gfx/2d/Matrix.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/2d/Matrix.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,544 @@
     1.4 +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
     1.5 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +#ifndef MOZILLA_GFX_MATRIX_H_
    1.10 +#define MOZILLA_GFX_MATRIX_H_
    1.11 +
    1.12 +#include "Types.h"
    1.13 +#include "Rect.h"
    1.14 +#include "Point.h"
    1.15 +#include <math.h>
    1.16 +
    1.17 +namespace mozilla {
    1.18 +namespace gfx {
    1.19 +
    1.20 +class Matrix
    1.21 +{
    1.22 +public:
    1.23 +  Matrix()
    1.24 +    : _11(1.0f), _12(0)
    1.25 +    , _21(0), _22(1.0f)
    1.26 +    , _31(0), _32(0)
    1.27 +  {}
    1.28 +  Matrix(Float a11, Float a12, Float a21, Float a22, Float a31, Float a32)
    1.29 +    : _11(a11), _12(a12)
    1.30 +    , _21(a21), _22(a22)
    1.31 +    , _31(a31), _32(a32)
    1.32 +  {}
    1.33 +  Float _11, _12;
    1.34 +  Float _21, _22;
    1.35 +  Float _31, _32;
    1.36 +
    1.37 +  Point operator *(const Point &aPoint) const
    1.38 +  {
    1.39 +    Point retPoint;
    1.40 +
    1.41 +    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
    1.42 +    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;
    1.43 +
    1.44 +    return retPoint;
    1.45 +  }
    1.46 +
    1.47 +  Size operator *(const Size &aSize) const
    1.48 +  {
    1.49 +    Size retSize;
    1.50 +
    1.51 +    retSize.width = aSize.width * _11 + aSize.height * _21;
    1.52 +    retSize.height = aSize.width * _12 + aSize.height * _22;
    1.53 +
    1.54 +    return retSize;
    1.55 +  }
    1.56 +
    1.57 +  GFX2D_API Rect TransformBounds(const Rect& rect) const;
    1.58 +
    1.59 +  // Apply a scale to this matrix. This scale will be applied -before- the
    1.60 +  // existing transformation of the matrix.
    1.61 +  Matrix &Scale(Float aX, Float aY)
    1.62 +  {
    1.63 +    _11 *= aX;
    1.64 +    _12 *= aX;
    1.65 +    _21 *= aY;
    1.66 +    _22 *= aY;
    1.67 +
    1.68 +    return *this;
    1.69 +  }
    1.70 +
    1.71 +  Matrix &Translate(Float aX, Float aY)
    1.72 +  {
    1.73 +    _31 += _11 * aX + _21 * aY;
    1.74 +    _32 += _12 * aX + _22 * aY;
    1.75 +
    1.76 +    return *this;
    1.77 +  }
    1.78 +
    1.79 +  Matrix &PostTranslate(Float aX, Float aY)
    1.80 +  {
    1.81 +    _31 += aX;
    1.82 +    _32 += aY;
    1.83 +    return *this;
    1.84 +  }
    1.85 +
    1.86 +  Matrix &Rotate(Float aAngle)
    1.87 +  {
    1.88 +    return *this = Matrix::Rotation(aAngle) * *this;
    1.89 +  }
    1.90 +
    1.91 +  bool Invert()
    1.92 +  {
    1.93 +    // Compute co-factors.
