content/media/wave/WaveReader.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/content/media/wave/WaveReader.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,685 @@
     1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     1.5 +/* vim:set ts=2 sw=2 sts=2 et cindent: */
     1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +#include "nsError.h"
    1.10 +#include "AbstractMediaDecoder.h"
    1.11 +#include "MediaResource.h"
    1.12 +#include "WaveReader.h"
    1.13 +#include "mozilla/dom/TimeRanges.h"
    1.14 +#include "MediaDecoderStateMachine.h"
    1.15 +#include "VideoUtils.h"
    1.16 +#include "nsISeekableStream.h"
    1.17 +
    1.18 +#include <stdint.h>
    1.19 +#include "mozilla/ArrayUtils.h"
    1.20 +#include "mozilla/CheckedInt.h"
    1.21 +#include "mozilla/Endian.h"
    1.22 +#include <algorithm>
    1.23 +
    1.24 +namespace mozilla {
    1.25 +
    1.26 +// Un-comment to enable logging of seek bisections.
    1.27 +//#define SEEK_LOGGING
    1.28 +
    1.29 +#ifdef PR_LOGGING
    1.30 +extern PRLogModuleInfo* gMediaDecoderLog;
    1.31 +#define LOG(type, msg) PR_LOG(gMediaDecoderLog, type, msg)
    1.32 +#ifdef SEEK_LOGGING
    1.33 +#define SEEK_LOG(type, msg) PR_LOG(gMediaDecoderLog, type, msg)
    1.34 +#else
    1.35 +#define SEEK_LOG(type, msg)
    1.36 +#endif
    1.37 +#else
    1.38 +#define LOG(type, msg)
    1.39 +#define SEEK_LOG(type, msg)
    1.40 +#endif
    1.41 +
    1.42 +struct waveIdToName {
    1.43 +  uint32_t id;
    1.44 +  nsCString name;
    1.45 +};
    1.46 +
    1.47 +
    1.48 +// Magic values that identify RIFF chunks we're interested in.
    1.49 +static const uint32_t RIFF_CHUNK_MAGIC = 0x52494646;
    1.50 +static const uint32_t WAVE_CHUNK_MAGIC = 0x57415645;
    1.51 +static const uint32_t FRMT_CHUNK_MAGIC = 0x666d7420;
    1.52 +static const uint32_t DATA_CHUNK_MAGIC = 0x64617461;
    1.53 +static const uint32_t LIST_CHUNK_MAGIC = 0x4c495354;
    1.54 +
    1.55 +// Size of chunk header.  4 byte chunk header type and 4 byte size field.
    1.56 +static const uint16_t CHUNK_HEADER_SIZE = 8;
    1.57 +
    1.58 +// Size of RIFF header.  RIFF chunk and 4 byte RIFF type.
    1.59 +static const uint16_t RIFF_INITIAL_SIZE = CHUNK_HEADER_SIZE + 4;
    1.60 +
    1.61 +// Size of required part of format chunk.  Actual format chunks may be
    1.62 +// extended (for non-PCM encodings), but we skip any extended data.
    1.63 +static const uint16_t WAVE_FORMAT_CHUNK_SIZE = 16;
    1.64 +
    1.65 +// PCM encoding type from format chunk.  Linear PCM is the only encoding
    1.66 +// supported by AudioStream.
    1.67 +static const uint16_t WAVE_FORMAT_ENCODING_PCM = 1;
    1.68 +
    1.69 +// We reject files with more than this number of channels if we're decoding for
    1.70 +// playback.
