1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/content/media/AudioEventTimeline.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,577 @@ 1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ 1.5 +/* vim:set ts=2 sw=2 sts=2 et cindent: */ 1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.9 + 1.10 +#ifndef AudioEventTimeline_h_ 1.11 +#define AudioEventTimeline_h_ 1.12 + 1.13 +#include <algorithm> 1.14 +#include "mozilla/Assertions.h" 1.15 +#include "mozilla/FloatingPoint.h" 1.16 +#include "mozilla/TypedEnum.h" 1.17 +#include "mozilla/PodOperations.h" 1.18 + 1.19 +#include "nsTArray.h" 1.20 +#include "math.h" 1.21 + 1.22 +namespace mozilla { 1.23 + 1.24 +namespace dom { 1.25 + 1.26 +// This is an internal helper class and should not be used outside of this header. 1.27 +struct AudioTimelineEvent { 1.28 + enum Type MOZ_ENUM_TYPE(uint32_t) { 1.29 + SetValue, 1.30 + LinearRamp, 1.31 + ExponentialRamp, 1.32 + SetTarget, 1.33 + SetValueCurve 1.34 + }; 1.35 + 1.36 + AudioTimelineEvent(Type aType, double aTime, float aValue, double aTimeConstant = 0.0, 1.37 + float aDuration = 0.0, const float* aCurve = nullptr, uint32_t aCurveLength = 0) 1.38 + : mType(aType) 1.39 + , mTimeConstant(aTimeConstant) 1.40 + , mDuration(aDuration) 1.41 +#ifdef DEBUG 1.42 + , mTimeIsInTicks(false) 1.43 +#endif 1.44 + { 1.45 + mTime = aTime; 1.46 + if (aType == AudioTimelineEvent::SetValueCurve) { 1.47 + SetCurveParams(aCurve, aCurveLength); 1.48 + } else { 1.49 + mValue = aValue; 1.50 + } 1.51 + } 1.52 + 1.53 + AudioTimelineEvent(const AudioTimelineEvent& rhs) 1.54 + { 1.55 + PodCopy(this, &rhs, 1); 1.56 + if (rhs.mType == AudioTimelineEvent::SetValueCurve) { 1.57 + SetCurveParams(rhs.mCurve, rhs.mCurveLength); 1.58 + } 1.59 + } 1.60 + 1.61 + ~AudioTimelineEvent() 1.62 + { 1.63 + if (mType == AudioTimelineEvent::SetValueCurve) { 1.64 + delete[] mCurve; 1.65 + } 1.66 + } 1.67 + 1.68 + bool IsValid() const 1.69 + { 1.70 + if (mType == AudioTimelineEvent::SetValueCurve) { 1.71 + if (!mCurve || !mCurveLength) { 1.72 + return false; 1.73 + } 1.74 + for (uint32_t i = 0; i < mCurveLength; ++i) { 1.75 + if (!IsValid(mCurve[i])) { 1.76 + return false; 1.77 + } 1.78 + } 1.79 + } 1.80 + 1.81 + return IsValid(mTime) && 1.82 + IsValid(mValue) && 1.83 + IsValid(mTimeConstant) && 1.84 + IsValid(mDuration); 1.85 + } 1.86 + 1.87 + template <class TimeType> 1.88 + TimeType Time() const; 1.89 + 1.90 + void SetTimeInTicks(int64_t aTimeInTicks) 1.91 + { 1.92 + mTimeInTicks = aTimeInTicks; 1.93 +#ifdef DEBUG 1.94 + mTimeIsInTicks = true; 1.95 +#endif 1.96 + } 1.97 + 1.98 + void SetCurveParams(const float* aCurve, uint32_t aCurveLength) { 1.99 + mCurveLength = aCurveLength; 1.100 + if (aCurveLength) { 1.101 + mCurve = new float[aCurveLength]; 1.102 + PodCopy(mCurve, aCurve, aCurveLength); 1.103 + } else { 1.104 + mCurve = nullptr; 1.105 + } 1.106 + } 1.107 + 1.108 + Type mType; 1.109 + union { 1.110 + float mValue; 1.111 + uint32_t mCurveLength; 1.112 + }; 1.113 + // The time for an event can either be in absolute value or in ticks. 1.114 + // Initially the time of the event is always in absolute value. 1.115 + // In order to convert it to ticks, call SetTimeInTicks. Once this 1.116 + // method has been called for an event, the time cannot be converted 1.117 + // back to absolute value. 