gfx/layers/Layers.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/layers/Layers.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,2113 @@
     1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
     1.5 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +#ifndef GFX_LAYERS_H
    1.10 +#define GFX_LAYERS_H
    1.11 +
    1.12 +#include <stdint.h>                     // for uint32_t, uint64_t, uint8_t
    1.13 +#include <stdio.h>                      // for FILE
    1.14 +#include <sys/types.h>                  // for int32_t, int64_t
    1.15 +#include "FrameMetrics.h"               // for FrameMetrics
    1.16 +#include "Units.h"                      // for LayerMargin, LayerPoint
    1.17 +#include "gfxContext.h"                 // for GraphicsOperator
    1.18 +#include "gfxTypes.h"
    1.19 +#include "gfxColor.h"                   // for gfxRGBA
    1.20 +#include "gfxMatrix.h"                  // for gfxMatrix
    1.21 +#include "GraphicsFilter.h"             // for GraphicsFilter
    1.22 +#include "gfxPoint.h"                   // for gfxPoint
    1.23 +#include "gfxRect.h"                    // for gfxRect
    1.24 +#include "gfx2DGlue.h"
    1.25 +#include "mozilla/Assertions.h"         // for MOZ_ASSERT_HELPER2, etc
    1.26 +#include "mozilla/DebugOnly.h"          // for DebugOnly
    1.27 +#include "mozilla/EventForwards.h"      // for nsPaintEvent
    1.28 +#include "mozilla/RefPtr.h"             // for TemporaryRef
    1.29 +#include "mozilla/TimeStamp.h"          // for TimeStamp, TimeDuration
    1.30 +#include "mozilla/gfx/BaseMargin.h"     // for BaseMargin
    1.31 +#include "mozilla/gfx/BasePoint.h"      // for BasePoint
    1.32 +#include "mozilla/gfx/Point.h"          // for IntSize
    1.33 +#include "mozilla/gfx/Types.h"          // for SurfaceFormat
    1.34 +#include "mozilla/gfx/UserData.h"       // for UserData, etc
    1.35 +#include "mozilla/layers/LayersTypes.h"
    1.36 +#include "mozilla/mozalloc.h"           // for operator delete, etc
    1.37 +#include "nsAutoPtr.h"                  // for nsAutoPtr, nsRefPtr, etc
    1.38 +#include "nsCOMPtr.h"                   // for already_AddRefed
    1.39 +#include "nsCSSProperty.h"              // for nsCSSProperty
    1.40 +#include "nsDebug.h"                    // for NS_ASSERTION
    1.41 +#include "nsISupportsImpl.h"            // for Layer::Release, etc
    1.42 +#include "nsRect.h"                     // for nsIntRect
    1.43 +#include "nsRegion.h"                   // for nsIntRegion
    1.44 +#include "nsSize.h"                     // for nsIntSize
    1.45 +#include "nsString.h"                   // for nsCString
    1.46 +#include "nsStyleAnimation.h"           // for nsStyleAnimation::Value, etc
    1.47 +#include "nsTArray.h"                   // for nsTArray
    1.48 +#include "nsTArrayForwardDeclare.h"     // for InfallibleTArray
    1.49 +#include "nscore.h"                     // for nsACString, nsAString
    1.50 +#include "prlog.h"                      // for PRLogModuleInfo
    1.51 +#include "gfx2DGlue.h"
    1.52 +
    1.53 +class gfxContext;
    1.54 +
    1.55 +extern uint8_t gLayerManagerLayerBuilder;
    1.56 +
    1.57 +namespace mozilla {
    1.58 +
    1.59 +class FrameLayerBuilder;
    1.60 +class WebGLContext;
    1.61 +
    1.62 +namespace gl {
    1.63 +class GLContext;
    1.64 +}
    1.65 +
    1.66 +namespace gfx {
    1.67 +class DrawTarget;
    1.68 +class SurfaceStream;
    1.69 +}
    1.70 +
    1.71 +namespace css {
    1.72 +class ComputedTimingFunction;
    1.73 +}
    1.74 +
    1.75 +namespace layers {
    1.76 +
    1.77 +class Animation;
    1.78 +class AnimationData;
    1.79 +class AsyncPanZoomController;
    1.80 +class CommonLayerAttributes;
    1.81 +class Layer;
    1.82 +class ThebesLayer;
    1.83 +class ContainerLayer;
    1.84 +class ImageLayer;
    1.85 +class ColorLayer;
    1.86 +class ImageContainer;
    1.87 +class CanvasLayer;
    1.88 +class ReadbackLayer;
    1.89 +class ReadbackProcessor;
    1.90 +class RefLayer;
    1.91 +class LayerComposite;
    1.92 +class ShadowableLayer;
    1.93 +class ShadowLayerForwarder;
    1.94 +class LayerManagerComposite;
    1.95 +class SpecificLayerAttributes;
    1.96 +class SurfaceDescriptor;
    1.97 +class Compositor;
    1.98 +struct TextureFactoryIdentifier;
    1.99 +struct EffectMask;
   1.100 +
   1.101 +#define MOZ_LAYER_DECL_NAME(n, e)                           \
   1.102 +  virtual const char* Name() const { return n; }            \
   1.103 +  virtual LayerType GetType() const { return e; }
   1.104 +
   1.105 +/**
   1.106 + * Base class for userdata objects attached to layers and layer managers.
