1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/2d/PathHelpers.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,143 @@ 1.4 +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- 1.5 + * This Source Code Form is subject to the terms of the Mozilla Public 1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.8 + 1.9 +#ifndef MOZILLA_GFX_PATHHELPERS_H_ 1.10 +#define MOZILLA_GFX_PATHHELPERS_H_ 1.11 + 1.12 +#include "2D.h" 1.13 +#include "mozilla/Constants.h" 1.14 + 1.15 +namespace mozilla { 1.16 +namespace gfx { 1.17 + 1.18 +template <typename T> 1.19 +void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius, 1.20 + float aStartAngle, float aEndAngle, bool aAntiClockwise) 1.21 +{ 1.22 + Point startPoint(aOrigin.x + cos(aStartAngle) * aRadius.width, 1.23 + aOrigin.y + sin(aStartAngle) * aRadius.height); 1.24 + 1.25 + aSink->LineTo(startPoint); 1.26 + 1.27 + // Clockwise we always sweep from the smaller to the larger angle, ccw 1.28 + // it's vice versa. 1.29 + if (!aAntiClockwise && (aEndAngle < aStartAngle)) { 1.30 + Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI))); 1.31 + aEndAngle += float(correction * 2.0f * M_PI); 1.32 + } else if (aAntiClockwise && (aStartAngle < aEndAngle)) { 1.33 + Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI)); 1.34 + aStartAngle += float(correction * 2.0f * M_PI); 1.35 + } 1.36 + 1.37 + // Sweeping more than 2 * pi is a full circle. 1.38 + if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) { 1.39 + aEndAngle = float(aStartAngle + 2.0f * M_PI); 1.40 + } else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) { 1.41 + aEndAngle = float(aStartAngle - 2.0f * M_PI); 1.42 + } 1.43 + 1.44 + // Calculate the total arc we're going to sweep. 1.45 + Float arcSweepLeft = fabs(aEndAngle - aStartAngle); 1.46 + 1.47 + Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f; 1.48 + 1.49 + Float currentStartAngle = aStartAngle; 1.50 + 1.51 + while (arcSweepLeft > 0) { 1.52 + // We guarantee here the current point is the start point of the next 1.53 + // curve segment. 1.54 + Float currentEndAngle; 1.55 + 1.56 + if (arcSweepLeft > M_PI / 2.0f) { 1.57 + currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection); 1.58 + } else { 1.59 + currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection; 1.60 + } 1.61 + 1.62 + Point currentStartPoint(aOrigin.x + cos(currentStartAngle) * aRadius.width, 1.63 + aOrigin.y + sin(currentStartAngle) * aRadius.height); 1.64 + Point currentEndPoint(aOrigin.x + cos(currentEndAngle) * aRadius.width, 1.65 + aOrigin.y + sin(currentEndAngle) * aRadius.height); 1.66 + 1.67 + // Calculate kappa constant for partial curve. The sign of angle in the 1.68 + // tangent will actually ensure this is negative for a counter clockwise 1.69 + // sweep, so changing signs later isn't needed. 1.70 + Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f); 1.71 + Float kappaX = kappaFactor * aRadius.width; 1.72 + Float kappaY = kappaFactor * aRadius.height; 1.73 + 1.74 + Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle)); 1.75 + Point cp1 = currentStartPoint; 1.76 + cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY); 1.77 + 1.78 + Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle)); 1.79 + Point cp2 = currentEndPoint; 1.80 + cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY); 1.81 + 1.82 + aSink->BezierTo(cp1, cp2, currentEndPoint); 1.83 + 1.84 + arcSweepLeft -= Float(M_PI / 2.0f); 1.85 + currentStartAngle = currentEndAngle; 1.86 + } 1.87 +} 1.88 + 1.89 +/** 1.90 + * Appends a path represending a rounded rectangle to the path being built by 1.91 + * aPathBuilder. 1.92 + * 1.93 + * aRect The rectangle to append. 1.94 + * aCornerRadii Contains the radii of the top-left, top-right, bottom-right 1.95 + * and bottom-left corners, in that order. 1.96 + * aDrawClockwise If set to true, the path will start at the left of the top 1.97 + * left edge and draw clockwise. If set to false the path will 1.98 + * start at the right of the top left edge and draw counter- 1.99 + * clockwise. 1.100 + */ 1.101 +GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder, 1.102 + const Rect& aRect, 1.103 + const Size(& aCornerRadii)[4], 1.104 + bool aDrawClockwise = true); 1.105 + 1.106 +/** 1.107 + * Appends a path represending an ellipse to the path being built by 1.108 + * aPathBuilder. 1.109 + * 1.110 + * The ellipse extends aDimensions.width / 2.0 in the horizontal direction 1.111 + * from aCenter, and aDimensions.height / 2.0 in the vertical direction. 1.112 + */ 1.113 +GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder, 1.114 + const Point& aCenter, 1.115 + const Size& aDimensions); 1.116 + 1.117 +static inline bool 1.118 +UserToDevicePixelSnapped(Rect& aRect, const Matrix& aTransform) 1.119 +{ 1.120 + Point p1 = aTransform * aRect.TopLeft(); 1.121 + Point p2 = aTransform * aRect.TopRight(); 1.122 + Point p3 = aTransform * aRect.BottomRight(); 1.123 + 1.124 + // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, 1.125 + // two opposite corners define the entire rectangle. So check if 1.126 + // the axis-aligned rectangle with opposite corners p1 and p3 1.127 + // define an axis-aligned rectangle whose other corners are p2 and p4. 1.128 + // We actually only need to check one of p2 and p4, since an affine 1.129 + // transform maps parallelograms to parallelograms. 1.130 + if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) { 1.131 + p1.Round(); 1.132 + p3.Round(); 1.133 + 1.134 + aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); 1.135 + aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(), 1.136 + std::max(p1.y, p3.y) - aRect.Y())); 1.137 + return true; 1.138 + } 1.139 + 1.140 + return false; 1.141 +} 1.142 + 1.143 +} // namespace gfx 1.144 +} // namespace mozilla 1.145 + 1.146 +#endif /* MOZILLA_GFX_PATHHELPERS_H_ */