1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/content/media/webaudio/blink/Biquad.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,471 @@ 1.4 +/* 1.5 + * Copyright (C) 2010 Google Inc. All rights reserved. 1.6 + * 1.7 + * Redistribution and use in source and binary forms, with or without 1.8 + * modification, are permitted provided that the following conditions 1.9 + * are met: 1.10 + * 1.11 + * 1. Redistributions of source code must retain the above copyright 1.12 + * notice, this list of conditions and the following disclaimer. 1.13 + * 2. Redistributions in binary form must reproduce the above copyright 1.14 + * notice, this list of conditions and the following disclaimer in the 1.15 + * documentation and/or other materials provided with the distribution. 1.16 + * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 1.17 + * its contributors may be used to endorse or promote products derived 1.18 + * from this software without specific prior written permission. 1.19 + * 1.20 + * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY 1.21 + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 1.22 + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 1.23 + * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY 1.24 + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 1.25 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 1.26 + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 1.27 + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1.28 + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 1.29 + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1.30 + */ 1.31 + 1.32 +// For M_PI from cmath 1.33 +#ifdef _MSC_VER 1.34 +# define _USE_MATH_DEFINES 1.35 +#endif 1.36 + 1.37 +#include "Biquad.h" 1.38 + 1.39 +#include <cmath> 1.40 +#include <float.h> 1.41 +#include <algorithm> 1.42 + 1.43 +namespace WebCore { 1.44 + 1.45 +Biquad::Biquad() 1.46 +{ 1.47 + // Initialize as pass-thru (straight-wire, no filter effect) 1.48 + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); 1.49 + 1.50 + reset(); // clear filter memory 1.51 +} 1.52 + 1.53 +Biquad::~Biquad() 1.54 +{ 1.55 +} 1.56 + 1.57 +void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess) 1.58 +{ 1.59 + // Create local copies of member variables 1.60 + double x1 = m_x1; 1.61 + double x2 = m_x2; 1.62 + double y1 = m_y1; 1.63 + double y2 = m_y2; 1.64 + 1.65 + double b0 = m_b0; 1.66 + double b1 = m_b1; 1.67 + double b2 = m_b2; 1.68 + double a1 = m_a1; 1.69 + double a2 = m_a2; 1.70 + 1.71 + for (size_t i = 0; i < framesToProcess; ++i) { 1.72 + // FIXME: this can be optimized by pipelining the multiply adds... 1.73 + double x = sourceP[i]; 1.74 + double y = b0*x + b1*x1 + b2*x2 - a1*y1 - a2*y2; 1.75 + 1.76 + destP[i] = y; 1.77 + 1.78 + // Update state variables 1.79 + x2 = x1; 1.80 + x1 = x; 1.81 + y2 = y1; 1.82 + y1 = y; 1.83 + } 1.84 + 1.85 + // Avoid introducing a stream of subnormals when input is silent and the 1.86 + // tail approaches zero. 1.87 + if (x1 == 0.0 && x2 == 0.0 && (y1 != 0.0 || y2 != 0.0) && 1.88 + fabs(y1) < FLT_MIN && fabs(y2) < FLT_MIN) { 1.89 + // Flush future values to zero (until there is new input). 1.90 + y1 = y2 = 0.0; 1.91 + // Flush calculated values. 