1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/browser/devtools/tilt/tilt-math.js Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,2322 @@ 1.4 +/* -*- Mode: javascript; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ 1.5 +/* vim: set ts=2 et sw=2 tw=80: */ 1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.9 +"use strict"; 1.10 + 1.11 +const {Cu} = require("chrome"); 1.12 + 1.13 +let TiltUtils = require("devtools/tilt/tilt-utils"); 1.14 + 1.15 +/** 1.16 + * Module containing high performance matrix and vector operations for WebGL. 1.17 + * Inspired by glMatrix, version 0.9.6, (c) 2011 Brandon Jones. 1.18 + */ 1.19 + 1.20 +let EPSILON = 0.01; 1.21 +exports.EPSILON = EPSILON; 1.22 + 1.23 +const PI_OVER_180 = Math.PI / 180; 1.24 +const INV_PI_OVER_180 = 180 / Math.PI; 1.25 +const FIFTEEN_OVER_225 = 15 / 225; 1.26 +const ONE_OVER_255 = 1 / 255; 1.27 + 1.28 +/** 1.29 + * vec3 - 3 Dimensional Vector. 1.30 + */ 1.31 +let vec3 = { 1.32 + 1.33 + /** 1.34 + * Creates a new instance of a vec3 using the Float32Array type. 1.35 + * Any array containing at least 3 numeric elements can serve as a vec3. 1.36 + * 1.37 + * @param {Array} aVec 1.38 + * optional, vec3 containing values to initialize with 1.39 + * 1.40 + * @return {Array} a new instance of a vec3 1.41 + */ 1.42 + create: function V3_create(aVec) 1.43 + { 1.44 + let dest = new Float32Array(3); 1.45 + 1.46 + if (aVec) { 1.47 + vec3.set(aVec, dest); 1.48 + } else { 1.49 + vec3.zero(dest); 1.50 + } 1.51 + return dest; 1.52 + }, 1.53 + 1.54 + /** 1.55 + * Copies the values of one vec3 to another. 1.56 + * 1.57 + * @param {Array} aVec 1.58 + * vec3 containing values to copy 1.59 + * @param {Array} aDest 1.60 + * vec3 receiving copied values 1.61 + * 1.62 + * @return {Array} the destination vec3 receiving copied values 1.63 + */ 1.64 + set: function V3_set(aVec, aDest) 1.65 + { 1.66 + aDest[0] = aVec[0]; 1.67 + aDest[1] = aVec[1]; 1.68 + aDest[2] = aVec[2] || 0; 1.69 + return aDest; 1.70 + }, 1.71 + 1.72 + /** 1.73 + * Sets a vec3 to an zero vector. 1.74 + * 1.75 + * @param {Array} aDest 1.76 + * vec3 to set 1.77 + * 1.78 + * @return {Array} the same vector 1.79 + */ 1.80 + zero: function V3_zero(aDest) 1.81 + { 1.82 + aDest[0] = 0; 1.83 + aDest[1] = 0; 1.84 + aDest[2] = 0; 1.85 + return aDest; 1.86 + }, 1.87 + 1.88 + /** 1.89 + * Performs a vector addition. 1.90 + * 1.91 + * @param {Array} aVec 1.92 + * vec3, first operand 1.93 + * @param {Array} aVec2 1.94 + * vec3, second operand 1.95 + * @param {Array} aDest 1.96 + * optional, vec3 receiving operation result 1.97 + * if not specified result is written to the first operand 1.98 + * 1.99 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.100 + */ 1.101 + add: function V3_add(aVec, aVec2, aDest) 1.102 + { 1.103 + if (!aDest) { 1.104 + aDest = aVec; 1.105 + } 1.106 + 1.107 + aDest[0] = aVec[0] + aVec2[0]; 1.108 + aDest[1] = aVec[1] + aVec2[1]; 1.109 + aDest[2] = aVec[2] + aVec2[2]; 1.110 + return aDest; 1.111 + }, 1.112 + 1.113 + /** 1.114 + * Performs a vector subtraction. 1.115 + * 1.116 + * @param {Array} aVec 1.117 + * vec3, first operand 1.118 + * @param {Array} aVec2 1.119 + * vec3, second operand 1.120 + * @param {Array} aDest 1.121 + * optional, vec3 receiving operation result 1.122 + * if not specified result is written to the first operand 1.123 + * 1.124 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.125 + */ 1.126 + subtract: function V3_subtract(aVec, aVec2, aDest) 1.127 + { 1.128 + if (!aDest) { 1.129 + aDest = aVec; 1.130 + } 1.131 + 1.132 + aDest[0] = aVec[0] - aVec2[0]; 1.133 + aDest[1] = aVec[1] - aVec2[1]; 1.134 + aDest[2] = aVec[2] - aVec2[2]; 1.135 + return aDest; 1.136 + }, 1.137 + 1.138 + /** 1.139 + * Negates the components of a vec3. 1.140 + * 1.141 + * @param {Array} aVec 1.142 + * vec3 to negate 1.143 + * @param {Array} aDest 1.144 + * optional, vec3 receiving operation result 1.145 + * if not specified result is written to the first operand 1.146 + * 1.147 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.148 + */ 1.149 + negate: function V3_negate(aVec, aDest) 1.150 + { 1.151 + if (!aDest) { 1.152 + aDest = aVec; 1.153 + } 1.154 + 1.155 + aDest[0] = -aVec[0]; 1.156 + aDest[1] = -aVec[1]; 1.157 + aDest[2] = -aVec[2]; 1.158 + return aDest; 1.159 + }, 1.160 + 1.161 + /** 1.162 + * Multiplies the components of a vec3 by a scalar value. 1.163 + * 1.164 + * @param {Array} aVec 1.165 + * vec3 to scale 1.166 + * @param {Number} aVal 1.167 + * numeric value to scale by 1.168 + * @param {Array} aDest 1.169 + * optional, vec3 receiving operation result 1.170 + * if not specified result is written to the first operand 1.171 + * 1.172 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.173 + */ 1.174 + scale: function V3_scale(aVec, aVal, aDest) 1.175 + { 1.176 + if (!aDest) { 1.177 + aDest = aVec; 1.178 + } 1.179 + 1.180 + aDest[0] = aVec[0] * aVal; 1.181 + aDest[1] = aVec[1] * aVal; 1.182 + aDest[2] = aVec[2] * aVal; 1.183 + return aDest; 1.184 + }, 1.185 + 1.186 + /** 1.187 + * Generates a unit vector of the same direction as the provided vec3. 1.188 + * If vector length is 0, returns [0, 0, 0]. 1.189 + * 1.190 + * @param {Array} aVec 1.191 + * vec3 to normalize 1.192 + * @param {Array} aDest 1.193 + * optional, vec3 receiving operation result 1.194 + * if not specified result is written to the first operand 1.195 + * 1.196 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.197 + */ 1.198 + normalize: function V3_normalize(aVec, aDest) 1.199 + { 1.200 + if (!aDest) { 1.201 + aDest = aVec; 1.202 + } 1.203 + 1.204 + let x = aVec[0]; 1.205 + let y = aVec[1]; 1.206 + let z = aVec[2]; 1.207 + let len = Math.sqrt(x * x + y * y + z * z); 1.208 + 1.209 + if (Math.abs(len) < EPSILON) { 1.210 + aDest[0] = 0; 1.211 + aDest[1] = 0; 1.212 + aDest[2] = 0; 1.213 + return aDest; 1.214 + } 1.215 + 1.216 + len = 1 / len; 1.217 + aDest[0] = x * len; 1.218 + aDest[1] = y * len; 1.219 + aDest[2] = z * len; 1.220 + return aDest; 1.221 + }, 1.222 + 1.223 + /** 1.224 + * Generates the cross product of two vectors. 1.225 + * 1.226 + * @param {Array} aVec 1.227 + * vec3, first operand 1.228 + * @param {Array} aVec2 1.229 + * vec3, second operand 1.230 + * @param {Array} aDest 1.231 + * optional, vec3 receiving operation result 1.232 + * if not specified result is written to the first operand 1.233 + * 1.234 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.235 + */ 1.236 + cross: function V3_cross(aVec, aVec2, aDest) 1.237 + { 1.238 + if (!aDest) { 1.239 + aDest = aVec; 1.240 + } 1.241 + 1.242 + let x = aVec[0]; 1.243 + let y = aVec[1]; 1.244 + let z = aVec[2]; 1.245 + let x2 = aVec2[0]; 1.246 + let y2 = aVec2[1]; 1.247 + let z2 = aVec2[2]; 1.248 + 1.249 + aDest[0] = y * z2 - z * y2; 1.250 + aDest[1] = z * x2 - x * z2; 1.251 + aDest[2] = x * y2 - y * x2; 1.252 + return aDest; 1.253 + }, 1.254 + 1.255 + /** 1.256 + * Caclulate the dot product of two vectors. 1.257 + * 1.258 + * @param {Array} aVec 1.259 + * vec3, first operand 1.260 + * @param {Array} aVec2 1.261 + * vec3, second operand 1.262 + * 1.263 + * @return {Array} dot product of the first and second operand 1.264 + */ 1.265 + dot: function V3_dot(aVec, aVec2) 1.266 + { 1.267 + return aVec[0] * aVec2[0] + aVec[1] * aVec2[1] + aVec[2] * aVec2[2]; 1.268 + }, 1.269 + 1.270 + /** 1.271 + * Caclulate the length of a vec3. 1.272 + * 1.273 + * @param {Array} aVec 1.274 + * vec3 to calculate length of 1.275 + * 1.276 + * @return {Array} length of the vec3 1.277 + */ 1.278 + length: function V3_length(aVec) 1.279 + { 1.280 + let x = aVec[0]; 1.281 + let y = aVec[1]; 1.282 + let z = aVec[2]; 1.283 + 1.284 + return Math.sqrt(x * x + y * y + z * z); 1.285 + }, 1.286 + 1.287 + /** 1.288 + * Generates a unit vector pointing from one vector to another. 1.289 + * 1.290 + * @param {Array} aVec 1.291 + * origin vec3 1.292 + * @param {Array} aVec2 1.293 + * vec3 to point to 1.294 + * @param {Array} aDest 1.295 + * optional, vec3 receiving operation result 1.296 + * if not specified result is written to the first operand 1.297 + * 1.298 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.299 + */ 1.300 + direction: function V3_direction(aVec, aVec2, aDest) 1.301 + { 1.302 + if (!aDest) { 1.303 + aDest = aVec; 1.304 + } 1.305 + 1.306 + let x = aVec[0] - aVec2[0]; 1.307 + let y = aVec[1] - aVec2[1]; 1.308 + let z = aVec[2] - aVec2[2]; 1.309 + let len = Math.sqrt(x * x + y * y + z * z); 1.310 + 1.311 + if (Math.abs(len) < EPSILON) { 1.312 + aDest[0] = 0; 1.313 + aDest[1] = 0; 1.314 + aDest[2] = 0; 1.315 + return aDest; 1.316 + } 1.317 + 1.318 + len = 1 / len; 1.319 + aDest[0] = x * len; 1.320 + aDest[1] = y * len; 1.321 + aDest[2] = z * len; 1.322 + return aDest; 1.323 + }, 1.324 + 1.325 + /** 1.326 + * Performs a linear interpolation between two vec3. 