    1.94 +    Float A = _22;
    1.95 +    Float B = -_21;
    1.96 +    Float C = _21 * _32 - _22 * _31;
    1.97 +    Float D = -_12;
    1.98 +    Float E = _11;
    1.99 +    Float F = _31 * _12 - _11 * _32;
   1.100 +
   1.101 +    Float det = Determinant();
   1.102 +
   1.103 +    if (!det) {
   1.104 +      return false;
   1.105 +    }
   1.106 +
   1.107 +    Float inv_det = 1 / det;
   1.108 +
   1.109 +    _11 = inv_det * A;
   1.110 +    _12 = inv_det * D;
   1.111 +    _21 = inv_det * B;
   1.112 +    _22 = inv_det * E;
   1.113 +    _31 = inv_det * C;
   1.114 +    _32 = inv_det * F;
   1.115 +
   1.116 +    return true;
   1.117 +  }
   1.118 +
   1.119 +  Float Determinant() const
   1.120 +  {
   1.121 +    return _11 * _22 - _12 * _21;
   1.122 +  }
   1.123 +
   1.124 +  static Matrix Translation(Float aX, Float aY)
   1.125 +  {
   1.126 +    return Matrix(1.0f, 0.0f, 0.0f, 1.0f, aX, aY);
   1.127 +  }
   1.128 +
   1.129 +  static Matrix Translation(Point aPoint)
   1.130 +  {
   1.131 +    return Translation(aPoint.x, aPoint.y);
   1.132 +  }
   1.133 +
   1.134 +  GFX2D_API static Matrix Rotation(Float aAngle);
   1.135 +
   1.136 +  static Matrix Scaling(Float aX, Float aY)
   1.137 +  {
   1.138 +    return Matrix(aX, 0.0f, 0.0f, aY, 0.0f, 0.0f);
   1.139 +  }
   1.140 +
   1.141 +  Matrix operator*(const Matrix &aMatrix) const
   1.142 +  {
   1.143 +    Matrix resultMatrix;
   1.144 +
   1.145 +    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
   1.146 +    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
   1.147 +    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
   1.148 +    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
   1.149 +    resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
   1.150 +    resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;
   1.151 +
   1.152 +    return resultMatrix;
   1.153 +  }
   1.154 +
   1.155 +  Matrix& operator*=(const Matrix &aMatrix)
   1.156 +  {
   1.157 +    Matrix resultMatrix = *this * aMatrix;
   1.158 +    return *this = resultMatrix;
   1.159 +  }
   1.160 +
   1.161 +  /* Returns true if the other matrix is fuzzy-equal to this matrix.
   1.162 +   * Note that this isn't a cheap comparison!
   1.163 +   */
   1.164 +  bool operator==(const Matrix& other) const
   1.165 +  {
   1.166 +    return FuzzyEqual(_11, other._11) && FuzzyEqual(_12, other._12) &&
   1.167 +           FuzzyEqual(_21, other._21) && FuzzyEqual(_22, other._22) &&
   1.168 +           FuzzyEqual(_31, other._31) && FuzzyEqual(_32, other._32);
   1.169 +  }
   1.170 +
   1.171 +  bool operator!=(const Matrix& other) const
   1.172 +  {
   1.173 +    return !(*this == other);
   1.174 +  }
   1.175 +
   1.176 +  /* Returns true if the matrix is a rectilinear transformation (i.e.
   1.177 +   * grid-aligned rectangles are transformed to grid-aligned rectangles)
   1.178 +   */
   1.179 +  bool IsRectilinear() const {
   1.180 +    if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
   1.181 +      return true;
   1.182 +    } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
   1.183 +      return true;
   1.184 +    }
   1.185 +
   1.186 +    return false;
   1.187 +  }
   1.188 +
   1.189 +  /**
   1.190 +   * Returns true if the matrix is anything other than a straight
   1.191 +   * translation by integers.
   1.192 +  */
   1.193 +  bool HasNonIntegerTranslation() const {
   1.194 +    return HasNonTranslation() ||
   1.195 +      !FuzzyEqual(_31, floor(_31 + 0.5)) ||
   1.196 +      !FuzzyEqual(_32, floor(_32 + 0.5));
   1.197 +  }
   1.198 +
   1.199 +  /**
   1.200 +   * Returns true if the matrix has any transform other
   1.201 +   * than a straight translation.
   1.202 +   */
   1.203 +  bool HasNonTranslation() const {
   1.204 +    return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
   1.205 +           !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0);
   1.206 +  }
   1.207 +
   1.208 +  /* Returns true if the matrix is an identity matrix.
   1.209 +   */
   1.210 +  bool IsIdentity() const
   1.211 +  {
   1.212 +    return _11 == 1.0f && _12 == 0.0f &&
   1.213 +           _21 == 0.0f && _22 == 1.0f &&
   1.214 +           _31 == 0.0f && _32 == 0.0f;
   1.215 +  }
   1.216 +
   1.217 +  /* Returns true if the matrix is singular.
   1.218 +   */
   1.219 +  bool IsSingular() const
   1.220 +  {
   1.221 +    return Determinant() == 0;
   1.222 +  }
   1.223 +
   1.224 +  GFX2D_API void NudgeToIntegers();
   1.225 +
   1.226 +  bool IsTranslation() const
   1.227 +  {
   1.228 +    return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
   1.229 +           FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
   1.230 +  }
   1.231 +
   1.232 +  bool IsIntegerTranslation() const
   1.233 +  {
   1.234 +    return IsTranslation() &&
   1.235 +           FuzzyEqual(_31, floorf(_31 + 0.5f)) &&
   1.236 +           FuzzyEqual(_32, floorf(_32 + 0.5f));
   1.237 +  }
   1.238 +
   1.239 +  Point GetTranslation() const {
   1.240 +    return Point(_31, _32);
   1.241 +  }
   1.242 +
   1.243 +  /**
   1.244 +   * Returns true if matrix is multiple of 90 degrees rotation with flipping,
   1.245 +   * scaling and translation.