1.92 + for (int i = framesToProcess; i-- && fabsf(destP[i]) < FLT_MIN; ) { 1.93 + destP[i] = 0.0f; 1.94 + } 1.95 + } 1.96 + // Local variables back to member. 1.97 + m_x1 = x1; 1.98 + m_x2 = x2; 1.99 + m_y1 = y1; 1.100 + m_y2 = y2; 1.101 +} 1.102 + 1.103 +void Biquad::reset() 1.104 +{ 1.105 + m_x1 = m_x2 = m_y1 = m_y2 = 0; 1.106 +} 1.107 + 1.108 +void Biquad::setLowpassParams(double cutoff, double resonance) 1.109 +{ 1.110 + // Limit cutoff to 0 to 1. 1.111 + cutoff = std::max(0.0, std::min(cutoff, 1.0)); 1.112 + 1.113 + if (cutoff == 1) { 1.114 + // When cutoff is 1, the z-transform is 1. 1.115 + setNormalizedCoefficients(1, 0, 0, 1.116 + 1, 0, 0); 1.117 + } else if (cutoff > 0) { 1.118 + // Compute biquad coefficients for lowpass filter 1.119 + resonance = std::max(0.0, resonance); // can't go negative 1.120 + double g = pow(10.0, 0.05 * resonance); 1.121 + double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2); 1.122 + 1.123 + double theta = M_PI * cutoff; 1.124 + double sn = 0.5 * d * sin(theta); 1.125 + double beta = 0.5 * (1 - sn) / (1 + sn); 1.126 + double gamma = (0.5 + beta) * cos(theta); 1.127 + double alpha = 0.25 * (0.5 + beta - gamma); 1.128 + 1.129 + double b0 = 2 * alpha; 1.130 + double b1 = 2 * 2 * alpha; 1.131 + double b2 = 2 * alpha; 1.132 + double a1 = 2 * -gamma; 1.133 + double a2 = 2 * beta; 1.134 + 1.135 + setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); 1.136 + } else { 1.137 + // When cutoff is zero, nothing gets through the filter, so set 1.138 + // coefficients up correctly. 1.139 + setNormalizedCoefficients(0, 0, 0, 1.140 + 1, 0, 0); 1.141 + } 1.142 +} 1.143 + 1.144 +void Biquad::setHighpassParams(double cutoff, double resonance) 1.145 +{ 1.146 + // Limit cutoff to 0 to 1. 1.147 + cutoff = std::max(0.0, std::min(cutoff, 1.0)); 1.148 + 1.149 + if (cutoff == 1) { 1.150 + // The z-transform is 0. 1.151 + setNormalizedCoefficients(0, 0, 0, 1.152 + 1, 0, 0); 1.153 + } else if (cutoff > 0) { 1.154 + // Compute biquad coefficients for highpass filter 1.155 + resonance = std::max(0.0, resonance); // can't go negative 1.156 + double g = pow(10.0, 0.05 * resonance); 1.157 + double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2); 1.158 + 1.159 + double theta = M_PI * cutoff; 1.160 + double sn = 0.5 * d * sin(theta); 1.161 + double beta = 0.5 * (1 - sn) / (1 + sn); 1.162 + double gamma = (0.5 + beta) * cos(theta); 1.163 + double alpha = 0.25 * (0.5 + beta + gamma); 1.164 + 1.165 + double b0 = 2 * alpha; 1.166 + double b1 = 2 * -2 * alpha; 1.167 + double b2 = 2 * alpha; 1.168 + double a1 = 2 * -gamma; 1.169 + double a2 = 2 * beta; 1.170 + 1.171 + setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); 1.172 + } else { 1.173 + // When cutoff is zero, we need to be careful because the above 1.174 + // gives a quadratic divided by the same quadratic, with poles 1.175 + // and zeros on the unit circle in the same place. When cutoff 1.176 + // is zero, the z-transform is 1. 1.177 + setNormalizedCoefficients(1, 0, 0, 1.178 + 1, 0, 0); 1.179 + } 1.180 +} 1.181 + 1.182 +void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, double a0, double a1, double a2) 1.183 +{ 1.184 + double a0Inverse = 1 / a0; 1.185 + 1.186 + m_b0 = b0 * a0Inverse; 1.187 + m_b1 = b1 * a0Inverse; 1.188 + m_b2 = b2 * a0Inverse; 1.189 + m_a1 = a1 * a0Inverse; 1.190 + m_a2 = a2 * a0Inverse; 1.191 +} 1.192 + 1.193 +void Biquad::setLowShelfParams(double frequency, double dbGain) 1.194 +{ 1.195 + // Clip frequencies to between 0 and 1, inclusive. 