1.327 + * 1.328 + * @param {Array} aVec 1.329 + * first vector 1.330 + * @param {Array} aVec2 1.331 + * second vector 1.332 + * @param {Number} aLerp 1.333 + * interpolation amount between the two inputs 1.334 + * @param {Array} aDest 1.335 + * optional, vec3 receiving operation result 1.336 + * if not specified result is written to the first operand 1.337 + * 1.338 + * @return {Array} the destination vec3 if specified, first operand otherwise 1.339 + */ 1.340 + lerp: function V3_lerp(aVec, aVec2, aLerp, aDest) 1.341 + { 1.342 + if (!aDest) { 1.343 + aDest = aVec; 1.344 + } 1.345 + 1.346 + aDest[0] = aVec[0] + aLerp * (aVec2[0] - aVec[0]); 1.347 + aDest[1] = aVec[1] + aLerp * (aVec2[1] - aVec[1]); 1.348 + aDest[2] = aVec[2] + aLerp * (aVec2[2] - aVec[2]); 1.349 + return aDest; 1.350 + }, 1.351 + 1.352 + /** 1.353 + * Projects a 3D point on a 2D screen plane. 1.354 + * 1.355 + * @param {Array} aP 1.356 + * the [x, y, z] coordinates of the point to project 1.357 + * @param {Array} aViewport 1.358 + * the viewport [x, y, width, height] coordinates 1.359 + * @param {Array} aMvMatrix 1.360 + * the model view matrix 1.361 + * @param {Array} aProjMatrix 1.362 + * the projection matrix 1.363 + * @param {Array} aDest 1.364 + * optional parameter, the array to write the values to 1.365 + * 1.366 + * @return {Array} the projected coordinates 1.367 + */ 1.368 + project: function V3_project(aP, aViewport, aMvMatrix, aProjMatrix, aDest) 1.369 + { 1.370 + /*jshint undef: false */ 1.371 + 1.372 + let mvpMatrix = new Float32Array(16); 1.373 + let coordinates = new Float32Array(4); 1.374 + 1.375 + // compute the perspective * model view matrix 1.376 + mat4.multiply(aProjMatrix, aMvMatrix, mvpMatrix); 1.377 + 1.378 + // now transform that vector into homogenous coordinates 1.379 + coordinates[0] = aP[0]; 1.380 + coordinates[1] = aP[1]; 1.381 + coordinates[2] = aP[2]; 1.382 + coordinates[3] = 1; 1.383 + mat4.multiplyVec4(mvpMatrix, coordinates); 1.384 + 1.385 + // transform the homogenous coordinates into screen space 1.386 + coordinates[0] /= coordinates[3]; 1.387 + coordinates[0] *= aViewport[2] * 0.5; 1.388 + coordinates[0] += aViewport[2] * 0.5; 1.389 + coordinates[1] /= coordinates[3]; 1.390 + coordinates[1] *= -aViewport[3] * 0.5; 1.391 + coordinates[1] += aViewport[3] * 0.5; 1.392 + coordinates[2] = 0; 1.393 + 1.394 + if (!aDest) { 1.395 + vec3.set(coordinates, aP); 1.396 + } else { 1.397 + vec3.set(coordinates, aDest); 1.398 + } 1.399 + return coordinates; 1.400 + }, 1.401 + 1.402 + /** 1.403 + * Unprojects a 2D point to 3D space. 1.404 + * 1.405 + * @param {Array} aP 1.406 + * the [x, y, z] coordinates of the point to unproject; 1.407 + * the z value should range between 0 and 1, as clipping plane 1.408 + * @param {Array} aViewport 1.409 + * the viewport [x, y, width, height] coordinates 1.410 + * @param {Array} aMvMatrix 1.411 + * the model view matrix 1.412 + * @param {Array} aProjMatrix 1.413 + * the projection matrix 1.414 + * @param {Array} aDest 1.415 + * optional parameter, the array to write the values to 1.416 + * 1.417 + * @return {Array} the unprojected coordinates 1.418 + */ 1.419 + unproject: function V3_unproject( 1.420 + aP, aViewport, aMvMatrix, aProjMatrix, aDest) 1.421 + { 1.422 + /*jshint undef: false */ 1.423 + 1.424 + let mvpMatrix = new Float32Array(16); 1.425 + let coordinates = new Float32Array(4); 1.426 + 1.427 + // compute the inverse of the perspective * model view matrix 1.428 + mat4.multiply(aProjMatrix, aMvMatrix, mvpMatrix); 1.429 + mat4.inverse(mvpMatrix); 1.430 + 1.431 + // transformation of normalized coordinates (-1 to 1) 1.432 + coordinates[0] = +((aP[0] - aViewport[0]) / aViewport[2] * 2 - 1); 1.433 + coordinates[1] = -((aP[1] - aViewport[1]) / aViewport[3] * 2 - 1); 1.434 + coordinates[2] = 2 * aP[2] - 1; 1.435 + coordinates[3] = 1; 1.436 + 1.437 + // now transform that vector into space coordinates 1.438 + mat4.multiplyVec4(mvpMatrix, coordinates); 1.439 + 1.440 + // invert to normalize x, y, and z values 1.441 + coordinates[3] = 1 / coordinates[3]; 1.442 + coordinates[0] *= coordinates[3]; 1.443 + coordinates[1] *= coordinates[3]; 1.444 + coordinates[2] *= coordinates[3]; 1.445 + 1.446 + if (!aDest) { 1.447 + vec3.set(coordinates, aP); 1.448 + } else { 1.449 + vec3.set(coordinates, aDest); 1.450 + } 1.451 + return coordinates; 1.452 + }, 1.453 + 1.454 + /** 1.455 + * Create a ray between two points using the current model view & projection 1.456 + * matrices. This is useful when creating a ray destined for 3D picking. 1.457 + * 1.458 + * @param {Array} aP0 1.459 + * the [x, y, z] coordinates of the first point 1.460 + * @param {Array} aP1 1.461 + * the [x, y, z] coordinates of the second point 1.462 + * @param {Array} aViewport 1.463 + * the viewport [x, y, width, height] coordinates 1.464 + * @param {Array} aMvMatrix 1.465 + * the model view matrix 1.466 + * @param {Array} aProjMatrix 1.467 + * the projection matrix 1.468 + * 1.469 + * @return {Object} a ray object containing the direction vector between 1.470 + * the two unprojected points, the position and the lookAt 1.471 + */ 1.472 + createRay: function V3_createRay(aP0, aP1, aViewport, aMvMatrix, aProjMatrix) 1.473 + { 1.474 + // unproject the two points 1.475 + vec3.unproject(aP0, aViewport, aMvMatrix, aProjMatrix, aP0); 1.476 + vec3.unproject(aP1, aViewport, aMvMatrix, aProjMatrix, aP1); 1.477 + 1.478 + return { 1.479 + origin: aP0, 1.480 + direction: vec3.normalize(vec3.subtract(aP1, aP0)) 1.481 + }; 1.482 + }, 1.483 + 1.484 + /** 1.485 + * Returns a string representation of a vector. 1.486 + * 1.487 + * @param {Array} aVec 1.488 + * vec3 to represent as a string 1.489 + * 1.490 + * @return {String} representation of the vector 1.491 + */ 1.492 + str: function V3_str(aVec) 1.493 + { 1.494 + return '[' + aVec[0] + ", " + aVec[1] + ", " + aVec[2] + ']'; 1.495 + } 1.496 +}; 1.497 + 1.498 +exports.vec3 = vec3; 1.499 + 1.500 +/** 1.501 + * mat3 - 3x3 Matrix. 1.502 + */ 1.503 +let mat3 = { 1.504 + 1.505 + /** 1.506 + * Creates a new instance of a mat3 using the Float32Array array type. 1.507 + * Any array containing at least 9 numeric elements can serve as a mat3. 1.508 + * 1.509 + * @param {Array} aMat 1.510 + * optional, mat3 containing values to initialize with 1.511 + * 1.512 + * @return {Array} a new instance of a mat3 1.513 + */ 1.514 + create: function M3_create(aMat) 1.515 + { 1.516 + let dest = new Float32Array(9); 1.517 + 1.518 + if (aMat) { 1.519 + mat3.set(aMat, dest); 1.520 + } else { 1.521 + mat3.identity(dest); 1.522 + } 1.523 + return dest; 1.524 + }, 1.525 + 1.526 + /** 1.527 + * Copies the values of one mat3 to another. 1.528 + * 1.529 + * @param {Array} aMat 1.530 + * mat3 containing values to copy 1.531 + * @param {Array} aDest 1.532 + * mat3 receiving copied values 1.533 + * 1.534 + * @return {Array} the destination mat3 receiving copied values 1.535 + */ 1.536 + set: function M3_set(aMat, aDest) 1.537 + { 1.538 + aDest[0] = aMat[0]; 1.539 + aDest[1] = aMat[1]; 1.540 + aDest[2] = aMat[2]; 1.541 + aDest[3] = aMat[3]; 1.542 + aDest[4] = aMat[4]; 1.543 + aDest[5] = aMat[5]; 1.544 + aDest[6] = aMat[6]; 1.545 + aDest[7] = aMat[7]; 1.546 + aDest[8] = aMat[8]; 1.547 + return aDest; 1.548 + }, 1.549 + 1.550 + /** 1.551 + * Sets a mat3 to an identity matrix. 1.552 + * 1.553 + * @param {Array} aDest 1.554 + * mat3 to set 1.555 + * 1.556 + * @return {Array} the same matrix 1.557 + */ 1.558 + identity: function M3_identity(aDest) 1.559 + { 1.560 + aDest[0] = 1; 1.561 + aDest[1] = 0; 1.562 + aDest[2] = 0; 1.563 + aDest[3] = 0; 1.564 + aDest[4] = 1; 1.565 + aDest[5] = 0; 1.566 + aDest[6] = 0; 1.567 + aDest[7] = 0; 1.568 + aDest[8] = 1; 1.569 + return aDest; 1.570 + }, 1.571 + 1.572 + /** 1.573 + * Transposes a mat3 (flips the values over the diagonal). 1.574 + * 1.575 + * @param {Array} aMat 1.576 + * mat3 to transpose 1.577 + * @param {Array} aDest 1.578 + * optional, mat3 receiving operation result 1.579 + * if not specified result is written to the first operand 1.580 + * 1.581 + * @return {Array} the destination mat3 if specified, first operand otherwise 1.582 + */ 1.583 + transpose: function M3_transpose(aMat, aDest) 1.584 + { 1.585 + if (!aDest || aMat === aDest) { 1.586 + let a01 = aMat[1]; 1.587 + let a02 = aMat[2]; 1.588 + let a12 = aMat[5]; 1.589 + 1.590 + aMat[1] = aMat[3]; 1.591 + aMat[2] = aMat[6]; 1.592 + aMat[3] = a01; 1.593 + aMat[5] = aMat[7]; 1.594 + aMat[6] = a02; 1.595 + aMat[7] = a12; 1.596 + return aMat; 1.597 + } 1.598 + 1.599 + aDest[0] = aMat[0]; 1.600 + aDest[1] = aMat[3]; 1.601 + aDest[2] = aMat[6]; 1.602 + aDest[3] = aMat[1]; 1.603 + aDest[4] = aMat[4]; 1.604 + aDest[5] = aMat[7]; 1.605 + aDest[6] = aMat[2]; 1.606 + aDest[7] = aMat[5]; 1.607 + aDest[8] = aMat[8]; 1.608 + return aDest; 1.609 + }, 1.610 + 1.611 + /** 1.612 + * Copies the elements of a mat3 into the upper 3x3 elements of a mat4. 1.613 + * 1.614 + * @param {Array} aMat 1.615 + * mat3 containing values to copy 1.616 + * @param {Array} aDest 1.617 + * optional, mat4 receiving operation result 1.618 + * if not specified result is written to the first operand 1.619 + * 1.620 + * @return {Array} the destination mat3 if specified, first operand otherwise 1.621 + */ 1.622 + toMat4: function M3_toMat4(aMat, aDest) 1.623 + { 1.624 + if (!aDest) { 1.625 + aDest = new Float32Array(16); 1.626 + } 1.627 + 1.628 + aDest[0] = aMat[0]; 1.629 + aDest[1] = aMat[1]; 1.630 + aDest[2] = aMat[2]; 1.631 + aDest[3] = 0; 1.632 + aDest[4] = aMat[3]; 1.633 + aDest[5] = aMat[4]; 1.634 + aDest[6] = aMat[5]; 1.635 + aDest[7] = 0; 1.636 + aDest[8] = aMat[6]; 1.637 + aDest[9] = aMat[7]; 1.638 + aDest[10] = aMat[8]; 1.639 + aDest[11] = 0; 1.640 + aDest[12] = 0; 1.641 + aDest[13] = 0; 1.642 + aDest[14] = 0; 1.643 + aDest[15] = 1; 1.644 + return aDest; 1.645 + }, 1.646 + 1.647 + /** 1.648 + * Returns a string representation of a 3x3 matrix. 