |
|
4611 break; |
|
4612 |
|
4613 |
|
4614 case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style |
|
4615 { |
|
4616 UBool success = isUWordBoundary(fp->fInputIdx); |
|
4617 success ^= (UBool)(opValue != 0); // flip sense for \B |
|
4618 if (!success) { |
|
4619 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4620 } |
|
4621 } |
|
4622 break; |
|
4623 |
|
4624 |
|
4625 case URX_BACKSLASH_D: // Test for decimal digit |
|
4626 { |
|
4627 if (fp->fInputIdx >= fActiveLimit) { |
|
4628 fHitEnd = TRUE; |
|
4629 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4630 break; |
|
4631 } |
|
4632 |
|
4633 UChar32 c; |
|
4634 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4635 int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. |
|
4636 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); |
|
4637 success ^= (UBool)(opValue != 0); // flip sense for \D |
|
4638 if (!success) { |
|
4639 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4640 } |
|
4641 } |
|
4642 break; |
|
4643 |
|
4644 |
|
4645 case URX_BACKSLASH_G: // Test for position at end of previous match |
|
4646 if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { |
|
4647 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4648 } |
|
4649 break; |
|
4650 |
|
4651 |
|
4652 case URX_BACKSLASH_X: |
|
4653 // Match a Grapheme, as defined by Unicode TR 29. |
|
4654 // Differs slightly from Perl, which consumes combining marks independently |
|
4655 // of context. |
|
4656 { |
|
4657 |
|
4658 // Fail if at end of input |
|
4659 if (fp->fInputIdx >= fActiveLimit) { |
|
4660 fHitEnd = TRUE; |
|
4661 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4662 break; |
|
4663 } |
|
4664 |
|
4665 // Examine (and consume) the current char. |
|
4666 // Dispatch into a little state machine, based on the char. |
|
4667 UChar32 c; |
|
4668 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4669 UnicodeSet **sets = fPattern->fStaticSets; |
|
4670 if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; |
|
4671 if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; |
|
4672 if (sets[URX_GC_L]->contains(c)) goto GC_L; |
|
4673 if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
|
4674 if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
|
4675 if (sets[URX_GC_V]->contains(c)) goto GC_V; |
|
4676 if (sets[URX_GC_T]->contains(c)) goto GC_T; |
|
4677 goto GC_Extend; |
|
4678 |
|
4679 |
|
4680 |
|
4681 GC_L: |
|
4682 if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
|
4683 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4684 if (sets[URX_GC_L]->contains(c)) goto GC_L; |
|
4685 if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
|
4686 if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
|
4687 if (sets[URX_GC_V]->contains(c)) goto GC_V; |
|
4688 U16_PREV(inputBuf, 0, fp->fInputIdx, c); |
|
4689 goto GC_Extend; |
|
4690 |
|
4691 GC_V: |
|
4692 if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
|
4693 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4694 if (sets[URX_GC_V]->contains(c)) goto GC_V; |
|
4695 if (sets[URX_GC_T]->contains(c)) goto GC_T; |
|
4696 U16_PREV(inputBuf, 0, fp->fInputIdx, c); |
|
4697 goto GC_Extend; |
|
4698 |
|
4699 GC_T: |
|
4700 if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
|
4701 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4702 if (sets[URX_GC_T]->contains(c)) goto GC_T; |
|
4703 U16_PREV(inputBuf, 0, fp->fInputIdx, c); |
|
4704 goto GC_Extend; |
|
4705 |
|
4706 GC_Extend: |
|
4707 // Combining characters are consumed here |
|
4708 for (;;) { |
|
4709 if (fp->fInputIdx >= fActiveLimit) { |
|
4710 break; |
|
4711 } |
|
4712 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4713 if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { |
|
4714 U16_BACK_1(inputBuf, 0, fp->fInputIdx); |
|
4715 break; |
|
4716 } |
|
4717 } |
|
4718 goto GC_Done; |
|
4719 |
|
4720 GC_Control: |
|
4721 // Most control chars stand alone (don't combine with combining chars), |
|
4722 // except for that CR/LF sequence is a single grapheme cluster. |
|
4723 if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) { |
|
4724 fp->fInputIdx++; |
|
4725 } |
|
4726 |
|
4727 GC_Done: |
|
4728 if (fp->fInputIdx >= fActiveLimit) { |
|
4729 fHitEnd = TRUE; |
|
4730 } |
|
4731 break; |
|
4732 } |
|
4733 |
|
4734 |
|
4735 |
|
4736 |
|
4737 case URX_BACKSLASH_Z: // Test for end of Input |
|
4738 if (fp->fInputIdx < fAnchorLimit) { |
|
4739 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4740 } else { |
|
4741 fHitEnd = TRUE; |
|
4742 fRequireEnd = TRUE; |
|
4743 } |
|
4744 break; |
|
4745 |
|
4746 |
|
4747 |
|
4748 case URX_STATIC_SETREF: |
|
4749 { |
|
4750 // Test input character against one of the predefined sets |
|
4751 // (Word Characters, for example) |
|
4752 // The high bit of the op value is a flag for the match polarity. |
|
4753 // 0: success if input char is in set. |
|
