gfx/cairo/libpixman/src/pixman-matrix.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/cairo/libpixman/src/pixman-matrix.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1073 @@
     1.4 +/*
     1.5 + * Copyright © 2008 Keith Packard
     1.6 + *
     1.7 + * Permission to use, copy, modify, distribute, and sell this software and its
     1.8 + * documentation for any purpose is hereby granted without fee, provided that
     1.9 + * the above copyright notice appear in all copies and that both that copyright
    1.10 + * notice and this permission notice appear in supporting documentation, and
    1.11 + * that the name of the copyright holders not be used in advertising or
    1.12 + * publicity pertaining to distribution of the software without specific,
    1.13 + * written prior permission.  The copyright holders make no representations
    1.14 + * about the suitability of this software for any purpose.  It is provided "as
    1.15 + * is" without express or implied warranty.
    1.16 + *
    1.17 + * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
    1.18 + * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
    1.19 + * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
    1.20 + * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
    1.21 + * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
    1.22 + * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
    1.23 + * OF THIS SOFTWARE.
    1.24 + */
    1.25 +
    1.26 +/*
    1.27 + * Matrix interfaces
    1.28 + */
    1.29 +
    1.30 +#ifdef HAVE_CONFIG_H
    1.31 +#include <config.h>
    1.32 +#endif
    1.33 +
    1.34 +#include <math.h>
    1.35 +#include <string.h>
    1.36 +#include "pixman-private.h"
    1.37 +
    1.38 +#define F(x)    pixman_int_to_fixed (x)
    1.39 +
    1.40 +static force_inline int
    1.41 +count_leading_zeros (uint32_t x)
    1.42 +{
    1.43 +#ifdef __GNUC__
    1.44 +    return __builtin_clz (x);
    1.45 +#else
    1.46 +    int n = 0;
    1.47 +    while (x)
    1.48 +    {
    1.49 +        n++;
    1.50 +        x >>= 1;
    1.51 +    }
    1.52 +    return 32 - n;
    1.53 +#endif
    1.54 +}
    1.55 +
    1.56 +/*
    1.57 + * Large signed/unsigned integer division with rounding for the platforms with
    1.58 + * only 64-bit integer data type supported (no 128-bit data type).
    1.59 + *
    1.60 + * Arguments:
    1.61 + *     hi, lo - high and low 64-bit parts of the dividend
    1.62 + *     div    - 48-bit divisor
    1.63 + *
    1.64 + * Returns: lowest 64 bits of the result as a return value and highest 64
    1.65 + *          bits of the result to "result_hi" pointer
    1.66 + */
    1.67 +
    1.68 +/* grade-school unsigned division (128-bit by 48-bit) with rounding to nearest */
    1.69 +static force_inline uint64_t
    1.70 +rounded_udiv_128_by_48 (uint64_t  hi,
    1.71 +                        uint64_t  lo,
    1.72 +                        uint64_t  div,
    1.73 +                        uint64_t *result_hi)
    1.74 +{
    1.75 +    uint64_t tmp, remainder, result_lo;
    1.76 +    assert(div < ((uint64_t)1 << 48));
    1.77 +
    1.78 +    remainder = hi % div;
    1.79 +    *result_hi = hi / div;
    1.80 +
    1.81 +    tmp = (remainder << 16) + (lo >> 48);
    1.82 +    result_lo = tmp / div;
    1.83 +    remainder = tmp % div;
    1.84 +
    1.85 +    tmp = (remainder << 16) + ((lo >> 32) & 0xFFFF);
    1.86 +    result_lo = (result_lo << 16) + (tmp / div);
    1.87 +    remainder = tmp % div;
    1.88 +
    1.89 +    tmp = (remainder << 16) + ((lo >> 16) & 0xFFFF);
    1.90 +    result_lo = (result_lo << 16) + (tmp / div);
    1.91 +    remainder = tmp % div;
    1.92 +
    1.93 +    tmp = (remainder << 16) + (lo & 0xFFFF);
    1.94 +    result_lo = (result_lo << 16) + (tmp / div);
    1.95 +    remainder = tmp % div;
    1.96 +
    1.97 +    /* round to nearest */
    1.98 +    if (remainder * 2 >= div && ++result_lo == 0)
    1.99 +        *result_hi += 1;
   1.100 +
   1.101 +    return result_lo;
   1.102 +}
   1.103 +
   1.104 +/* signed division (128-bit by 49-bit) with rounding to nearest */
   1.105 +static inline int64_t
   1.106 +rounded_sdiv_128_by_49 (int64_t   hi,
   1.107 +                        uint64_t  lo,
   1.108 +                        int64_t   div,
   1.109 +                        int64_t  *signed_result_hi)
   1.110 +{
   1.111 +    uint64_t result_lo, result_hi;
   1.112 +    int sign = 0;
   1.113 +    if (div < 0)
   1.114 +    {
   1.115 +        div = -div;
   1.116 +        sign ^= 1;
   1.117 +    }
   1.118 +    if (hi < 0)
   1.119 +    {
   1.120 +        if (lo != 0)
   1.121 +            hi++;
   1.122 +        hi = -hi;
   1.123 +        lo = -lo;
   1.124 +        sign ^= 1;
   1.125 +    }
   1.126 +    result_lo = rounded_udiv_128_by_48 (hi, lo, div, &result_hi);
   1.127 +    if (sign)
   1.128 +    {
   1.129 +        if (result_lo != 0)
   1.130 +            result_hi++;
   1.131 +        result_hi = -result_hi;
   1.132 +        result_lo = -result_lo;
   1.133 +    }
   1.134 +    if (signed_result_hi)
   1.135 +    {
   1.136 +        *signed_result_hi = result_hi;
   1.137 +    }
   1.138 +    return result_lo;
   1.139 +}
   1.140 +
   1.141 +/*
   1.142 + * Multiply 64.16 fixed point value by (2^scalebits) and convert
   1.143 + * to 128-bit integer.