1.118 + union { 1.119 + double mTime; 1.120 + int64_t mTimeInTicks; 1.121 + }; 1.122 + // mCurve contains a buffer of SetValueCurve samples. We sample the 1.123 + // values in the buffer depending on how far along we are in time. 1.124 + // If we're at time T and the event has started as time T0 and has a 1.125 + // duration of D, we sample the buffer at floor(mCurveLength*(T-T0)/D) 1.126 + // if T<T0+D, and just take the last sample in the buffer otherwise. 1.127 + float* mCurve; 1.128 + double mTimeConstant; 1.129 + double mDuration; 1.130 +#ifdef DEBUG 1.131 + bool mTimeIsInTicks; 1.132 +#endif 1.133 + 1.134 +private: 1.135 + static bool IsValid(double value) 1.136 + { 1.137 + return mozilla::IsFinite(value); 1.138 + } 1.139 +}; 1.140 + 1.141 +template <> 1.142 +inline double AudioTimelineEvent::Time<double>() const 1.143 +{ 1.144 + MOZ_ASSERT(!mTimeIsInTicks); 1.145 + return mTime; 1.146 +} 1.147 + 1.148 +template <> 1.149 +inline int64_t AudioTimelineEvent::Time<int64_t>() const 1.150 +{ 1.151 + MOZ_ASSERT(mTimeIsInTicks); 1.152 + return mTimeInTicks; 1.153 +} 1.154 + 1.155 +/** 1.156 + * This class will be instantiated with different template arguments for testing and 1.157 + * production code. 1.158 + * 1.159 + * ErrorResult is a type which satisfies the following: 1.160 + * - Implements a Throw() method taking an nsresult argument, representing an error code. 1.161 + */ 1.162 +template <class ErrorResult> 1.163 +class AudioEventTimeline 1.164 +{ 1.165 +public: 1.166 + explicit AudioEventTimeline(float aDefaultValue) 1.167 + : mValue(aDefaultValue), 1.168 + mComputedValue(aDefaultValue), 1.169 + mLastComputedValue(aDefaultValue) 1.170 + { 1.171 + } 1.172 + 1.173 + bool HasSimpleValue() const 1.174 + { 1.175 + return mEvents.IsEmpty(); 1.176 + } 1.177 + 1.178 + float GetValue() const 1.179 + { 1.180 + // This method should only be called if HasSimpleValue() returns true 1.181 + MOZ_ASSERT(HasSimpleValue()); 1.182 + return mValue; 1.183 + } 1.184 + 1.185 + float Value() const 1.186 + { 1.187 + // TODO: Return the current value based on the timeline of the AudioContext 1.188 + return mValue; 1.189 + } 1.190 + 1.191 + void SetValue(float aValue) 1.192 + { 1.193 + // Silently don't change anything if there are any events 1.194 + if (mEvents.IsEmpty()) { 1.195 + mLastComputedValue = mComputedValue = mValue = aValue; 1.196 + } 1.197 + } 1.198 + 1.199 + void SetValueAtTime(float aValue, double aStartTime, ErrorResult& aRv) 1.200 + { 1.201 + InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetValue, aStartTime, aValue), aRv); 1.202 + } 1.203 + 1.204 + void LinearRampToValueAtTime(float aValue, double aEndTime, ErrorResult& aRv) 1.205 + { 1.206 + InsertEvent(AudioTimelineEvent(AudioTimelineEvent::LinearRamp, aEndTime, aValue), aRv); 1.207 + } 1.208 + 1.209 + void ExponentialRampToValueAtTime(float aValue, double aEndTime, ErrorResult& aRv) 1.210 + { 1.211 + InsertEvent(AudioTimelineEvent(AudioTimelineEvent::ExponentialRamp, aEndTime, aValue), aRv); 1.212 + } 1.213 + 1.214 + void SetTargetAtTime(float aTarget, double aStartTime, double aTimeConstant, ErrorResult& aRv) 1.215 + { 1.216 + InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetTarget, aStartTime, aTarget, aTimeConstant), aRv); 1.217 + } 1.218 + 1.219 + void SetValueCurveAtTime(const float* aValues, uint32_t