4754 // 1: success if input char is not in set. |
|
4755 if (fp->fInputIdx >= fActiveLimit) { |
|
4756 fHitEnd = TRUE; |
|
4757 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4758 break; |
|
4759 } |
|
4760 |
|
4761 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); |
|
4762 opValue &= ~URX_NEG_SET; |
|
4763 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
|
4764 |
|
4765 UChar32 c; |
|
4766 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4767 if (c < 256) { |
|
4768 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
|
4769 if (s8->contains(c)) { |
|
4770 success = !success; |
|
4771 } |
|
4772 } else { |
|
4773 const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
|
4774 if (s->contains(c)) { |
|
4775 success = !success; |
|
4776 } |
|
4777 } |
|
4778 if (!success) { |
|
4779 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4780 } |
|
4781 } |
|
4782 break; |
|
4783 |
|
4784 |
|
4785 case URX_STAT_SETREF_N: |
|
4786 { |
|
4787 // Test input character for NOT being a member of one of |
|
4788 // the predefined sets (Word Characters, for example) |
|
4789 if (fp->fInputIdx >= fActiveLimit) { |
|
4790 fHitEnd = TRUE; |
|
4791 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4792 break; |
|
4793 } |
|
4794 |
|
4795 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
|
4796 |
|
4797 UChar32 c; |
|
4798 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4799 if (c < 256) { |
|
4800 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
|
4801 if (s8->contains(c) == FALSE) { |
|
4802 break; |
|
4803 } |
|
4804 } else { |
|
4805 const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
|
4806 if (s->contains(c) == FALSE) { |
|
4807 break; |
|
4808 } |
|
4809 } |
|
4810 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4811 } |
|
4812 break; |
|
4813 |
|
4814 |
|
4815 case URX_SETREF: |
|
4816 { |
|
4817 if (fp->fInputIdx >= fActiveLimit) { |
|
4818 fHitEnd = TRUE; |
|
4819 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4820 break; |
|
4821 } |
|
4822 |
|
4823 U_ASSERT(opValue > 0 && opValue < sets->size()); |
|
4824 |
|
4825 // There is input left. Pick up one char and test it for set membership. |
|
4826 UChar32 c; |
|
4827 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4828 if (c<256) { |
|
4829 Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
|
4830 if (s8->contains(c)) { |
|
4831 // The character is in the set. A Match. |
|
4832 break; |
|
4833 } |
|
4834 } else { |
|
4835 UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); |
|
4836 if (s->contains(c)) { |
|
4837 // The character is in the set. A Match. |
|
4838 break; |
|
4839 } |
|
4840 } |
|
4841 |
|
4842 // the character wasn't in the set. |
|
4843 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4844 } |
|
4845 break; |
|
4846 |
|
4847 |
|
4848 case URX_DOTANY: |
|
4849 { |
|
4850 // . matches anything, but stops at end-of-line. |
|
4851 if (fp->fInputIdx >= fActiveLimit) { |
|
4852 // At end of input. Match failed. Backtrack out. |
|
4853 fHitEnd = TRUE; |
|
4854 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4855 break; |
|
4856 } |
|
4857 |
|
4858 // There is input left. Advance over one char, unless we've hit end-of-line |
|
4859 UChar32 c; |
|
4860 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4861 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible |
|
4862 ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { |
|
4863 // End of line in normal mode. . does not match. |
|
4864 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4865 break; |
|
4866 } |
|
4867 } |
|
4868 break; |
|
4869 |
|
4870 |
|
4871 case URX_DOTANY_ALL: |
|
4872 { |
|
4873 // . in dot-matches-all (including new lines) mode |
|
4874 if (fp->fInputIdx >= fActiveLimit) { |
|
4875 // At end of input. Match failed. Backtrack out. |
|
4876 fHitEnd = TRUE; |
|
4877 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4878 break; |
|
4879 } |
|
4880 |
|
4881 // There is input left. Advance over one char, except if we are |
|
4882 // at a cr/lf, advance over both of them. |
|
4883 UChar32 c; |
|
4884 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4885 if (c==0x0d && fp->fInputIdx < fActiveLimit) { |
|
4886 // In the case of a CR/LF, we need to advance over both. |
|
4887 if (inputBuf[fp->fInputIdx] == 0x0a) { |
|
4888 U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit); |
|
4889 } |
|
4890 } |
|
4891 } |
|
4892 break; |
|
4893 |
|
4894 |
|
4895 case URX_DOTANY_UNIX: |
|
4896 { |
|
4897 // '.' operator, matches all, but stops at end-of-line. |
|
4898 // UNIX_LINES mode, so 0x0a is the only recognized line ending. |
|
4899 if (fp->fInputIdx >= fActiveLimit) { |
|
4900 // At end of input. Match failed. Backtrack out. |
|
4901 fHitEnd = TRUE; |
|
4902 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4903 break; |
|
4904 } |
|
4905 |
|
4906 // There is input left. Advance over one char, unless we've hit end-of-line |
