content/media/webaudio/OscillatorNode.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/content/media/webaudio/OscillatorNode.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,700 @@
     1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     1.5 +/* vim:set ts=2 sw=2 sts=2 et cindent: */
     1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#include "OscillatorNode.h"
    1.11 +#include "AudioNodeEngine.h"
    1.12 +#include "AudioNodeStream.h"
    1.13 +#include "AudioDestinationNode.h"
    1.14 +#include "WebAudioUtils.h"
    1.15 +#include "blink/PeriodicWave.h"
    1.16 +
    1.17 +namespace mozilla {
    1.18 +namespace dom {
    1.19 +
    1.20 +NS_IMPL_CYCLE_COLLECTION_INHERITED(OscillatorNode, AudioNode,
    1.21 +                                   mPeriodicWave, mFrequency, mDetune)
    1.22 +
    1.23 +NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(OscillatorNode)
    1.24 +NS_INTERFACE_MAP_END_INHERITING(AudioNode)
    1.25 +
    1.26 +NS_IMPL_ADDREF_INHERITED(OscillatorNode, AudioNode)
    1.27 +NS_IMPL_RELEASE_INHERITED(OscillatorNode, AudioNode)
    1.28 +
    1.29 +static const float sLeakTriangle = 0.995f;
    1.30 +static const float sLeak = 0.999f;
    1.31 +
    1.32 +class DCBlocker
    1.33 +{
    1.34 +public:
    1.35 +  // These are sane defauts when the initial mPhase is zero
    1.36 +  DCBlocker(float aLastInput = 0.0f,
    1.37 +            float aLastOutput = 0.0f,
    1.38 +            float aPole = 0.995)
    1.39 +    :mLastInput(aLastInput),
    1.40 +     mLastOutput(aLastOutput),
    1.41 +     mPole(aPole)
    1.42 +  {
    1.43 +    MOZ_ASSERT(aPole > 0);
    1.44 +  }
    1.45 +
    1.46 +  inline float Process(float aInput)
    1.47 +  {
    1.48 +    float out;
    1.49 +
    1.50 +    out = mLastOutput * mPole + aInput - mLastInput;
    1.51 +    mLastOutput = out;
    1.52 +    mLastInput = aInput;
    1.53 +
    1.54 +    return out;
    1.55 +  }
    1.56 +private:
    1.57 +  float mLastInput;
    1.58 +  float mLastOutput;
    1.59 +  float mPole;
    1.60 +};
    1.61 +
    1.62 +
    1.63 +class OscillatorNodeEngine : public AudioNodeEngine
    1.64 +{
    1.65 +public:
    1.66 +  OscillatorNodeEngine(AudioNode* aNode, AudioDestinationNode* aDestination)
    1.67 +    : AudioNodeEngine(aNode)
    1.68 +    , mSource(nullptr)
    1.69 +    , mDestination(static_cast<AudioNodeStream*> (aDestination->Stream()))
    1.70 +    , mStart(-1)
    1.71 +    , mStop(TRACK_TICKS_MAX)
    1.72 +    // Keep the default values in sync with OscillatorNode::OscillatorNode.
    1.73 +    , mFrequency(440.f)
    1.74 +    , mDetune(0.f)
    1.75 +    , mType(OscillatorType::Sine)
    1.76 +    , mPhase(0.)
    1.77 +    // mSquare, mTriangle, and mSaw are not used for default type "sine".
    1.78 +    // They are initialized if and when switching to the OscillatorTypes that
    1.79 +    // use them.
    1.80 +    // mFinalFrequency, mNumberOfHarmonics, mSignalPeriod, mAmplitudeAtZero,
    1.81 +    // mPhaseIncrement, and mPhaseWrap are initialized in
    1.82 +    // UpdateParametersIfNeeded() when mRecomputeParameters is set.