aValuesLength, double aStartTime, double aDuration, ErrorResult& aRv) 1.220 + { 1.221 + InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetValueCurve, aStartTime, 0.0f, 0.0f, aDuration, aValues, aValuesLength), aRv); 1.222 + } 1.223 + 1.224 + void CancelScheduledValues(double aStartTime) 1.225 + { 1.226 + for (unsigned i = 0; i < mEvents.Length(); ++i) { 1.227 + if (mEvents[i].mTime >= aStartTime) { 1.228 +#ifdef DEBUG 1.229 + // Sanity check: the array should be sorted, so all of the following 1.230 + // events should have a time greater than aStartTime too. 1.231 + for (unsigned j = i + 1; j < mEvents.Length(); ++j) { 1.232 + MOZ_ASSERT(mEvents[j].mTime >= aStartTime); 1.233 + } 1.234 +#endif 1.235 + mEvents.TruncateLength(i); 1.236 + break; 1.237 + } 1.238 + } 1.239 + } 1.240 + 1.241 + void CancelAllEvents() 1.242 + { 1.243 + mEvents.Clear(); 1.244 + } 1.245 + 1.246 + static bool TimesEqual(int64_t aLhs, int64_t aRhs) 1.247 + { 1.248 + return aLhs == aRhs; 1.249 + } 1.250 + 1.251 + // Since we are going to accumulate error by adding 0.01 multiple time in a 1.252 + // loop, we want to fuzz the equality check in GetValueAtTime. 1.253 + static bool TimesEqual(double aLhs, double aRhs) 1.254 + { 1.255 + const float kEpsilon = 0.0000000001f; 1.256 + return fabs(aLhs - aRhs) < kEpsilon; 1.257 + } 1.258 + 1.259 + template<class TimeType> 1.260 + float GetValueAtTime(TimeType aTime) 1.261 + { 1.262 + mComputedValue = GetValueAtTimeHelper(aTime); 1.263 + return mComputedValue; 1.264 + } 1.265 + 1.266 + // This method computes the AudioParam value at a given time based on the event timeline 1.267 + template<class TimeType> 1.268 + float GetValueAtTimeHelper(TimeType aTime) 1.269 + { 1.270 + const AudioTimelineEvent* previous = nullptr; 1.271 + const AudioTimelineEvent* next = nullptr; 1.272 + 1.273 + bool bailOut = false; 1.274 + for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) { 1.275 + switch (mEvents[i].mType) { 1.276 + case AudioTimelineEvent::SetValue: 1.277 + case AudioTimelineEvent::SetTarget: 1.278 + case AudioTimelineEvent::LinearRamp: 1.279 + case AudioTimelineEvent::ExponentialRamp: 1.280 + case AudioTimelineEvent::SetValueCurve: 1.281 + if (TimesEqual(aTime, mEvents[i].template Time<TimeType>())) { 1.282 + mLastComputedValue = mComputedValue; 1.283 + // Find the last event with the same time 1.284 + do { 1.285 + ++i; 1.286 + } while (i < mEvents.Length() && 1.287 + aTime == mEvents[i].template Time<TimeType>()); 1.288 + 1.289 + // SetTarget nodes can be handled no matter what their next node is (if they have one) 1.290 + if (mEvents[i - 1].mType == AudioTimelineEvent::SetTarget) { 1.291 + // Follow the curve, without regard to the next event, starting at 1.292 + // the last value of the last event. 1.293 + return ExponentialApproach(mEvents[i - 1].template Time<TimeType>(), 1.294 + mLastComputedValue, mEvents[i - 1].mValue, 1.295 + mEvents[i - 1].mTimeConstant, aTime); 1.296 + } 1.297 + 1.298 + // SetValueCurve events can be handled no matter what their event node is (if they have one) 1.299 + if (mEvents[i - 1].mType == AudioTimelineEvent::SetValueCurve) { 1.300 + return ExtractValueFromCurve(mEvents[i - 1].template Time<TimeType>(), 1.301 + mEvents[i - 1].mCurve, 1.302 + mEvents[i - 1].mCurveLength, 1.303 + mEvents[i - 1].mDuration, aTime); 1.304 + } 