1.649 + * 1.650 + * @param {Array} aMat 1.651 + * mat3 to represent as a string 1.652 + * 1.653 + * @return {String} representation of the matrix 1.654 + */ 1.655 + str: function M3_str(aMat) 1.656 + { 1.657 + return "[" + aMat[0] + ", " + aMat[1] + ", " + aMat[2] + 1.658 + ", " + aMat[3] + ", " + aMat[4] + ", " + aMat[5] + 1.659 + ", " + aMat[6] + ", " + aMat[7] + ", " + aMat[8] + "]"; 1.660 + } 1.661 +}; 1.662 + 1.663 +exports.mat3 = mat3; 1.664 + 1.665 +/** 1.666 + * mat4 - 4x4 Matrix. 1.667 + */ 1.668 +let mat4 = { 1.669 + 1.670 + /** 1.671 + * Creates a new instance of a mat4 using the default Float32Array type. 1.672 + * Any array containing at least 16 numeric elements can serve as a mat4. 1.673 + * 1.674 + * @param {Array} aMat 1.675 + * optional, mat4 containing values to initialize with 1.676 + * 1.677 + * @return {Array} a new instance of a mat4 1.678 + */ 1.679 + create: function M4_create(aMat) 1.680 + { 1.681 + let dest = new Float32Array(16); 1.682 + 1.683 + if (aMat) { 1.684 + mat4.set(aMat, dest); 1.685 + } else { 1.686 + mat4.identity(dest); 1.687 + } 1.688 + return dest; 1.689 + }, 1.690 + 1.691 + /** 1.692 + * Copies the values of one mat4 to another 1.693 + * 1.694 + * @param {Array} aMat 1.695 + * mat4 containing values to copy 1.696 + * @param {Array} aDest 1.697 + * mat4 receiving copied values 1.698 + * 1.699 + * @return {Array} the destination mat4 receiving copied values 1.700 + */ 1.701 + set: function M4_set(aMat, aDest) 1.702 + { 1.703 + aDest[0] = aMat[0]; 1.704 + aDest[1] = aMat[1]; 1.705 + aDest[2] = aMat[2]; 1.706 + aDest[3] = aMat[3]; 1.707 + aDest[4] = aMat[4]; 1.708 + aDest[5] = aMat[5]; 1.709 + aDest[6] = aMat[6]; 1.710 + aDest[7] = aMat[7]; 1.711 + aDest[8] = aMat[8]; 1.712 + aDest[9] = aMat[9]; 1.713 + aDest[10] = aMat[10]; 1.714 + aDest[11] = aMat[11]; 1.715 + aDest[12] = aMat[12]; 1.716 + aDest[13] = aMat[13]; 1.717 + aDest[14] = aMat[14]; 1.718 + aDest[15] = aMat[15]; 1.719 + return aDest; 1.720 + }, 1.721 + 1.722 + /** 1.723 + * Sets a mat4 to an identity matrix. 1.724 + * 1.725 + * @param {Array} aDest 1.726 + * mat4 to set 1.727 + * 1.728 + * @return {Array} the same matrix 1.729 + */ 1.730 + identity: function M4_identity(aDest) 1.731 + { 1.732 + aDest[0] = 1; 1.733 + aDest[1] = 0; 1.734 + aDest[2] = 0; 1.735 + aDest[3] = 0; 1.736 + aDest[4] = 0; 1.737 + aDest[5] = 1; 1.738 + aDest[6] = 0; 1.739 + aDest[7] = 0; 1.740 + aDest[8] = 0; 1.741 + aDest[9] = 0; 1.742 + aDest[10] = 1; 1.743 + aDest[11] = 0; 1.744 + aDest[12] = 0; 1.745 + aDest[13] = 0; 1.746 + aDest[14] = 0; 1.747 + aDest[15] = 1; 1.748 + return aDest; 1.749 + }, 1.750 + 1.751 + /** 1.752 + * Transposes a mat4 (flips the values over the diagonal). 1.753 + * 1.754 + * @param {Array} aMat 1.755 + * mat4 to transpose 1.756 + * @param {Array} aDest 1.757 + * optional, mat4 receiving operation result 1.758 + * if not specified result is written to the first operand 1.759 + * 1.760 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.761 + */ 1.762 + transpose: function M4_transpose(aMat, aDest) 1.763 + { 1.764 + if (!aDest || aMat === aDest) { 1.765 + let a01 = aMat[1]; 1.766 + let a02 = aMat[2]; 1.767 + let a03 = aMat[3]; 1.768 + let a12 = aMat[6]; 1.769 + let a13 = aMat[7]; 1.770 + let a23 = aMat[11]; 1.771 + 1.772 + aMat[1] = aMat[4]; 1.773 + aMat[2] = aMat[8]; 1.774 + aMat[3] = aMat[12]; 1.775 + aMat[4] = a01; 1.776 + aMat[6] = aMat[9]; 1.777 + aMat[7] = aMat[13]; 1.778 + aMat[8] = a02; 1.779 + aMat[9] = a12; 1.780 + aMat[11] = aMat[14]; 1.781 + aMat[12] = a03; 1.782 + aMat[13] = a13; 1.783 + aMat[14] = a23; 1.784 + return aMat; 1.785 + } 1.786 + 1.787 + aDest[0] = aMat[0]; 1.788 + aDest[1] = aMat[4]; 1.789 + aDest[2] = aMat[8]; 1.790 + aDest[3] = aMat[12]; 1.791 + aDest[4] = aMat[1]; 1.792 + aDest[5] = aMat[5]; 1.793 + aDest[6] = aMat[9]; 1.794 + aDest[7] = aMat[13]; 1.795 + aDest[8] = aMat[2]; 1.796 + aDest[9] = aMat[6]; 1.797 + aDest[10] = aMat[10]; 1.798 + aDest[11] = aMat[14]; 1.799 + aDest[12] = aMat[3]; 1.800 + aDest[13] = aMat[7]; 1.801 + aDest[14] = aMat[11]; 1.802 + aDest[15] = aMat[15]; 1.803 + return aDest; 1.804 + }, 1.805 + 1.806 + /** 1.807 + * Calculate the determinant of a mat4. 1.808 + * 1.809 + * @param {Array} aMat 1.810 + * mat4 to calculate determinant of 1.811 + * 1.812 + * @return {Number} determinant of the matrix 1.813 + */ 1.814 + determinant: function M4_determinant(mat) 1.815 + { 1.816 + let a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; 1.817 + let a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; 1.818 + let a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; 1.819 + let a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; 1.820 + 1.821 + return a30 * a21 * a12 * a03 - a20 * a31 * a12 * a03 - 1.822 + a30 * a11 * a22 * a03 + a10 * a31 * a22 * a03 + 1.823 + a20 * a11 * a32 * a03 - a10 * a21 * a32 * a03 - 1.824 + a30 * a21 * a02 * a13 + a20 * a31 * a02 * a13 + 1.825 + a30 * a01 * a22 * a13 - a00 * a31 * a22 * a13 - 1.826 + a20 * a01 * a32 * a13 + a00 * a21 * a32 * a13 + 1.827 + a30 * a11 * a02 * a23 - a10 * a31 * a02 * a23 - 1.828 + a30 * a01 * a12 * a23 + a00 * a31 * a12 * a23 + 1.829 + a10 * a01 * a32 * a23 - a00 * a11 * a32 * a23 - 1.830 + a20 * a11 * a02 * a33 + a10 * a21 * a02 * a33 + 1.831 + a20 * a01 * a12 * a33 - a00 * a21 * a12 * a33 - 1.832 + a10 * a01 * a22 * a33 + a00 * a11 * a22 * a33; 1.833 + }, 1.834 + 1.835 + /** 1.836 + * Calculate the inverse of a mat4. 1.837 + * 1.838 + * @param {Array} aMat 1.839 + * mat4 to calculate inverse of 1.840 + * @param {Array} aDest 1.841 + * optional, mat4 receiving operation result 1.842 + * if not specified result is written to the first operand 1.843 + * 1.844 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.845 + */ 1.846 + inverse: function M4_inverse(aMat, aDest) 1.847 + { 1.848 + if (!aDest) { 1.849 + aDest = aMat; 1.850 + } 1.851 + 1.852 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; 1.853 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; 1.854 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; 1.855 + let a30 = aMat[12], a31 = aMat[13], a32 = aMat[14], a33 = aMat[15]; 1.856 + 1.857 + let b00 = a00 * a11 - a01 * a10; 1.858 + let b01 = a00 * a12 - a02 * a10; 1.859 + let b02 = a00 * a13 - a03 * a10; 1.860 + let b03 = a01 * a12 - a02 * a11; 1.861 + let b04 = a01 * a13 - a03 * a11; 1.862 + let b05 = a02 * a13 - a03 * a12; 1.863 + let b06 = a20 * a31 - a21 * a30; 1.864 + let b07 = a20 * a32 - a22 * a30; 1.865 + let b08 = a20 * a33 - a23 * a30; 1.866 + let b09 = a21 * a32 - a22 * a31; 1.867 + let b10 = a21 * a33 - a23 * a31; 1.868 + let b11 = a22 * a33 - a23 * a32; 1.869 + let id = 1 / ((b00 * b11 - b01 * b10 + b02 * b09 + 1.870 + b03 * b08 - b04 * b07 + b05 * b06) || EPSILON); 1.871 + 1.872 + aDest[0] = ( a11 * b11 - a12 * b10 + a13 * b09) * id; 1.873 + aDest[1] = (-a01 * b11 + a02 * b10 - a03 * b09) * id; 1.874 + aDest[2] = ( a31 * b05 - a32 * b04 + a33 * b03) * id; 1.875 + aDest[3] = (-a21 * b05 + a22 * b04 - a23 * b03) * id; 1.876 + aDest[4] = (-a10 * b11 + a12 * b08 - a13 * b07) * id; 1.877 + aDest[5] = ( a00 * b11 - a02 * b08 + a03 * b07) * id; 1.878 + aDest[6] = (-a30 * b05 + a32 * b02 - a33 * b01) * id; 1.879 + aDest[7] = ( a20 * b05 - a22 * b02 + a23 * b01) * id; 1.880 + aDest[8] = ( a10 * b10 - a11 * b08 + a13 * b06) * id; 1.881 + aDest[9] = (-a00 * b10 + a01 * b08 - a03 * b06) * id; 1.882 + aDest[10] = ( a30 * b04 - a31 * b02 + a33 * b00) * id; 1.883 + aDest[11] = (-a20 * b04 + a21 * b02 - a23 * b00) * id; 1.884 + aDest[12] = (-a10 * b09 + a11 * b07 - a12 * b06) * id; 1.885 + aDest[13] = ( a00 * b09 - a01 * b07 + a02 * b06) * id; 1.886 + aDest[14] = (-a30 * b03 + a31 * b01 - a32 * b00) * id; 1.887 + aDest[15] = ( a20 * b03 - a21 * b01 + a22 * b00) * id; 1.888 + return aDest; 1.889 + }, 1.890 + 1.891 + /** 1.892 + * Copies the upper 3x3 elements of a mat4 into another mat4. 1.893 + * 1.894 + * @param {Array} aMat 1.895 + * mat4 containing values to copy 1.896 + * @param {Array} aDest 1.897 + * optional, mat4 receiving operation result 1.898 + * if not specified result is written to the first operand 1.899 + * 1.900 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.901 + */ 1.902 + toRotationMat: function M4_toRotationMat(aMat, aDest) 1.903 + { 1.904 + if (!aDest) { 1.905 + aDest = new Float32Array(16); 1.906 + } 1.907 + 1.908 + aDest[0] = aMat[0]; 1.909 + aDest[1] = aMat[1]; 1.910 + aDest[2] = aMat[2]; 1.911 + aDest[3] = aMat[3]; 1.912 + aDest[4] = aMat[4]; 1.913 + aDest[5] = aMat[5]; 1.914 + aDest[6] = aMat[6]; 1.915 + aDest[7] = aMat[7]; 1.916 + aDest[8] = aMat[8]; 1.917 + aDest[9] = aMat[9]; 1.918 + aDest[10] = aMat[10]; 1.919 + aDest[11] = aMat[11]; 1.920 + aDest[12] = 0; 1.921 + aDest[13] = 0; 1.922 + aDest[14] = 0; 1.923 + aDest[15] = 1; 1.924 + return aDest; 1.925 + }, 1.926 + 1.927 + /** 1.928 + * Copies the upper 3x3 elements of a mat4 into a mat3. 