    1.83 +    , mRecomputeParameters(true)
    1.84 +    , mCustomLength(0)
    1.85 +  {
    1.86 +  }
    1.87 +
    1.88 +  void SetSourceStream(AudioNodeStream* aSource)
    1.89 +  {
    1.90 +    mSource = aSource;
    1.91 +  }
    1.92 +
    1.93 +  enum Parameters {
    1.94 +    FREQUENCY,
    1.95 +    DETUNE,
    1.96 +    TYPE,
    1.97 +    PERIODICWAVE,
    1.98 +    START,
    1.99 +    STOP,
   1.100 +  };
   1.101 +  void SetTimelineParameter(uint32_t aIndex,
   1.102 +                            const AudioParamTimeline& aValue,
   1.103 +                            TrackRate aSampleRate) MOZ_OVERRIDE
   1.104 +  {
   1.105 +    mRecomputeParameters = true;
   1.106 +    switch (aIndex) {
   1.107 +    case FREQUENCY:
   1.108 +      MOZ_ASSERT(mSource && mDestination);
   1.109 +      mFrequency = aValue;
   1.110 +      WebAudioUtils::ConvertAudioParamToTicks(mFrequency, mSource, mDestination);
   1.111 +      break;
   1.112 +    case DETUNE:
   1.113 +      MOZ_ASSERT(mSource && mDestination);
   1.114 +      mDetune = aValue;
   1.115 +      WebAudioUtils::ConvertAudioParamToTicks(mDetune, mSource, mDestination);
   1.116 +      break;
   1.117 +    default:
   1.118 +      NS_ERROR("Bad OscillatorNodeEngine TimelineParameter");
   1.119 +    }
   1.120 +  }
   1.121 +
   1.122 +  virtual void SetStreamTimeParameter(uint32_t aIndex, TrackTicks aParam)
   1.123 +  {
   1.124 +    switch (aIndex) {
   1.125 +    case START: mStart = aParam; break;
   1.126 +    case STOP: mStop = aParam; break;
   1.127 +    default:
   1.128 +      NS_ERROR("Bad OscillatorNodeEngine StreamTimeParameter");
   1.129 +    }
   1.130 +  }
   1.131 +
   1.132 +  virtual void SetInt32Parameter(uint32_t aIndex, int32_t aParam)
   1.133 +  {
   1.134 +    switch (aIndex) {
   1.135 +      case TYPE:
   1.136 +        // Set the new type.
   1.137 +        mType = static_cast<OscillatorType>(aParam);
   1.138 +        if (mType != OscillatorType::Custom) {
   1.139 +          // Forget any previous custom data.
   1.140 +          mCustomLength = 0;
   1.141 +          mCustom = nullptr;
   1.142 +          mPeriodicWave = nullptr;
   1.143 +          mRecomputeParameters = true;
   1.144 +        }
   1.145 +        // Update BLIT integrators with the new initial conditions.
   1.146 +        switch (mType) {
   1.147 +          case OscillatorType::Sine:
   1.148 +            mPhase = 0.0;
   1.149 +            break;
   1.150 +          case OscillatorType::Square:
   1.151 +            mPhase = 0.0;
   1.152 +            // Initial integration condition is -0.5, because our
   1.153 +            // square has 50% duty cycle.
   1.154 +            mSquare = -0.5;
   1.155 +            break;
   1.156 +          case OscillatorType::Triangle:
   1.157 +            // Initial mPhase and related integration condition so the
   1.158 +            // triangle is in the middle of the first upward slope.
   1.159 +            // XXX actually do the maths and put the right number here.
   1.160 +            mPhase = (float)(M_PI / 2);
   1.161 +            mSquare = 0.5;
   1.162 +            mTriangle = 0.0;
   1.163 +            break;
   1.164 +          case OscillatorType::Sawtooth:
   1.165 +            // Initial mPhase so the oscillator starts at the
   1.166 +            // middle of the ramp, per spec.
   1.167 +            mPhase = (float)(M_PI / 2);
   1.168 +            // mSaw = 0 when mPhase = pi/2.
   1.169 +            mSaw = 0.0;
   1.170 +            break;
   1.171 +          case OscillatorType::Custom:
   1.172 +            // Custom waveforms don't use BLIT.
   1.173 +            break;
   1.174 +          default:
   1.175 +            NS_ERROR("Bad OscillatorNodeEngine type parameter.");
   1.176 +        }
   1.177 +        // End type switch.
   1.178 +        break;
   1.179 +      case PERIODICWAVE:
   1.180 +        MOZ_ASSERT(aParam >= 0, "negative custom array length");
   1.181 +        mCustomLength = static_cast<uint32_t>(aParam);
   1.182 +        break;
   1.183 +      default:
   1.184 +        NS_ERROR("Bad OscillatorNodeEngine Int32Parameter.");
   1.185 +    }
   1.186 +    // End index switch.