|
4907 UChar32 c; |
|
4908 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
4909 if (c == 0x0a) { |
|
4910 // End of line in normal mode. '.' does not match the \n |
|
4911 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4912 } |
|
4913 } |
|
4914 break; |
|
4915 |
|
4916 |
|
4917 case URX_JMP: |
|
4918 fp->fPatIdx = opValue; |
|
4919 break; |
|
4920 |
|
4921 case URX_FAIL: |
|
4922 isMatch = FALSE; |
|
4923 goto breakFromLoop; |
|
4924 |
|
4925 case URX_JMP_SAV: |
|
4926 U_ASSERT(opValue < fPattern->fCompiledPat->size()); |
|
4927 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
|
4928 fp->fPatIdx = opValue; // Then JMP. |
|
4929 break; |
|
4930 |
|
4931 case URX_JMP_SAV_X: |
|
4932 // This opcode is used with (x)+, when x can match a zero length string. |
|
4933 // Same as JMP_SAV, except conditional on the match having made forward progress. |
|
4934 // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the |
|
4935 // data address of the input position at the start of the loop. |
|
4936 { |
|
4937 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); |
|
4938 int32_t stoOp = (int32_t)pat[opValue-1]; |
|
4939 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); |
|
4940 int32_t frameLoc = URX_VAL(stoOp); |
|
4941 U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); |
|
4942 int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc]; |
|
4943 U_ASSERT(prevInputIdx <= fp->fInputIdx); |
|
4944 if (prevInputIdx < fp->fInputIdx) { |
|
4945 // The match did make progress. Repeat the loop. |
|
4946 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
|
4947 fp->fPatIdx = opValue; |
|
4948 fp->fExtra[frameLoc] = fp->fInputIdx; |
|
4949 } |
|
4950 // If the input position did not advance, we do nothing here, |
|
4951 // execution will fall out of the loop. |
|
4952 } |
|
4953 break; |
|
4954 |
|
4955 case URX_CTR_INIT: |
|
4956 { |
|
4957 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
|
4958 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
|
4959 |
|
4960 // Pick up the three extra operands that CTR_INIT has, and |
|
4961 // skip the pattern location counter past |
|
4962 int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
|
4963 fp->fPatIdx += 3; |
|
4964 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
|
4965 int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
|
4966 int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
|
4967 U_ASSERT(minCount>=0); |
|
4968 U_ASSERT(maxCount>=minCount || maxCount==-1); |
|
4969 U_ASSERT(loopLoc>=fp->fPatIdx); |
|
4970 |
|
4971 if (minCount == 0) { |
|
4972 fp = StateSave(fp, loopLoc+1, status); |
|
4973 } |
|
4974 if (maxCount == -1) { |
|
4975 fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. |
|
4976 } else if (maxCount == 0) { |
|
4977 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
4978 } |
|
4979 } |
|
4980 break; |
|
4981 |
|
4982 case URX_CTR_LOOP: |
|
4983 { |
|
4984 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
|
4985 int32_t initOp = (int32_t)pat[opValue]; |
|
4986 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); |
|
4987 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
|
4988 int32_t minCount = (int32_t)pat[opValue+2]; |
|
4989 int32_t maxCount = (int32_t)pat[opValue+3]; |
|
4990 (*pCounter)++; |
|
4991 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
|
4992 U_ASSERT(*pCounter == maxCount); |
|
4993 break; |
|
4994 } |
|
4995 if (*pCounter >= minCount) { |
|
4996 if (maxCount == -1) { |
|
4997 // Loop has no hard upper bound. |
|
4998 // Check that it is progressing through the input, break if it is not. |
|
4999 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
|
5000 if (fp->fInputIdx == *pLastInputIdx) { |
|
5001 break; |
|
5002 } else { |
|
5003 *pLastInputIdx = fp->fInputIdx; |
|
5004 } |
|
5005 } |
|
5006 fp = StateSave(fp, fp->fPatIdx, status); |
|
5007 } |
|
5008 fp->fPatIdx = opValue + 4; // Loop back. |
|
5009 } |
|
5010 break; |
|
5011 |
|
5012 case URX_CTR_INIT_NG: |
|
5013 { |
|
5014 // Initialize a non-greedy loop |
|
5015 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
|
5016 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
|
5017 |
|
5018 // Pick up the three extra operands that CTR_INIT_NG has, and |
|
5019 // skip the pattern location counter past |
|
5020 int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
|
5021 fp->fPatIdx += 3; |
|
5022 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
|
5023 int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
|
5024 int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
|
5025 U_ASSERT(minCount>=0); |
|
5026 U_ASSERT(maxCount>=minCount || maxCount==-1); |
|
5027 U_ASSERT(loopLoc>fp->fPatIdx); |
|
5028 if (maxCount == -1) { |
|
5029 fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. |
|
5030 } |
|
5031 |
|
5032 if (minCount == 0) { |
|