1.929 + * 1.930 + * @param {Array} aMat 1.931 + * mat4 containing values to copy 1.932 + * @param {Array} aDest 1.933 + * optional, mat3 receiving operation result 1.934 + * if not specified result is written to the first operand 1.935 + * 1.936 + * @return {Array} the destination mat3 if specified, first operand otherwise 1.937 + */ 1.938 + toMat3: function M4_toMat3(aMat, aDest) 1.939 + { 1.940 + if (!aDest) { 1.941 + aDest = new Float32Array(9); 1.942 + } 1.943 + 1.944 + aDest[0] = aMat[0]; 1.945 + aDest[1] = aMat[1]; 1.946 + aDest[2] = aMat[2]; 1.947 + aDest[3] = aMat[4]; 1.948 + aDest[4] = aMat[5]; 1.949 + aDest[5] = aMat[6]; 1.950 + aDest[6] = aMat[8]; 1.951 + aDest[7] = aMat[9]; 1.952 + aDest[8] = aMat[10]; 1.953 + return aDest; 1.954 + }, 1.955 + 1.956 + /** 1.957 + * Calculate the inverse of the upper 3x3 elements of a mat4 and copies 1.958 + * the result into a mat3. The resulting matrix is useful for calculating 1.959 + * transformed normals. 1.960 + * 1.961 + * @param {Array} aMat 1.962 + * mat4 containing values to invert and copy 1.963 + * @param {Array} aDest 1.964 + * optional, mat3 receiving operation result 1.965 + * if not specified result is written to the first operand 1.966 + * 1.967 + * @return {Array} the destination mat3 if specified, first operand otherwise 1.968 + */ 1.969 + toInverseMat3: function M4_toInverseMat3(aMat, aDest) 1.970 + { 1.971 + if (!aDest) { 1.972 + aDest = new Float32Array(9); 1.973 + } 1.974 + 1.975 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2]; 1.976 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6]; 1.977 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10]; 1.978 + 1.979 + let b01 = a22 * a11 - a12 * a21; 1.980 + let b11 = -a22 * a10 + a12 * a20; 1.981 + let b21 = a21 * a10 - a11 * a20; 1.982 + let id = 1 / ((a00 * b01 + a01 * b11 + a02 * b21) || EPSILON); 1.983 + 1.984 + aDest[0] = b01 * id; 1.985 + aDest[1] = (-a22 * a01 + a02 * a21) * id; 1.986 + aDest[2] = ( a12 * a01 - a02 * a11) * id; 1.987 + aDest[3] = b11 * id; 1.988 + aDest[4] = ( a22 * a00 - a02 * a20) * id; 1.989 + aDest[5] = (-a12 * a00 + a02 * a10) * id; 1.990 + aDest[6] = b21 * id; 1.991 + aDest[7] = (-a21 * a00 + a01 * a20) * id; 1.992 + aDest[8] = ( a11 * a00 - a01 * a10) * id; 1.993 + return aDest; 1.994 + }, 1.995 + 1.996 + /** 1.997 + * Performs a matrix multiplication. 1.998 + * 1.999 + * @param {Array} aMat 1.1000 + * first operand 1.1001 + * @param {Array} aMat2 1.1002 + * second operand 1.1003 + * @param {Array} aDest 1.1004 + * optional, mat4 receiving operation result 1.1005 + * if not specified result is written to the first operand 1.1006 + * 1.1007 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1008 + */ 1.1009 + multiply: function M4_multiply(aMat, aMat2, aDest) 1.1010 + { 1.1011 + if (!aDest) { 1.1012 + aDest = aMat; 1.1013 + } 1.1014 + 1.1015 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; 1.1016 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; 1.1017 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; 1.1018 + let a30 = aMat[12], a31 = aMat[13], a32 = aMat[14], a33 = aMat[15]; 1.1019 + 1.1020 + let b00 = aMat2[0], b01 = aMat2[1], b02 = aMat2[2], b03 = aMat2[3]; 1.1021 + let b10 = aMat2[4], b11 = aMat2[5], b12 = aMat2[6], b13 = aMat2[7]; 1.1022 + let b20 = aMat2[8], b21 = aMat2[9], b22 = aMat2[10], b23 = aMat2[11]; 1.1023 + let b30 = aMat2[12], b31 = aMat2[13], b32 = aMat2[14], b33 = aMat2[15]; 1.1024 + 1.1025 + aDest[0] = b00 * a00 + b01 * a10 + b02 * a20 + b03 * a30; 1.1026 + aDest[1] = b00 * a01 + b01 * a11 + b02 * a21 + b03 * a31; 1.1027 + aDest[2] = b00 * a02 + b01 * a12 + b02 * a22 + b03 * a32; 1.1028 + aDest[3] = b00 * a03 + b01 * a13 + b02 * a23 + b03 * a33; 1.1029 + aDest[4] = b10 * a00 + b11 * a10 + b12 * a20 + b13 * a30; 1.1030 + aDest[5] = b10 * a01 + b11 * a11 + b12 * a21 + b13 * a31; 1.1031 + aDest[6] = b10 * a02 + b11 * a12 + b12 * a22 + b13 * a32; 1.1032 + aDest[7] = b10 * a03 + b11 * a13 + b12 * a23 + b13 * a33; 1.1033 + aDest[8] = b20 * a00 + b21 * a10 + b22 * a20 + b23 * a30; 1.1034 + aDest[9] = b20 * a01 + b21 * a11 + b22 * a21 + b23 * a31; 1.1035 + aDest[10] = b20 * a02 + b21 * a12 + b22 * a22 + b23 * a32; 1.1036 + aDest[11] = b20 * a03 + b21 * a13 + b22 * a23 + b23 * a33; 1.1037 + aDest[12] = b30 * a00 + b31 * a10 + b32 * a20 + b33 * a30; 1.1038 + aDest[13] = b30 * a01 + b31 * a11 + b32 * a21 + b33 * a31; 1.1039 + aDest[14] = b30 * a02 + b31 * a12 + b32 * a22 + b33 * a32; 1.1040 + aDest[15] = b30 * a03 + b31 * a13 + b32 * a23 + b33 * a33; 1.1041 + return aDest; 1.1042 + }, 1.1043 + 1.1044 + /** 1.1045 + * Transforms a vec3 with the given matrix. 1.1046 + * 4th vector component is implicitly 1. 1.1047 + * 1.1048 + * @param {Array} aMat 1.1049 + * mat4 to transform the vector with 1.1050 + * @param {Array} aVec 1.1051 + * vec3 to transform 1.1052 + * @param {Array} aDest 1.1053 + * optional, vec3 receiving operation result 1.1054 + * if not specified result is written to the first operand 1.1055 + * 1.1056 + * @return {Array} the destination vec3 if specified, aVec operand otherwise 1.1057 + */ 1.1058 + multiplyVec3: function M4_multiplyVec3(aMat, aVec, aDest) 1.1059 + { 1.1060 + if (!aDest) { 1.1061 + aDest = aVec; 1.1062 + } 1.1063 + 1.1064 + let x = aVec[0]; 1.1065 + let y = aVec[1]; 1.1066 + let z = aVec[2]; 1.1067 + 1.1068 + aDest[0] = aMat[0] * x + aMat[4] * y + aMat[8] * z + aMat[12]; 1.1069 + aDest[1] = aMat[1] * x + aMat[5] * y + aMat[9] * z + aMat[13]; 1.1070 + aDest[2] = aMat[2] * x + aMat[6] * y + aMat[10] * z + aMat[14]; 1.1071 + return aDest; 1.1072 + }, 1.1073 + 1.1074 + /** 1.1075 + * Transforms a vec4 with the given matrix. 1.1076 + * 1.1077 + * @param {Array} aMat 1.1078 + * mat4 to transform the vector with 1.1079 + * @param {Array} aVec 1.1080 + * vec4 to transform 1.1081 + * @param {Array} aDest 1.1082 + * optional, vec4 receiving operation result 1.1083 + * if not specified result is written to the first operand 1.1084 + * 1.1085 + * @return {Array} the destination vec4 if specified, vec4 operand otherwise 1.1086 + */ 1.1087 + multiplyVec4: function M4_multiplyVec4(aMat, aVec, aDest) 1.1088 + { 1.1089 + if (!aDest) { 1.1090 + aDest = aVec; 1.1091 + } 1.1092 + 1.1093 + let x = aVec[0]; 1.1094 + let y = aVec[1]; 1.1095 + let z = aVec[2]; 1.1096 + let w = aVec[3]; 1.1097 + 1.1098 + aDest[0] = aMat[0] * x + aMat[4] * y + aMat[8] * z + aMat[12] * w; 1.1099 + aDest[1] = aMat[1] * x + aMat[5] * y + aMat[9] * z + aMat[13] * w; 1.1100 + aDest[2] = aMat[2] * x + aMat[6] * y + aMat[10] * z + aMat[14] * w; 1.1101 + aDest[3] = aMat[3] * x + aMat[7] * y + aMat[11] * z + aMat[15] * w; 1.1102 + return aDest; 1.1103 + }, 1.1104 + 1.1105 + /** 1.1106 + * Translates a matrix by the given vector. 1.1107 + * 1.1108 + * @param {Array} aMat 1.1109 + * mat4 to translate 1.1110 + * @param {Array} aVec 1.1111 + * vec3 specifying the translation 1.1112 + * @param {Array} aDest 1.1113 + * optional, mat4 receiving operation result 1.1114 + * if not specified result is written to the first operand 1.1115 + * 1.1116 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1117 + */ 1.1118 + translate: function M4_translate(aMat, aVec, aDest) 1.1119 + { 1.1120 + let x = aVec[0]; 1.1121 + let y = aVec[1]; 1.1122 + let z = aVec[2]; 1.1123 + 1.1124 + if (!aDest || aMat === aDest) { 1.1125 + aMat[12] = aMat[0] * x + aMat[4] * y + aMat[8] * z + aMat[12]; 1.1126 + aMat[13] = aMat[1] * x + aMat[5] * y + aMat[9] * z + aMat[13]; 1.1127 + aMat[14] = aMat[2] * x + aMat[6] * y + aMat[10] * z + aMat[14]; 1.1128 + aMat[15] = aMat[3] * x + aMat[7] * y + aMat[11] * z + aMat[15]; 1.1129 + return aMat; 1.1130 + } 1.1131 + 1.1132 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; 1.1133 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; 1.1134 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; 1.1135 + 1.1136 + aDest[0] = a00; 1.1137 + aDest[1] = a01; 1.1138 + aDest[2] = a02; 1.1139 + aDest[3] = a03; 1.1140 + aDest[4] = a10; 1.1141 + aDest[5] = a11; 1.1142 + aDest[6] = a12; 1.1143 + aDest[7] = a13; 1.1144 + aDest[8] = a20; 1.1145 + aDest[9] = a21; 1.1146 + aDest[10] = a22; 1.1147 + aDest[11] = a23; 1.1148 + aDest[12] = a00 * x + a10 * y + a20 * z + aMat[12]; 1.1149 + aDest[13] = a01 * x + a11 * y + a21 * z + aMat[13]; 1.1150 + aDest[14] = a02 * x + a12 * y + a22 * z + aMat[14]; 1.1151 + aDest[15] = a03 * x + a13 * y + a23 * z + aMat[15]; 1.1152 + return aDest; 1.1153 + }, 1.1154 + 1.1155 + /** 1.1156 + * Scales a matrix by the given vector. 