   1.187 +  }
   1.188 +
   1.189 +  virtual void SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList> aBuffer)
   1.190 +  {
   1.191 +    MOZ_ASSERT(mCustomLength, "Custom buffer sent before length");
   1.192 +    mCustom = aBuffer;
   1.193 +    MOZ_ASSERT(mCustom->GetChannels() == 2,
   1.194 +               "PeriodicWave should have sent two channels");
   1.195 +    mPeriodicWave = WebCore::PeriodicWave::create(mSource->SampleRate(),
   1.196 +    mCustom->GetData(0), mCustom->GetData(1), mCustomLength);
   1.197 +  }
   1.198 +
   1.199 +  void IncrementPhase()
   1.200 +  {
   1.201 +    mPhase += mPhaseIncrement;
   1.202 +    if (mPhase > mPhaseWrap) {
   1.203 +      mPhase -= mPhaseWrap;
   1.204 +    }
   1.205 +  }
   1.206 +
   1.207 +  // Square and triangle are using a bipolar band-limited impulse train, saw is
   1.208 +  // using a normal band-limited impulse train.
   1.209 +  bool UsesBipolarBLIT() {
   1.210 +    return mType == OscillatorType::Square || mType == OscillatorType::Triangle;
   1.211 +  }
   1.212 +
   1.213 +  void UpdateParametersIfNeeded(TrackTicks ticks, size_t count)
   1.214 +  {
   1.215 +    double frequency, detune;
   1.216 +
   1.217 +    bool simpleFrequency = mFrequency.HasSimpleValue();
   1.218 +    bool simpleDetune = mDetune.HasSimpleValue();
   1.219 +
   1.220 +    // Shortcut if frequency-related AudioParam are not automated, and we
   1.221 +    // already have computed the frequency information and related parameters.
   1.222 +    if (simpleFrequency && simpleDetune && !mRecomputeParameters) {
   1.223 +      return;
   1.224 +    }
   1.225 +
   1.226 +    if (simpleFrequency) {
   1.227 +      frequency = mFrequency.GetValue();
   1.228 +    } else {
   1.229 +      frequency = mFrequency.GetValueAtTime(ticks, count);
   1.230 +    }
   1.231 +    if (simpleDetune) {
   1.232 +      detune = mDetune.GetValue();
   1.233 +    } else {
   1.234 +      detune = mDetune.GetValueAtTime(ticks, count);
   1.235 +    }
   1.236 +
   1.237 +    mFinalFrequency = frequency * pow(2., detune / 1200.);
   1.238 +    mRecomputeParameters = false;
   1.239 +
   1.240 +    // When using bipolar BLIT, we divide the signal period by two, because we
   1.241 +    // are using two BLIT out of phase.
   1.242 +    mSignalPeriod = UsesBipolarBLIT() ? 0.5 * mSource->SampleRate() / mFinalFrequency
   1.243 +                                      : mSource->SampleRate() / mFinalFrequency;
   1.244 +    // Wrap the phase accordingly:
   1.245 +    mPhaseWrap = UsesBipolarBLIT() || mType == OscillatorType::Sine ? 2 * M_PI
   1.246 +                                   : M_PI;
   1.247 +    // Even number of harmonics for bipolar blit, odd otherwise.