5033 if (maxCount != 0) { |
|
5034 fp = StateSave(fp, fp->fPatIdx, status); |
|
5035 } |
|
5036 fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block |
|
5037 } |
|
5038 } |
|
5039 break; |
|
5040 |
|
5041 case URX_CTR_LOOP_NG: |
|
5042 { |
|
5043 // Non-greedy {min, max} loops |
|
5044 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
|
5045 int32_t initOp = (int32_t)pat[opValue]; |
|
5046 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); |
|
5047 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
|
5048 int32_t minCount = (int32_t)pat[opValue+2]; |
|
5049 int32_t maxCount = (int32_t)pat[opValue+3]; |
|
5050 |
|
5051 (*pCounter)++; |
|
5052 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
|
5053 // The loop has matched the maximum permitted number of times. |
|
5054 // Break out of here with no action. Matching will |
|
5055 // continue with the following pattern. |
|
5056 U_ASSERT(*pCounter == maxCount); |
|
5057 break; |
|
5058 } |
|
5059 |
|
5060 if (*pCounter < minCount) { |
|
5061 // We haven't met the minimum number of matches yet. |
|
5062 // Loop back for another one. |
|
5063 fp->fPatIdx = opValue + 4; // Loop back. |
|
5064 } else { |
|
5065 // We do have the minimum number of matches. |
|
5066 |
|
5067 // If there is no upper bound on the loop iterations, check that the input index |
|
5068 // is progressing, and stop the loop if it is not. |
|
5069 if (maxCount == -1) { |
|
5070 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
|
5071 if (fp->fInputIdx == *pLastInputIdx) { |
|
5072 break; |
|
5073 } |
|
5074 *pLastInputIdx = fp->fInputIdx; |
|
5075 } |
|
5076 |
|
5077 // Loop Continuation: we will fall into the pattern following the loop |
|
5078 // (non-greedy, don't execute loop body first), but first do |
|
5079 // a state save to the top of the loop, so that a match failure |
|
5080 // in the following pattern will try another iteration of the loop. |
|
5081 fp = StateSave(fp, opValue + 4, status); |
|
5082 } |
|
5083 } |
|
5084 break; |
|
5085 |
|
5086 case URX_STO_SP: |
|
5087 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
|
5088 fData[opValue] = fStack->size(); |
|
5089 break; |
|
5090 |
|
5091 case URX_LD_SP: |
|
5092 { |
|
5093 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
|
5094 int32_t newStackSize = (int32_t)fData[opValue]; |
|
5095 U_ASSERT(newStackSize <= fStack->size()); |
|
5096 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
|
5097 if (newFP == (int64_t *)fp) { |
|
5098 break; |
|
5099 } |
|
5100 int32_t i; |
|
5101 for (i=0; i<fFrameSize; i++) { |
|
5102 newFP[i] = ((int64_t *)fp)[i]; |
|
5103 } |
|
5104 fp = (REStackFrame *)newFP; |
|
5105 fStack->setSize(newStackSize); |
|
5106 } |
|
5107 break; |
|
5108 |
|
5109 case URX_BACKREF: |
|
5110 { |
|
5111 U_ASSERT(opValue < fFrameSize); |
|
5112 int64_t groupStartIdx = fp->fExtra[opValue]; |
|
5113 int64_t groupEndIdx = fp->fExtra[opValue+1]; |
|
5114 U_ASSERT(groupStartIdx <= groupEndIdx); |
|
5115 int64_t inputIndex = fp->fInputIdx; |
|
5116 if (groupStartIdx < 0) { |
|
5117 // This capture group has not participated in the match thus far, |
|
5118 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
|
5119 break; |
|
5120 } |
|
5121 UBool success = TRUE; |
|
5122 for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) { |
|
5123 if (inputIndex >= fActiveLimit) { |
|
5124 success = FALSE; |
|
5125 fHitEnd = TRUE; |
|
5126 break; |
|
5127 } |
|
5128 if (inputBuf[groupIndex] != inputBuf[inputIndex]) { |
|
5129 success = FALSE; |
|
5130 break; |
|
5131 } |
|
5132 } |
|
5133 if (success) { |
|
5134 fp->fInputIdx = inputIndex; |
|
5135 } else { |
|
5136 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5137 } |
|
5138 } |
|
5139 break; |
|
5140 |
|
5141 case URX_BACKREF_I: |
|
5142 { |
|
5143 U_ASSERT(opValue < fFrameSize); |
|
5144 int64_t groupStartIdx = fp->fExtra[opValue]; |
|
5145 int64_t groupEndIdx = fp->fExtra[opValue+1]; |
|
5146 U_ASSERT(groupStartIdx <= groupEndIdx); |
|
5147 if (groupStartIdx < 0) { |
|
5148 // This capture group has not participated in the match thus far, |
|
5149 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
|
5150 break; |
|
5151 } |
|
5152 CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx); |
|
5153 CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit); |
|
5154 |
|
5155 // Note: if the capture group match was of an empty string the backref |
|
5156 // match succeeds. Verified by testing: Perl matches succeed |
|
5157 // in this case, so we do too. |
|
5158 |
|
5159 UBool success = TRUE; |
|
5160 for (;;) { |
|
5161 UChar32 captureGroupChar = captureGroupItr.next(); |
|
5162 if (captureGroupChar == U_SENTINEL) { |
|
5163 success = TRUE; |
|
5164 break; |
|
5165 } |
|
5166 UChar32 inputChar = inputItr.next(); |
|
5167 if (inputChar == U_SENTINEL) { |
|
5168 success = FALSE; |
|
5169 fHitEnd = TRUE; |
|
5170 break; |
|