1.1157 + * 1.1158 + * @param {Array} aMat 1.1159 + * mat4 to translate 1.1160 + * @param {Array} aVec 1.1161 + * vec3 specifying the scale on each axis 1.1162 + * @param {Array} aDest 1.1163 + * optional, mat4 receiving operation result 1.1164 + * if not specified result is written to the first operand 1.1165 + * 1.1166 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1167 + */ 1.1168 + scale: function M4_scale(aMat, aVec, aDest) 1.1169 + { 1.1170 + let x = aVec[0]; 1.1171 + let y = aVec[1]; 1.1172 + let z = aVec[2]; 1.1173 + 1.1174 + if (!aDest || aMat === aDest) { 1.1175 + aMat[0] *= x; 1.1176 + aMat[1] *= x; 1.1177 + aMat[2] *= x; 1.1178 + aMat[3] *= x; 1.1179 + aMat[4] *= y; 1.1180 + aMat[5] *= y; 1.1181 + aMat[6] *= y; 1.1182 + aMat[7] *= y; 1.1183 + aMat[8] *= z; 1.1184 + aMat[9] *= z; 1.1185 + aMat[10] *= z; 1.1186 + aMat[11] *= z; 1.1187 + return aMat; 1.1188 + } 1.1189 + 1.1190 + aDest[0] = aMat[0] * x; 1.1191 + aDest[1] = aMat[1] * x; 1.1192 + aDest[2] = aMat[2] * x; 1.1193 + aDest[3] = aMat[3] * x; 1.1194 + aDest[4] = aMat[4] * y; 1.1195 + aDest[5] = aMat[5] * y; 1.1196 + aDest[6] = aMat[6] * y; 1.1197 + aDest[7] = aMat[7] * y; 1.1198 + aDest[8] = aMat[8] * z; 1.1199 + aDest[9] = aMat[9] * z; 1.1200 + aDest[10] = aMat[10] * z; 1.1201 + aDest[11] = aMat[11] * z; 1.1202 + aDest[12] = aMat[12]; 1.1203 + aDest[13] = aMat[13]; 1.1204 + aDest[14] = aMat[14]; 1.1205 + aDest[15] = aMat[15]; 1.1206 + return aDest; 1.1207 + }, 1.1208 + 1.1209 + /** 1.1210 + * Rotates a matrix by the given angle around the specified axis. 1.1211 + * If rotating around a primary axis (x, y, z) one of the specialized 1.1212 + * rotation functions should be used instead for performance, 1.1213 + * 1.1214 + * @param {Array} aMat 1.1215 + * mat4 to rotate 1.1216 + * @param {Number} aAngle 1.1217 + * the angle (in radians) to rotate 1.1218 + * @param {Array} aAxis 1.1219 + * vec3 representing the axis to rotate around 1.1220 + * @param {Array} aDest 1.1221 + * optional, mat4 receiving operation result 1.1222 + * if not specified result is written to the first operand 1.1223 + * 1.1224 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1225 + */ 1.1226 + rotate: function M4_rotate(aMat, aAngle, aAxis, aDest) 1.1227 + { 1.1228 + let x = aAxis[0]; 1.1229 + let y = aAxis[1]; 1.1230 + let z = aAxis[2]; 1.1231 + let len = 1 / (Math.sqrt(x * x + y * y + z * z) || EPSILON); 1.1232 + 1.1233 + x *= len; 1.1234 + y *= len; 1.1235 + z *= len; 1.1236 + 1.1237 + let s = Math.sin(aAngle); 1.1238 + let c = Math.cos(aAngle); 1.1239 + let t = 1 - c; 1.1240 + 1.1241 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; 1.1242 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; 1.1243 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; 1.1244 + 1.1245 + let b00 = x * x * t + c, b01 = y * x * t + z * s, b02 = z * x * t - y * s; 1.1246 + let b10 = x * y * t - z * s, b11 = y * y * t + c, b12 = z * y * t + x * s; 1.1247 + let b20 = x * z * t + y * s, b21 = y * z * t - x * s, b22 = z * z * t + c; 1.1248 + 1.1249 + if (!aDest) { 1.1250 + aDest = aMat; 1.1251 + } else if (aMat !== aDest) { 1.1252 + aDest[12] = aMat[12]; 1.1253 + aDest[13] = aMat[13]; 1.1254 + aDest[14] = aMat[14]; 1.1255 + aDest[15] = aMat[15]; 1.1256 + } 1.1257 + 1.1258 + aDest[0] = a00 * b00 + a10 * b01 + a20 * b02; 1.1259 + aDest[1] = a01 * b00 + a11 * b01 + a21 * b02; 1.1260 + aDest[2] = a02 * b00 + a12 * b01 + a22 * b02; 1.1261 + aDest[3] = a03 * b00 + a13 * b01 + a23 * b02; 1.1262 + aDest[4] = a00 * b10 + a10 * b11 + a20 * b12; 1.1263 + aDest[5] = a01 * b10 + a11 * b11 + a21 * b12; 1.1264 + aDest[6] = a02 * b10 + a12 * b11 + a22 * b12; 1.1265 + aDest[7] = a03 * b10 + a13 * b11 + a23 * b12; 1.1266 + aDest[8] = a00 * b20 + a10 * b21 + a20 * b22; 1.1267 + aDest[9] = a01 * b20 + a11 * b21 + a21 * b22; 1.1268 + aDest[10] = a02 * b20 + a12 * b21 + a22 * b22; 1.1269 + aDest[11] = a03 * b20 + a13 * b21 + a23 * b22; 1.1270 + return aDest; 1.1271 + }, 1.1272 + 1.1273 + /** 1.1274 + * Rotates a matrix by the given angle around the X axis. 1.1275 + * 1.1276 + * @param {Array} aMat 1.1277 + * mat4 to rotate 1.1278 + * @param {Number} aAngle 1.1279 + * the angle (in radians) to rotate 1.1280 + * @param {Array} aDest 1.1281 + * optional, mat4 receiving operation result 1.1282 + * if not specified result is written to the first operand 1.1283 + * 1.1284 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1285 + */ 1.1286 + rotateX: function M4_rotateX(aMat, aAngle, aDest) 1.1287 + { 1.1288 + let s = Math.sin(aAngle); 1.1289 + let c = Math.cos(aAngle); 1.1290 + 1.1291 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; 1.1292 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; 1.1293 + 1.1294 + if (!aDest) { 1.1295 + aDest = aMat; 1.1296 + } else if (aMat !== aDest) { 1.1297 + aDest[0] = aMat[0]; 1.1298 + aDest[1] = aMat[1]; 1.1299 + aDest[2] = aMat[2]; 1.1300 + aDest[3] = aMat[3]; 1.1301 + aDest[12] = aMat[12]; 1.1302 + aDest[13] = aMat[13]; 1.1303 + aDest[14] = aMat[14]; 1.1304 + aDest[15] = aMat[15]; 1.1305 + } 1.1306 + 1.1307 + aDest[4] = a10 * c + a20 * s; 1.1308 + aDest[5] = a11 * c + a21 * s; 1.1309 + aDest[6] = a12 * c + a22 * s; 1.1310 + aDest[7] = a13 * c + a23 * s; 1.1311 + aDest[8] = a10 * -s + a20 * c; 1.1312 + aDest[9] = a11 * -s + a21 * c; 1.1313 + aDest[10] = a12 * -s + a22 * c; 1.1314 + aDest[11] = a13 * -s + a23 * c; 1.1315 + return aDest; 1.1316 + }, 1.1317 + 1.1318 + /** 1.1319 + * Rotates a matrix by the given angle around the Y axix. 1.1320 + * 1.1321 + * @param {Array} aMat 1.1322 + * mat4 to rotate 1.1323 + * @param {Number} aAngle 1.1324 + * the angle (in radians) to rotate 1.1325 + * @param {Array} aDest 1.1326 + * optional, mat4 receiving operation result 1.1327 + * if not specified result is written to the first operand 1.1328 + * 1.1329 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1330 + */ 1.1331 + rotateY: function M4_rotateY(aMat, aAngle, aDest) 1.1332 + { 1.1333 + let s = Math.sin(aAngle); 1.1334 + let c = Math.cos(aAngle); 1.1335 + 1.1336 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; 1.1337 + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; 1.1338 + 1.1339 + if (!aDest) { 1.1340 + aDest = aMat; 1.1341 + } else if (aMat !== aDest) { 1.1342 + aDest[4] = aMat[4]; 1.1343 + aDest[5] = aMat[5]; 1.1344 + aDest[6] = aMat[6]; 1.1345 + aDest[7] = aMat[7]; 1.1346 + aDest[12] = aMat[12]; 1.1347 + aDest[13] = aMat[13]; 1.1348 + aDest[14] = aMat[14]; 1.1349 + aDest[15] = aMat[15]; 1.1350 + } 1.1351 + 1.1352 + aDest[0] = a00 * c + a20 * -s; 1.1353 + aDest[1] = a01 * c + a21 * -s; 1.1354 + aDest[2] = a02 * c + a22 * -s; 1.1355 + aDest[3] = a03 * c + a23 * -s; 1.1356 + aDest[8] = a00 * s + a20 * c; 1.1357 + aDest[9] = a01 * s + a21 * c; 1.1358 + aDest[10] = a02 * s + a22 * c; 1.1359 + aDest[11] = a03 * s + a23 * c; 1.1360 + return aDest; 1.1361 + }, 1.1362 + 1.1363 + /** 1.1364 + * Rotates a matrix by the given angle around the Z axix. 1.1365 + * 1.1366 + * @param {Array} aMat 1.1367 + * mat4 to rotate 1.1368 + * @param {Number} aAngle 1.1369 + * the angle (in radians) to rotate 1.1370 + * @param {Array} aDest 1.1371 + * optional, mat4 receiving operation result 1.1372 + * if not specified result is written to the first operand 1.1373 + * 1.1374 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1375 + */ 1.1376 + rotateZ: function M4_rotateZ(aMat, aAngle, aDest) 1.1377 + { 1.1378 + let s = Math.sin(aAngle); 1.1379 + let c = Math.cos(aAngle); 1.1380 + 1.1381 + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; 1.1382 + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; 1.1383 + 1.1384 + if (!aDest) { 1.1385 + aDest = aMat; 1.1386 + } else if (aMat !== aDest) { 1.1387 + aDest[8] = aMat[8]; 1.1388 + aDest[9] = aMat[9]; 1.1389 + aDest[10] = aMat[10]; 1.1390 + aDest[11] = aMat[11]; 1.1391 + aDest[12] = aMat[12]; 1.1392 + aDest[13] = aMat[13]; 1.1393 + aDest[14] = aMat[14]; 1.1394 + aDest[15] = aMat[15]; 1.1395 + } 1.1396 + 1.1397 + aDest[0] = a00 * c + a10 * s; 1.1398 + aDest[1] = a01 * c + a11 * s; 1.1399 + aDest[2] = a02 * c + a12 * s; 1.1400 + aDest[3] = a03 * c + a13 * s; 1.1401 + aDest[4] = a00 * -s + a10 * c; 1.1402 + aDest[5] = a01 * -s + a11 * c; 1.1403 + aDest[6] = a02 * -s + a12 * c; 1.1404 + aDest[7] = a03 * -s + a13 * c; 1.1405 + return aDest; 1.1406 + }, 1.1407 + 1.1408 + /** 1.1409 + * Generates a frustum matrix with the given bounds. 1.1410 + * 1.1411 + * @param {Number} aLeft 1.1412 + * scalar, left bound of the frustum 1.1413 + * @param {Number} aRight 1.1414 + * scalar, right bound of the frustum 1.1415 + * @param {Number} aBottom 1.1416 + * scalar, bottom bound of the frustum 1.1417 + * @param {Number} aTop 1.1418 + * scalar, top bound of the frustum 1.1419 + * @param {Number} aNear 1.1420 + * scalar, near bound of the frustum 1.1421 + * @param {Number} aFar 1.1422 + * scalar, far bound of the frustum 1.1423 + * @param {Array} aDest 1.1424 + * optional, mat4 frustum matrix will be written into 1.1425 + * if not specified result is written to a new mat4 1.1426 + * 1.1427 + * @return {Array} the destination mat4 if specified, a new mat4 otherwise 1.1428 + */ 1.1429 + frustum: function M4_frustum( 1.1430 + aLeft, aRight, aBottom, aTop, aNear, aFar, aDest) 1.1431 + { 1.1432 + if (!aDest) { 1.1433 + aDest = new Float32Array(16); 1.1434 + } 1.1435 + 1.1436 + let rl = (aRight - aLeft); 1.1437 + let tb = (aTop - aBottom); 1.1438 + let fn = (aFar - aNear); 1.1439 + 1.1440 + aDest[0] = (aNear * 2) / rl; 1.1441 + aDest[1] = 0; 1.1442 + aDest[2] = 0; 1.1443 + aDest[3] = 0; 1.1444 + aDest[4] = 0; 1.1445 + aDest[5] = (aNear * 2) / tb; 1.1446 + aDest[6] = 0; 1.1447 + aDest[7] = 0; 1.1448 + aDest[8] = (aRight + aLeft) / rl; 1.1449 + aDest[9] = (aTop + aBottom) / tb; 1.1450 + aDest[10] = -(aFar + aNear) / fn; 1.1451 + aDest[11] = -1; 1.1452 + aDest[12] = 0; 1.1453 + aDest[13] = 0; 1.1454 + aDest[14] = -(aFar * aNear * 2) / fn; 1.1455 + aDest[15] = 0; 1.1456 + return aDest; 1.1457 + }, 1.1458 + 1.1459 + /** 1.1460 + * Generates a perspective projection matrix with the given bounds. 