   1.248 +    mNumberOfHarmonics = UsesBipolarBLIT() ? 2 * floor(0.5 * mSignalPeriod)
   1.249 +                                           : 2 * floor(0.5 * mSignalPeriod) + 1;
   1.250 +    mPhaseIncrement = mType == OscillatorType::Sine ? 2 * M_PI / mSignalPeriod
   1.251 +                                                    : M_PI / mSignalPeriod;
   1.252 +    mAmplitudeAtZero = mNumberOfHarmonics / mSignalPeriod;
   1.253 +  }
   1.254 +
   1.255 +  void FillBounds(float* output, TrackTicks ticks,
   1.256 +                  uint32_t& start, uint32_t& end)
   1.257 +  {
   1.258 +    MOZ_ASSERT(output);
   1.259 +    static_assert(TrackTicks(WEBAUDIO_BLOCK_SIZE) < UINT_MAX,
   1.260 +        "WEBAUDIO_BLOCK_SIZE overflows interator bounds.");
   1.261 +    start = 0;
   1.262 +    if (ticks < mStart) {
   1.263 +      start = mStart - ticks;
   1.264 +      for (uint32_t i = 0; i < start; ++i) {
   1.265 +        output[i] = 0.0;
   1.266 +      }
   1.267 +    }
   1.268 +    end = WEBAUDIO_BLOCK_SIZE;
   1.269 +    if (ticks + end > mStop) {
   1.270 +      end = mStop - ticks;
   1.271 +      for (uint32_t i = end; i < WEBAUDIO_BLOCK_SIZE; ++i) {
   1.272 +        output[i] = 0.0;
   1.273 +      }
   1.274 +    }
   1.275 +  }
   1.276 +
   1.277 +  float BipolarBLIT()
   1.278 +  {
   1.279 +    float blit;
   1.280 +    float denom = sin(mPhase);
   1.281 +
   1.282 +    if (fabs(denom) < std::numeric_limits<float>::epsilon()) {
   1.283 +      if (mPhase < 0.1f || mPhase > 2 * M_PI - 0.1f) {
   1.284 +        blit = mAmplitudeAtZero;
   1.285 +      } else {
   1.286 +        blit = -mAmplitudeAtZero;
   1.287 +      }
   1.288 +    } else {
   1.289 +      blit = sin(mNumberOfHarmonics * mPhase);
   1.290 +      blit /= mSignalPeriod * denom;
   1.291 +    }
   1.292 +    return blit;
   1.293 +  }
   1.294 +
   1.295 +  float UnipolarBLIT()
   1.296 +  {
   1.297 +    float blit;
   1.298 +    float denom = sin(mPhase);
   1.299 +
   1.300 +    if (fabs(denom) <= std::numeric_limits<float>::epsilon()) {
   1.301 +      blit = mAmplitudeAtZero;
   1.302 +    } else {
   1.303 +      blit = sin(mNumberOfHarmonics * mPhase);
   1.304 +      blit /= mSignalPeriod * denom;
   1.305 +    }
   1.306 +
   1.307 +    return blit;
   1.308 +  }
   1.309 +
   1.310 +  void ComputeSine(float * aOutput, TrackTicks ticks, uint32_t aStart, uint32_t aEnd)
   1.311 +  {
   1.312 +    for (uint32_t i = aStart; i < aEnd; ++i) {
   1.313 +      UpdateParametersIfNeeded(ticks, i);
   1.314 +
   1.315 +      aOutput[i] = sin(mPhase);
   1.316 +
   1.317 +      IncrementPhase();
   1.318 +    }
   1.319 +  }
   1.320 +
   1.321 +  void ComputeSquare(float * aOutput, TrackTicks ticks, uint32_t aStart, uint32_t aEnd)
   1.322 +  {
   1.323 +    for (uint32_t i = aStart; i < aEnd; ++i) {
   1.324 +      UpdateParametersIfNeeded(ticks, i);
   1.325 +      // Integration to get us a square. It turns out we can have a
   1.326 +      // pure integrator here.
   1.327 +      mSquare = mSquare * sLeak + BipolarBLIT();
   1.328 +      aOutput[i] = mSquare;
   1.329 +      // maybe we want to apply a gain, the wg has not decided yet
   1.330 +      aOutput[i] *= 1.5;
   1.331 +      IncrementPhase();
   1.332 +    }
   1.333 +  }
   1.334 +
   1.335 +  void ComputeSawtooth(float * aOutput, TrackTicks ticks, uint32_t aStart, uint32_t aEnd)
   1.336 +  {
   1.337 +    float dcoffset;
   1.338 +    for (uint32_t i = aStart; i < aEnd; ++i) {
   1.339 +      UpdateParametersIfNeeded(ticks, i);
   1.340 +      // DC offset so the Saw does not ramp up to infinity when integrating.
   1.341 +      dcoffset = mFinalFrequency / mSource->SampleRate();
   1.342 +      // Integrate and offset so we get mAmplitudeAtZero sawtooth. We have a
   1.343 +      // very low frequency component somewhere here, but I'm not sure where.