    1.71 +static const uint8_t MAX_CHANNELS = 2;
    1.72 +
    1.73 +namespace {
    1.74 +  uint32_t
    1.75 +  ReadUint32BE(const char** aBuffer)
    1.76 +  {
    1.77 +    uint32_t result = BigEndian::readUint32(*aBuffer);
    1.78 +    *aBuffer += sizeof(uint32_t);
    1.79 +    return result;
    1.80 +  }
    1.81 +
    1.82 +  uint32_t
    1.83 +  ReadUint32LE(const char** aBuffer)
    1.84 +  {
    1.85 +    uint32_t result = LittleEndian::readUint32(*aBuffer);
    1.86 +    *aBuffer += sizeof(uint32_t);
    1.87 +    return result;
    1.88 +  }
    1.89 +
    1.90 +  uint16_t
    1.91 +  ReadUint16LE(const char** aBuffer)
    1.92 +  {
    1.93 +    uint16_t result = LittleEndian::readUint16(*aBuffer);
    1.94 +    *aBuffer += sizeof(uint16_t);
    1.95 +    return result;
    1.96 +  }
    1.97 +
    1.98 +  int16_t
    1.99 +  ReadInt16LE(const char** aBuffer)
   1.100 +  {
   1.101 +    uint16_t result = LittleEndian::readInt16(*aBuffer);
   1.102 +    *aBuffer += sizeof(int16_t);
   1.103 +    return result;
   1.104 +  }
   1.105 +
   1.106 +  uint8_t
   1.107 +  ReadUint8(const char** aBuffer)
   1.108 +  {
   1.109 +    uint8_t result = uint8_t((*aBuffer)[0]);
   1.110 +    *aBuffer += sizeof(uint8_t);
   1.111 +    return result;
   1.112 +  }
   1.113 +}
   1.114 +
   1.115 +WaveReader::WaveReader(AbstractMediaDecoder* aDecoder)
   1.116 +  : MediaDecoderReader(aDecoder)
   1.117 +{
   1.118 +  MOZ_COUNT_CTOR(WaveReader);
   1.119 +}
   1.120 +
   1.121 +WaveReader::~WaveReader()
   1.122 +{
   1.123 +  MOZ_COUNT_DTOR(WaveReader);
   1.124 +}
   1.125 +
   1.126 +nsresult WaveReader::Init(MediaDecoderReader* aCloneDonor)
   1.127 +{
   1.128 +  return NS_OK;
   1.129 +}
   1.130 +
   1.131 +nsresult WaveReader::ReadMetadata(MediaInfo* aInfo,
   1.132 +                                  MetadataTags** aTags)
   1.133 +{
   1.134 +  NS_ASSERTION(mDecoder->OnDecodeThread(), "Should be on decode thread.");
   1.135 +
   1.136 +  bool loaded = LoadRIFFChunk();
   1.137 +  if (!loaded) {
   1.138 +    return NS_ERROR_FAILURE;
   1.139 +  }
   1.140 +
   1.141 +  nsAutoPtr<dom::HTMLMediaElement::MetadataTags> tags;
   1.142 +
   1.143 +  bool loadAllChunks = LoadAllChunks(tags);
   1.144 +  if (!loadAllChunks) {
   1.145 +    return NS_ERROR_FAILURE;
   1.146 +  }
   1.147 +
   1.148 +  mInfo.mAudio.mHasAudio = true;
   1.149 +  mInfo.mAudio.mRate = mSampleRate;
   1.150 +  mInfo.mAudio.mChannels = mChannels;
   1.151 +
   1.152 +  *aInfo = mInfo;
   1.153 +
   1.154 +  *aTags = tags.forget();
   1.155 +
   1.156 +  ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
   1.157 +
   1.158 +  mDecoder->SetMediaDuration(
   1.159 +    static_cast<int64_t>(BytesToTime(GetDataLength()) * USECS_PER_S));
   1.160 +
   1.161 +  return NS_OK;
   1.162 +}
   1.163 +
   1.164 +template <typename T> T UnsignedByteToAudioSample(uint8_t aValue);
   1.165 +template <typename T> T SignedShortToAudioSample(int16_t aValue);
   1.166 +
   1.167 +template <> inline float
   1.168 +UnsignedByteToAudioSample<float>(uint8_t aValue)
   1.169 +{
   1.170 +  return aValue * (2.0f / UINT8_MAX) - 1.0f;
   1.171 +}
   1.172 +template <> inline int16_t
   1.173 +UnsignedByteToAudioSample<int16_t>(uint8_t aValue)
   1.174 +{
   1.175 +  return int16_t(aValue * UINT16_MAX / UINT8_MAX + INT16_MIN);
   1.176 +}
   1.177 +
   1.178 +template <> inline float
   1.179 +SignedShortToAudioSample<float>(int16_t aValue)
   1.180 +{
   1.181 +  return AudioSampleToFloat(aValue);
   1.182 +}
   1.183 +template <> inline int16_t