1.196 + frequency = std::max(0.0, std::min(frequency, 1.0)); 1.197 + 1.198 + double A = pow(10.0, dbGain / 40); 1.199 + 1.200 + if (frequency == 1) { 1.201 + // The z-transform is a constant gain. 1.202 + setNormalizedCoefficients(A * A, 0, 0, 1.203 + 1, 0, 0); 1.204 + } else if (frequency > 0) { 1.205 + double w0 = M_PI * frequency; 1.206 + double S = 1; // filter slope (1 is max value) 1.207 + double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); 1.208 + double k = cos(w0); 1.209 + double k2 = 2 * sqrt(A) * alpha; 1.210 + double aPlusOne = A + 1; 1.211 + double aMinusOne = A - 1; 1.212 + 1.213 + double b0 = A * (aPlusOne - aMinusOne * k + k2); 1.214 + double b1 = 2 * A * (aMinusOne - aPlusOne * k); 1.215 + double b2 = A * (aPlusOne - aMinusOne * k - k2); 1.216 + double a0 = aPlusOne + aMinusOne * k + k2; 1.217 + double a1 = -2 * (aMinusOne + aPlusOne * k); 1.218 + double a2 = aPlusOne + aMinusOne * k - k2; 1.219 + 1.220 + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); 1.221 + } else { 1.222 + // When frequency is 0, the z-transform is 1. 1.223 + setNormalizedCoefficients(1, 0, 0, 1.224 + 1, 0, 0); 1.225 + } 1.226 +} 1.227 + 1.228 +void Biquad::setHighShelfParams(double frequency, double dbGain) 1.229 +{ 1.230 + // Clip frequencies to between 0 and 1, inclusive. 1.231 + frequency = std::max(0.0, std::min(frequency, 1.0)); 1.232 + 1.233 + double A = pow(10.0, dbGain / 40); 1.234 + 1.235 + if (frequency == 1) { 1.236 + // The z-transform is 1. 1.237 + setNormalizedCoefficients(1, 0, 0, 1.238 + 1, 0, 0); 1.239 + } else if (frequency > 0) { 1.240 + double w0 = M_PI * frequency; 1.241 + double S = 1; // filter slope (1 is max value) 1.242 + double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); 1.243 + double k = cos(w0); 1.244 + double k2 = 2 * sqrt(A) * alpha; 1.245 + double aPlusOne = A + 1; 1.246 + double aMinusOne = A - 1; 1.247 + 1.248 + double b0 = A * (aPlusOne + aMinusOne * k + k2); 1.249 + double b1 = -2 * A * (aMinusOne + aPlusOne * k); 1.250 + double b2 = A * (aPlusOne + aMinusOne * k - k2); 1.251 + double a0 = aPlusOne - aMinusOne * k + k2; 1.252 + double a1 = 2 * (aMinusOne - aPlusOne * k); 1.253 + double a2 = aPlusOne - aMinusOne * k - k2; 1.254 + 1.255 + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); 1.256 + } else { 1.257 + // When frequency = 0, the filter is just a gain, A^2. 1.258 + setNormalizedCoefficients(A * A, 0, 0, 1.259 + 1, 0, 0); 1.260 + } 1.261 +} 1.262 + 1.263 +void Biquad::setPeakingParams(double frequency, double Q, double dbGain) 1.264 +{ 1.265 + // Clip frequencies to between 0 and 1, inclusive. 1.266 + frequency = std::max(0.0, std::min(frequency, 1.0)); 1.267 + 1.268 + // Don't let Q go negative, which causes an unstable filter. 