   1.344 +      mSaw = mSaw * sLeak + (UnipolarBLIT() - dcoffset);
   1.345 +      // reverse the saw so we are spec compliant
   1.346 +      aOutput[i] = -mSaw * 1.5;
   1.347 +
   1.348 +      IncrementPhase();
   1.349 +    }
   1.350 +  }
   1.351 +
   1.352 +  void ComputeTriangle(float * aOutput, TrackTicks ticks, uint32_t aStart, uint32_t aEnd)
   1.353 +  {
   1.354 +    for (uint32_t i = aStart; i < aEnd; ++i) {
   1.355 +      UpdateParametersIfNeeded(ticks, i);
   1.356 +      // Integrate to get a square
   1.357 +      mSquare += BipolarBLIT();
   1.358 +      // Leaky integrate to get a triangle. We get too much dc offset if we don't
   1.359 +      // leaky integrate here.
   1.360 +      // C6 = k0 / period
   1.361 +      // (period is samplingrate / frequency, k0 = (PI/2)/(2*PI)) = 0.25
   1.362 +      float C6 = 0.25 / (mSource->SampleRate() / mFinalFrequency);
   1.363 +      mTriangle = mTriangle * sLeakTriangle + mSquare + C6;
   1.364 +      // DC Block, and scale back to [-1.0; 1.0]
   1.365 +      aOutput[i] = mDCBlocker.Process(mTriangle) / (mSignalPeriod/2) * 1.5;
   1.366 +
   1.367 +      IncrementPhase();
   1.368 +    }
   1.369 +  }
   1.370 +
   1.371 +  void ComputeCustom(float* aOutput,
   1.372 +                     TrackTicks ticks,
   1.373 +                     uint32_t aStart,
   1.374 +                     uint32_t aEnd)
   1.375 +  {
   1.376 +    MOZ_ASSERT(mPeriodicWave, "No custom waveform data");
   1.377 +
   1.378 +    uint32_t periodicWaveSize = mPeriodicWave->periodicWaveSize();
   1.379 +    // Mask to wrap wave data indices into the range [0,periodicWaveSize).
   1.380 +    uint32_t indexMask = periodicWaveSize - 1;
   1.381 +    MOZ_ASSERT(periodicWaveSize && (periodicWaveSize & indexMask) == 0,
   1.382 +               "periodicWaveSize must be power of 2");
   1.383 +    float* higherWaveData = nullptr;
   1.384 +    float* lowerWaveData = nullptr;
   1.385 +    float tableInterpolationFactor;
   1.386 +    // Phase increment at frequency of 1 Hz.
   1.387 +    // mPhase runs [0,periodicWaveSize) here instead of [0,2*M_PI).
   1.388 +    float basePhaseIncrement =
   1.389 +      static_cast<float>(periodicWaveSize) / mSource->SampleRate();
   1.390 +
   1.391 +    for (uint32_t i = aStart; i < aEnd; ++i) {
   1.392 +      UpdateParametersIfNeeded(ticks, i);
   1.393 +      mPeriodicWave->waveDataForFundamentalFrequency(mFinalFrequency,
   1.394 +                                                     lowerWaveData,
   1.395 +                                                     higherWaveData,
   1.396 +                                                     tableInterpolationFactor);
   1.397 +      // Bilinear interpolation between adjacent samples in each table.
   1.398 +      float floorPhase = floorf(mPhase);
   1.399 +      uint32_t j1 = floorPhase;
   1.400 +      j1 &= indexMask;
   1.401 +      uint32_t j2 = j1 + 1;
   1.402 +      j2 &= indexMask;
   1.403 +
   1.404 +      float sampleInterpolationFactor = mPhase - floorPhase;
   1.405 +
   1.406 +      float lower = (1.0f - sampleInterpolationFactor) * lowerWaveData[j1] +
   1.407 +                    sampleInterpolationFactor * lowerWaveData[j2];
   1.408 +      float higher = (1.0f - sampleInterpolationFactor) * higherWaveData[j1] +
   1.409 +                    sampleInterpolationFactor * higherWaveData[j2];
   1.410 +      aOutput[i] = (1.0f - tableInterpolationFactor) * lower +
   1.411 +                   tableInterpolationFactor * higher;
   1.412 +
   1.413 +      // Calculate next phase position from wrapped value j1 to avoid loss of
   1.414 +      // precision at large values.