1.305 + 1.306 + // For other event types 1.307 + return mEvents[i - 1].mValue; 1.308 + } 1.309 + previous = next; 1.310 + next = &mEvents[i]; 1.311 + if (aTime < mEvents[i].template Time<TimeType>()) { 1.312 + bailOut = true; 1.313 + } 1.314 + break; 1.315 + default: 1.316 + MOZ_ASSERT(false, "unreached"); 1.317 + } 1.318 + } 1.319 + // Handle the case where the time is past all of the events 1.320 + if (!bailOut) { 1.321 + previous = next; 1.322 + next = nullptr; 1.323 + } 1.324 + 1.325 + // Just return the default value if we did not find anything 1.326 + if (!previous && !next) { 1.327 + return mValue; 1.328 + } 1.329 + 1.330 + // If the requested time is before all of the existing events 1.331 + if (!previous) { 1.332 + return mValue; 1.333 + } 1.334 + 1.335 + // SetTarget nodes can be handled no matter what their next node is (if they have one) 1.336 + if (previous->mType == AudioTimelineEvent::SetTarget) { 1.337 + return ExponentialApproach(previous->template Time<TimeType>(), 1.338 + mLastComputedValue, previous->mValue, 1.339 + previous->mTimeConstant, aTime); 1.340 + } 1.341 + 1.342 + // SetValueCurve events can be handled no mattar what their next node is (if they have one) 1.343 + if (previous->mType == AudioTimelineEvent::SetValueCurve) { 1.344 + return ExtractValueFromCurve(previous->template Time<TimeType>(), 1.345 + previous->mCurve, previous->mCurveLength, 1.346 + previous->mDuration, aTime); 1.347 + } 1.348 + 1.349 + // If the requested time is after all of the existing events 1.350 + if (!next) { 1.351 + switch (previous->mType) { 1.352 + case AudioTimelineEvent::SetValue: 1.353 + case AudioTimelineEvent::LinearRamp: 1.354 + case AudioTimelineEvent::ExponentialRamp: 1.355 + // The value will be constant after the last event 1.356 + return previous->mValue; 1.357 + case AudioTimelineEvent::SetValueCurve: 1.358 + return ExtractValueFromCurve(previous->template Time<TimeType>(), 1.359 + previous->mCurve, previous->mCurveLength, 1.360 + previous->mDuration, aTime); 1.361 + case AudioTimelineEvent::SetTarget: 1.362 + MOZ_ASSERT(false, "unreached"); 1.363 + } 1.364 + MOZ_ASSERT(false, "unreached"); 1.365 + } 1.366 + 1.367 + // Finally, handle the case where we have both a previous and a next event 1.368 + 1.369 + // First, handle the case where our range ends up in a ramp event 1.370 + switch (next->mType) { 1.371 + case AudioTimelineEvent::LinearRamp: 1.372 + return LinearInterpolate(previous->template Time<TimeType>(), previous->mValue, next->template Time<TimeType>(), next->mValue, aTime); 1.373 + case AudioTimelineEvent::ExponentialRamp: 1.374 + return ExponentialInterpolate(previous->template Time<TimeType>(), previous->mValue, next->template Time<TimeType>(), next->mValue, aTime); 1.375 + case AudioTimelineEvent::SetValue: 1.376 + case AudioTimelineEvent::SetTarget: 1.377 + case AudioTimelineEvent::SetValueCurve: 1.378 + break; 1.379 + } 1.380 + 1.381 + // Now handle all other cases 1.382 + switch (previous->mType) { 1.383 + case AudioTimelineEvent::SetValue: 1.384 + case AudioTimelineEvent::LinearRamp: 1.385 + case AudioTimelineEvent::ExponentialRamp: 1.386 + // If the next event type is neither linear or exponential ramp, the 1.387 + // value is constant. 