1.269 + Q = std::max(0.0, Q); 1.270 + 1.271 + double A = pow(10.0, dbGain / 40); 1.272 + 1.273 + if (frequency > 0 && frequency < 1) { 1.274 + if (Q > 0) { 1.275 + double w0 = M_PI * frequency; 1.276 + double alpha = sin(w0) / (2 * Q); 1.277 + double k = cos(w0); 1.278 + 1.279 + double b0 = 1 + alpha * A; 1.280 + double b1 = -2 * k; 1.281 + double b2 = 1 - alpha * A; 1.282 + double a0 = 1 + alpha / A; 1.283 + double a1 = -2 * k; 1.284 + double a2 = 1 - alpha / A; 1.285 + 1.286 + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); 1.287 + } else { 1.288 + // When Q = 0, the above formulas have problems. If we look at 1.289 + // the z-transform, we can see that the limit as Q->0 is A^2, so 1.290 + // set the filter that way. 1.291 + setNormalizedCoefficients(A * A, 0, 0, 1.292 + 1, 0, 0); 1.293 + } 1.294 + } else { 1.295 + // When frequency is 0 or 1, the z-transform is 1. 1.296 + setNormalizedCoefficients(1, 0, 0, 1.297 + 1, 0, 0); 1.298 + } 1.299 +} 1.300 + 1.301 +void Biquad::setAllpassParams(double frequency, double Q) 1.302 +{ 1.303 + // Clip frequencies to between 0 and 1, inclusive. 1.304 + frequency = std::max(0.0, std::min(frequency, 1.0)); 1.305 + 1.306 + // Don't let Q go negative, which causes an unstable filter. 1.307 + Q = std::max(0.0, Q); 1.308 + 1.309 + if (frequency > 0 && frequency < 1) { 1.310 + if (Q > 0) { 1.311 + double w0 = M_PI * frequency; 1.312 + double alpha = sin(w0) / (2 * Q); 1.313 + double k = cos(w0); 1.314 + 1.315 + double b0 = 1 - alpha; 1.316 + double b1 = -2 * k; 1.317 + double b2 = 1 + alpha; 1.318 + double a0 = 1 + alpha; 1.319 + double a1 = -2 * k; 1.320 + double a2 = 1 - alpha; 1.321 + 1.322 + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); 1.323 + } else { 1.324 + // When Q = 0, the above formulas have problems. If we look at 1.325 + // the z-transform, we can see that the limit as Q->0 is -1, so 1.326 + // set the filter that way. 1.327 + setNormalizedCoefficients(-1, 0, 0, 1.328 + 1, 0, 0); 1.329 + } 1.330 + } else { 1.331 + // When frequency is 0 or 1, the z-transform is 1. 1.332 + setNormalizedCoefficients(1, 0, 0, 1.333 + 1, 0, 0); 1.334 + } 1.335 +} 1.336 + 1.337 +void Biquad::setNotchParams(double frequency, double Q) 1.338 +{ 1.339 + // Clip frequencies to between 0 and 1, inclusive. 1.340 + frequency = std::max(0.0, std::min(frequency, 1.0)); 1.341 + 1.342 + // Don't let Q go negative, which causes an unstable filter. 1.343 + Q = std::max(0.0, Q); 1.344 + 1.345 + if (frequency > 0 && frequency < 1) { 1.346 + if (Q > 0) { 1.347 + double w0 = M_PI * frequency; 1.348 + double alpha = sin(w0) / (2 * Q); 1.349 + double k = cos(w0); 1.350 + 1.351 + double b0 = 1; 1.352 + double b1 = -2 * k; 1.353 + double b2 = 1; 1.354 + double a0 = 1 + alpha; 1.355 + double a1 = -2 * k; 1.356 + double a2 = 1 - alpha; 1.357 + 1.358 + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); 1.359 + } else { 1.360 + // When Q = 0, the above formulas have problems. If we look at 1.361 + // the z-transform, we can see that the limit as Q->0 is 0, so 1.362 + // set the filter that way. 1.363 + setNormalizedCoefficients(0, 0, 0, 1.364 + 1, 0, 0); 1.365 + } 1.366 + } else { 1.367 + // When frequency is 0 or 1, the z-transform is 1. 1.368 + setNormalizedCoefficients(1, 0, 0, 1.369 + 1, 0, 0); 1.370 + } 1.371 +} 1.372 + 1.373 +void Biquad::setBandpassParams(double frequency, double Q) 1.374 +{ 1.375 + // No negative frequencies allowed. 