   1.184 +SignedShortToAudioSample<int16_t>(int16_t aValue)
   1.185 +{
   1.186 +  return aValue;
   1.187 +}
   1.188 +
   1.189 +bool WaveReader::DecodeAudioData()
   1.190 +{
   1.191 +  NS_ASSERTION(mDecoder->OnDecodeThread(), "Should be on decode thread.");
   1.192 +
   1.193 +  int64_t pos = GetPosition() - mWavePCMOffset;
   1.194 +  int64_t len = GetDataLength();
   1.195 +  int64_t remaining = len - pos;
   1.196 +  NS_ASSERTION(remaining >= 0, "Current wave position is greater than wave file length");
   1.197 +
   1.198 +  static const int64_t BLOCK_SIZE = 4096;
   1.199 +  int64_t readSize = std::min(BLOCK_SIZE, remaining);
   1.200 +  int64_t frames = readSize / mFrameSize;
   1.201 +
   1.202 +  static_assert(uint64_t(BLOCK_SIZE) < UINT_MAX /
   1.203 +                sizeof(AudioDataValue) / MAX_CHANNELS,
   1.204 +                "bufferSize calculation could overflow.");
   1.205 +  const size_t bufferSize = static_cast<size_t>(frames * mChannels);
   1.206 +  nsAutoArrayPtr<AudioDataValue> sampleBuffer(new AudioDataValue[bufferSize]);
   1.207 +
   1.208 +  static_assert(uint64_t(BLOCK_SIZE) < UINT_MAX / sizeof(char),
   1.209 +                "BLOCK_SIZE too large for enumerator.");
   1.210 +  nsAutoArrayPtr<char> dataBuffer(new char[static_cast<size_t>(readSize)]);
   1.211 +
   1.212 +  if (!ReadAll(dataBuffer, readSize)) {
   1.213 +    return false;
   1.214 +  }
   1.215 +
   1.216 +  // convert data to samples
   1.217 +  const char* d = dataBuffer.get();
   1.218 +  AudioDataValue* s = sampleBuffer.get();
   1.219 +  for (int i = 0; i < frames; ++i) {
   1.220 +    for (unsigned int j = 0; j < mChannels; ++j) {
   1.221 +      if (mSampleFormat == FORMAT_U8) {
   1.222 +        uint8_t v =  ReadUint8(&d);
   1.223 +        *s++ = UnsignedByteToAudioSample<AudioDataValue>(v);
   1.224 +      } else if (mSampleFormat == FORMAT_S16) {
   1.225 +        int16_t v =  ReadInt16LE(&d);
   1.226 +        *s++ = SignedShortToAudioSample<AudioDataValue>(v);
   1.227 +      }
   1.228 +    }
   1.229 +  }
   1.230 +
   1.231 +  double posTime = BytesToTime(pos);
   1.232 +  double readSizeTime = BytesToTime(readSize);
   1.233 +  NS_ASSERTION(posTime <= INT64_MAX / USECS_PER_S, "posTime overflow");
   1.234 +  NS_ASSERTION(readSizeTime <= INT64_MAX / USECS_PER_S, "readSizeTime overflow");
   1.235 +  NS_ASSERTION(frames < INT32_MAX, "frames overflow");
   1.236 +
   1.237 +  mAudioQueue.Push(new AudioData(pos,
   1.238 +                                 static_cast<int64_t>(posTime * USECS_PER_S),
   1.239 +                                 static_cast<int64_t>(readSizeTime * USECS_PER_S),
   1.240 +                                 static_cast<int32_t>(frames),
   1.241 +                                 sampleBuffer.forget(),
   1.242 +                                 mChannels));
   1.243 +
   1.244 +  return true;
   1.245 +}
   1.246 +
   1.247 +bool WaveReader::DecodeVideoFrame(bool &aKeyframeSkip,
   1.248 +                                      int64_t aTimeThreshold)
   1.249 +{
   1.250 +  NS_ASSERTION(mDecoder->OnDecodeThread(), "Should be on decode thread.");
   1.251 +
   1.252 +  return false;
   1.253 +}
   1.254 +
   1.255 +nsresult WaveReader::Seek(int64_t aTarget, int64_t aStartTime, int64_t aEndTime, int64_t aCurrentTime)
   1.256 +{
   1.257 +  NS_ASSERTION(mDecoder->OnDecodeThread(), "Should be on decode thread.");
   1.258 +  LOG(PR_LOG_DEBUG, ("%p About to seek to %lld", mDecoder, aTarget));
   1.259 +  if (NS_FAILED(ResetDecode())) {