   1.415 +      mPhase =
   1.416 +        j1 + sampleInterpolationFactor + basePhaseIncrement * mFinalFrequency;
   1.417 +    }
   1.418 +  }
   1.419 +
   1.420 +  void ComputeSilence(AudioChunk *aOutput)
   1.421 +  {
   1.422 +    aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
   1.423 +  }
   1.424 +
   1.425 +  virtual void ProcessBlock(AudioNodeStream* aStream,
   1.426 +                            const AudioChunk& aInput,
   1.427 +                            AudioChunk* aOutput,
   1.428 +                            bool* aFinished) MOZ_OVERRIDE
   1.429 +  {
   1.430 +    MOZ_ASSERT(mSource == aStream, "Invalid source stream");
   1.431 +
   1.432 +    TrackTicks ticks = aStream->GetCurrentPosition();
   1.433 +    if (mStart == -1) {
   1.434 +      ComputeSilence(aOutput);
   1.435 +      return;
   1.436 +    }
   1.437 +
   1.438 +    if (ticks >= mStop) {
   1.439 +      // We've finished playing.
   1.440 +      ComputeSilence(aOutput);
   1.441 +      *aFinished = true;
   1.442 +      return;
   1.443 +    }
   1.444 +    if (ticks + WEBAUDIO_BLOCK_SIZE < mStart) {
   1.445 +      // We're not playing yet.
   1.446 +      ComputeSilence(aOutput);
   1.447 +      return;
   1.448 +    }
   1.449 +
   1.450 +    AllocateAudioBlock(1, aOutput);
   1.451 +    float* output = static_cast<float*>(
   1.452 +        const_cast<void*>(aOutput->mChannelData[0]));
   1.453 +
   1.454 +    uint32_t start, end;
   1.455 +    FillBounds(output, ticks, start, end);
   1.456 +
   1.457 +    // Synthesize the correct waveform.
   1.458 +    switch(mType) {
   1.459 +      case OscillatorType::Sine:
   1.460 +        ComputeSine(output, ticks, start, end);
   1.461 +        break;
   1.462 +      case OscillatorType::Square:
   1.463 +        ComputeSquare(output, ticks, start, end);
   1.464 +        break;
   1.465 +      case OscillatorType::Triangle:
   1.466 +        ComputeTriangle(output, ticks, start, end);
   1.467 +        break;
   1.468 +      case OscillatorType::Sawtooth:
   1.469 +        ComputeSawtooth(output, ticks, start, end);
   1.470 +        break;
   1.471 +      case OscillatorType::Custom:
   1.472 +        ComputeCustom(output, ticks, start, end);
   1.473 +        break;
   1.474 +      default:
   1.475 +        ComputeSilence(aOutput);
   1.476 +    };
   1.477 +
   1.478 +  }
   1.479 +
   1.480 +  virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE
   1.481 +  {
   1.482 +    size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf);
   1.483 +
   1.484 +    // Not owned:
   1.485 +    // - mSource
   1.486 +    // - mDestination
   1.487 +    // - mFrequency (internal ref owned by node)
   1.488 +    // - mDetune (internal ref owned by node)
   1.489 +
   1.490 +    if (mCustom) {
   1.491 +      amount += mCustom->SizeOfIncludingThis(aMallocSizeOf);
   1.492 +    }
   1.493 +
   1.494 +    if (mPeriodicWave) {
   1.495 +      amount += mPeriodicWave->sizeOfIncludingThis(aMallocSizeOf);
   1.496 +    }
   1.497 +
   1.498 +    return amount;
   1.499 +  }
   1.500 +
   1.501 +  virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE
   1.502 +  {
   1.503 +    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
   1.504 +  }
   1.505 +
   1.506 +  DCBlocker mDCBlocker;
   1.507 +  AudioNodeStream* mSource;
   1.508 +  AudioNodeStream* mDestination;
   1.509 +  TrackTicks mStart;