1.388 + return previous->mValue; 1.389 + case AudioTimelineEvent::SetValueCurve: 1.390 + return ExtractValueFromCurve(previous->template Time<TimeType>(), 1.391 + previous->mCurve, previous->mCurveLength, 1.392 + previous->mDuration, aTime); 1.393 + case AudioTimelineEvent::SetTarget: 1.394 + MOZ_ASSERT(false, "unreached"); 1.395 + } 1.396 + 1.397 + MOZ_ASSERT(false, "unreached"); 1.398 + return 0.0f; 1.399 + } 1.400 + 1.401 + // Return the number of events scheduled 1.402 + uint32_t GetEventCount() const 1.403 + { 1.404 + return mEvents.Length(); 1.405 + } 1.406 + 1.407 + static float LinearInterpolate(double t0, float v0, double t1, float v1, double t) 1.408 + { 1.409 + return v0 + (v1 - v0) * ((t - t0) / (t1 - t0)); 1.410 + } 1.411 + 1.412 + static float ExponentialInterpolate(double t0, float v0, double t1, float v1, double t) 1.413 + { 1.414 + return v0 * powf(v1 / v0, (t - t0) / (t1 - t0)); 1.415 + } 1.416 + 1.417 + static float ExponentialApproach(double t0, double v0, float v1, double timeConstant, double t) 1.418 + { 1.419 + return v1 + (v0 - v1) * expf(-(t - t0) / timeConstant); 1.420 + } 1.421 + 1.422 + static float ExtractValueFromCurve(double startTime, float* aCurve, uint32_t aCurveLength, double duration, double t) 1.423 + { 1.424 + if (t >= startTime + duration) { 1.425 + // After the duration, return the last curve value 1.426 + return aCurve[aCurveLength - 1]; 1.427 + } 1.428 + double ratio = std::max((t - startTime) / duration, 0.0); 1.429 + if (ratio >= 1.0) { 1.430 + return aCurve[aCurveLength - 1]; 1.431 + } 1.432 + return aCurve[uint32_t(aCurveLength * ratio)]; 1.433 + } 1.434 + 1.435 + void ConvertEventTimesToTicks(int64_t (*aConvertor)(double aTime, void* aClosure), void* aClosure, 1.436 + int32_t aSampleRate) 1.437 + { 1.438 + for (unsigned i = 0; i < mEvents.Length(); ++i) { 1.439 + mEvents[i].SetTimeInTicks(aConvertor(mEvents[i].template Time<double>(), aClosure)); 1.440 + mEvents[i].mTimeConstant *= aSampleRate; 1.441 + mEvents[i].mDuration *= aSampleRate; 1.442 + } 1.443 + } 1.444 + 1.445 +private: 1.446 + const AudioTimelineEvent* GetPreviousEvent(double aTime) const 1.447 + { 1.448 + const AudioTimelineEvent* previous = nullptr; 1.449 + const AudioTimelineEvent* next = nullptr; 1.450 + 1.451 + bool bailOut = false; 1.452 + for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) { 1.453 + switch (mEvents[i].mType) { 1.454 + case AudioTimelineEvent::SetValue: 1.455 + case AudioTimelineEvent::SetTarget: 1.456 + case AudioTimelineEvent::LinearRamp: 1.457 + case AudioTimelineEvent::ExponentialRamp: 1.458 + case AudioTimelineEvent::SetValueCurve: 1.459 + if (aTime == mEvents[i].mTime) { 1.460 + // Find the last event with the same time 1.461 + do { 1.462 + ++i; 1.463 + } while (i < mEvents.Length() && 1.464 + aTime == mEvents[i].mTime); 1.465 + return &mEvents[i - 1]; 1.466 + } 1.467 + previous = next; 1.468 + next = &mEvents[i]; 1.469 + if (aTime < mEvents[i].mTime) { 1.470 + bailOut = true; 1.471 + } 1.472 + break; 1.473 + default: 1.474 + MOZ_ASSERT(false, "unreached"); 1.475 + } 1.476 + } 1.477 + // Handle the case where the time is past all of the events 1.478 + if (!bailOut) { 1.479 + previous = next; 1.480 + } 1.481 + 1.482 + return previous; 1.483 + } 1.484 + 1.485 + void InsertEvent(const AudioTimelineEvent& aEvent, ErrorResult& aRv) 1.486 + { 1.487 + if (!aEvent.IsValid()) { 1.488 + aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); 1.489 + return; 1.490 + } 1.491 + 1.492 + // Make sure that non-curve events don't fall within the duration of a 1.493 + // curve event. 