1.1461 + * 1.1462 + * @param {Number} aFovy 1.1463 + * scalar, vertical field of view (degrees) 1.1464 + * @param {Number} aAspect 1.1465 + * scalar, aspect ratio (typically viewport width/height) 1.1466 + * @param {Number} aNear 1.1467 + * scalar, near bound of the frustum 1.1468 + * @param {Number} aFar 1.1469 + * scalar, far bound of the frustum 1.1470 + * @param {Array} aDest 1.1471 + * optional, mat4 frustum matrix will be written into 1.1472 + * if not specified result is written to a new mat4 1.1473 + * 1.1474 + * @return {Array} the destination mat4 if specified, a new mat4 otherwise 1.1475 + */ 1.1476 + perspective: function M4_perspective( 1.1477 + aFovy, aAspect, aNear, aFar, aDest, aFlip) 1.1478 + { 1.1479 + let upper = aNear * Math.tan(aFovy * 0.00872664626); // PI * 180 / 2 1.1480 + let right = upper * aAspect; 1.1481 + let top = upper * (aFlip || 1); 1.1482 + 1.1483 + return mat4.frustum(-right, right, -top, top, aNear, aFar, aDest); 1.1484 + }, 1.1485 + 1.1486 + /** 1.1487 + * Generates a orthogonal projection matrix with the given bounds. 1.1488 + * 1.1489 + * @param {Number} aLeft 1.1490 + * scalar, left bound of the frustum 1.1491 + * @param {Number} aRight 1.1492 + * scalar, right bound of the frustum 1.1493 + * @param {Number} aBottom 1.1494 + * scalar, bottom bound of the frustum 1.1495 + * @param {Number} aTop 1.1496 + * scalar, top bound of the frustum 1.1497 + * @param {Number} aNear 1.1498 + * scalar, near bound of the frustum 1.1499 + * @param {Number} aFar 1.1500 + * scalar, far bound of the frustum 1.1501 + * @param {Array} aDest 1.1502 + * optional, mat4 frustum matrix will be written into 1.1503 + * if not specified result is written to a new mat4 1.1504 + * 1.1505 + * @return {Array} the destination mat4 if specified, a new mat4 otherwise 1.1506 + */ 1.1507 + ortho: function M4_ortho(aLeft, aRight, aBottom, aTop, aNear, aFar, aDest) 1.1508 + { 1.1509 + if (!aDest) { 1.1510 + aDest = new Float32Array(16); 1.1511 + } 1.1512 + 1.1513 + let rl = (aRight - aLeft); 1.1514 + let tb = (aTop - aBottom); 1.1515 + let fn = (aFar - aNear); 1.1516 + 1.1517 + aDest[0] = 2 / rl; 1.1518 + aDest[1] = 0; 1.1519 + aDest[2] = 0; 1.1520 + aDest[3] = 0; 1.1521 + aDest[4] = 0; 1.1522 + aDest[5] = 2 / tb; 1.1523 + aDest[6] = 0; 1.1524 + aDest[7] = 0; 1.1525 + aDest[8] = 0; 1.1526 + aDest[9] = 0; 1.1527 + aDest[10] = -2 / fn; 1.1528 + aDest[11] = 0; 1.1529 + aDest[12] = -(aLeft + aRight) / rl; 1.1530 + aDest[13] = -(aTop + aBottom) / tb; 1.1531 + aDest[14] = -(aFar + aNear) / fn; 1.1532 + aDest[15] = 1; 1.1533 + return aDest; 1.1534 + }, 1.1535 + 1.1536 + /** 1.1537 + * Generates a look-at matrix with the given eye position, focal point, and 1.1538 + * up axis. 1.1539 + * 1.1540 + * @param {Array} aEye 1.1541 + * vec3, position of the viewer 1.1542 + * @param {Array} aCenter 1.1543 + * vec3, point the viewer is looking at 1.1544 + * @param {Array} aUp 1.1545 + * vec3 pointing up 1.1546 + * @param {Array} aDest 1.1547 + * optional, mat4 frustum matrix will be written into 1.1548 + * if not specified result is written to a new mat4 1.1549 + * 1.1550 + * @return {Array} the destination mat4 if specified, a new mat4 otherwise 1.1551 + */ 1.1552 + lookAt: function M4_lookAt(aEye, aCenter, aUp, aDest) 1.1553 + { 1.1554 + if (!aDest) { 1.1555 + aDest = new Float32Array(16); 1.1556 + } 1.1557 + 1.1558 + let eyex = aEye[0]; 1.1559 + let eyey = aEye[1]; 1.1560 + let eyez = aEye[2]; 1.1561 + let upx = aUp[0]; 1.1562 + let upy = aUp[1]; 1.1563 + let upz = aUp[2]; 1.1564 + let centerx = aCenter[0]; 1.1565 + let centery = aCenter[1]; 1.1566 + let centerz = aCenter[2]; 1.1567 + 1.1568 + let z0 = eyex - aCenter[0]; 1.1569 + let z1 = eyey - aCenter[1]; 1.1570 + let z2 = eyez - aCenter[2]; 1.1571 + let len = 1 / (Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2) || EPSILON); 1.1572 + 1.1573 + z0 *= len; 1.1574 + z1 *= len; 1.1575 + z2 *= len; 1.1576 + 1.1577 + let x0 = upy * z2 - upz * z1; 1.1578 + let x1 = upz * z0 - upx * z2; 1.1579 + let x2 = upx * z1 - upy * z0; 1.1580 + len = 1 / (Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2) || EPSILON); 1.1581 + 1.1582 + x0 *= len; 1.1583 + x1 *= len; 1.1584 + x2 *= len; 1.1585 + 1.1586 + let y0 = z1 * x2 - z2 * x1; 1.1587 + let y1 = z2 * x0 - z0 * x2; 1.1588 + let y2 = z0 * x1 - z1 * x0; 1.1589 + len = 1 / (Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2) || EPSILON); 1.1590 + 1.1591 + y0 *= len; 1.1592 + y1 *= len; 1.1593 + y2 *= len; 1.1594 + 1.1595 + aDest[0] = x0; 1.1596 + aDest[1] = y0; 1.1597 + aDest[2] = z0; 1.1598 + aDest[3] = 0; 1.1599 + aDest[4] = x1; 1.1600 + aDest[5] = y1; 1.1601 + aDest[6] = z1; 1.1602 + aDest[7] = 0; 1.1603 + aDest[8] = x2; 1.1604 + aDest[9] = y2; 1.1605 + aDest[10] = z2; 1.1606 + aDest[11] = 0; 1.1607 + aDest[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); 1.1608 + aDest[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); 1.1609 + aDest[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); 1.1610 + aDest[15] = 1; 1.1611 + 1.1612 + return aDest; 1.1613 + }, 1.1614 + 1.1615 + /** 1.1616 + * Returns a string representation of a 4x4 matrix. 1.1617 + * 1.1618 + * @param {Array} aMat 1.1619 + * mat4 to represent as a string 1.1620 + * 1.1621 + * @return {String} representation of the matrix 1.1622 + */ 1.1623 + str: function M4_str(mat) 1.1624 + { 1.1625 + return "[" + mat[0] + ", " + mat[1] + ", " + mat[2] + ", " + mat[3] + 1.1626 + ", "+ mat[4] + ", " + mat[5] + ", " + mat[6] + ", " + mat[7] + 1.1627 + ", "+ mat[8] + ", " + mat[9] + ", " + mat[10] + ", " + mat[11] + 1.1628 + ", "+ mat[12] + ", " + mat[13] + ", " + mat[14] + ", " + mat[15] + 1.1629 + "]"; 1.1630 + } 1.1631 +}; 1.1632 + 1.1633 +exports.mat4 = mat4; 1.1634 + 1.1635 +/** 1.1636 + * quat4 - Quaternion. 1.1637 + */ 1.1638 +let quat4 = { 1.1639 + 1.1640 + /** 1.1641 + * Creates a new instance of a quat4 using the default Float32Array type. 1.1642 + * Any array containing at least 4 numeric elements can serve as a quat4. 1.1643 + * 1.1644 + * @param {Array} aQuat 1.1645 + * optional, quat4 containing values to initialize with 1.1646 + * 1.1647 + * @return {Array} a new instance of a quat4 1.1648 + */ 1.1649 + create: function Q4_create(aQuat) 1.1650 + { 1.1651 + let dest = new Float32Array(4); 1.1652 + 1.1653 + if (aQuat) { 1.1654 + quat4.set(aQuat, dest); 1.1655 + } else { 1.1656 + quat4.identity(dest); 1.1657 + } 1.1658 + return dest; 1.1659 + }, 1.1660 + 1.1661 + /** 1.1662 + * Copies the values of one quat4 to another. 1.1663 + * 1.1664 + * @param {Array} aQuat 1.1665 + * quat4 containing values to copy 1.1666 + * @param {Array} aDest 1.1667 + * quat4 receiving copied values 1.1668 + * 1.1669 + * @return {Array} the destination quat4 receiving copied values 1.1670 + */ 1.1671 + set: function Q4_set(aQuat, aDest) 1.1672 + { 1.1673 + aDest[0] = aQuat[0]; 1.1674 + aDest[1] = aQuat[1]; 1.1675 + aDest[2] = aQuat[2]; 1.1676 + aDest[3] = aQuat[3]; 1.1677 + return aDest; 1.1678 + }, 1.1679 + 1.1680 + /** 1.1681 + * Sets a quat4 to an identity quaternion. 1.1682 + * 1.1683 + * @param {Array} aDest 1.1684 + * quat4 to set 1.1685 + * 1.1686 + * @return {Array} the same quaternion 1.1687 + */ 1.1688 + identity: function Q4_identity(aDest) 1.1689 + { 1.1690 + aDest[0] = 0; 1.1691 + aDest[1] = 0; 1.1692 + aDest[2] = 0; 1.1693 + aDest[3] = 1; 1.1694 + return aDest; 1.1695 + }, 1.1696 + 1.1697 + /** 1.1698 + * Calculate the W component of a quat4 from the X, Y, and Z components. 1.1699 + * Assumes that quaternion is 1 unit in length. 1.1700 + * Any existing W component will be ignored. 1.1701 + * 1.1702 + * @param {Array} aQuat 1.1703 + * quat4 to calculate W component of 1.1704 + * @param {Array} aDest 1.1705 + * optional, quat4 receiving calculated values 1.1706 + * if not specified result is written to the first operand 1.1707 + * 1.1708 + * @return {Array} the destination quat if specified, first operand otherwise 1.1709 + */ 1.1710 + calculateW: function Q4_calculateW(aQuat, aDest) 1.1711 + { 1.1712 + if (!aDest) { 1.1713 + aDest = aQuat; 1.1714 + } 1.1715 + 1.1716 + let x = aQuat[0]; 1.1717 + let y = aQuat[1]; 1.1718 + let z = aQuat[2]; 1.1719 + 1.1720 + aDest[0] = x; 1.1721 + aDest[1] = y; 1.1722 + aDest[2] = z; 1.1723 + aDest[3] = -Math.sqrt(Math.abs(1 - x * x - y * y - z * z)); 1.1724 + return aDest; 1.1725 + }, 1.1726 + 1.1727 + /** 1.1728 + * Calculate the inverse of a quat4. 1.1729 + * 1.1730 + * @param {Array} aQuat 1.1731 + * quat4 to calculate the inverse of 1.1732 + * @param {Array} aDest 1.1733 + * optional, quat4 receiving the inverse values 1.1734 + * if not specified result is written to the first operand 1.1735 + * 1.1736 + * @return {Array} the destination quat if specified, first operand otherwise 1.1737 + */ 1.1738 + inverse: function Q4_inverse(aQuat, aDest) 1.1739 + { 1.1740 + if (!aDest) { 1.1741 + aDest = aQuat; 1.1742 + } 1.1743 + 1.1744 + aQuat[0] = -aQuat[0]; 1.1745 + aQuat[1] = -aQuat[1]; 1.1746 + aQuat[2] = -aQuat[2]; 1.1747 + return aQuat; 1.1748 + }, 1.1749 + 1.1750 + /** 1.1751 + * Generates a unit quaternion of the same direction as the provided quat4. 