   1.510 +  TrackTicks mStop;
   1.511 +  AudioParamTimeline mFrequency;
   1.512 +  AudioParamTimeline mDetune;
   1.513 +  OscillatorType mType;
   1.514 +  float mPhase;
   1.515 +  float mFinalFrequency;
   1.516 +  uint32_t mNumberOfHarmonics;
   1.517 +  float mSignalPeriod;
   1.518 +  float mAmplitudeAtZero;
   1.519 +  float mPhaseIncrement;
   1.520 +  float mSquare;
   1.521 +  float mTriangle;
   1.522 +  float mSaw;
   1.523 +  float mPhaseWrap;
   1.524 +  bool mRecomputeParameters;
   1.525 +  nsRefPtr<ThreadSharedFloatArrayBufferList> mCustom;
   1.526 +  uint32_t mCustomLength;
   1.527 +  nsAutoPtr<WebCore::PeriodicWave> mPeriodicWave;
   1.528 +};
   1.529 +
   1.530 +OscillatorNode::OscillatorNode(AudioContext* aContext)
   1.531 +  : AudioNode(aContext,
   1.532 +              2,
   1.533 +              ChannelCountMode::Max,
   1.534 +              ChannelInterpretation::Speakers)
   1.535 +  , mType(OscillatorType::Sine)
   1.536 +  , mFrequency(new AudioParam(MOZ_THIS_IN_INITIALIZER_LIST(),
   1.537 +               SendFrequencyToStream, 440.0f))
   1.538 +  , mDetune(new AudioParam(MOZ_THIS_IN_INITIALIZER_LIST(),
   1.539 +            SendDetuneToStream, 0.0f))
   1.540 +  , mStartCalled(false)
   1.541 +  , mStopped(false)
   1.542 +{
   1.543 +  OscillatorNodeEngine* engine = new OscillatorNodeEngine(this, aContext->Destination());
   1.544 +  mStream = aContext->Graph()->CreateAudioNodeStream(engine, MediaStreamGraph::SOURCE_STREAM);
   1.545 +  engine->SetSourceStream(static_cast<AudioNodeStream*> (mStream.get()));
   1.546 +  mStream->AddMainThreadListener(this);
   1.547 +}
   1.548 +
   1.549 +OscillatorNode::~OscillatorNode()
   1.550 +{
   1.551 +}
   1.552 +
   1.553 +size_t
   1.554 +OscillatorNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
   1.555 +{
   1.556 +  size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
   1.557 +
   1.558 +  // For now only report if we know for sure that it's not shared.
   1.559 +  amount += mPeriodicWave->SizeOfExcludingThisIfNotShared(aMallocSizeOf);
   1.560 +  amount += mFrequency->SizeOfIncludingThis(aMallocSizeOf);
   1.561 +  amount += mDetune->SizeOfIncludingThis(aMallocSizeOf);
   1.562 +  return amount;
   1.563 +}
   1.564 +
   1.565 +size_t
   1.566 +OscillatorNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
   1.567 +{
   1.568 +  return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
   1.569 +}
   1.570 +
   1.571 +JSObject*
   1.572 +OscillatorNode::WrapObject(JSContext* aCx)
   1.573 +{
   1.574 +  return OscillatorNodeBinding::Wrap(aCx, this);
   1.575 +}
   1.576 +
   1.577 +void
   1.578 +OscillatorNode::SendFrequencyToStream(AudioNode* aNode)
   1.579 +{
   1.580 +  OscillatorNode* This = static_cast<OscillatorNode*>(aNode);
   1.581 +  SendTimelineParameterToStream(This, OscillatorNodeEngine::FREQUENCY, *This->mFrequency);
   1.582 +}
   1.583 +
   1.584 +void
   1.585 +OscillatorNode::SendDetuneToStream(AudioNode* aNode)
   1.586 +{
   1.587 +  OscillatorNode* This = static_cast<OscillatorNode*>(aNode);
   1.588 +  SendTimelineParameterToStream(This, OscillatorNodeEngine::DETUNE, *This->mDetune);
   1.589 +}
   1.590 +
   1.591 +void
   1.592 +OscillatorNode::SendTypeToStream()
   1.593 +{
   1.594 +  if (mType == OscillatorType::Custom) {
   1.595 +    // The engine assumes we'll send the custom data before updating the type.