1.494 + for (unsigned i = 0; i < mEvents.Length(); ++i) { 1.495 + if (mEvents[i].mType == AudioTimelineEvent::SetValueCurve && 1.496 + mEvents[i].mTime <= aEvent.mTime && 1.497 + (mEvents[i].mTime + mEvents[i].mDuration) >= aEvent.mTime) { 1.498 + aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); 1.499 + return; 1.500 + } 1.501 + } 1.502 + 1.503 + // Make sure that curve events don't fall in a range which includes other 1.504 + // events. 1.505 + if (aEvent.mType == AudioTimelineEvent::SetValueCurve) { 1.506 + for (unsigned i = 0; i < mEvents.Length(); ++i) { 1.507 + if (mEvents[i].mTime > aEvent.mTime && 1.508 + mEvents[i].mTime < (aEvent.mTime + aEvent.mDuration)) { 1.509 + aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); 1.510 + return; 1.511 + } 1.512 + } 1.513 + } 1.514 + 1.515 + // Make sure that invalid values are not used for exponential curves 1.516 + if (aEvent.mType == AudioTimelineEvent::ExponentialRamp) { 1.517 + if (aEvent.mValue <= 0.f) { 1.518 + aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); 1.519 + return; 1.520 + } 1.521 + const AudioTimelineEvent* previousEvent = GetPreviousEvent(aEvent.mTime); 1.522 + if (previousEvent) { 1.523 + if (previousEvent->mValue <= 0.f) { 1.524 + aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); 1.525 + return; 1.526 + } 1.527 + } else { 1.528 + if (mValue <= 0.f) { 1.529 + aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); 1.530 + return; 1.531 + } 1.532 + } 1.533 + } 1.534 + 1.535 + for (unsigned i = 0; i < mEvents.Length(); ++i) { 1.536 + if (aEvent.mTime == mEvents[i].mTime) { 1.537 + if (aEvent.mType == mEvents[i].mType) { 1.538 + // If times and types are equal, replace the event 1.539 + mEvents.ReplaceElementAt(i, aEvent); 1.540 + } else { 1.541 + // Otherwise, place the element after the last event of another type 1.542 + do { 1.543 + ++i; 1.544 + } while (i < mEvents.Length() && 1.545 + aEvent.mType != mEvents[i].mType && 1.546 + aEvent.mTime == mEvents[i].mTime); 1.547 + mEvents.InsertElementAt(i, aEvent); 1.548 + } 1.549 + return; 1.550 + } 1.551 + // Otherwise, place the event right after the latest existing event 1.552 + if (aEvent.mTime < mEvents[i].mTime) { 1.553 + mEvents.InsertElementAt(i, aEvent); 1.554 + return; 1.555 + } 1.556 + } 1.557 + 1.558 + // If we couldn't find a place for the event, just append it to the list 1.559 + mEvents.AppendElement(aEvent); 1.560 + } 1.561 + 1.562 +private: 1.563 + // This is a sorted array of the events in the timeline. Queries of this 1.564 + // data structure should probably be more frequent than modifications to it, 1.565 + // and that is the reason why we're using a simple array as the data structure. 1.566 + // We can optimize this in the future if the performance of the array ends up 1.567 + // being a bottleneck. 1.568 + nsTArray<AudioTimelineEvent> mEvents; 1.569 + float mValue; 1.570 + // This is the value of this AudioParam we computed at the last call. 1.571 + float mComputedValue; 1.572 + // This is the value of this AudioParam at the last tick of the previous event. 1.573 + float mLastComputedValue; 1.574 +}; 1.575 + 1.576 +} 1.577 +} 1.578 + 1.579 +#endif 1.580 +