   1.246 +   */
   1.247 +  bool PreservesAxisAlignedRectangles() const {
   1.248 +      return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0))
   1.249 +          || (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0)));
   1.250 +  }
   1.251 +
   1.252 +  /**
   1.253 +   * Returns true if the matrix has any transform other
   1.254 +   * than a translation or scale; this is, if there is
   1.255 +   * no rotation.
   1.256 +   */
   1.257 +  bool HasNonAxisAlignedTransform() const {
   1.258 +      return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
   1.259 +  }
   1.260 +
   1.261 +  /**
   1.262 +   * Returns true if the matrix has non-integer scale
   1.263 +   */
   1.264 +  bool HasNonIntegerScale() const {
   1.265 +      return !FuzzyEqual(_11, floor(_11 + 0.5)) ||
   1.266 +             !FuzzyEqual(_22, floor(_22 + 0.5));
   1.267 +  }
   1.268 +
   1.269 +private:
   1.270 +  static bool FuzzyEqual(Float aV1, Float aV2) {
   1.271 +    // XXX - Check if fabs does the smart thing and just negates the sign bit.
   1.272 +    return fabs(aV2 - aV1) < 1e-6;
   1.273 +  }
   1.274 +};
   1.275 +
   1.276 +class Matrix4x4
   1.277 +{
   1.278 +public:
   1.279 +  Matrix4x4()
   1.280 +    : _11(1.0f), _12(0.0f), _13(0.0f), _14(0.0f)
   1.281 +    , _21(0.0f), _22(1.0f), _23(0.0f), _24(0.0f)
   1.282 +    , _31(0.0f), _32(0.0f), _33(1.0f), _34(0.0f)
   1.283 +    , _41(0.0f), _42(0.0f), _43(0.0f), _44(1.0f)
   1.284 +  {}
   1.285 +
   1.286 +  Float _11, _12, _13, _14;
   1.287 +  Float _21, _22, _23, _24;
   1.288 +  Float _31, _32, _33, _34;
   1.289 +  Float _41, _42, _43, _44;
   1.290 +
   1.291 +  /**
   1.292 +   * Returns true if the matrix is isomorphic to a 2D affine transformation.
   1.293 +   */
   1.294 +  bool Is2D() const
   1.295 +  {
   1.296 +    if (_13 != 0.0f || _14 != 0.0f ||
   1.297 +        _23 != 0.0f || _24 != 0.0f ||
   1.298 +        _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
   1.299 +        _43 != 0.0f || _44 != 1.0f) {
   1.300 +      return false;
   1.301 +    }
   1.302 +    return true;
   1.303 +  }
   1.304 +
   1.305 +  bool Is2D(Matrix* aMatrix) const {
   1.306 +    if (!Is2D()) {
   1.307 +      return false;
   1.308 +    }
   1.309 +    if (aMatrix) {
   1.310 +      aMatrix->_11 = _11;
   1.311 +      aMatrix->_12 = _12;
   1.312 +      aMatrix->_21 = _21;
   1.313 +      aMatrix->_22 = _22;
   1.314 +      aMatrix->_31 = _41;
   1.315 +      aMatrix->_32 = _42;
   1.316 +    }
   1.317 +    return true;
   1.318 +  }
   1.319 +
   1.320 +  Matrix As2D() const
   1.321 +  {
   1.322 +    MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");
   1.323 +
   1.324 +    return Matrix(_11, _12, _21, _22, _41, _42);
   1.325 +  }
   1.326 +
   1.327 +  bool CanDraw2D(Matrix* aMatrix = nullptr) const {
   1.328 +    if (_14 != 0.0f ||
   1.329 +        _24 != 0.0f ||
   1.330 +        _44 != 1.0f) {
   1.331 +      return false;
   1.332 +    }
   1.333 +    if (aMatrix) {
   1.334 +      aMatrix->_11 = _11;
   1.335 +      aMatrix->_12 = _12;
   1.336 +      aMatrix->_21 = _21;
   1.337 +      aMatrix->_22 = _22;
   1.338 +      aMatrix->_31 = _41;
   1.339 +      aMatrix->_32 = _42;
   1.340 +    }
   1.341 +    return true;
   1.342 +  }
   1.343 +
   1.344 +  Matrix4x4& ProjectTo2D() {
   1.345 +    _31 = 0.0f;
   1.346 +    _32 = 0.0f;
   1.347 +    _13 = 0.0f;
   1.348 +    _23 = 0.0f;
   1.349 +    _33 = 1.0f;
   1.350 +    _43 = 0.0f;
   1.351 +    _34 = 0.0f;
   1.352 +    return *this;
   1.353 +  }
   1.354 +
   1.355 +  static Matrix4x4 From2D(const Matrix &aMatrix) {
   1.356 +    Matrix4x4 matrix;
   1.357 +    matrix._11 = aMatrix._11;
   1.358 +    matrix._12 = aMatrix._12;
   1.359 +    matrix._21 = aMatrix._21;
   1.360 +    matrix._22 = aMatrix._22;
   1.361 +    matrix._41 = aMatrix._31;
   1.362 +    matrix._42 = aMatrix._32;
   1.363 +    return matrix;
   1.364 +  }
   1.365 +
   1.366 +  bool Is2DIntegerTranslation() const
   1.367 +  {
   1.368 +    return Is2D() && As2D().IsIntegerTranslation();
   1.369 +  }
   1.370 +
   1.371 +  Point4D operator *(const Point4D& aPoint) const
   1.372 +  {
   1.373 +    Point4D retPoint;
   1.374 +