   1.596 +    SendPeriodicWaveToStream();
   1.597 +  }
   1.598 +  SendInt32ParameterToStream(OscillatorNodeEngine::TYPE, static_cast<int32_t>(mType));
   1.599 +}
   1.600 +
   1.601 +void OscillatorNode::SendPeriodicWaveToStream()
   1.602 +{
   1.603 +  NS_ASSERTION(mType == OscillatorType::Custom,
   1.604 +               "Sending custom waveform to engine thread with non-custom type");
   1.605 +  AudioNodeStream* ns = static_cast<AudioNodeStream*>(mStream.get());
   1.606 +  MOZ_ASSERT(ns, "Missing node stream.");
   1.607 +  MOZ_ASSERT(mPeriodicWave, "Send called without PeriodicWave object.");
   1.608 +  SendInt32ParameterToStream(OscillatorNodeEngine::PERIODICWAVE,
   1.609 +                             mPeriodicWave->DataLength());
   1.610 +  nsRefPtr<ThreadSharedFloatArrayBufferList> data =
   1.611 +    mPeriodicWave->GetThreadSharedBuffer();
   1.612 +  ns->SetBuffer(data.forget());
   1.613 +}
   1.614 +
   1.615 +void
   1.616 +OscillatorNode::Start(double aWhen, ErrorResult& aRv)
   1.617 +{
   1.618 +  if (!WebAudioUtils::IsTimeValid(aWhen)) {
   1.619 +    aRv.Throw(NS_ERROR_DOM_NOT_SUPPORTED_ERR);
   1.620 +    return;
   1.621 +  }
   1.622 +
   1.623 +  if (mStartCalled) {
   1.624 +    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
   1.625 +    return;
   1.626 +  }
   1.627 +  mStartCalled = true;
   1.628 +
   1.629 +  AudioNodeStream* ns = static_cast<AudioNodeStream*>(mStream.get());
   1.630 +  if (!ns) {
   1.631 +    // Nothing to play, or we're already dead for some reason
   1.632 +    return;
   1.633 +  }
   1.634 +
   1.635 +  // TODO: Perhaps we need to do more here.
   1.636 +  ns->SetStreamTimeParameter(OscillatorNodeEngine::START,
   1.637 +                             Context(), aWhen);
   1.638 +
   1.639 +  MarkActive();
   1.640 +}
   1.641 +
   1.642 +void
   1.643 +OscillatorNode::Stop(double aWhen, ErrorResult& aRv)
   1.644 +{
   1.645 +  if (!WebAudioUtils::IsTimeValid(aWhen)) {
   1.646 +    aRv.Throw(NS_ERROR_DOM_NOT_SUPPORTED_ERR);
   1.647 +    return;
   1.648 +  }
   1.649 +
   1.650 +  if (!mStartCalled) {
   1.651 +    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
   1.652 +    return;
   1.653 +  }
   1.654 +
   1.655 +  AudioNodeStream* ns = static_cast<AudioNodeStream*>(mStream.get());
   1.656 +  if (!ns || !Context()) {
   1.657 +    // We've already stopped and had our stream shut down
   1.658 +    return;
   1.659 +  }
   1.660 +
   1.661 +  // TODO: Perhaps we need to do more here.
   1.662 +  ns->SetStreamTimeParameter(OscillatorNodeEngine::STOP,
   1.663 +                             Context(), std::max(0.0, aWhen));
   1.664 +}
   1.665 +
   1.666 +void
   1.667 +OscillatorNode::NotifyMainThreadStateChanged()
   1.668 +{
   1.669 +  if (mStream->IsFinished()) {
   1.670 +    class EndedEventDispatcher : public nsRunnable
   1.671 +    {
   1.672 +    public:
   1.673 +      explicit EndedEventDispatcher(OscillatorNode* aNode)
   1.674 +        : mNode(aNode) {}
   1.675 +      NS_IMETHODIMP Run()
   1.676 +      {
   1.677 +        // If it's not safe to run scripts right now, schedule this to run later
   1.678 +        if (!nsContentUtils::IsSafeToRunScript()) {
   1.679 +          nsContentUtils::AddScriptRunner(this);
   1.680 +          return NS_OK;
   1.681 +        }
   1.682 +
   1.683 +        mNode->DispatchTrustedEvent(NS_LITERAL_STRING("ended"));
   1.684 +        return NS_OK;
   1.685 +      }
   1.686 +    private:
   1.687 +      nsRefPtr<OscillatorNode> mNode;
   1.688 +    };
   1.689 +    if (!mStopped) {
   1.690 +      // Only dispatch the ended event once
   1.691 +      NS_DispatchToMainThread(new EndedEventDispatcher(this));
   1.692 +      mStopped = true;
   1.693 +    }
   1.694 +
   1.695 +    // Drop the playing reference
   1.696 +    // Warning: The below line might delete this.
   1.697 +    MarkInactive();
   1.698 +  }
   1.699 +}
   1.700 +
   1.701 +}
   1.702 +}
   1.703 +

mercurial