1.376 + frequency = std::max(0.0, frequency); 1.377 + 1.378 + // Don't let Q go negative, which causes an unstable filter. 1.379 + Q = std::max(0.0, Q); 1.380 + 1.381 + if (frequency > 0 && frequency < 1) { 1.382 + double w0 = M_PI * frequency; 1.383 + if (Q > 0) { 1.384 + double alpha = sin(w0) / (2 * Q); 1.385 + double k = cos(w0); 1.386 + 1.387 + double b0 = alpha; 1.388 + double b1 = 0; 1.389 + double b2 = -alpha; 1.390 + double a0 = 1 + alpha; 1.391 + double a1 = -2 * k; 1.392 + double a2 = 1 - alpha; 1.393 + 1.394 + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); 1.395 + } else { 1.396 + // When Q = 0, the above formulas have problems. If we look at 1.397 + // the z-transform, we can see that the limit as Q->0 is 1, so 1.398 + // set the filter that way. 1.399 + setNormalizedCoefficients(1, 0, 0, 1.400 + 1, 0, 0); 1.401 + } 1.402 + } else { 1.403 + // When the cutoff is zero, the z-transform approaches 0, if Q 1.404 + // > 0. When both Q and cutoff are zero, the z-transform is 1.405 + // pretty much undefined. What should we do in this case? 1.406 + // For now, just make the filter 0. When the cutoff is 1, the 1.407 + // z-transform also approaches 0. 1.408 + setNormalizedCoefficients(0, 0, 0, 1.409 + 1, 0, 0); 1.410 + } 1.411 +} 1.412 + 1.413 +void Biquad::setZeroPolePairs(const Complex &zero, const Complex &pole) 1.414 +{ 1.415 + double b0 = 1; 1.416 + double b1 = -2 * zero.real(); 1.417 + 1.418 + double zeroMag = abs(zero); 1.419 + double b2 = zeroMag * zeroMag; 1.420 + 1.421 + double a1 = -2 * pole.real(); 1.422 + 1.423 + double poleMag = abs(pole); 1.424 + double a2 = poleMag * poleMag; 1.425 + setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); 1.426 +} 1.427 + 1.428 +void Biquad::setAllpassPole(const Complex &pole) 1.429 +{ 1.430 + Complex zero = Complex(1, 0) / pole; 1.431 + setZeroPolePairs(zero, pole); 1.432 +} 1.433 + 1.434 +void Biquad::getFrequencyResponse(int nFrequencies, 1.435 + const float* frequency, 1.436 + float* magResponse, 1.437 + float* phaseResponse) 1.438 +{ 1.439 + // Evaluate the Z-transform of the filter at given normalized 1.440 + // frequency from 0 to 1. (1 corresponds to the Nyquist 1.441 + // frequency.) 1.442 + // 1.443 + // The z-transform of the filter is 1.444 + // 1.445 + // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2)) 1.446 + // 1.447 + // Evaluate as 1.448 + // 1.449 + // b0 + (b1 + b2*z1)*z1 1.450 + // -------------------- 1.451 + // 1 + (a1 + a2*z1)*z1 1.452 + // 1.453 + // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency) 1.454 + 1.455 + // Make local copies of the coefficients as a micro-optimization. 1.456 + double b0 = m_b0; 1.457 + double b1 = m_b1; 1.458 + double b2 = m_b2; 1.459 + double a1 = m_a1; 1.460 + double a2 = m_a2; 1.461 + 1.462 + for (int k = 0; k < nFrequencies; ++k) { 1.463 + double omega = -M_PI * frequency[k]; 1.464 + Complex z = Complex(cos(omega), sin(omega)); 1.465 + Complex numerator = b0 + (b1 + b2 * z) * z; 1.466 + Complex denominator = Complex(1, 0) + (a1 + a2 * z) * z; 1.467 + Complex response = numerator / denominator; 1.468 + magResponse[k] = static_cast<float>(abs(response)); 1.469 + phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response))); 1.470 + } 1.471 +} 1.472 + 1.473 +} // namespace WebCore 1.474 +