   1.260 +    return NS_ERROR_FAILURE;
   1.261 +  }
   1.262 +  double d = BytesToTime(GetDataLength());
   1.263 +  NS_ASSERTION(d < INT64_MAX / USECS_PER_S, "Duration overflow"); 
   1.264 +  int64_t duration = static_cast<int64_t>(d * USECS_PER_S);
   1.265 +  double seekTime = std::min(aTarget, duration) / static_cast<double>(USECS_PER_S);
   1.266 +  int64_t position = RoundDownToFrame(static_cast<int64_t>(TimeToBytes(seekTime)));
   1.267 +  NS_ASSERTION(INT64_MAX - mWavePCMOffset > position, "Integer overflow during wave seek");
   1.268 +  position += mWavePCMOffset;
   1.269 +  return mDecoder->GetResource()->Seek(nsISeekableStream::NS_SEEK_SET, position);
   1.270 +}
   1.271 +
   1.272 +static double RoundToUsecs(double aSeconds) {
   1.273 +  return floor(aSeconds * USECS_PER_S) / USECS_PER_S;
   1.274 +}
   1.275 +
   1.276 +nsresult WaveReader::GetBuffered(dom::TimeRanges* aBuffered, int64_t aStartTime)
   1.277 +{
   1.278 +  if (!mInfo.HasAudio()) {
   1.279 +    return NS_OK;
   1.280 +  }
   1.281 +  int64_t startOffset = mDecoder->GetResource()->GetNextCachedData(mWavePCMOffset);
   1.282 +  while (startOffset >= 0) {
   1.283 +    int64_t endOffset = mDecoder->GetResource()->GetCachedDataEnd(startOffset);
   1.284 +    // Bytes [startOffset..endOffset] are cached.
   1.285 +    NS_ASSERTION(startOffset >= mWavePCMOffset, "Integer underflow in GetBuffered");
   1.286 +    NS_ASSERTION(endOffset >= mWavePCMOffset, "Integer underflow in GetBuffered");
   1.287 +
   1.288 +    // We need to round the buffered ranges' times to microseconds so that they
   1.289 +    // have the same precision as the currentTime and duration attribute on 
   1.290 +    // the media element.
   1.291 +    aBuffered->Add(RoundToUsecs(BytesToTime(startOffset - mWavePCMOffset)),
   1.292 +                   RoundToUsecs(BytesToTime(endOffset - mWavePCMOffset)));
   1.293 +    startOffset = mDecoder->GetResource()->GetNextCachedData(endOffset);
   1.294 +  }
   1.295 +  return NS_OK;
   1.296 +}
   1.297 +
   1.298 +bool
   1.299 +WaveReader::ReadAll(char* aBuf, int64_t aSize, int64_t* aBytesRead)
   1.300 +{
   1.301 +  uint32_t got = 0;
   1.302 +  if (aBytesRead) {
   1.303 +    *aBytesRead = 0;
   1.304 +  }
   1.305 +  do {
   1.306 +    uint32_t read = 0;
   1.307 +    if (NS_FAILED(mDecoder->GetResource()->Read(aBuf + got, uint32_t(aSize - got), &read))) {
   1.308 +      NS_WARNING("Resource read failed");
   1.309 +      return false;
   1.310 +    }
   1.311 +    if (read == 0) {
   1.312 +      return false;
   1.313 +    }
   1.314 +    got += read;
   1.315 +    if (aBytesRead) {
   1.316 +      *aBytesRead = got;
   1.317 +    }
   1.318 +  } while (got != aSize);
   1.319 +  return true;
   1.320 +}
   1.321 +
   1.322 +bool
   1.323 +WaveReader::LoadRIFFChunk()
   1.324 +{
   1.325 +  char riffHeader[RIFF_INITIAL_SIZE];
   1.326 +  const char* p = riffHeader;
   1.327 +
   1.328 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() == 0,
   1.329 +                    "LoadRIFFChunk called when resource in invalid state");
   1.330 +
   1.331 +  if (!ReadAll(riffHeader, sizeof(riffHeader))) {
   1.332 +    return false;
   1.333 +  }
   1.334 +
   1.335 +  static_assert(sizeof(uint32_t) * 3 <= RIFF_INITIAL_SIZE,
   1.336 +                "Reads would overflow riffHeader buffer.");
   1.337 +  if (ReadUint32BE(&p) != RIFF_CHUNK_MAGIC) {
   1.338 +    NS_WARNING("resource data not in RIFF format");
   1.339 +    return false;
   1.340 +  }
   1.341 +
   1.342 +  // Skip over RIFF size field.