5171 } |
|
5172 if (inputChar != captureGroupChar) { |
|
5173 success = FALSE; |
|
5174 break; |
|
5175 } |
|
5176 } |
|
5177 |
|
5178 if (success && inputItr.inExpansion()) { |
|
5179 // We otained a match by consuming part of a string obtained from |
|
5180 // case-folding a single code point of the input text. |
|
5181 // This does not count as an overall match. |
|
5182 success = FALSE; |
|
5183 } |
|
5184 |
|
5185 if (success) { |
|
5186 fp->fInputIdx = inputItr.getIndex(); |
|
5187 } else { |
|
5188 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5189 } |
|
5190 } |
|
5191 break; |
|
5192 |
|
5193 case URX_STO_INP_LOC: |
|
5194 { |
|
5195 U_ASSERT(opValue >= 0 && opValue < fFrameSize); |
|
5196 fp->fExtra[opValue] = fp->fInputIdx; |
|
5197 } |
|
5198 break; |
|
5199 |
|
5200 case URX_JMPX: |
|
5201 { |
|
5202 int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
|
5203 fp->fPatIdx += 1; |
|
5204 int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); |
|
5205 U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); |
|
5206 int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc]; |
|
5207 U_ASSERT(savedInputIdx <= fp->fInputIdx); |
|
5208 if (savedInputIdx < fp->fInputIdx) { |
|
5209 fp->fPatIdx = opValue; // JMP |
|
5210 } else { |
|
5211 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. |
|
5212 } |
|
5213 } |
|
5214 break; |
|
5215 |
|
5216 case URX_LA_START: |
|
5217 { |
|
5218 // Entering a lookahead block. |
|
5219 // Save Stack Ptr, Input Pos. |
|
5220 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5221 fData[opValue] = fStack->size(); |
|
5222 fData[opValue+1] = fp->fInputIdx; |
|
5223 fActiveStart = fLookStart; // Set the match region change for |
|
5224 fActiveLimit = fLookLimit; // transparent bounds. |
|
5225 } |
|
5226 break; |
|
5227 |
|
5228 case URX_LA_END: |
|
5229 { |
|
5230 // Leaving a look-ahead block. |
|
5231 // restore Stack Ptr, Input Pos to positions they had on entry to block. |
|
5232 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5233 int32_t stackSize = fStack->size(); |
|
5234 int32_t newStackSize = (int32_t)fData[opValue]; |
|
5235 U_ASSERT(stackSize >= newStackSize); |
|
5236 if (stackSize > newStackSize) { |
|
5237 // Copy the current top frame back to the new (cut back) top frame. |
|
5238 // This makes the capture groups from within the look-ahead |
|
5239 // expression available. |
|
5240 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
|
5241 int32_t i; |
|
5242 for (i=0; i<fFrameSize; i++) { |
|
5243 newFP[i] = ((int64_t *)fp)[i]; |
|
5244 } |
|
5245 fp = (REStackFrame *)newFP; |
|
5246 fStack->setSize(newStackSize); |
|
5247 } |
|
5248 fp->fInputIdx = fData[opValue+1]; |
|
5249 |
|
5250 // Restore the active region bounds in the input string; they may have |
|
5251 // been changed because of transparent bounds on a Region. |
|
5252 fActiveStart = fRegionStart; |
|
5253 fActiveLimit = fRegionLimit; |
|
5254 } |
|
5255 break; |
|
5256 |
|
5257 case URX_ONECHAR_I: |
|
5258 if (fp->fInputIdx < fActiveLimit) { |
|
5259 UChar32 c; |
|
5260 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
|
5261 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { |
|
5262 break; |
|
5263 } |
|
5264 } else { |
|
5265 fHitEnd = TRUE; |
|
5266 } |
|
5267 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5268 break; |
|
5269 |
|
5270 case URX_STRING_I: |
|
5271 // Case-insensitive test input against a literal string. |
|
5272 // Strings require two slots in the compiled pattern, one for the |
|
5273 // offset to the string text, and one for the length. |
|
5274 // The compiled string has already been case folded. |
|
5275 { |
|
5276 const UChar *patternString = litText + opValue; |
|
5277 |
|
5278 op = (int32_t)pat[fp->fPatIdx]; |
|
5279 fp->fPatIdx++; |
|
5280 opType = URX_TYPE(op); |
|
5281 opValue = URX_VAL(op); |
|
5282 U_ASSERT(opType == URX_STRING_LEN); |
|
5283 int32_t patternStringLen = opValue; // Length of the string from the pattern. |
|
5284 |
|
5285 UChar32 cText; |
|
5286 UChar32 cPattern; |
|
5287 UBool success = TRUE; |
|
5288 int32_t patternStringIdx = 0; |
|
5289 CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit); |
|
5290 while (patternStringIdx < patternStringLen) { |
|
5291 U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); |
|
5292 cText = inputIterator.next(); |
|
5293 if (cText != cPattern) { |
|
5294 success = FALSE; |
|
5295 if (cText == U_SENTINEL) { |
|
5296 fHitEnd = TRUE; |
|
5297 } |
|
5298 break; |
|
5299 } |
|
5300 } |
|
5301 if (inputIterator.inExpansion()) { |
|
5302 success = FALSE; |
|
5303 } |
|
5304 |
|
5305 if (success) { |
|
5306 fp->fInputIdx = inputIterator.getIndex(); |
|
5307 } else { |
|
5308 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5309 } |
|
5310 } |
|
5311 break; |
|
5312 |
|
5313 case URX_LB_START: |
|
5314 { |
|
5315 // Entering a look-behind block. |
|