   1.144 + */
   1.145 +static force_inline void
   1.146 +fixed_64_16_to_int128 (int64_t  hi,
   1.147 +                       int64_t  lo,
   1.148 +                       int64_t *rhi,
   1.149 +                       int64_t *rlo,
   1.150 +                       int      scalebits)
   1.151 +{
   1.152 +    /* separate integer and fractional parts */
   1.153 +    hi += lo >> 16;
   1.154 +    lo &= 0xFFFF;
   1.155 +
   1.156 +    if (scalebits <= 0)
   1.157 +    {
   1.158 +        *rlo = hi >> (-scalebits);
   1.159 +        *rhi = *rlo >> 63;
   1.160 +    }
   1.161 +    else
   1.162 +    {
   1.163 +        *rhi = hi >> (64 - scalebits);
   1.164 +        *rlo = (uint64_t)hi << scalebits;
   1.165 +        if (scalebits < 16)
   1.166 +            *rlo += lo >> (16 - scalebits);
   1.167 +        else
   1.168 +            *rlo += lo << (scalebits - 16);
   1.169 +    }
   1.170 +}
   1.171 +
   1.172 +/*
   1.173 + * Convert 112.16 fixed point value to 48.16 with clamping for the out
   1.174 + * of range values.
   1.175 + */
   1.176 +static force_inline pixman_fixed_48_16_t
   1.177 +fixed_112_16_to_fixed_48_16 (int64_t hi, int64_t lo, pixman_bool_t *clampflag)
   1.178 +{
   1.179 +    if ((lo >> 63) != hi)
   1.180 +    {
   1.181 +        *clampflag = TRUE;
   1.182 +        return hi >= 0 ? INT64_MAX : INT64_MIN;
   1.183 +    }
   1.184 +    else
   1.185 +    {
   1.186 +        return lo;
   1.187 +    }
   1.188 +}
   1.189 +
   1.190 +/*
   1.191 + * Transform a point with 31.16 fixed point coordinates from the destination
   1.192 + * space to a point with 48.16 fixed point coordinates in the source space.
   1.193 + * No overflows are possible for affine transformations and the results are
   1.194 + * accurate including the least significant bit. Projective transformations
   1.195 + * may overflow, in this case the results are just clamped to return maximum
   1.196 + * or minimum 48.16 values (so that the caller can at least handle the NONE
   1.197 + * and PAD repeats correctly) and the return value is FALSE to indicate that
   1.198 + * such clamping has happened.
   1.199 + */
   1.200 +PIXMAN_EXPORT pixman_bool_t
   1.201 +pixman_transform_point_31_16 (const pixman_transform_t    *t,
   1.202 +                              const pixman_vector_48_16_t *v,
   1.203 +                              pixman_vector_48_16_t       *result)
   1.204 +{
   1.205 +    pixman_bool_t clampflag = FALSE;
   1.206 +    int i;
   1.207 +    int64_t tmp[3][2], divint;
   1.208 +    uint16_t divfrac;
   1.209 +
   1.210 +    /* input vector values must have no more than 31 bits (including sign)
   1.211 +     * in the integer part */
   1.212 +    assert (v->v[0] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.213 +    assert (v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.214 +    assert (v->v[1] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.215 +    assert (v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.216 +    assert (v->v[2] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.217 +    assert (v->v[2] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.218 +
   1.219 +    for (i = 0; i < 3; i++)
   1.220 +    {
   1.221 +        tmp[i][0] = (int64_t)t->matrix[i][0] * (v->v[0] >> 16);
   1.222 +        tmp[i][1] = (int64_t)t->matrix[i][0] * (v->v[0] & 0xFFFF);
   1.223 +        tmp[i][0] += (int64_t)t->matrix[i][1] * (v->v[1] >> 16);
   1.224 +        tmp[i][1] += (int64_t)t->matrix[i][1] * (v->v[1] & 0xFFFF);
   1.225 +        tmp[i][0] += (int64_t)t->matrix[i][2] * (v->v[2] >> 16);
   1.226 +        tmp[i][1] += (int64_t)t->matrix[i][2] * (v->v[2] & 0xFFFF);
   1.227 +    }
   1.228 +
   1.229 +    /*
   1.230 +     * separate 64-bit integer and 16-bit fractional parts for the divisor,
   1.231 +     * which is also scaled by 65536 after fixed point multiplication.
   1.232 +     */
   1.233 +    divint  = tmp[2][0] + (tmp[2][1] >> 16);
   1.234 +    divfrac = tmp[2][1] & 0xFFFF;
   1.235 +
   1.236 +    if (divint == pixman_fixed_1 && divfrac == 0)
   1.237 +    {
   1.238 +        /*
   1.239 +         * this is a simple affine transformation
   1.240 +         */
   1.241 +        result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16);
   1.242 +        result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16);
   1.243 +        result->v[2] = pixman_fixed_1;
   1.244 +    }
   1.245 +    else if (divint == 0 && divfrac == 0)
   1.246 +    {
   1.247 +        /*
   1.248 +         * handle zero divisor (if the values are non-zero, set the
   1.249 +         * results to maximum positive or minimum negative)
   1.250 +         */
   1.251 +        clampflag = TRUE;
   1.252 +
   1.253 +        result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16);
   1.254 +        result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16);
   1.255 +