   1.343 +  p += sizeof(uint32_t);
   1.344 +
   1.345 +  if (ReadUint32BE(&p) != WAVE_CHUNK_MAGIC) {
   1.346 +    NS_WARNING("Expected WAVE chunk");
   1.347 +    return false;
   1.348 +  }
   1.349 +
   1.350 +  return true;
   1.351 +}
   1.352 +
   1.353 +bool
   1.354 +WaveReader::LoadFormatChunk(uint32_t aChunkSize)
   1.355 +{
   1.356 +  uint32_t rate, channels, frameSize, sampleFormat;
   1.357 +  char waveFormat[WAVE_FORMAT_CHUNK_SIZE];
   1.358 +  const char* p = waveFormat;
   1.359 +
   1.360 +  // RIFF chunks are always word (two byte) aligned.
   1.361 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() % 2 == 0,
   1.362 +                    "LoadFormatChunk called with unaligned resource");
   1.363 +
   1.364 +  if (!ReadAll(waveFormat, sizeof(waveFormat))) {
   1.365 +    return false;
   1.366 +  }
   1.367 +
   1.368 +  static_assert(sizeof(uint16_t) +
   1.369 +                sizeof(uint16_t) +
   1.370 +                sizeof(uint32_t) +
   1.371 +                4 +
   1.372 +                sizeof(uint16_t) +
   1.373 +                sizeof(uint16_t) <= sizeof(waveFormat),
   1.374 +                "Reads would overflow waveFormat buffer.");
   1.375 +  if (ReadUint16LE(&p) != WAVE_FORMAT_ENCODING_PCM) {
   1.376 +    NS_WARNING("WAVE is not uncompressed PCM, compressed encodings are not supported");
   1.377 +    return false;
   1.378 +  }
   1.379 +
   1.380 +  channels = ReadUint16LE(&p);
   1.381 +  rate = ReadUint32LE(&p);
   1.382 +
   1.383 +  // Skip over average bytes per second field.
   1.384 +  p += 4;
   1.385 +
   1.386 +  frameSize = ReadUint16LE(&p);
   1.387 +
   1.388 +  sampleFormat = ReadUint16LE(&p);
   1.389 +
   1.390 +  // PCM encoded WAVEs are not expected to have an extended "format" chunk,
   1.391 +  // but I have found WAVEs that have a extended "format" chunk with an
   1.392 +  // extension size of 0 bytes.  Be polite and handle this rather than
   1.393 +  // considering the file invalid.  This code skips any extension of the
   1.394 +  // "format" chunk.
   1.395 +  if (aChunkSize > WAVE_FORMAT_CHUNK_SIZE) {
   1.396 +    char extLength[2];
   1.397 +    const char* p = extLength;
   1.398 +
   1.399 +    if (!ReadAll(extLength, sizeof(extLength))) {
   1.400 +      return false;
   1.401 +    }
   1.402 +
   1.403 +    static_assert(sizeof(uint16_t) <= sizeof(extLength),
   1.404 +                  "Reads would overflow extLength buffer.");
   1.405 +    uint16_t extra = ReadUint16LE(&p);
   1.406 +    if (aChunkSize - (WAVE_FORMAT_CHUNK_SIZE + 2) != extra) {
   1.407 +      NS_WARNING("Invalid extended format chunk size");
   1.408 +      return false;
   1.409 +    }
   1.410 +    extra += extra % 2;
   1.411 +
   1.412 +    if (extra > 0) {
   1.413 +      static_assert(UINT16_MAX + (UINT16_MAX % 2) < UINT_MAX / sizeof(char),
   1.414 +                    "chunkExtension array too large for iterator.");
   1.415 +      nsAutoArrayPtr<char> chunkExtension(new char[extra]);
   1.416 +      if (!ReadAll(chunkExtension.get(), extra)) {
   1.417 +        return false;
   1.418 +      }
   1.419 +    }
   1.420 +  }
   1.421 +
   1.422 +  // RIFF chunks are always word (two byte) aligned.