5316 // Save Stack Ptr, Input Pos. |
|
5317 // TODO: implement transparent bounds. Ticket #6067 |
|
5318 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5319 fData[opValue] = fStack->size(); |
|
5320 fData[opValue+1] = fp->fInputIdx; |
|
5321 // Init the variable containing the start index for attempted matches. |
|
5322 fData[opValue+2] = -1; |
|
5323 // Save input string length, then reset to pin any matches to end at |
|
5324 // the current position. |
|
5325 fData[opValue+3] = fActiveLimit; |
|
5326 fActiveLimit = fp->fInputIdx; |
|
5327 } |
|
5328 break; |
|
5329 |
|
5330 |
|
5331 case URX_LB_CONT: |
|
5332 { |
|
5333 // Positive Look-Behind, at top of loop checking for matches of LB expression |
|
5334 // at all possible input starting positions. |
|
5335 |
|
5336 // Fetch the min and max possible match lengths. They are the operands |
|
5337 // of this op in the pattern. |
|
5338 int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
|
5339 int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
|
5340 U_ASSERT(minML <= maxML); |
|
5341 U_ASSERT(minML >= 0); |
|
5342 |
|
5343 // Fetch (from data) the last input index where a match was attempted. |
|
5344 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5345 int64_t *lbStartIdx = &fData[opValue+2]; |
|
5346 if (*lbStartIdx < 0) { |
|
5347 // First time through loop. |
|
5348 *lbStartIdx = fp->fInputIdx - minML; |
|
5349 } else { |
|
5350 // 2nd through nth time through the loop. |
|
5351 // Back up start position for match by one. |
|
5352 if (*lbStartIdx == 0) { |
|
5353 (*lbStartIdx)--; |
|
5354 } else { |
|
5355 U16_BACK_1(inputBuf, 0, *lbStartIdx); |
|
5356 } |
|
5357 } |
|
5358 |
|
5359 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) { |
|
5360 // We have tried all potential match starting points without |
|
5361 // getting a match. Backtrack out, and out of the |
|
5362 // Look Behind altogether. |
|
5363 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5364 int64_t restoreInputLen = fData[opValue+3]; |
|
5365 U_ASSERT(restoreInputLen >= fActiveLimit); |
|
5366 U_ASSERT(restoreInputLen <= fInputLength); |
|
5367 fActiveLimit = restoreInputLen; |
|
5368 break; |
|
5369 } |
|
5370 |
|
5371 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
|
5372 // (successful match will fall off the end of the loop.) |
|
5373 fp = StateSave(fp, fp->fPatIdx-3, status); |
|
5374 fp->fInputIdx = *lbStartIdx; |
|
5375 } |
|
5376 break; |
|
5377 |
|
5378 case URX_LB_END: |
|
5379 // End of a look-behind block, after a successful match. |
|
5380 { |
|
5381 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5382 if (fp->fInputIdx != fActiveLimit) { |
|
5383 // The look-behind expression matched, but the match did not |
|
5384 // extend all the way to the point that we are looking behind from. |
|
5385 // FAIL out of here, which will take us back to the LB_CONT, which |
|
5386 // will retry the match starting at another position or fail |
|
5387 // the look-behind altogether, whichever is appropriate. |
|
5388 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5389 break; |
|
5390 } |
|
5391 |
|
5392 // Look-behind match is good. Restore the orignal input string length, |
|
5393 // which had been truncated to pin the end of the lookbehind match to the |
|
5394 // position being looked-behind. |
|
5395 int64_t originalInputLen = fData[opValue+3]; |
|
5396 U_ASSERT(originalInputLen >= fActiveLimit); |
|
5397 U_ASSERT(originalInputLen <= fInputLength); |
|
5398 fActiveLimit = originalInputLen; |
|
5399 } |
|
5400 break; |
|
5401 |
|
5402 |
|
5403 case URX_LBN_CONT: |
|
5404 { |
|
5405 // Negative Look-Behind, at top of loop checking for matches of LB expression |
|
5406 // at all possible input starting positions. |
|
5407 |
|
5408 // Fetch the extra parameters of this op. |
|
5409 int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
|
5410 int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
|
5411 int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; |
|
5412 continueLoc = URX_VAL(continueLoc); |
|
5413 U_ASSERT(minML <= maxML); |
|
5414 U_ASSERT(minML >= 0); |
|
5415 U_ASSERT(continueLoc > fp->fPatIdx); |
|
5416 |
|
5417 // Fetch (from data) the last input index where a match was attempted. |
|
5418 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5419 int64_t *lbStartIdx = &fData[opValue+2]; |
|
5420 if (*lbStartIdx < 0) { |
|
5421 // First time through loop. |
|
5422 *lbStartIdx = fp->fInputIdx - minML; |
|
5423 } else { |
|
5424 // 2nd through nth time through the loop. |
|
5425 // Back up start position for match by one. |
|
5426 if (*lbStartIdx == 0) { |
|
5427 (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0. |
|
5428 } else { |
|
5429 U16_BACK_1(inputBuf, 0, *lbStartIdx); |
|
5430 } |
|
5431 } |
|
5432 |
|
5433 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) { |
|