1.1752 + * If quaternion length is 0, returns [0, 0, 0, 0]. 1.1753 + * 1.1754 + * @param {Array} aQuat 1.1755 + * quat4 to normalize 1.1756 + * @param {Array} aDest 1.1757 + * optional, quat4 receiving the operation result 1.1758 + * if not specified result is written to the first operand 1.1759 + * 1.1760 + * @return {Array} the destination quat if specified, first operand otherwise 1.1761 + */ 1.1762 + normalize: function Q4_normalize(aQuat, aDest) 1.1763 + { 1.1764 + if (!aDest) { 1.1765 + aDest = aQuat; 1.1766 + } 1.1767 + 1.1768 + let x = aQuat[0]; 1.1769 + let y = aQuat[1]; 1.1770 + let z = aQuat[2]; 1.1771 + let w = aQuat[3]; 1.1772 + let len = Math.sqrt(x * x + y * y + z * z + w * w); 1.1773 + 1.1774 + if (Math.abs(len) < EPSILON) { 1.1775 + aDest[0] = 0; 1.1776 + aDest[1] = 0; 1.1777 + aDest[2] = 0; 1.1778 + aDest[3] = 0; 1.1779 + return aDest; 1.1780 + } 1.1781 + 1.1782 + len = 1 / len; 1.1783 + aDest[0] = x * len; 1.1784 + aDest[1] = y * len; 1.1785 + aDest[2] = z * len; 1.1786 + aDest[3] = w * len; 1.1787 + return aDest; 1.1788 + }, 1.1789 + 1.1790 + /** 1.1791 + * Calculate the length of a quat4. 1.1792 + * 1.1793 + * @param {Array} aQuat 1.1794 + * quat4 to calculate the length of 1.1795 + * 1.1796 + * @return {Number} length of the quaternion 1.1797 + */ 1.1798 + length: function Q4_length(aQuat) 1.1799 + { 1.1800 + let x = aQuat[0]; 1.1801 + let y = aQuat[1]; 1.1802 + let z = aQuat[2]; 1.1803 + let w = aQuat[3]; 1.1804 + 1.1805 + return Math.sqrt(x * x + y * y + z * z + w * w); 1.1806 + }, 1.1807 + 1.1808 + /** 1.1809 + * Performs a quaternion multiplication. 1.1810 + * 1.1811 + * @param {Array} aQuat 1.1812 + * first operand 1.1813 + * @param {Array} aQuat2 1.1814 + * second operand 1.1815 + * @param {Array} aDest 1.1816 + * optional, quat4 receiving the operation result 1.1817 + * if not specified result is written to the first operand 1.1818 + * 1.1819 + * @return {Array} the destination quat if specified, first operand otherwise 1.1820 + */ 1.1821 + multiply: function Q4_multiply(aQuat, aQuat2, aDest) 1.1822 + { 1.1823 + if (!aDest) { 1.1824 + aDest = aQuat; 1.1825 + } 1.1826 + 1.1827 + let qax = aQuat[0]; 1.1828 + let qay = aQuat[1]; 1.1829 + let qaz = aQuat[2]; 1.1830 + let qaw = aQuat[3]; 1.1831 + let qbx = aQuat2[0]; 1.1832 + let qby = aQuat2[1]; 1.1833 + let qbz = aQuat2[2]; 1.1834 + let qbw = aQuat2[3]; 1.1835 + 1.1836 + aDest[0] = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; 1.1837 + aDest[1] = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; 1.1838 + aDest[2] = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; 1.1839 + aDest[3] = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; 1.1840 + return aDest; 1.1841 + }, 1.1842 + 1.1843 + /** 1.1844 + * Transforms a vec3 with the given quaternion. 1.1845 + * 1.1846 + * @param {Array} aQuat 1.1847 + * quat4 to transform the vector with 1.1848 + * @param {Array} aVec 1.1849 + * vec3 to transform 1.1850 + * @param {Array} aDest 1.1851 + * optional, vec3 receiving the operation result 1.1852 + * if not specified result is written to the first operand 1.1853 + * 1.1854 + * @return {Array} the destination vec3 if specified, aVec operand otherwise 1.1855 + */ 1.1856 + multiplyVec3: function Q4_multiplyVec3(aQuat, aVec, aDest) 1.1857 + { 1.1858 + if (!aDest) { 1.1859 + aDest = aVec; 1.1860 + } 1.1861 + 1.1862 + let x = aVec[0]; 1.1863 + let y = aVec[1]; 1.1864 + let z = aVec[2]; 1.1865 + 1.1866 + let qx = aQuat[0]; 1.1867 + let qy = aQuat[1]; 1.1868 + let qz = aQuat[2]; 1.1869 + let qw = aQuat[3]; 1.1870 + 1.1871 + let ix = qw * x + qy * z - qz * y; 1.1872 + let iy = qw * y + qz * x - qx * z; 1.1873 + let iz = qw * z + qx * y - qy * x; 1.1874 + let iw = -qx * x - qy * y - qz * z; 1.1875 + 1.1876 + aDest[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; 1.1877 + aDest[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; 1.1878 + aDest[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; 1.1879 + return aDest; 1.1880 + }, 1.1881 + 1.1882 + /** 1.1883 + * Performs a spherical linear interpolation between two quat4. 1.1884 + * 1.1885 + * @param {Array} aQuat 1.1886 + * first quaternion 1.1887 + * @param {Array} aQuat2 1.1888 + * second quaternion 1.1889 + * @param {Number} aSlerp 1.1890 + * interpolation amount between the two inputs 1.1891 + * @param {Array} aDest 1.1892 + * optional, quat4 receiving the operation result 1.1893 + * if not specified result is written to the first operand 1.1894 + * 1.1895 + * @return {Array} the destination quat if specified, first operand otherwise 1.1896 + */ 1.1897 + slerp: function Q4_slerp(aQuat, aQuat2, aSlerp, aDest) 1.1898 + { 1.1899 + if (!aDest) { 1.1900 + aDest = aQuat; 1.1901 + } 1.1902 + 1.1903 + let cosHalfTheta = aQuat[0] * aQuat2[0] + 1.1904 + aQuat[1] * aQuat2[1] + 1.1905 + aQuat[2] * aQuat2[2] + 1.1906 + aQuat[3] * aQuat2[3]; 1.1907 + 1.1908 + if (Math.abs(cosHalfTheta) >= 1) { 1.1909 + aDest[0] = aQuat[0]; 1.1910 + aDest[1] = aQuat[1]; 1.1911 + aDest[2] = aQuat[2]; 1.1912 + aDest[3] = aQuat[3]; 1.1913 + return aDest; 1.1914 + } 1.1915 + 1.1916 + let halfTheta = Math.acos(cosHalfTheta); 1.1917 + let sinHalfTheta = Math.sqrt(1 - cosHalfTheta * cosHalfTheta); 1.1918 + 1.1919 + if (Math.abs(sinHalfTheta) < EPSILON) { 1.1920 + aDest[0] = (aQuat[0] * 0.5 + aQuat2[0] * 0.5); 1.1921 + aDest[1] = (aQuat[1] * 0.5 + aQuat2[1] * 0.5); 1.1922 + aDest[2] = (aQuat[2] * 0.5 + aQuat2[2] * 0.5); 1.1923 + aDest[3] = (aQuat[3] * 0.5 + aQuat2[3] * 0.5); 1.1924 + return aDest; 1.1925 + } 1.1926 + 1.1927 + let ratioA = Math.sin((1 - aSlerp) * halfTheta) / sinHalfTheta; 1.1928 + let ratioB = Math.sin(aSlerp * halfTheta) / sinHalfTheta; 1.1929 + 1.1930 + aDest[0] = (aQuat[0] * ratioA + aQuat2[0] * ratioB); 1.1931 + aDest[1] = (aQuat[1] * ratioA + aQuat2[1] * ratioB); 1.1932 + aDest[2] = (aQuat[2] * ratioA + aQuat2[2] * ratioB); 1.1933 + aDest[3] = (aQuat[3] * ratioA + aQuat2[3] * ratioB); 1.1934 + return aDest; 1.1935 + }, 1.1936 + 1.1937 + /** 1.1938 + * Calculates a 3x3 matrix from the given quat4. 1.1939 + * 1.1940 + * @param {Array} aQuat 1.1941 + * quat4 to create matrix from 1.1942 + * @param {Array} aDest 1.1943 + * optional, mat3 receiving the initialization result 1.1944 + * if not specified, a new matrix is created 1.1945 + * 1.1946 + * @return {Array} the destination mat3 if specified, first operand otherwise 1.1947 + */ 1.1948 + toMat3: function Q4_toMat3(aQuat, aDest) 1.1949 + { 1.1950 + if (!aDest) { 1.1951 + aDest = new Float32Array(9); 1.1952 + } 1.1953 + 1.1954 + let x = aQuat[0]; 1.1955 + let y = aQuat[1]; 1.1956 + let z = aQuat[2]; 1.1957 + let w = aQuat[3]; 1.1958 + 1.1959 + let x2 = x + x; 1.1960 + let y2 = y + y; 1.1961 + let z2 = z + z; 1.1962 + let xx = x * x2; 1.1963 + let xy = x * y2; 1.1964 + let xz = x * z2; 1.1965 + let yy = y * y2; 1.1966 + let yz = y * z2; 1.1967 + let zz = z * z2; 1.1968 + let wx = w * x2; 1.1969 + let wy = w * y2; 1.1970 + let wz = w * z2; 1.1971 + 1.1972 + aDest[0] = 1 - (yy + zz); 1.1973 + aDest[1] = xy - wz; 1.1974 + aDest[2] = xz + wy; 1.1975 + aDest[3] = xy + wz; 1.1976 + aDest[4] = 1 - (xx + zz); 1.1977 + aDest[5] = yz - wx; 1.1978 + aDest[6] = xz - wy; 1.1979 + aDest[7] = yz + wx; 1.1980 + aDest[8] = 1 - (xx + yy); 1.1981 + return aDest; 1.1982 + }, 1.1983 + 1.1984 + /** 1.1985 + * Calculates a 4x4 matrix from the given quat4. 1.1986 + * 1.1987 + * @param {Array} aQuat 1.1988 + * quat4 to create matrix from 1.1989 + * @param {Array} aDest 1.1990 + * optional, mat4 receiving the initialization result 1.1991 + * if not specified, a new matrix is created 1.1992 + * 1.1993 + * @return {Array} the destination mat4 if specified, first operand otherwise 1.1994 + */ 1.1995 + toMat4: function Q4_toMat4(aQuat, aDest) 1.1996 + { 1.1997 + if (!aDest) { 1.1998 + aDest = new Float32Array(16); 1.1999 + } 1.2000 + 1.2001 + let x = aQuat[0]; 1.2002 + let y = aQuat[1]; 1.2003 + let z = aQuat[2]; 1.2004 + let w = aQuat[3]; 1.2005 + 1.2006 + let x2 = x + x; 1.2007 + let y2 = y + y; 1.2008 + let z2 = z + z; 1.2009 + let xx = x * x2; 1.2010 + let xy = x * y2; 1.2011 + let xz = x * z2; 1.2012 + let yy = y * y2; 1.2013 + let yz = y * z2; 1.2014 + let zz = z * z2; 1.2015 + let wx = w * x2; 1.2016 + let wy = w * y2; 1.2017 + let wz = w * z2; 1.2018 + 1.2019 + aDest[0] = 1 - (yy + zz); 1.2020 + aDest[1] = xy - wz; 1.2021 + aDest[2] = xz + wy; 1.2022 + aDest[3] = 0; 1.2023 + aDest[4] = xy + wz; 1.2024 + aDest[5] = 1 - (xx + zz); 1.2025 + aDest[6] = yz - wx; 1.2026 + aDest[7] = 0; 1.2027 + aDest[8] = xz - wy; 1.2028 + aDest[9] = yz + wx; 1.2029 + aDest[10] = 1 - (xx + yy); 1.2030 + aDest[11] = 0; 1.2031 + aDest[12] = 0; 1.2032 + aDest[13] = 0; 1.2033 + aDest[14] = 0; 1.2034 + aDest[15] = 1; 1.2035 + return aDest; 1.2036 + }, 1.2037 + 1.2038 + /** 1.2039 + * Creates a rotation quaternion from axis-angle. 1.2040 + * This function expects that the axis is a normalized vector. 