   1.423 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() % 2 == 0,
   1.424 +                    "LoadFormatChunk left resource unaligned");
   1.425 +
   1.426 +  // Make sure metadata is fairly sane.  The rate check is fairly arbitrary,
   1.427 +  // but the channels check is intentionally limited to mono or stereo
   1.428 +  // when the media is intended for direct playback because that's what the
   1.429 +  // audio backend currently supports.
   1.430 +  unsigned int actualFrameSize = (sampleFormat == 8 ? 1 : 2) * channels;
   1.431 +  if (rate < 100 || rate > 96000 ||
   1.432 +      (((channels < 1 || channels > MAX_CHANNELS) ||
   1.433 +       (frameSize != 1 && frameSize != 2 && frameSize != 4)) &&
   1.434 +       !mIgnoreAudioOutputFormat) ||
   1.435 +       (sampleFormat != 8 && sampleFormat != 16) ||
   1.436 +      frameSize != actualFrameSize) {
   1.437 +    NS_WARNING("Invalid WAVE metadata");
   1.438 +    return false;
   1.439 +  }
   1.440 +
   1.441 +  ReentrantMonitorAutoEnter monitor(mDecoder->GetReentrantMonitor());
   1.442 +  mSampleRate = rate;
   1.443 +  mChannels = channels;
   1.444 +  mFrameSize = frameSize;
   1.445 +  if (sampleFormat == 8) {
   1.446 +    mSampleFormat = FORMAT_U8;
   1.447 +  } else {
   1.448 +    mSampleFormat = FORMAT_S16;
   1.449 +  }
   1.450 +  return true;
   1.451 +}
   1.452 +
   1.453 +bool
   1.454 +WaveReader::FindDataOffset(uint32_t aChunkSize)
   1.455 +{
   1.456 +  // RIFF chunks are always word (two byte) aligned.
   1.457 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() % 2 == 0,
   1.458 +                    "FindDataOffset called with unaligned resource");
   1.459 +
   1.460 +  int64_t offset = mDecoder->GetResource()->Tell();
   1.461 +  if (offset <= 0 || offset > UINT32_MAX) {
   1.462 +    NS_WARNING("PCM data offset out of range");
   1.463 +    return false;
   1.464 +  }
   1.465 +
   1.466 +  ReentrantMonitorAutoEnter monitor(mDecoder->GetReentrantMonitor());
   1.467 +  mWaveLength = aChunkSize;
   1.468 +  mWavePCMOffset = uint32_t(offset);
   1.469 +  return true;
   1.470 +}
   1.471 +
   1.472 +double
   1.473 +WaveReader::BytesToTime(int64_t aBytes) const
   1.474 +{
   1.475 +  NS_ABORT_IF_FALSE(aBytes >= 0, "Must be >= 0");
   1.476 +  return float(aBytes) / mSampleRate / mFrameSize;
   1.477 +}
   1.478 +
   1.479 +int64_t
   1.480 +WaveReader::TimeToBytes(double aTime) const
   1.481 +{
   1.482 +  NS_ABORT_IF_FALSE(aTime >= 0.0f, "Must be >= 0");
   1.483 +  return RoundDownToFrame(int64_t(aTime * mSampleRate * mFrameSize));
   1.484 +}
   1.485 +
   1.486 +int64_t
   1.487 +WaveReader::RoundDownToFrame(int64_t aBytes) const
   1.488 +{
   1.489 +  NS_ABORT_IF_FALSE(aBytes >= 0, "Must be >= 0");
   1.490 +  return aBytes - (aBytes % mFrameSize);
   1.491 +}
   1.492 +
   1.493 +int64_t
   1.494 +WaveReader::GetDataLength()
   1.495 +{
   1.496 +  int64_t length = mWaveLength;
   1.497 +  // If the decoder has a valid content length, and it's shorter than the
   1.498 +  // expected length of the PCM data, calculate the playback duration from
   1.499 +  // the content length rather than the expected PCM data length.