   1.256 +        if (result->v[0] > 0)
   1.257 +            result->v[0] = INT64_MAX;
   1.258 +        else if (result->v[0] < 0)
   1.259 +            result->v[0] = INT64_MIN;
   1.260 +
   1.261 +        if (result->v[1] > 0)
   1.262 +            result->v[1] = INT64_MAX;
   1.263 +        else if (result->v[1] < 0)
   1.264 +            result->v[1] = INT64_MIN;
   1.265 +    }
   1.266 +    else
   1.267 +    {
   1.268 +        /*
   1.269 +         * projective transformation, analyze the top 32 bits of the divisor
   1.270 +         */
   1.271 +        int32_t hi32divbits = divint >> 32;
   1.272 +        if (hi32divbits < 0)
   1.273 +            hi32divbits = ~hi32divbits;
   1.274 +
   1.275 +        if (hi32divbits == 0)
   1.276 +        {
   1.277 +            /* the divisor is small, we can actually keep all the bits */
   1.278 +            int64_t hi, rhi, lo, rlo;
   1.279 +            int64_t div = (divint << 16) + divfrac;
   1.280 +
   1.281 +            fixed_64_16_to_int128 (tmp[0][0], tmp[0][1], &hi, &lo, 32);
   1.282 +            rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi);
   1.283 +            result->v[0] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag);
   1.284 +
   1.285 +            fixed_64_16_to_int128 (tmp[1][0], tmp[1][1], &hi, &lo, 32);
   1.286 +            rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi);
   1.287 +            result->v[1] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag);
   1.288 +        }
   1.289 +        else
   1.290 +        {
   1.291 +            /* the divisor needs to be reduced to 48 bits */
   1.292 +            int64_t hi, rhi, lo, rlo, div;
   1.293 +            int shift = 32 - count_leading_zeros (hi32divbits);
   1.294 +            fixed_64_16_to_int128 (divint, divfrac, &hi, &div, 16 - shift);
   1.295 +
   1.296 +            fixed_64_16_to_int128 (tmp[0][0], tmp[0][1], &hi, &lo, 32 - shift);
   1.297 +            rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi);
   1.298 +            result->v[0] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag);
   1.299 +
   1.300 +            fixed_64_16_to_int128 (tmp[1][0], tmp[1][1], &hi, &lo, 32 - shift);
   1.301 +            rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi);
   1.302 +            result->v[1] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag);
   1.303 +        }
   1.304 +    }
   1.305 +    result->v[2] = pixman_fixed_1;
   1.306 +    return !clampflag;
   1.307 +}
   1.308 +
   1.309 +PIXMAN_EXPORT void
   1.310 +pixman_transform_point_31_16_affine (const pixman_transform_t    *t,
   1.311 +                                     const pixman_vector_48_16_t *v,
   1.312 +                                     pixman_vector_48_16_t       *result)
   1.313 +{
   1.314 +    int64_t hi0, lo0, hi1, lo1;
   1.315 +
   1.316 +    /* input vector values must have no more than 31 bits (including sign)
   1.317 +     * in the integer part */
   1.318 +    assert (v->v[0] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.319 +    assert (v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.320 +    assert (v->v[1] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.321 +    assert (v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.322 +
   1.323 +    hi0  = (int64_t)t->matrix[0][0] * (v->v[0] >> 16);
   1.324 +    lo0  = (int64_t)t->matrix[0][0] * (v->v[0] & 0xFFFF);
   1.325 +    hi0 += (int64_t)t->matrix[0][1] * (v->v[1] >> 16);
   1.326 +    lo0 += (int64_t)t->matrix[0][1] * (v->v[1] & 0xFFFF);
   1.327 +    hi0 += (int64_t)t->matrix[0][2];
   1.328 +
   1.329 +    hi1  = (int64_t)t->matrix[1][0] * (v->v[0] >> 16);
   1.330 +    lo1  = (int64_t)t->matrix[1][0] * (v->v[0] & 0xFFFF);
   1.331 +    hi1 += (int64_t)t->matrix[1][1] * (v->v[1] >> 16);
   1.332 +    lo1 += (int64_t)t->matrix[1][1] * (v->v[1] & 0xFFFF);
   1.333 +    hi1 += (int64_t)t->matrix[1][2];
   1.334 +
   1.335 +    result->v[0] = hi0 + ((lo0 + 0x8000) >> 16);
   1.336 +    result->v[1] = hi1 + ((lo1 + 0x8000) >> 16);
   1.337 +    result->v[2] = pixman_fixed_1;
   1.338 +}
   1.339 +
   1.340 +PIXMAN_EXPORT void
   1.341 +pixman_transform_point_31_16_3d (const pixman_transform_t    *t,
   1.342 +                                 const pixman_vector_48_16_t *v,
   1.343 +                                 pixman_vector_48_16_t       *result)
   1.344 +{
   1.345 +    int i;
   1.346 +    int64_t tmp[3][2];
   1.347 +
   1.348 +    /* input vector values must have no more than 31 bits (including sign)
   1.349 +     * in the integer part */
   1.350 +    assert (v->v[0] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.351 +    assert (v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.352 +    assert (v->v[1] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.353 +    assert (v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.354 +    assert (v->v[2] <   ((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.355 +    assert (v->v[2] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