1.2041 + * 1.2042 + * @param {Array} aAxis 1.2043 + * an array of elements representing the [x, y, z] axis 1.2044 + * @param {Number} aAngle 1.2045 + * the angle of rotation 1.2046 + * @param {Array} aDest 1.2047 + * optional, quat4 receiving the initialization result 1.2048 + * if not specified, a new quaternion is created 1.2049 + * 1.2050 + * @return {Array} the quaternion as [x, y, z, w] 1.2051 + */ 1.2052 + fromAxis: function Q4_fromAxis(aAxis, aAngle, aDest) 1.2053 + { 1.2054 + if (!aDest) { 1.2055 + aDest = new Float32Array(4); 1.2056 + } 1.2057 + 1.2058 + let ang = aAngle * 0.5; 1.2059 + let sin = Math.sin(ang); 1.2060 + let cos = Math.cos(ang); 1.2061 + 1.2062 + aDest[0] = aAxis[0] * sin; 1.2063 + aDest[1] = aAxis[1] * sin; 1.2064 + aDest[2] = aAxis[2] * sin; 1.2065 + aDest[3] = cos; 1.2066 + return aDest; 1.2067 + }, 1.2068 + 1.2069 + /** 1.2070 + * Creates a rotation quaternion from Euler angles. 1.2071 + * 1.2072 + * @param {Number} aYaw 1.2073 + * the yaw angle of rotation 1.2074 + * @param {Number} aPitch 1.2075 + * the pitch angle of rotation 1.2076 + * @param {Number} aRoll 1.2077 + * the roll angle of rotation 1.2078 + * @param {Array} aDest 1.2079 + * optional, quat4 receiving the initialization result 1.2080 + * if not specified, a new quaternion is created 1.2081 + * 1.2082 + * @return {Array} the quaternion as [x, y, z, w] 1.2083 + */ 1.2084 + fromEuler: function Q4_fromEuler(aYaw, aPitch, aRoll, aDest) 1.2085 + { 1.2086 + if (!aDest) { 1.2087 + aDest = new Float32Array(4); 1.2088 + } 1.2089 + 1.2090 + let x = aPitch * 0.5; 1.2091 + let y = aYaw * 0.5; 1.2092 + let z = aRoll * 0.5; 1.2093 + 1.2094 + let sinr = Math.sin(x); 1.2095 + let sinp = Math.sin(y); 1.2096 + let siny = Math.sin(z); 1.2097 + let cosr = Math.cos(x); 1.2098 + let cosp = Math.cos(y); 1.2099 + let cosy = Math.cos(z); 1.2100 + 1.2101 + aDest[0] = sinr * cosp * cosy - cosr * sinp * siny; 1.2102 + aDest[1] = cosr * sinp * cosy + sinr * cosp * siny; 1.2103 + aDest[2] = cosr * cosp * siny - sinr * sinp * cosy; 1.2104 + aDest[3] = cosr * cosp * cosy + sinr * sinp * siny; 1.2105 + return aDest; 1.2106 + }, 1.2107 + 1.2108 + /** 1.2109 + * Returns a string representation of a quaternion. 1.2110 + * 1.2111 + * @param {Array} aQuat 1.2112 + * quat4 to represent as a string 1.2113 + * 1.2114 + * @return {String} representation of the quaternion 1.2115 + */ 1.2116 + str: function Q4_str(aQuat) { 1.2117 + return "[" + aQuat[0] + ", " + 1.2118 + aQuat[1] + ", " + 1.2119 + aQuat[2] + ", " + 1.2120 + aQuat[3] + "]"; 1.2121 + } 1.2122 +}; 1.2123 + 1.2124 +exports.quat4 = quat4; 1.2125 + 1.2126 +/** 1.2127 + * Various algebraic math functions required by the engine. 1.2128 + */ 1.2129 +let TiltMath = { 1.2130 + 1.2131 + /** 1.2132 + * Helper function, converts degrees to radians. 1.2133 + * 1.2134 + * @param {Number} aDegrees 1.2135 + * the degrees to be converted to radians 1.2136 + * 1.2137 + * @return {Number} the degrees converted to radians 1.2138 + */ 1.2139 + radians: function TM_radians(aDegrees) 1.2140 + { 1.2141 + return aDegrees * PI_OVER_180; 1.2142 + }, 1.2143 + 1.2144 + /** 1.2145 + * Helper function, converts radians to degrees. 1.2146 + * 1.2147 + * @param {Number} aRadians 1.2148 + * the radians to be converted to degrees 1.2149 + * 1.2150 + * @return {Number} the radians converted to degrees 1.2151 + */ 1.2152 + degrees: function TM_degrees(aRadians) 1.2153 + { 1.2154 + return aRadians * INV_PI_OVER_180; 1.2155 + }, 1.2156 + 1.2157 + /** 1.2158 + * Re-maps a number from one range to another. 1.2159 + * 1.2160 + * @param {Number} aValue 1.2161 + * the number to map 1.2162 + * @param {Number} aLow1 1.2163 + * the normal lower bound of the number 1.2164 + * @param {Number} aHigh1 1.2165 + * the normal upper bound of the number 1.2166 + * @param {Number} aLow2 1.2167 + * the new lower bound of the number 1.2168 + * @param {Number} aHigh2 1.2169 + * the new upper bound of the number 1.2170 + * 1.2171 + * @return {Number} the remapped number 1.2172 + */ 1.2173 + map: function TM_map(aValue, aLow1, aHigh1, aLow2, aHigh2) 1.2174 + { 1.2175 + return aLow2 + (aHigh2 - aLow2) * ((aValue - aLow1) / (aHigh1 - aLow1)); 1.2176 + }, 1.2177 + 1.2178 + /** 1.2179 + * Returns if number is power of two. 1.2180 + * 1.2181 + * @param {Number} aNumber 1.2182 + * the number to be verified 1.2183 + * 1.2184 + * @return {Boolean} true if x is power of two 1.2185 + */ 1.2186 + isPowerOfTwo: function TM_isPowerOfTwo(aNumber) 1.2187 + { 1.2188 + return !(aNumber & (aNumber - 1)); 1.2189 + }, 1.2190 + 1.2191 + /** 1.2192 + * Returns the next closest power of two greater than a number. 1.2193 + * 1.2194 + * @param {Number} aNumber 1.2195 + * the number to be converted 1.2196 + * 1.2197 + * @return {Number} the next closest power of two for x 1.2198 + */ 1.2199 + nextPowerOfTwo: function TM_nextPowerOfTwo(aNumber) 1.2200 + { 1.2201 + --aNumber; 1.2202 + 1.2203 + for (let i = 1; i < 32; i <<= 1) { 1.2204 + aNumber = aNumber | aNumber >> i; 1.2205 + } 1.2206 + return aNumber + 1; 1.2207 + }, 1.2208 + 1.2209 + /** 1.2210 + * A convenient way of limiting values to a set boundary. 1.2211 + * 1.2212 + * @param {Number} aValue 1.2213 + * the number to be limited 1.2214 + * @param {Number} aMin 1.2215 + * the minimum allowed value for the number 1.2216 + * @param {Number} aMax 1.2217 + * the maximum allowed value for the number 1.2218 + */ 1.2219 + clamp: function TM_clamp(aValue, aMin, aMax) 1.2220 + { 1.2221 + return Math.max(aMin, Math.min(aMax, aValue)); 1.2222 + }, 1.2223 + 1.2224 + /** 1.2225 + * Convenient way to clamp a value to 0..1 1.2226 + * 1.2227 + * @param {Number} aValue 1.2228 + * the number to be limited 1.2229 + */ 1.2230 + saturate: function TM_saturate(aValue) 1.2231 + { 1.2232 + return Math.max(0, Math.min(1, aValue)); 1.2233 + }, 1.2234 + 1.2235 + /** 1.2236 + * Converts a hex color to rgba. 1.2237 + * If the passed param is invalid, it will be converted to [0, 0, 0, 1]; 1.2238 + * 1.2239 + * @param {String} aColor 1.2240 + * color expressed in hex, or using rgb() or rgba() 1.2241 + * 1.2242 + * @return {Array} with 4 color 0..1 components: [red, green, blue, alpha] 1.2243 + */ 1.2244 + hex2rgba: (function() 1.2245 + { 1.2246 + let cache = {}; 1.2247 + 1.2248 + return function TM_hex2rgba(aColor) { 1.2249 + let hex = aColor.charAt(0) === "#" ? aColor.substring(1) : aColor; 1.2250 + 1.2251 + // check the cache to see if this color wasn't converted already 1.2252 + if (cache[hex] !== undefined) { 1.2253 + return cache[hex]; 1.2254 + } 1.2255 + 1.2256 + // e.g. "f00" 1.2257 + if (hex.length === 3) { 1.2258 + let r = parseInt(hex.substring(0, 1), 16) * FIFTEEN_OVER_225; 1.2259 + let g = parseInt(hex.substring(1, 2), 16) * FIFTEEN_OVER_225; 1.2260 + let b = parseInt(hex.substring(2, 3), 16) * FIFTEEN_OVER_225; 1.2261 + 1.2262 + return (cache[hex] = [r, g, b, 1]); 1.2263 + } 1.2264 + // e.g. "f008" 1.2265 + if (hex.length === 4) { 1.2266 + let r = parseInt(hex.substring(0, 1), 16) * FIFTEEN_OVER_225; 1.2267 + let g = parseInt(hex.substring(1, 2), 16) * FIFTEEN_OVER_225; 1.2268 + let b = parseInt(hex.substring(2, 3), 16) * FIFTEEN_OVER_225; 1.2269 + let a = parseInt(hex.substring(3, 4), 16) * FIFTEEN_OVER_225; 1.2270 + 1.2271 + return (cache[hex] = [r, g, b, a]); 1.2272 + } 1.2273 + // e.g. "ff0000" 1.2274 + if (hex.length === 6) { 1.2275 + let r = parseInt(hex.substring(0, 2), 16) * ONE_OVER_255; 1.2276 + let g = parseInt(hex.substring(2, 4), 16) * ONE_OVER_255; 1.2277 + let b = parseInt(hex.substring(4, 6), 16) * ONE_OVER_255; 1.2278 + let a = 1; 1.2279 + 1.2280 + return (cache[hex] = [r, g, b, a]); 1.2281 + } 1.2282 + // e.g "ff0000aa" 1.2283 + if (hex.length === 8) { 1.2284 + let r = parseInt(hex.substring(0, 2), 16) * ONE_OVER_255; 1.2285 + let g = parseInt(hex.substring(2, 4), 16) * ONE_OVER_255; 1.2286 + let b = parseInt(hex.substring(4, 6), 16) * ONE_OVER_255; 1.2287 + let a = parseInt(hex.substring(6, 8), 16) * ONE_OVER_255; 1.2288 + 1.2289 + return (cache[hex] = [r, g, b, a]); 1.2290 + } 1.2291 + // e.g. "rgba(255, 0, 0, 0.5)" 1.2292 + if (hex.match("^rgba")) { 1.2293 + let rgba = hex.substring(5, hex.length - 1).split(","); 1.2294 + rgba[0] *= ONE_OVER_255; 1.2295 + rgba[1] *= ONE_OVER_255; 1.2296 + rgba[2] *= ONE_OVER_255; 1.2297 + // in CSS, the alpha component of rgba() is already in the range 0..1 1.2298 + 1.2299 + return (cache[hex] = rgba); 1.2300 + } 1.2301 + // e.g. "rgb(255, 0, 0)" 1.2302 + if (hex.match("^rgb")) { 1.2303 + let rgba = hex.substring(4, hex.length - 1).split(","); 1.2304 + rgba[0] *= ONE_OVER_255; 1.2305 + rgba[1] *= ONE_OVER_255; 1.2306 + rgba[2] *= ONE_OVER_255; 1.2307 + rgba[3] = 1; 1.2308 + 1.2309 + return (cache[hex] = rgba); 1.2310 + } 1.2311 + 1.2312 + // your argument is invalid 1.2313 + return (cache[hex] = [0, 0, 0, 1]); 1.2314 + }; 1.2315 + }()) 1.2316 +}; 1.2317 + 1.2318 +exports.TiltMath = TiltMath; 1.2319 + 1.2320 +// bind the owner object to the necessary functions 1.2321 +TiltUtils.bindObjectFunc(vec3); 1.2322 +TiltUtils.bindObjectFunc(mat3); 1.2323 +TiltUtils.bindObjectFunc(mat4); 1.2324 +TiltUtils.bindObjectFunc(quat4); 1.2325 +TiltUtils.bindObjectFunc(TiltMath);