   1.500 +  int64_t streamLength = mDecoder->GetResource()->GetLength();
   1.501 +  if (streamLength >= 0) {
   1.502 +    int64_t dataLength = std::max<int64_t>(0, streamLength - mWavePCMOffset);
   1.503 +    length = std::min(dataLength, length);
   1.504 +  }
   1.505 +  return length;
   1.506 +}
   1.507 +
   1.508 +int64_t
   1.509 +WaveReader::GetPosition()
   1.510 +{
   1.511 +  return mDecoder->GetResource()->Tell();
   1.512 +}
   1.513 +
   1.514 +bool
   1.515 +WaveReader::GetNextChunk(uint32_t* aChunk, uint32_t* aChunkSize)
   1.516 +{
   1.517 +  NS_ABORT_IF_FALSE(aChunk, "Must have aChunk");
   1.518 +  NS_ABORT_IF_FALSE(aChunkSize, "Must have aChunkSize");
   1.519 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() % 2 == 0,
   1.520 +                    "GetNextChunk called with unaligned resource");
   1.521 +
   1.522 +  char chunkHeader[CHUNK_HEADER_SIZE];
   1.523 +  const char* p = chunkHeader;
   1.524 +
   1.525 +  if (!ReadAll(chunkHeader, sizeof(chunkHeader))) {
   1.526 +    return false;
   1.527 +  }
   1.528 +
   1.529 +  static_assert(sizeof(uint32_t) * 2 <= CHUNK_HEADER_SIZE,
   1.530 +                "Reads would overflow chunkHeader buffer.");
   1.531 +  *aChunk = ReadUint32BE(&p);
   1.532 +  *aChunkSize = ReadUint32LE(&p);
   1.533 +
   1.534 +  return true;
   1.535 +}
   1.536 +
   1.537 +bool
   1.538 +WaveReader::LoadListChunk(uint32_t aChunkSize,
   1.539 +                          nsAutoPtr<dom::HTMLMediaElement::MetadataTags> &aTags)
   1.540 +{
   1.541 +  // List chunks are always word (two byte) aligned.
   1.542 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() % 2 == 0,
   1.543 +                    "LoadListChunk called with unaligned resource");
   1.544 +
   1.545 +  static const unsigned int MAX_CHUNK_SIZE = 1 << 16;
   1.546 +  static_assert(uint64_t(MAX_CHUNK_SIZE) < UINT_MAX / sizeof(char),
   1.547 +                "MAX_CHUNK_SIZE too large for enumerator.");
   1.548 +
   1.549 +  if (aChunkSize > MAX_CHUNK_SIZE) {
   1.550 +    return false;
   1.551 +  }
   1.552 +
   1.553 +  nsAutoArrayPtr<char> chunk(new char[aChunkSize]);
   1.554 +  if (!ReadAll(chunk.get(), aChunkSize)) {
   1.555 +    return false;
   1.556 +  }
   1.557 +
   1.558 +  static const uint32_t INFO_LIST_MAGIC = 0x494e464f;
   1.559 +  const char *p = chunk.get();
   1.560 +  if (ReadUint32BE(&p) != INFO_LIST_MAGIC) {
   1.561 +    return false;
   1.562 +  }
   1.563 +
   1.564 +  const waveIdToName ID_TO_NAME[] = {
   1.565 +    { 0x49415254, NS_LITERAL_CSTRING("artist") },   // IART
   1.566 +    { 0x49434d54, NS_LITERAL_CSTRING("comments") }, // ICMT
   1.567 +    { 0x49474e52, NS_LITERAL_CSTRING("genre") },    // IGNR
   1.568 +    { 0x494e414d, NS_LITERAL_CSTRING("name") },     // INAM
   1.569 +  };
   1.570 +
   1.571 +  const char* const end = chunk.get() + aChunkSize;
   1.572 +
   1.573 +  aTags = new dom::HTMLMediaElement::MetadataTags;
   1.574 +
   1.575 +  while (p + 8 < end) {
   1.576 +    uint32_t id = ReadUint32BE(&p);
   1.577 +    // Uppercase tag id, inspired by GStreamer's Wave parser.
   1.578 +    id &= 0xDFDFDFDF;
   1.579 +
   1.580 +    uint32_t length = ReadUint32LE(&p);
   1.581 +
   1.582 +    // Subchunk shall not exceed parent chunk.
   1.583 +    if (p + length > end) {
   1.584 +      break;
   1.585 +    }
   1.586 +
   1.587 +    // Wrap the string, adjusting length to account for optional
   1.588 +    // null termination in the chunk.
   1.589 +    nsCString val(p, length);
   1.590 +    if (length > 0 && val[length - 1] == '\0') {
   1.591 +      val.SetLength(length - 1);
   1.592 +    }
   1.593 +
   1.594 +    // Chunks in List::INFO are always word (two byte) aligned. So round up if
   1.595 +    // necessary.