   1.356 +
   1.357 +    for (i = 0; i < 3; i++)
   1.358 +    {
   1.359 +        tmp[i][0] = (int64_t)t->matrix[i][0] * (v->v[0] >> 16);
   1.360 +        tmp[i][1] = (int64_t)t->matrix[i][0] * (v->v[0] & 0xFFFF);
   1.361 +        tmp[i][0] += (int64_t)t->matrix[i][1] * (v->v[1] >> 16);
   1.362 +        tmp[i][1] += (int64_t)t->matrix[i][1] * (v->v[1] & 0xFFFF);
   1.363 +        tmp[i][0] += (int64_t)t->matrix[i][2] * (v->v[2] >> 16);
   1.364 +        tmp[i][1] += (int64_t)t->matrix[i][2] * (v->v[2] & 0xFFFF);
   1.365 +    }
   1.366 +
   1.367 +    result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16);
   1.368 +    result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16);
   1.369 +    result->v[2] = tmp[2][0] + ((tmp[2][1] + 0x8000) >> 16);
   1.370 +}
   1.371 +
   1.372 +PIXMAN_EXPORT void
   1.373 +pixman_transform_init_identity (struct pixman_transform *matrix)
   1.374 +{
   1.375 +    int i;
   1.376 +
   1.377 +    memset (matrix, '\0', sizeof (struct pixman_transform));
   1.378 +    for (i = 0; i < 3; i++)
   1.379 +	matrix->matrix[i][i] = F (1);
   1.380 +}
   1.381 +
   1.382 +typedef pixman_fixed_32_32_t pixman_fixed_34_30_t;
   1.383 +
   1.384 +PIXMAN_EXPORT pixman_bool_t
   1.385 +pixman_transform_point_3d (const struct pixman_transform *transform,
   1.386 +                           struct pixman_vector *         vector)
   1.387 +{
   1.388 +    pixman_vector_48_16_t tmp;
   1.389 +    tmp.v[0] = vector->vector[0];
   1.390 +    tmp.v[1] = vector->vector[1];
   1.391 +    tmp.v[2] = vector->vector[2];
   1.392 +
   1.393 +    pixman_transform_point_31_16_3d (transform, &tmp, &tmp);
   1.394 +
   1.395 +    vector->vector[0] = tmp.v[0];
   1.396 +    vector->vector[1] = tmp.v[1];
   1.397 +    vector->vector[2] = tmp.v[2];
   1.398 +
   1.399 +    return vector->vector[0] == tmp.v[0] &&
   1.400 +           vector->vector[1] == tmp.v[1] &&
   1.401 +           vector->vector[2] == tmp.v[2];
   1.402 +}
   1.403 +
   1.404 +PIXMAN_EXPORT pixman_bool_t
   1.405 +pixman_transform_point (const struct pixman_transform *transform,
   1.406 +                        struct pixman_vector *         vector)
   1.407 +{
   1.408 +    pixman_vector_48_16_t tmp;
   1.409 +    tmp.v[0] = vector->vector[0];
   1.410 +    tmp.v[1] = vector->vector[1];
   1.411 +    tmp.v[2] = vector->vector[2];
   1.412 +
   1.413 +    if (!pixman_transform_point_31_16 (transform, &tmp, &tmp))
   1.414 +        return FALSE;
   1.415 +
   1.416 +    vector->vector[0] = tmp.v[0];
   1.417 +    vector->vector[1] = tmp.v[1];
   1.418 +    vector->vector[2] = tmp.v[2];
   1.419 +
   1.420 +    return vector->vector[0] == tmp.v[0] &&
   1.421 +           vector->vector[1] == tmp.v[1] &&
   1.422 +           vector->vector[2] == tmp.v[2];
   1.423 +}
   1.424 +
   1.425 +PIXMAN_EXPORT pixman_bool_t
   1.426 +pixman_transform_multiply (struct pixman_transform *      dst,
   1.427 +                           const struct pixman_transform *l,
   1.428 +                           const struct pixman_transform *r)
   1.429 +{
   1.430 +    struct pixman_transform d;
   1.431 +    int dx, dy;
   1.432 +    int o;
   1.433 +
   1.434 +    for (dy = 0; dy < 3; dy++)
   1.435 +    {
   1.436 +	for (dx = 0; dx < 3; dx++)
   1.437 +	{
   1.438 +	    pixman_fixed_48_16_t v;
   1.439 +	    pixman_fixed_32_32_t partial;
   1.440 +	    
   1.441 +	    v = 0;
   1.442 +	    for (o = 0; o < 3; o++)
   1.443 +	    {
   1.444 +		partial =
   1.445 +		    (pixman_fixed_32_32_t) l->matrix[dy][o] *
   1.446 +		    (pixman_fixed_32_32_t) r->matrix[o][dx];
   1.447 +
   1.448 +		v += (partial + 0x8000) >> 16;
   1.449 +	    }
   1.450 +
   1.451 +	    if (v > pixman_max_fixed_48_16 || v < pixman_min_fixed_48_16)
   1.452 +		return FALSE;
   1.453 +	    
   1.454 +	    d.matrix[dy][dx] = (pixman_fixed_t) v;
   1.455 +	}
   1.456 +    }
   1.457 +
   1.458 +    *dst = d;
   1.459 +    return TRUE;
   1.460 +}
   1.461 +
   1.462 +PIXMAN_EXPORT void
   1.463 +pixman_transform_init_scale (struct pixman_transform *t,
   1.464 +                             pixman_fixed_t           sx,
   1.465 +                             pixman_fixed_t           sy)
   1.466 +{
   1.467 +    memset (t, '\0', sizeof (struct pixman_transform));
   1.468 +
   1.469 +    t->matrix[0][0] = sx;
   1.470 +    t->matrix[1][1] = sy;
   1.471 +    t->matrix[2][2] = F (1);
   1.472 +}
   1.473 +
   1.474 +static pixman_fixed_t
   1.475 +fixed_inverse (pixman_fixed_t x)
   1.476 +{
   1.477 +    return (pixman_fixed_t) ((((pixman_fixed_48_16_t) F (1)) * F (1)) / x);
   1.478 +}
   1.479 +
   1.480 +PIXMAN_EXPORT pixman_bool_t
   1.481 +pixman_transform_scale (struct pixman_transform *forward,
   1.482 +                        struct pixman_transform *reverse,
   1.483 +                        pixman_fixed_t           sx,
   1.484 +                        pixman_fixed_t           sy)
   1.485 +{
   1.486 +    struct pixman_transform t;
   1.487 +
   1.488 +    if (sx == 0 || sy == 0)
   1.489 +	return FALSE;
   1.490 +
   1.491 +    if (forward)
   1.492 +    {
   1.493 +	pixman_transform_init_scale (&t, sx, sy);
   1.494 +	if (!pixman_transform_multiply (forward, &t, forward))
   1.495 +	    return FALSE;
   1.496 +    }
   1.497 +    
   1.498 +    if (reverse)
   1.499 +    {
   1.500 +	pixman_transform_init_scale (&t, fixed_inverse (sx),
   1.501 +	                             fixed_inverse (sy));
   1.502 +	if (!pixman_transform_multiply (reverse, reverse, &t))
   1.503 +	    return FALSE;
   1.504 +    }
   1.505 +    
   1.506 +    return TRUE;
   1.507 +}
   1.508 +
   1.509 +PIXMAN_EXPORT void
   1.510 +pixman_transform_init_rotate (struct pixman_transform *t,
   1.511 +                              pixman_fixed_t           c,
   1.512 +                              pixman_fixed_t           s)
   1.513 +{
   1.514 +    memset (t, '\0', sizeof (struct pixman_transform));
   1.515 +
   1.516 +    t->matrix[0][0] = c;
   1.517 +    t->matrix[0][1] = -s;
   1.518 +    t->matrix[1][0] = s;
   1.519 +    t->matrix[1][1] = c;
   1.520 +    t->matrix[2][2] = F (1);
   1.521 +}
   1.522 +
   1.523 +PIXMAN_EXPORT pixman_bool_t
   1.524 +pixman_transform_rotate (struct pixman_transform *forward,
   1.525 +                         struct pixman_transform *reverse,
   1.526 +                         pixman_fixed_t           c,
   1.527 +                         pixman_fixed_t           s)
   1.528 +{
   1.529 +    struct pixman_transform t;
   1.530 +
   1.531 +    if (forward)
   1.532 +    {
   1.533 +	pixman_transform_init_rotate (&t, c, s);
   1.534 +	if (!pixman_transform_multiply (forward, &t, forward))
   1.535 +	    return FALSE;
   1.536 +    }
   1.537 +
   1.538 +    if (reverse)
   1.539 +    {
   1.540 +	pixman_transform_init_rotate (&t, c, -s);
   1.541 +	if (!pixman_transform_multiply (reverse, reverse, &t))
   1.542 +	    return FALSE;
   1.543 +    }
   1.544 +    
   1.545 +    return TRUE;
   1.546 +}
   1.547 +
   1.548 +PIXMAN_EXPORT void
   1.549 +pixman_transform_init_translate (struct pixman_transform *t,
   1.550 +                                 pixman_fixed_t           tx,
   1.551 +                                 pixman_fixed_t           ty)
   1.552 +{
   1.553 +    memset (t, '\0', sizeof (struct pixman_transform));
   1.554 +
   1.555 +    t->matrix[0][0] = F (1);
   1.556 +    t->matrix[0][2] = tx;
   1.557 +    t->matrix[1][1] = F (1);
   1.558 +    t->matrix[1][2] = ty;
   1.559 +    t->matrix[2][2] = F (1);
   1.560 +}
   1.561 +
   1.562 +PIXMAN_EXPORT pixman_bool_t
   1.563 +pixman_transform_translate (struct pixman_transform *forward,
   1.564 +                            struct pixman_transform *reverse,
   1.565 +                            pixman_fixed_t           tx,
   1.566 +                            pixman_fixed_t           ty)
   1.567 +{
   1.568 +    struct pixman_transform t;
   1.569 +
   1.570 +    if (forward)
   1.571 +    {
   1.572 +	pixman_transform_init_translate (&t, tx, ty);
   1.573 +
   1.574 +	if (!pixman_transform_multiply (forward, &t, forward))
   1.575 +	    return FALSE;
   1.576 +    }
   1.577 +
   1.578 +    if (reverse)
   1.579 +    {
   1.580 +	pixman_transform_init_translate (&t, -tx, -ty);
   1.581 +
   1.582 +	if (!pixman_transform_multiply (reverse, reverse, &t))
   1.583 +	    return FALSE;
   1.584 +    }
   1.585 +    return TRUE;
   1.586 +}
   1.587 +
   1.588 +PIXMAN_EXPORT pixman_bool_t
   1.589 +pixman_transform_bounds (const struct pixman_transform *matrix,
   1.590 +                         struct pixman_box16 *          b)
   1.591 +
   1.592 +{
   1.593 +    struct pixman_vector v[4];
   1.594 +    int i;
   1.595 +    int x1, y1, x2, y2;
   1.596 +
   1.597 +    v[0].vector[0] = F (b->x1);
   1.598 +    v[0].vector[1] = F (b->y1);
   1.599 +    v[0].vector[2] = F (1);
   1.600 +
   1.601 +    v[1].vector[0] = F (b->x2);
   1.602 +    v[1].vector[1] = F (b->y1);
   1.603 +    v[1].vector[2] = F (1);
   1.604 +
   1.605 +    v[2].vector[0] = F (b->x2);
   1.606 +    v[2].vector[1] = F (b->y2);
   1.607 +    v[2].vector[2] = F (1);
   1.608 +
   1.609 +    v[3].vector[0] = F (b->x1);
   1.610 +    v[3].vector[1] = F (b->y2);
   1.611 +    v[3].vector[2] = F (1);
   1.612 +
   1.613 +    for (i = 0; i < 4; i++)
   1.614 +    {
   1.615 +	if (!pixman_transform_point (matrix, &v[i]))
   1.616 +	    return FALSE;
   1.617 +
   1.618 +	x1 = pixman_fixed_to_int (v[i].vector[0]);
   1.619 +	y1 = pixman_fixed_to_int (v[i].vector[1]);
   1.620 +	x2 = pixman_fixed_to_int (pixman_fixed_ceil (v[i].vector[0]));
   1.621 +	y2 = pixman_fixed_to_int (pixman_fixed_ceil (v[i].vector[1]));
   1.622 +
   1.623 +	if (i == 0)
   1.624 +	{
   1.625 +	    b->x1 = x1;
   1.626 +	    b->y1 = y1;
   1.627 +	    b->x2 = x2;
   1.628 +	    b->y2 = y2;
   1.629 +	}
   1.630 +	else
   1.631 +	{
   1.632 +	    if (x1 < b->x1) b->x1 = x1;
   1.633 +	    if (y1 < b->y1) b->y1 = y1;
   1.634 +	    if (x2 > b->x2) b->x2 = x2;
   1.635 +	    if (y2 > b->y2) b->y2 = y2;
   1.636 +	}
   1.637 +    }
   1.638 +
   1.639 +    return TRUE;
   1.640 +}
   1.641 +
   1.642 +PIXMAN_EXPORT pixman_bool_t
   1.643 +pixman_transform_invert (struct pixman_transform *      dst,
   1.644 +                         const struct pixman_transform *src)
   1.645 +{
   1.646 +    struct pixman_f_transform m;
   1.647 +
   1.648 +    pixman_f_transform_from_pixman_transform (&m, src);
   1.649 +
   1.650 +    if (!pixman_f_transform_invert (&m, &m))
   1.651 +	return FALSE;
   1.652 +
   1.653 +    if (!pixman_transform_from_pixman_f_transform (dst, &m))
   1.654 +	return FALSE;
   1.655 +
   1.656 +    return TRUE;
   1.657 +}
   1.658 +
   1.659 +static pixman_bool_t
   1.660 +within_epsilon (pixman_fixed_t a,
   1.661 +                pixman_fixed_t b,
   1.662 +                pixman_fixed_t epsilon)
   1.663 +{
   1.664 +    pixman_fixed_t t = a - b;
   1.665 +
   1.666 +    if (t < 0)
   1.667 +	t = -t;
   1.668 +
   1.669 +    return t <= epsilon;
   1.670 +}
   1.671 +
   1.672 +#define EPSILON (pixman_fixed_t) (2)
   1.673 +
   1.674 +#define IS_SAME(a, b) (within_epsilon (a, b, EPSILON))
   1.675 +#define IS_ZERO(a)    (within_epsilon (a, 0, EPSILON))
   1.676 +#define IS_ONE(a)     (within_epsilon (a, F (1), EPSILON))
   1.677 +#define IS_UNIT(a)			    \
   1.678 +    (within_epsilon (a, F (1), EPSILON) ||  \
   1.679 +     within_epsilon (a, F (-1), EPSILON) || \
   1.680 +     IS_ZERO (a))
   1.681 +#define IS_INT(a)    (IS_ZERO (pixman_fixed_frac (a)))
   1.682 +
   1.683 +PIXMAN_EXPORT pixman_bool_t
   1.684 +pixman_transform_is_identity (const struct pixman_transform *t)
   1.685 +{
   1.686 +    return (IS_SAME (t->matrix[0][0], t->matrix[1][1]) &&
   1.687 +	    IS_SAME (t->matrix[0][0], t->matrix[2][2]) &&
   1.688 +	    !IS_ZERO (t->matrix[0][0]) &&
   1.689 +	    IS_ZERO (t->matrix[0][1]) &&
   1.690 +	    IS_ZERO (t->matrix[0][2]) &&
   1.691 +	    IS_ZERO (t->matrix[1][0]) &&
   1.692 +	    IS_ZERO (t->matrix[1][2]) &&
   1.693 +	    IS_ZERO (t->matrix[2][0]) &&
   1.694 +	    IS_ZERO (t->matrix[2][1]));
   1.695 +}
   1.696 +
   1.697 +PIXMAN_EXPORT pixman_bool_t
   1.698 +pixman_transform_is_scale (const struct pixman_transform *t)
   1.699 +{
   1.700 +    return (!IS_ZERO (t->matrix[0][0]) &&
   1.701 +            IS_ZERO (t->matrix[0][1]) &&
   1.702 +            IS_ZERO (t->matrix[0][2]) &&
   1.703 +
   1.704 +            IS_ZERO (t->matrix[1][0]) &&
   1.705 +            !IS_ZERO (t->matrix[1][1]) &&
   1.706 +            IS_ZERO (t->matrix[1][2]) &&
   1.707 +
   1.708 +            IS_ZERO (t->matrix[2][0]) &&
   1.709 +            IS_ZERO (t->matrix[2][1]) &&
   1.710 +            !IS_ZERO (t->matrix[2][2]));
   1.711 +}
   1.712 +
   1.713 +PIXMAN_EXPORT pixman_bool_t
   1.714 +pixman_transform_is_int_translate (const struct pixman_transform *t)
   1.715 +{
   1.716 +    return (IS_ONE (t->matrix[0][0]) &&
   1.717 +            IS_ZERO (t->matrix[0][1]) &&
   1.718 +            IS_INT (t->matrix[0][2]) &&
   1.719 +
   1.720 +            IS_ZERO (t->matrix[1][0]) &&
   1.721 +            IS_ONE (t->matrix[1][1]) &&
   1.722 +            IS_INT (t->matrix[1][2]) &&
   1.723 +
   1.724 +            IS_ZERO (t->matrix[2][0]) &&
   1.725 +            IS_ZERO (t->matrix[2][1]) &&
   1.726 +            IS_ONE (t->matrix[2][2]));
   1.727 +}
   1.728 +
   1.729 +PIXMAN_EXPORT pixman_bool_t
   1.730 +pixman_transform_is_inverse (const struct pixman_transform *a,
   1.731 +                             const struct pixman_transform *b)
   1.732 +{
   1.733 +    struct pixman_transform t;
   1.734 +
   1.735 +    if (!pixman_transform_multiply (&t, a, b))
   1.736 +	return FALSE;
   1.737 +
   1.738 +    return pixman_transform_is_identity (&t);
   1.739 +}
   1.740 +
   1.741 +PIXMAN_EXPORT void
   1.742 +pixman_f_transform_from_pixman_transform (struct pixman_f_transform *    ft,
   1.743 +                                          const struct pixman_transform *t)
   1.744 +{
   1.745 +    int i, j;
   1.746 +
   1.747 +    for (j = 0; j < 3; j++)
   1.748 +    {
   1.749 +	for (i = 0; i < 3; i++)
   1.750 +	    ft->m[j][i] = pixman_fixed_to_double (t->matrix[j][i]);
   1.751 +    }
   1.752 +}
   1.753 +
   1.754 +PIXMAN_EXPORT pixman_bool_t
   1.755 +pixman_transform_from_pixman_f_transform (struct pixman_transform *        t,
   1.756 +                                          const struct pixman_f_transform *ft)
   1.757 +{
   1.758 +    int i, j;
   1.759 +
   1.760 +    for (j = 0; j < 3; j++)
   1.761 +    {
   1.762 +	for (i = 0; i < 3; i++)
   1.763 +	{
   1.764 +	    double d = ft->m[j][i];
   1.765 +	    if (d < -32767.0 || d > 32767.0)
   1.766 +		return FALSE;
   1.767 +	    d = d * 65536.0 + 0.5;
   1.768 +	    t->matrix[j][i] = (pixman_fixed_t) floor (d);
   1.769 +	}
   1.770 +    }
   1.771 +    
   1.772 +    return TRUE;
   1.773 +}
   1.774 +
   1.775 +PIXMAN_EXPORT pixman_bool_t
   1.776 +pixman_f_transform_invert (struct pixman_f_transform *      dst,
   1.777 +                           const struct pixman_f_transform *src)
   1.778 +{
   1.779 +    static const int a[3] = { 2, 2, 1 };
   1.780 +    static const int b[3] = { 1, 0, 0 };
   1.781 +    pixman_f_transform_t d;
   1.782 +    double det;
   1.783 +    int i, j;
   1.784 +
   1.785 +    det = 0;
   1.786 +    for (i = 0; i < 3; i++)
   1.787 +    {
   1.788 +	double p;
   1.789 +	int ai = a[i];
   1.790 +	int bi = b[i];
   1.791 +	p = src->m[i][0] * (src->m[ai][2] * src->m[bi][1] -
   1.792 +	                    src->m[ai][1] * src->m[bi][2]);
   1.793 +	if (i == 1)
   1.794 +	    p = -p;
   1.795 +	det += p;
   1.796 +    }
   1.797 +    
   1.798 +    if (det == 0)
   1.799 +	return FALSE;
   1.800 +    
   1.801 +    det = 1 / det;
   1.802 +    for (j = 0; j < 3; j++)
   1.803 +    {
   1.804 +	for (i = 0; i < 3; i++)
   1.805 +	{
   1.806 +	    double p;
   1.807 +	    int ai = a[i];
   1.808 +	    int aj = a[j];
   1.809 +	    int bi = b[i];
   1.810 +	    int bj = b[j];
   1.811 +
   1.812 +	    p = (src->m[ai][aj] * src->m[bi][bj] -
   1.813 +	         src->m[ai][bj] * src->m[bi][aj]);
   1.814 +	    
   1.815 +	    if (((i + j) & 1) != 0)
   1.816 +		p = -p;
   1.817 +	    
   1.818 +	    d.m[j][i] = det * p;
   1.819 +	}
   1.820 +    }
   1.821 +
   1.822 +    *dst = d;
   1.823 +
   1.824 +    return TRUE;
   1.825 +}
   1.826 +
   1.827 +PIXMAN_EXPORT pixman_bool_t
   1.828 +pixman_f_transform_point (const struct pixman_f_transform *t,
   1.829 +                          struct pixman_f_vector *         v)
   1.830 +{
   1.831 +    struct pixman_f_vector result;
   1.832 +    int i, j;
   1.833 +    double a;
   1.834 +
   1.835 +    for (j = 0; j < 3; j++)
   1.836 +    {
   1.837 +	a = 0;
   1.838 +	for (i = 0; i < 3; i++)
   1.839 +	    a += t->m[j][i] * v->v[i];
   1.840 +	result.v[j] = a;
   1.841 +    }
   1.842 +    
   1.843 +    if (!result.v[2])
   1.844 +	return FALSE;
   1.845 +
   1.846 +    for (j = 0; j < 2; j++)
   1.847 +	v->v[j] = result.v[j] / result.v[2];
   1.848 +
   1.849 +    v->v[2] = 1;
   1.850 +
   1.851 +    return TRUE;
   1.852 +}
   1.853 +
   1.854 +PIXMAN_EXPORT void
   1.855 +pixman_f_transform_point_3d (const struct pixman_f_transform *t,
   1.856 +                             struct pixman_f_vector *         v)
   1.857 +{
   1.858 +    struct pixman_f_vector result;
   1.859 +    int i, j;
   1.860 +    double a;
   1.861 +
   1.862 +    for (j = 0; j < 3; j++)
   1.863 +    {
   1.864 +	a = 0;
   1.865 +	for (i = 0; i < 3; i++)
   1.866 +	    a += t->m[j][i] * v->v[i];
   1.867 +	result.v[j] = a;
   1.868 +    }
   1.869 +    
   1.870 +    *v = result;
   1.871 +}
   1.872 +
   1.873 +PIXMAN_EXPORT void
   1.874 +pixman_f_transform_multiply (struct pixman_f_transform *      dst,
   1.875 +                             const struct pixman_f_transform *l,
   1.876 +                             const struct pixman_f_transform *r)
   1.877 +{
   1.878 +    struct pixman_f_transform d;
   1.879 +    int dx, dy;
   1.880 +    int o;
   1.881 +
   1.882 +    for (dy = 0; dy < 3; dy++)
   1.883 +    {
   1.884 +	for (dx = 0; dx < 3; dx++)
   1.885 +	{
   1.886 +	    double v = 0;
   1.887 +	    for (o = 0; o < 3; o++)
   1.888 +		v += l->m[dy][o] * r->m[o][dx];
   1.889 +	    d.m[dy][dx] = v;
   1.890 +	}
   1.891 +    }
   1.892 +    
   1.893 +    *dst = d;
   1.894 +}
   1.895 +
   1.896 +PIXMAN_EXPORT void
   1.897 +pixman_f_transform_init_scale (struct pixman_f_transform *t,
   1.898 +                               double                     sx,
   1.899 +                               double                     sy)
   1.900 +{
   1.901 +    t->m[0][0] = sx;
   1.902 +    t->m[0][1] = 0;
   1.903 +    t->m[0][2] = 0;
   1.904 +    t->m[1][0] = 0;
   1.905 +    t->m[1][1] = sy;
   1.906 +    t->m[1][2] = 0;
   1.907 +    t->m[2][0] = 0;
   1.908 +    t->m[2][1] = 0;
   1.909 +    t->m[2][2] = 1;
   1.910 +}
   1.911 +
   1.912 +PIXMAN_EXPORT pixman_bool_t
   1.913 +pixman_f_transform_scale (struct pixman_f_transform *forward,
   1.914 +                          struct pixman_f_transform *reverse,
   1.915 +                          double                     sx,
   1.916 +                          double                     sy)
   1.917 +{
   1.918 +    struct pixman_f_transform t;
   1.919 +
   1.920 +    if (sx == 0 || sy == 0)
   1.921 +	return FALSE;
   1.922 +
   1.923 +    if (forward)
   1.924 +    {
   1.925 +	pixman_f_transform_init_scale (&t, sx, sy);
   1.926 +	pixman_f_transform_multiply (forward, &t, forward);
   1.927 +    }
   1.928 +    
   1.929 +    if (reverse)
   1.930 +    {
   1.931 +	pixman_f_transform_init_scale (&t, 1 / sx, 1 / sy);
   1.932 +	pixman_f_transform_multiply (reverse, reverse, &t);
   1.933 +    }
   1.934 +    
   1.935 +    return TRUE;
   1.936 +}
   1.937 +
   1.938 +PIXMAN_EXPORT void
   1.939 +pixman_f_transform_init_rotate (struct pixman_f_transform *t,
   1.940 +                                double                     c,
   1.941 +                                double                     s)
   1.942 +{
   1.943 +    t->m[0][0] = c;
   1.944 +    t->m[0][1] = -s;
   1.945 +    t->m[0][2] = 0;
   1.946 +    t->m[1][0] = s;
   1.947 +    t->m[1][1] = c;
   1.948 +    t->m[1][2] = 0;
   1.949 +    t->m[2][0] = 0;
   1.950 +    t->m[2][1] = 0;
   1.951 +    t->m[2][2] = 1;
   1.952 +}
   1.953 +
   1.954 +PIXMAN_EXPORT pixman_bool_t
   1.955 +pixman_f_transform_rotate (struct pixman_f_transform *forward,
   1.956 +                           struct pixman_f_transform *reverse,
   1.957 +                           double                     c,
   1.958 +                           double                     s)
   1.959 +{
   1.960 +    struct pixman_f_transform t;
   1.961 +
   1.962 +    if (forward)
   1.963 +    {
   1.964 +	pixman_f_transform_init_rotate (&t, c, s);
   1.965 +	pixman_f_transform_multiply (forward, &t, forward);
   1.966 +    }
   1.967 +    
   1.968 +    if (reverse)
   1.969 +    {
   1.970 +	pixman_f_transform_init_rotate (&t, c, -s);
   1.971 +	pixman_f_transform_multiply (reverse, reverse, &t);
   1.972 +    }
   1.973 +
   1.974 +    return TRUE;
   1.975 +}
   1.976 +
   1.977 +PIXMAN_EXPORT void
   1.978 +pixman_f_transform_init_translate (struct pixman_f_transform *t,
   1.979 +                                   double                     tx,
   1.980 +                                   double                     ty)
   1.981 +{
   1.982 +    t->m[0][0] = 1;
   1.983 +    t->m[0][1] = 0;
   1.984 +    t->m[0][2] = tx;
   1.985 +    t->m[1][0] = 0;
   1.986 +    t->m[1][1] = 1;
   1.987 +    t->m[1][2] = ty;
   1.988 +    t->m[2][0] = 0;
   1.989 +    t->m[2][1] = 0;
   1.990 +    t->m[2][2] = 1;
   1.991 +}
   1.992 +
   1.993 +PIXMAN_EXPORT pixman_bool_t
   1.994 +pixman_f_transform_translate (struct pixman_f_transform *forward,
   1.995 +                              struct pixman_f_transform *reverse,
   1.996 +                              double                     tx,
   1.997 +                              double                     ty)
   1.998 +{
   1.999 +    struct pixman_f_transform t;
  1.1000 +
  1.1001 +    if (forward)
  1.1002 +    {
  1.1003 +	pixman_f_transform_init_translate (&t, tx, ty);
  1.1004 +	pixman_f_transform_multiply (forward, &t, forward);
  1.1005 +    }
  1.1006 +
  1.1007 +    if (reverse)
  1.1008 +    {
  1.1009 +	pixman_f_transform_init_translate (&t, -tx, -ty);
  1.1010 +	pixman_f_transform_multiply (reverse, reverse, &t);
  1.1011 +    }
  1.1012 +
  1.1013 +    return TRUE;
  1.1014 +}
  1.1015 +
  1.1016 +PIXMAN_EXPORT pixman_bool_t
  1.1017 +pixman_f_transform_bounds (const struct pixman_f_transform *t,
  1.1018 +                           struct pixman_box16 *            b)
  1.1019 +{
  1.1020 +    struct pixman_f_vector v[4];
  1.1021 +    int i;
  1.1022 +    int x1, y1, x2, y2;
  1.1023 +
  1.1024 +    v[0].v[0] = b->x1;
  1.1025 +    v[0].v[1] = b->y1;
  1.1026 +    v[0].v[2] = 1;
  1.1027 +    v[1].v[0] = b->x2;
  1.1028 +    v[1].v[1] = b->y1;
  1.1029 +    v[1].v[2] = 1;
  1.1030 +    v[2].v[0] = b->x2;
  1.1031 +    v[2].v[1] = b->y2;
  1.1032 +    v[2].v[2] = 1;
  1.1033 +    v[3].v[0] = b->x1;
  1.1034 +    v[3].v[1] = b->y2;
  1.1035 +    v[3].v[2] = 1;
  1.1036 +
  1.1037 +    for (i = 0; i < 4; i++)
  1.1038 +    {
  1.1039 +	if (!pixman_f_transform_point (t, &v[i]))
  1.1040 +	    return FALSE;
  1.1041 +
  1.1042 +	x1 = floor (v[i].v[0]);
  1.1043 +	y1 = floor (v[i].v[1]);
  1.1044 +	x2 = ceil (v[i].v[0]);
  1.1045 +	y2 = ceil (v[i].v[1]);
  1.1046 +
  1.1047 +	if (i == 0)
  1.1048 +	{
  1.1049 +	    b->x1 = x1;
  1.1050 +	    b->y1 = y1;
  1.1051 +	    b->x2 = x2;
  1.1052 +	    b->y2 = y2;
  1.1053 +	}
  1.1054 +	else
  1.1055 +	{
  1.1056 +	    if (x1 < b->x1) b->x1 = x1;
  1.1057 +	    if (y1 < b->y1) b->y1 = y1;
  1.1058 +	    if (x2 > b->x2) b->x2 = x2;
  1.1059 +	    if (y2 > b->y2) b->y2 = y2;
  1.1060 +	}
  1.1061 +    }
  1.1062 +
  1.1063 +    return TRUE;
  1.1064 +}
  1.1065 +
  1.1066 +PIXMAN_EXPORT void
  1.1067 +pixman_f_transform_init_identity (struct pixman_f_transform *t)
  1.1068 +{
  1.1069 +    int i, j;
  1.1070 +
  1.1071 +    for (j = 0; j < 3; j++)
  1.1072 +    {
  1.1073 +	for (i = 0; i < 3; i++)
  1.1074 +	    t->m[j][i] = i == j ? 1 : 0;
  1.1075 +    }
  1.1076 +}

mercurial