   1.375 +    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41;
   1.376 +    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42;
   1.377 +    retPoint.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43;
   1.378 +    retPoint.w = aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44;
   1.379 +
   1.380 +    return retPoint;
   1.381 +  }
   1.382 +
   1.383 +  Point3D operator *(const Point3D& aPoint) const
   1.384 +  {
   1.385 +    Point4D temp(aPoint.x, aPoint.y, aPoint.z, 1);
   1.386 +
   1.387 +    temp = *this * temp;
   1.388 +    temp /= temp.w;
   1.389 +
   1.390 +    return Point3D(temp.x, temp.y, temp.z);
   1.391 +  }
   1.392 +
   1.393 +  Point operator *(const Point &aPoint) const
   1.394 +  {
   1.395 +    Point4D temp(aPoint.x, aPoint.y, 0, 1);
   1.396 +
   1.397 +    temp = *this * temp;
   1.398 +    temp /= temp.w;
   1.399 +
   1.400 +    return Point(temp.x, temp.y);
   1.401 +  }
   1.402 +
   1.403 +  GFX2D_API Rect TransformBounds(const Rect& rect) const;
   1.404 +
   1.405 +  // Apply a scale to this matrix. This scale will be applied -before- the
   1.406 +  // existing transformation of the matrix.
   1.407 +  Matrix4x4 &Scale(Float aX, Float aY, Float aZ)
   1.408 +  {
   1.409 +    _11 *= aX;
   1.410 +    _12 *= aX;
   1.411 +    _13 *= aX;
   1.412 +    _21 *= aY;
   1.413 +    _22 *= aY;
   1.414 +    _23 *= aY;
   1.415 +    _31 *= aZ;
   1.416 +    _32 *= aZ;
   1.417 +    _33 *= aZ;
   1.418 +
   1.419 +    return *this;
   1.420 +  }
   1.421 +
   1.422 +  Matrix4x4 &Translate(Float aX, Float aY, Float aZ)
   1.423 +  {
   1.424 +    _41 += aX * _11 + aY * _21 + aZ * _31;
   1.425 +    _42 += aX * _12 + aY * _22 + aZ * _32;
   1.426 +    _43 += aX * _13 + aY * _23 + aZ * _33;
   1.427 +    _44 += aX * _14 + aY * _24 + aZ * _34;
   1.428 +
   1.429 +    return *this;
   1.430 +  }
   1.431 +
   1.432 +  bool operator==(const Matrix4x4& o) const
   1.433 +  {
   1.434 +    // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics
   1.435 +    return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
   1.436 +           _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
   1.437 +           _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
   1.438 +           _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44;
   1.439 +  }
   1.440 +
   1.441 +  bool operator!=(const Matrix4x4& o) const
   1.442 +  {
   1.443 +    return !((*this) == o);
   1.444 +  }
   1.445 +
   1.446 +  Matrix4x4 operator*(const Matrix4x4 &aMatrix) const
   1.447 +  {
   1.448 +    Matrix4x4 matrix;
   1.449 +
   1.450 +    matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 + _14 * aMatrix._41;
   1.451 +    matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 + _24 * aMatrix._41;
   1.452 +    matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 + _34 * aMatrix._41;
   1.453 +    matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 + _44 * aMatrix._41;
   1.454 +    matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 + _14 * aMatrix._42;
   1.455 +    matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 + _24 * aMatrix._42;
   1.456 +    matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 + _34 * aMatrix._42;
   1.457 +    matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 + _44 * aMatrix._42;
   1.458 +    matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 + _14 * aMatrix._43;
   1.459 +    matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 + _24 * aMatrix._43;
   1.460 +    matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 + _34 * aMatrix._43;
   1.461 +    matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 + _44 * aMatrix._43;
   1.462 +    matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 + _14 * aMatrix._44;
   1.463 +    matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 + _24 * aMatrix._44;
   1.464 +    matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 + _34 * aMatrix._44;
   1.465 +    matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 + _44 * aMatrix._44;
   1.466 +
   1.467 +    return matrix;
   1.468 +  }
   1.469 +
   1.470 +
   1.471 +  /* Returns true if the matrix is an identity matrix.