5434 // We have tried all potential match starting points without |
|
5435 // getting a match, which means that the negative lookbehind as |
|
5436 // a whole has succeeded. Jump forward to the continue location |
|
5437 int64_t restoreInputLen = fData[opValue+3]; |
|
5438 U_ASSERT(restoreInputLen >= fActiveLimit); |
|
5439 U_ASSERT(restoreInputLen <= fInputLength); |
|
5440 fActiveLimit = restoreInputLen; |
|
5441 fp->fPatIdx = continueLoc; |
|
5442 break; |
|
5443 } |
|
5444 |
|
5445 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
|
5446 // (successful match will cause a FAIL out of the loop altogether.) |
|
5447 fp = StateSave(fp, fp->fPatIdx-4, status); |
|
5448 fp->fInputIdx = *lbStartIdx; |
|
5449 } |
|
5450 break; |
|
5451 |
|
5452 case URX_LBN_END: |
|
5453 // End of a negative look-behind block, after a successful match. |
|
5454 { |
|
5455 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5456 if (fp->fInputIdx != fActiveLimit) { |
|
5457 // The look-behind expression matched, but the match did not |
|
5458 // extend all the way to the point that we are looking behind from. |
|
5459 // FAIL out of here, which will take us back to the LB_CONT, which |
|
5460 // will retry the match starting at another position or succeed |
|
5461 // the look-behind altogether, whichever is appropriate. |
|
5462 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5463 break; |
|
5464 } |
|
5465 |
|
5466 // Look-behind expression matched, which means look-behind test as |
|
5467 // a whole Fails |
|
5468 |
|
5469 // Restore the orignal input string length, which had been truncated |
|
5470 // inorder to pin the end of the lookbehind match |
|
5471 // to the position being looked-behind. |
|
5472 int64_t originalInputLen = fData[opValue+3]; |
|
5473 U_ASSERT(originalInputLen >= fActiveLimit); |
|
5474 U_ASSERT(originalInputLen <= fInputLength); |
|
5475 fActiveLimit = originalInputLen; |
|
5476 |
|
5477 // Restore original stack position, discarding any state saved |
|
5478 // by the successful pattern match. |
|
5479 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
|
5480 int32_t newStackSize = (int32_t)fData[opValue]; |
|
5481 U_ASSERT(fStack->size() > newStackSize); |
|
5482 fStack->setSize(newStackSize); |
|
5483 |
|
5484 // FAIL, which will take control back to someplace |
|
5485 // prior to entering the look-behind test. |
|
5486 fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
|
5487 } |
|
5488 break; |
|
5489 |
|
5490 |
|
5491 case URX_LOOP_SR_I: |
|
5492 // Loop Initialization for the optimized implementation of |
|
5493 // [some character set]* |
|
5494 // This op scans through all matching input. |
|
5495 // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
|
5496 { |
|
5497 U_ASSERT(opValue > 0 && opValue < sets->size()); |
|
5498 Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
|
5499 UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); |
|
5500 |
|
5501 // Loop through input, until either the input is exhausted or |
|
5502 // we reach a character that is not a member of the set. |
|
5503 int32_t ix = (int32_t)fp->fInputIdx; |
|
5504 for (;;) { |
|
5505 if (ix >= fActiveLimit) { |
|
5506 fHitEnd = TRUE; |
|
5507 break; |
|
5508 } |
|
5509 UChar32 c; |
|
5510 U16_NEXT(inputBuf, ix, fActiveLimit, c); |
|
5511 if (c<256) { |
|
5512 if (s8->contains(c) == FALSE) { |
|
5513 U16_BACK_1(inputBuf, 0, ix); |
|
5514 break; |
|
5515 } |
|
5516 } else { |
|
5517 if (s->contains(c) == FALSE) { |
|
5518 U16_BACK_1(inputBuf, 0, ix); |
|
5519 break; |
|
5520 } |
|
5521 } |
|
5522 } |
|
5523 |
|
5524 // If there were no matching characters, skip over the loop altogether. |
|
5525 // The loop doesn't run at all, a * op always succeeds. |
|
5526 if (ix == fp->fInputIdx) { |
|
5527 fp->fPatIdx++; // skip the URX_LOOP_C op. |
|
5528 break; |
|
5529 } |
|
5530 |
|
5531 // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
|
5532 // must follow. It's operand is the stack location |
|
5533 // that holds the starting input index for the match of this [set]* |
|
5534 int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
|
5535 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
|
5536 int32_t stackLoc = URX_VAL(loopcOp); |
|
5537 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
|
5538 fp->fExtra[stackLoc] = fp->fInputIdx; |
|
5539 fp->fInputIdx = ix; |
|
5540 |
|
5541 // Save State to the URX_LOOP_C op that follows this one, |
|
5542 // so that match failures in the following code will return to there. |
|
5543 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
|
5544 fp = StateSave(fp, fp->fPatIdx, status); |
|
5545 fp->fPatIdx++; |
|
5546 } |
|
5547 break; |
|
5548 |
|
5549 |
|
5550 case URX_LOOP_DOT_I: |
|
5551 // Loop Initialization for the optimized implementation of .* |
|
5552 // This op scans through all remaining input. |
|
5553 // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
|
5554 { |
|