   1.596 +    length += length % 2;
   1.597 +    p += length;
   1.598 +
   1.599 +    if (!IsUTF8(val)) {
   1.600 +      continue;
   1.601 +    }
   1.602 +
   1.603 +    for (size_t i = 0; i < mozilla::ArrayLength(ID_TO_NAME); ++i) {
   1.604 +      if (id == ID_TO_NAME[i].id) {
   1.605 +        aTags->Put(ID_TO_NAME[i].name, val);
   1.606 +        break;
   1.607 +      }
   1.608 +    }
   1.609 +  }
   1.610 +
   1.611 +  return true;
   1.612 +}
   1.613 +
   1.614 +bool
   1.615 +WaveReader::LoadAllChunks(nsAutoPtr<dom::HTMLMediaElement::MetadataTags> &aTags)
   1.616 +{
   1.617 +  // Chunks are always word (two byte) aligned.
   1.618 +  NS_ABORT_IF_FALSE(mDecoder->GetResource()->Tell() % 2 == 0,
   1.619 +                    "LoadAllChunks called with unaligned resource");
   1.620 +
   1.621 +  bool loadFormatChunk = false;
   1.622 +  bool findDataOffset = false;
   1.623 +
   1.624 +  for (;;) {
   1.625 +    static const unsigned int CHUNK_HEADER_SIZE = 8;
   1.626 +    char chunkHeader[CHUNK_HEADER_SIZE];
   1.627 +    const char* p = chunkHeader;
   1.628 +
   1.629 +    if (!ReadAll(chunkHeader, sizeof(chunkHeader))) {
   1.630 +      return false;
   1.631 +    }
   1.632 +
   1.633 +    static_assert(sizeof(uint32_t) * 2 <= CHUNK_HEADER_SIZE,
   1.634 +                  "Reads would overflow chunkHeader buffer.");
   1.635 +
   1.636 +    uint32_t magic = ReadUint32BE(&p);
   1.637 +    uint32_t chunkSize = ReadUint32LE(&p);
   1.638 +    int64_t chunkStart = GetPosition();
   1.639 +
   1.640 +    switch (magic) {
   1.641 +      case FRMT_CHUNK_MAGIC:
   1.642 +        loadFormatChunk = LoadFormatChunk(chunkSize);
   1.643 +        if (!loadFormatChunk) {
   1.644 +          return false;
   1.645 +        }
   1.646 +        break;
   1.647 +
   1.648 +      case LIST_CHUNK_MAGIC:
   1.649 +        if (!aTags) {
   1.650 +          LoadListChunk(chunkSize, aTags);
   1.651 +        }
   1.652 +        break;
   1.653 +
   1.654 +      case DATA_CHUNK_MAGIC:
   1.655 +        findDataOffset = FindDataOffset(chunkSize);
   1.656 +        return loadFormatChunk && findDataOffset;
   1.657 +
   1.658 +      default:
   1.659 +        break;
   1.660 +    }
   1.661 +
   1.662 +    // RIFF chunks are two-byte aligned, so round up if necessary.
   1.663 +    chunkSize += chunkSize % 2;
   1.664 +
   1.665 +    // Move forward to next chunk
   1.666 +    CheckedInt64 forward = CheckedInt64(chunkStart) + chunkSize - GetPosition();
   1.667 +
   1.668 +    if (!forward.isValid() || forward.value() < 0) {
   1.669 +      return false;
   1.670 +    }
   1.671 +
   1.672 +    static const int64_t MAX_CHUNK_SIZE = 1 << 16;
   1.673 +    static_assert(uint64_t(MAX_CHUNK_SIZE) < UINT_MAX / sizeof(char),
   1.674 +                  "MAX_CHUNK_SIZE too large for enumerator.");
   1.675 +    nsAutoArrayPtr<char> chunk(new char[MAX_CHUNK_SIZE]);
   1.676 +    while (forward.value() > 0) {
   1.677 +      int64_t size = std::min(forward.value(), MAX_CHUNK_SIZE);
   1.678 +      if (!ReadAll(chunk.get(), size)) {
   1.679 +        return false;
   1.680 +      }
   1.681 +      forward -= size;
   1.682 +    }
   1.683 +  }
   1.684 +
   1.685 +  return false;
   1.686 +}
   1.687 +
   1.688 +} // namespace mozilla

mercurial