   1.472 +   */
   1.473 +  bool IsIdentity() const
   1.474 +  {
   1.475 +    return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f &&
   1.476 +           _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f &&
   1.477 +           _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f &&
   1.478 +           _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f;
   1.479 +  }
   1.480 +
   1.481 +  bool IsSingular() const
   1.482 +  {
   1.483 +    return Determinant() == 0.0;
   1.484 +  }
   1.485 +
   1.486 +  Float Determinant() const
   1.487 +  {
   1.488 +    return _14 * _23 * _32 * _41
   1.489 +         - _13 * _24 * _32 * _41
   1.490 +         - _14 * _22 * _33 * _41
   1.491 +         + _12 * _24 * _33 * _41
   1.492 +         + _13 * _22 * _34 * _41
   1.493 +         - _12 * _23 * _34 * _41
   1.494 +         - _14 * _23 * _31 * _42
   1.495 +         + _13 * _24 * _31 * _42
   1.496 +         + _14 * _21 * _33 * _42
   1.497 +         - _11 * _24 * _33 * _42
   1.498 +         - _13 * _21 * _34 * _42
   1.499 +         + _11 * _23 * _34 * _42
   1.500 +         + _14 * _22 * _31 * _43
   1.501 +         - _12 * _24 * _31 * _43
   1.502 +         - _14 * _21 * _32 * _43
   1.503 +         + _11 * _24 * _32 * _43
   1.504 +         + _12 * _21 * _34 * _43
   1.505 +         - _11 * _22 * _34 * _43
   1.506 +         - _13 * _22 * _31 * _44
   1.507 +         + _12 * _23 * _31 * _44
   1.508 +         + _13 * _21 * _32 * _44
   1.509 +         - _11 * _23 * _32 * _44
   1.510 +         - _12 * _21 * _33 * _44
   1.511 +         + _11 * _22 * _33 * _44;
   1.512 +  }
   1.513 +
   1.514 +};
   1.515 +
   1.516 +class Matrix5x4
   1.517 +{
   1.518 +public:
   1.519 +  Matrix5x4()
   1.520 +    : _11(1.0f), _12(0), _13(0), _14(0)
   1.521 +    , _21(0), _22(1.0f), _23(0), _24(0)
   1.522 +    , _31(0), _32(0), _33(1.0f), _34(0)
   1.523 +    , _41(0), _42(0), _43(0), _44(1.0f)
   1.524 +    , _51(0), _52(0), _53(0), _54(0)
   1.525 +  {}
   1.526 +  Matrix5x4(Float a11, Float a12, Float a13, Float a14,
   1.527 +         Float a21, Float a22, Float a23, Float a24,
   1.528 +         Float a31, Float a32, Float a33, Float a34,
   1.529 +         Float a41, Float a42, Float a43, Float a44,
   1.530 +         Float a51, Float a52, Float a53, Float a54)
   1.531 +    : _11(a11), _12(a12), _13(a13), _14(a14)
   1.532 +    , _21(a21), _22(a22), _23(a23), _24(a24)
   1.533 +    , _31(a31), _32(a32), _33(a33), _34(a34)
   1.534 +    , _41(a41), _42(a42), _43(a43), _44(a44)
   1.535 +    , _51(a51), _52(a52), _53(a53), _54(a54)
   1.536 +  {}
   1.537 +  Float _11, _12, _13, _14;
   1.538 +  Float _21, _22, _23, _24;
   1.539 +  Float _31, _32, _33, _34;
   1.540 +  Float _41, _42, _43, _44;
   1.541 +  Float _51, _52, _53, _54;
   1.542 +};
   1.543 +
   1.544 +}
   1.545 +}
   1.546 +
   1.547 +#endif /* MOZILLA_GFX_MATRIX_H_ */

mercurial