5555 // Loop through input until the input is exhausted (we reach an end-of-line) |
|
5556 // In DOTALL mode, we can just go straight to the end of the input. |
|
5557 int32_t ix; |
|
5558 if ((opValue & 1) == 1) { |
|
5559 // Dot-matches-All mode. Jump straight to the end of the string. |
|
5560 ix = (int32_t)fActiveLimit; |
|
5561 fHitEnd = TRUE; |
|
5562 } else { |
|
5563 // NOT DOT ALL mode. Line endings do not match '.' |
|
5564 // Scan forward until a line ending or end of input. |
|
5565 ix = (int32_t)fp->fInputIdx; |
|
5566 for (;;) { |
|
5567 if (ix >= fActiveLimit) { |
|
5568 fHitEnd = TRUE; |
|
5569 break; |
|
5570 } |
|
5571 UChar32 c; |
|
5572 U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++] |
|
5573 if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s |
|
5574 if ((c == 0x0a) || // 0x0a is newline in both modes. |
|
5575 (((opValue & 2) == 0) && // IF not UNIX_LINES mode |
|
5576 ((c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029))) { |
|
5577 // char is a line ending. Put the input pos back to the |
|
5578 // line ending char, and exit the scanning loop. |
|
5579 U16_BACK_1(inputBuf, 0, ix); |
|
5580 break; |
|
5581 } |
|
5582 } |
|
5583 } |
|
5584 } |
|
5585 |
|
5586 // If there were no matching characters, skip over the loop altogether. |
|
5587 // The loop doesn't run at all, a * op always succeeds. |
|
5588 if (ix == fp->fInputIdx) { |
|
5589 fp->fPatIdx++; // skip the URX_LOOP_C op. |
|
5590 break; |
|
5591 } |
|
5592 |
|
5593 // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
|
5594 // must follow. It's operand is the stack location |
|
5595 // that holds the starting input index for the match of this .* |
|
5596 int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
|
5597 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
|
5598 int32_t stackLoc = URX_VAL(loopcOp); |
|
5599 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
|
5600 fp->fExtra[stackLoc] = fp->fInputIdx; |
|
5601 fp->fInputIdx = ix; |
|
5602 |
|
5603 // Save State to the URX_LOOP_C op that follows this one, |
|
5604 // so that match failures in the following code will return to there. |
|
5605 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
|
5606 fp = StateSave(fp, fp->fPatIdx, status); |
|
5607 fp->fPatIdx++; |
|
5608 } |
|
5609 break; |
|
5610 |
|
5611 |
|
5612 case URX_LOOP_C: |
|
5613 { |
|
5614 U_ASSERT(opValue>=0 && opValue<fFrameSize); |
|
5615 backSearchIndex = (int32_t)fp->fExtra[opValue]; |
|
5616 U_ASSERT(backSearchIndex <= fp->fInputIdx); |
|
5617 if (backSearchIndex == fp->fInputIdx) { |
|
5618 // We've backed up the input idx to the point that the loop started. |
|
5619 // The loop is done. Leave here without saving state. |
|
5620 // Subsequent failures won't come back here. |
|
5621 break; |
|
5622 } |
|
5623 // Set up for the next iteration of the loop, with input index |
|
5624 // backed up by one from the last time through, |
|
5625 // and a state save to this instruction in case the following code fails again. |
|
5626 // (We're going backwards because this loop emulates stack unwinding, not |
|
5627 // the initial scan forward.) |
|
5628 U_ASSERT(fp->fInputIdx > 0); |
|
5629 UChar32 prevC; |
|
5630 U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit? |
|
5631 |
|
5632 if (prevC == 0x0a && |
|
5633 fp->fInputIdx > backSearchIndex && |
|
5634 inputBuf[fp->fInputIdx-1] == 0x0d) { |
|
5635 int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; |
|
5636 if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { |
|
5637 // .*, stepping back over CRLF pair. |
|
5638 U16_BACK_1(inputBuf, 0, fp->fInputIdx); |
|
5639 } |
|
5640 } |
|
5641 |
|
5642 |
|
5643 fp = StateSave(fp, fp->fPatIdx-1, status); |
|
5644 } |
|
5645 break; |
|
5646 |
|
5647 |
|
5648 |
|
5649 default: |
|
5650 // Trouble. The compiled pattern contains an entry with an |
|
5651 // unrecognized type tag. |
|
5652 U_ASSERT(FALSE); |
|
5653 } |
|
5654 |
|
5655 if (U_FAILURE(status)) { |
|
5656 isMatch = FALSE; |
|
5657 break; |
|
5658 } |
|
5659 } |
|
5660 |
|
5661 breakFromLoop: |
|
5662 fMatch = isMatch; |
|
5663 if (isMatch) { |
|
5664 fLastMatchEnd = fMatchEnd; |
|
5665 fMatchStart = startIdx; |
|
5666 fMatchEnd = fp->fInputIdx; |
|
5667 if (fTraceDebug) { |
|
5668 REGEX_RUN_DEBUG_PRINTF(("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd)); |
|
5669 } |
|
5670 } |
|
5671 else |
|
5672 { |
|
5673 if (fTraceDebug) { |
|
5674 REGEX_RUN_DEBUG_PRINTF(("No match\n\n")); |
|
5675 } |
|
5676 } |
|
5677 |
|
5678 fFrame = fp; // The active stack frame when the engine stopped. |
|
5679 // Contains the capture group results that we need to |
|
5680 // access later. |
|
5681 |
|
5682 return; |
|
5683 } |
|
5684 |
|
5685 |
|
5686 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher) |
|
5687 |
|
5688 U_NAMESPACE_END |
|
5689 |
|
5690 #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |