gfx/layers/LayerSorter.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/layers/LayerSorter.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,353 @@
     1.4 +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
     1.5 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +#include "LayerSorter.h"
    1.10 +#include <math.h>                       // for fabs
    1.11 +#include <stdint.h>                     // for uint32_t
    1.12 +#include <stdio.h>                      // for fprintf, stderr, FILE
    1.13 +#include <stdlib.h>                     // for getenv
    1.14 +#include "DirectedGraph.h"              // for DirectedGraph
    1.15 +#include "Layers.h"                     // for Layer
    1.16 +#include "gfx3DMatrix.h"                // for gfx3DMatrix
    1.17 +#include "gfxLineSegment.h"             // for gfxLineSegment
    1.18 +#include "gfxPoint.h"                   // for gfxPoint
    1.19 +#include "gfxPoint3D.h"                 // for gfxPoint3D
    1.20 +#include "gfxQuad.h"                    // for gfxQuad
    1.21 +#include "gfxRect.h"                    // for gfxRect
    1.22 +#include "gfxTypes.h"                   // for gfxFloat
    1.23 +#include "mozilla/gfx/BasePoint3D.h"    // for BasePoint3D
    1.24 +#include "nsRegion.h"                   // for nsIntRegion
    1.25 +#include "nsTArray.h"                   // for nsTArray, etc
    1.26 +#include "limits.h"
    1.27 +#include "mozilla/Assertions.h"
    1.28 +
    1.29 +using namespace mozilla::gfx;
    1.30 +
    1.31 +namespace mozilla {
    1.32 +namespace layers {
    1.33 +
    1.34 +enum LayerSortOrder {
    1.35 +  Undefined,
    1.36 +  ABeforeB,
    1.37 +  BBeforeA,
    1.38 +};
    1.39 +
    1.40 +/**
    1.41 + * Recover the z component from a 2d transformed point by finding the intersection
    1.42 + * of a line through the point in the z direction and the transformed plane.
    1.43 + *
    1.44 + * We want to solve:
    1.45 + *
    1.46 + * point = normal . (p0 - l0) / normal . l
    1.47 + */
    1.48 +static gfxFloat RecoverZDepth(const gfx3DMatrix& aTransform, const gfxPoint& aPoint)
    1.49 +{
    1.50 +    const gfxPoint3D l(0, 0, 1);
    1.51 +    gfxPoint3D l0 = gfxPoint3D(aPoint.x, aPoint.y, 0);
    1.52 +    gfxPoint3D p0 = aTransform.Transform3D(gfxPoint3D(0, 0, 0));
    1.53 +    gfxPoint3D normal = aTransform.GetNormalVector();
    1.54 +
    1.55 +    gfxFloat n = normal.DotProduct(p0 - l0); 
    1.56 +    gfxFloat d = normal.DotProduct(l);
    1.57 +
    1.58 +    if (!d) {
    1.59 +        return 0;
    1.60 +    }
    1.61 +
    1.62 +    return n/d;
    1.63 +}
    1.64 +
    1.65 +/**
    1.66 + * Determine if this transform layer should be drawn before another when they 
    1.67 + * are both preserve-3d children.
    1.68 + *
    1.69 + * We want to find the relative z depths of the 2 layers at points where they
    1.70 + * intersect when projected onto the 2d screen plane. Intersections are defined
    1.71 + * as corners that are positioned within the other quad, as well as intersections
    1.72 + * of the lines.
    1.73 + *
    1.74 + * We then choose the intersection point with the greatest difference in Z
    1.75 + * depths and use this point to determine an ordering for the two layers.
    1.76 + * For layers that are intersecting in 3d space, this essentially guesses an 
    1.77 + * order. In a lot of cases we only intersect right at the edge point (3d cubes
    1.78 + * in particular) and this generates the 'correct' looking ordering. For planes
    1.79 + * that truely intersect, then there is no correct ordering and this remains
    1.80 + * unsolved without changing our rendering code.
    1.81 + */
    1.82 +static LayerSortOrder CompareDepth(Layer* aOne, Layer* aTwo) {
    1.83 +  gfxRect ourRect = aOne->GetEffectiveVisibleRegion().GetBounds();
    1.84 +  gfxRect otherRect = aTwo->GetEffectiveVisibleRegion().GetBounds();
    1.85 +
    1.86 +  gfx3DMatrix ourTransform;
    1.87 +  To3DMatrix(aOne->GetTransform(), ourTransform);
    1.88 +  gfx3DMatrix otherTransform;
    1.89 +  To3DMatrix(aTwo->GetTransform(), otherTransform);
    1.90 +
    1.91 +  // Transform both rectangles and project into 2d space.
    1.92 +  gfxQuad ourTransformedRect = ourTransform.TransformRect(ourRect);
    1.93 +  gfxQuad otherTransformedRect = otherTransform.TransformRect(otherRect);
    1.94 +
    1.95 +  gfxRect ourBounds = ourTransformedRect.GetBounds();
    1.96 +  gfxRect otherBounds = otherTransformedRect.GetBounds();
    1.97 +
    1.98 +  if (!ourBounds.Intersects(otherBounds)) {
    1.99 +    return Undefined;
   1.100 +  }
   1.101 +
   1.102 +  // Make a list of all points that are within the other rect.
   1.103 +  // Could we just check Contains() on the bounds rects. ie, is it possible
   1.104 +  // for layers to overlap without intersections (in 2d space) and yet still
   1.105 +  // have their bounds rects not completely enclose each other?
   1.106 +  nsTArray<gfxPoint> points;
   1.107 +  for (uint32_t i = 0; i < 4; i++) {
   1.108 +    if (ourTransformedRect.Contains(otherTransformedRect.mPoints[i])) {
   1.109 +      points.AppendElement(otherTransformedRect.mPoints[i]);
   1.110 +    }
   1.111 +    if (otherTransformedRect.Contains(ourTransformedRect.mPoints[i])) {
   1.112 +      points.AppendElement(ourTransformedRect.mPoints[i]);
   1.113 +    }
   1.114 +  }
   1.115 +  
   1.116 +  // Look for intersections between lines (in 2d space) and use these as
   1.117 +  // depth testing points.
   1.118 +  for (uint32_t i = 0; i < 4; i++) {
   1.119 +    for (uint32_t j = 0; j < 4; j++) {
   1.120 +      gfxPoint intersection;
   1.121 +      gfxLineSegment one(ourTransformedRect.mPoints[i],
   1.122 +                         ourTransformedRect.mPoints[(i + 1) % 4]);
   1.123 +      gfxLineSegment two(otherTransformedRect.mPoints[j],
   1.124 +                         otherTransformedRect.mPoints[(j + 1) % 4]);
   1.125 +      if (one.Intersects(two, intersection)) {
   1.126 +        points.AppendElement(intersection);
   1.127 +      }
   1.128 +    }
   1.129 +  }
   1.130 +
   1.131 +  // No intersections, no defined order between these layers.
   1.132 +  if (points.IsEmpty()) {
   1.133 +    return Undefined;
   1.134 +  }
   1.135 +
   1.136 +  // Find the relative Z depths of each intersection point and check that the layers are in the same order.
   1.137 +  gfxFloat highest = 0;
   1.138 +  for (uint32_t i = 0; i < points.Length(); i++) {
   1.139 +    gfxFloat ourDepth = RecoverZDepth(ourTransform, points.ElementAt(i));
   1.140 +    gfxFloat otherDepth = RecoverZDepth(otherTransform, points.ElementAt(i));
   1.141 +
   1.142 +    gfxFloat difference = otherDepth - ourDepth;
   1.143 +
   1.144 +    if (fabs(difference) > fabs(highest)) {
   1.145 +      highest = difference;
   1.146 +    }
   1.147 +  }
   1.148 +  // If layers have the same depth keep the original order
   1.149 +  if (fabs(highest) < 0.1 || highest >= 0) {
   1.150 +    return ABeforeB;
   1.151 +  } else {
   1.152 +    return BBeforeA;
   1.153 +  }
   1.154 +}
   1.155 +
   1.156 +#ifdef DEBUG
   1.157 +static bool gDumpLayerSortList = getenv("MOZ_DUMP_LAYER_SORT_LIST") != 0;
   1.158 +
   1.159 +static const int BLACK = 0;
   1.160 +static const int RED = 1;
   1.161 +static const int GREEN = 2;
   1.162 +static const int YELLOW = 3;
   1.163 +static const int BLUE = 4;
   1.164 +static const int MAGENTA = 5;
   1.165 +static const int CYAN = 6;
   1.166 +static const int WHITE = 7;
   1.167 +
   1.168 +//#define USE_XTERM_COLORING
   1.169 +#ifdef USE_XTERM_COLORING
   1.170 +
   1.171 +static const int RESET = 0;
   1.172 +static const int BRIGHT = 1;
   1.173 +static const int DIM = 2;
   1.174 +static const int UNDERLINE = 3;
   1.175 +static const int BLINK = 4;
   1.176 +static const int REVERSE = 7;
   1.177 +static const int HIDDEN = 8;
   1.178 +
   1.179 +static void SetTextColor(uint32_t aColor)
   1.180 +{
   1.181 +  char command[13];
   1.182 +
   1.183 +  /* Command is the control command to the terminal */
   1.184 +  sprintf(command, "%c[%d;%d;%dm", 0x1B, RESET, aColor + 30, BLACK + 40);
   1.185 +  printf("%s", command);
   1.186 +}
   1.187 +
   1.188 +static void print_layer_internal(FILE* aFile, Layer* aLayer, uint32_t aColor)
   1.189 +{
   1.190 +  SetTextColor(aColor);
   1.191 +  fprintf(aFile, "%p", aLayer);
   1.192 +  SetTextColor(GREEN);
   1.193 +}
   1.194 +#else
   1.195 +
   1.196 +const char *colors[] = { "Black", "Red", "Green", "Yellow", "Blue", "Magenta", "Cyan", "White" };
   1.197 +
   1.198 +static void print_layer_internal(FILE* aFile, Layer* aLayer, uint32_t aColor)
   1.199 +{
   1.200 +  fprintf(aFile, "%p(%s)", aLayer, colors[aColor]);
   1.201 +}
   1.202 +#endif
   1.203 +
   1.204 +static void print_layer(FILE* aFile, Layer* aLayer)
   1.205 +{
   1.206 +  print_layer_internal(aFile, aLayer, aLayer->GetDebugColorIndex());
   1.207 +}
   1.208 +
   1.209 +static void DumpLayerList(nsTArray<Layer*>& aLayers)
   1.210 +{
   1.211 +  for (uint32_t i = 0; i < aLayers.Length(); i++) {
   1.212 +    print_layer(stderr, aLayers.ElementAt(i));
   1.213 +    fprintf(stderr, " ");
   1.214 +  }
   1.215 +  fprintf(stderr, "\n");
   1.216 +}
   1.217 +
   1.218 +static void DumpEdgeList(DirectedGraph<Layer*>& aGraph)
   1.219 +{
   1.220 +  const nsTArray<DirectedGraph<Layer*>::Edge>& edges = aGraph.GetEdgeList();
   1.221 +  
   1.222 +  for (uint32_t i = 0; i < edges.Length(); i++) {
   1.223 +    fprintf(stderr, "From: ");
   1.224 +    print_layer(stderr, edges.ElementAt(i).mFrom);
   1.225 +    fprintf(stderr, ", To: ");
   1.226 +    print_layer(stderr, edges.ElementAt(i).mTo);
   1.227 +    fprintf(stderr, "\n");
   1.228 +  }
   1.229 +}
   1.230 +#endif
   1.231 +
   1.232 +// The maximum number of layers that we will attempt to sort. Anything
   1.233 +// greater than this will be left unsorted. We should consider enabling
   1.234 +// depth buffering for the scene in this case.
   1.235 +#define MAX_SORTABLE_LAYERS 100
   1.236 +
   1.237 +
   1.238 +uint32_t gColorIndex = 1;
   1.239 +
   1.240 +void SortLayersBy3DZOrder(nsTArray<Layer*>& aLayers)
   1.241 +{
   1.242 +  uint32_t nodeCount = aLayers.Length();
   1.243 +  if (nodeCount > MAX_SORTABLE_LAYERS) {
   1.244 +    return;
   1.245 +  }
   1.246 +  DirectedGraph<Layer*> graph;
   1.247 +
   1.248 +#ifdef DEBUG
   1.249 +  if (gDumpLayerSortList) {
   1.250 +    for (uint32_t i = 0; i < nodeCount; i++) {
   1.251 +      if (aLayers.ElementAt(i)->GetDebugColorIndex() == 0) {
   1.252 +        aLayers.ElementAt(i)->SetDebugColorIndex(gColorIndex++);
   1.253 +        if (gColorIndex > 7) {
   1.254 +          gColorIndex = 1;
   1.255 +        }
   1.256 +      }
   1.257 +    }
   1.258 +    fprintf(stderr, " --- Layers before sorting: --- \n");
   1.259 +    DumpLayerList(aLayers);
   1.260 +  }
   1.261 +#endif
   1.262 +
   1.263 +  // Iterate layers and determine edges.
   1.264 +  for (uint32_t i = 0; i < nodeCount; i++) {
   1.265 +    for (uint32_t j = i + 1; j < nodeCount; j++) {
   1.266 +      Layer* a = aLayers.ElementAt(i);
   1.267 +      Layer* b = aLayers.ElementAt(j);
   1.268 +      LayerSortOrder order = CompareDepth(a, b);
   1.269 +      if (order == ABeforeB) {
   1.270 +        graph.AddEdge(a, b);
   1.271 +      } else if (order == BBeforeA) {
   1.272 +        graph.AddEdge(b, a);
   1.273 +      }
   1.274 +    }
   1.275 +  }
   1.276 +
   1.277 +#ifdef DEBUG
   1.278 +  if (gDumpLayerSortList) {
   1.279 +    fprintf(stderr, " --- Edge List: --- \n");
   1.280 +    DumpEdgeList(graph);
   1.281 +  }
   1.282 +#endif
   1.283 +
   1.284 +  // Build a new array using the graph.
   1.285 +  nsTArray<Layer*> noIncoming;
   1.286 +  nsTArray<Layer*> sortedList;
   1.287 +
   1.288 +  // Make a list of all layers with no incoming edges.
   1.289 +  noIncoming.AppendElements(aLayers);
   1.290 +  const nsTArray<DirectedGraph<Layer*>::Edge>& edges = graph.GetEdgeList();
   1.291 +  for (uint32_t i = 0; i < edges.Length(); i++) {
   1.292 +    noIncoming.RemoveElement(edges.ElementAt(i).mTo);
   1.293 +  }
   1.294 +
   1.295 +  // Move each item without incoming edges into the sorted list,
   1.296 +  // and remove edges from it.
   1.297 +  do {
   1.298 +    if (!noIncoming.IsEmpty()) {
   1.299 +      uint32_t last = noIncoming.Length() - 1;
   1.300 +
   1.301 +      Layer* layer = noIncoming.ElementAt(last);
   1.302 +      MOZ_ASSERT(layer); // don't let null layer pointers sneak into sortedList
   1.303 +
   1.304 +      noIncoming.RemoveElementAt(last);
   1.305 +      sortedList.AppendElement(layer);
   1.306 +
   1.307 +      nsTArray<DirectedGraph<Layer*>::Edge> outgoing;
   1.308 +      graph.GetEdgesFrom(layer, outgoing);
   1.309 +      for (uint32_t i = 0; i < outgoing.Length(); i++) {
   1.310 +        DirectedGraph<Layer*>::Edge edge = outgoing.ElementAt(i);
   1.311 +        graph.RemoveEdge(edge);
   1.312 +        if (!graph.NumEdgesTo(edge.mTo)) {
   1.313 +          // If this node also has no edges now, add it to the list
   1.314 +          noIncoming.AppendElement(edge.mTo);
   1.315 +        }
   1.316 +      }
   1.317 +    }
   1.318 +
   1.319 +    // If there are no nodes without incoming edges, but there
   1.320 +    // are still edges, then we have a cycle.
   1.321 +    if (noIncoming.IsEmpty() && graph.GetEdgeCount()) {
   1.322 +      // Find the node with the least incoming edges.
   1.323 +      uint32_t minEdges = UINT_MAX;
   1.324 +      Layer* minNode = nullptr;
   1.325 +      for (uint32_t i = 0; i < aLayers.Length(); i++) {
   1.326 +        uint32_t edgeCount = graph.NumEdgesTo(aLayers.ElementAt(i));
   1.327 +        if (edgeCount && edgeCount < minEdges) {
   1.328 +          minEdges = edgeCount;
   1.329 +          minNode = aLayers.ElementAt(i);
   1.330 +          if (minEdges == 1) {
   1.331 +            break;
   1.332 +          }
   1.333 +        }
   1.334 +      }
   1.335 +
   1.336 +      if (minNode) {
   1.337 +        // Remove all of them!
   1.338 +        graph.RemoveEdgesTo(minNode);
   1.339 +        noIncoming.AppendElement(minNode);
   1.340 +      }
   1.341 +    }
   1.342 +  } while (!noIncoming.IsEmpty());
   1.343 +  NS_ASSERTION(!graph.GetEdgeCount(), "Cycles detected!");
   1.344 +#ifdef DEBUG
   1.345 +  if (gDumpLayerSortList) {
   1.346 +    fprintf(stderr, " --- Layers after sorting: --- \n");
   1.347 +    DumpLayerList(sortedList);
   1.348 +  }
   1.349 +#endif
   1.350 +
   1.351 +  aLayers.Clear();
   1.352 +  aLayers.AppendElements(sortedList);
   1.353 +}
   1.354 +
   1.355 +}
   1.356 +}

mercurial