   1.107 + */
   1.108 +class LayerUserData {
   1.109 +public:
   1.110 +  virtual ~LayerUserData() {}
   1.111 +};
   1.112 +
   1.113 +/*
   1.114 + * Motivation: For truly smooth animation and video playback, we need to
   1.115 + * be able to compose frames and render them on a dedicated thread (i.e.
   1.116 + * off the main thread where DOM manipulation, script execution and layout
   1.117 + * induce difficult-to-bound latency). This requires Gecko to construct
   1.118 + * some kind of persistent scene structure (graph or tree) that can be
   1.119 + * safely transmitted across threads. We have other scenarios (e.g. mobile
   1.120 + * browsing) where retaining some rendered data between paints is desired
   1.121 + * for performance, so again we need a retained scene structure.
   1.122 + *
   1.123 + * Our retained scene structure is a layer tree. Each layer represents
   1.124 + * content which can be composited onto a destination surface; the root
   1.125 + * layer is usually composited into a window, and non-root layers are
   1.126 + * composited into their parent layers. Layers have attributes (e.g.
   1.127 + * opacity and clipping) that influence their compositing.
   1.128 + *
   1.129 + * We want to support a variety of layer implementations, including
   1.130 + * a simple "immediate mode" implementation that doesn't retain any
   1.131 + * rendered data between paints (i.e. uses cairo in just the way that
   1.132 + * Gecko used it before layers were introduced). But we also don't want
   1.133 + * to have bifurcated "layers"/"non-layers" rendering paths in Gecko.
   1.134 + * Therefore the layers API is carefully designed to permit maximally
   1.135 + * efficient implementation in an "immediate mode" style. See the
   1.136 + * BasicLayerManager for such an implementation.
   1.137 + */
   1.138 +
   1.139 +static void LayerManagerUserDataDestroy(void *data)
   1.140 +{
   1.141 +  delete static_cast<LayerUserData*>(data);
   1.142 +}
   1.143 +
   1.144 +/**
   1.145 + * A LayerManager controls a tree of layers. All layers in the tree
   1.146 + * must use the same LayerManager.
   1.147 + *
   1.148 + * All modifications to a layer tree must happen inside a transaction.
   1.149 + * Only the state of the layer tree at the end of a transaction is
   1.150 + * rendered. Transactions cannot be nested
   1.151 + *
   1.152 + * Each transaction has two phases:
   1.153 + * 1) Construction: layers are created, inserted, removed and have
   1.154 + * properties set on them in this phase.
   1.155 + * BeginTransaction and BeginTransactionWithTarget start a transaction in
   1.156 + * the Construction phase. When the client has finished constructing the layer
   1.157 + * tree, it should call EndConstruction() to enter the drawing phase.
   1.158 + * 2) Drawing: ThebesLayers are rendered into in this phase, in tree
   1.159 + * order. When the client has finished drawing into the ThebesLayers, it should
   1.160 + * call EndTransaction to complete the transaction.
   1.161 + *
   1.162 + * All layer API calls happen on the main thread.
   1.163 + *
   1.164 + * Layers are refcounted. The layer manager holds a reference to the
   1.165 + * root layer, and each container layer holds a reference to its children.
   1.166 + */
   1.167 +class LayerManager {
   1.168 +  NS_INLINE_DECL_REFCOUNTING(LayerManager)
   1.169 +
   1.170 +protected:
   1.171 +  typedef mozilla::gfx::DrawTarget DrawTarget;
   1.172 +  typedef mozilla::gfx::IntSize IntSize;
   1.173 +  typedef mozilla::gfx::SurfaceFormat SurfaceFormat;
   1.174 +
   1.175 +public:
   1.176 +  LayerManager()
   1.177 +    : mDestroyed(false)
   1.178 +    , mSnapEffectiveTransforms(true)
   1.179 +    , mId(0)
   1.180 +    , mInTransaction(false)
   1.181 +  {
   1.182 +    InitLog();
   1.183 +  }
   1.184 +
   1.185 +  /**
   1.186 +   * Release layers and resources held by this layer manager, and mark
   1.187 +   * it as destroyed.  Should do any cleanup necessary in preparation
   1.188 +   * for its widget going away.  After this call, only user data calls
   1.189 +   * are valid on the layer manager.
   1.190 +   */
   1.191 +  virtual void Destroy()
   1.192 +  {
   1.193 +    mDestroyed = true;
   1.194 +    mUserData.Destroy();
   1.195 +    mRoot = nullptr;
   1.196 +  }
   1.197 +  bool IsDestroyed() { return mDestroyed; }
   1.198 +
   1.199 +  virtual ShadowLayerForwarder* AsShadowForwarder()
   1.200 +  { return nullptr; }
   1.201 +
   1.202 +  virtual LayerManagerComposite* AsLayerManagerComposite()
   1.203 +  { return nullptr; }
   1.204 +
   1.205 +  /**
   1.206 +   * Returns true if this LayerManager is owned by an nsIWidget,
   1.207 +   * and is used for drawing into the widget.
   1.208 +   */
   1.209 +  virtual bool IsWidgetLayerManager() { return true; }
   1.210 +
   1.211 +  /**
   1.212 +   * Start a new transaction. Nested transactions are not allowed so
   1.213 +   * there must be no transaction currently in progress.
   1.214 +   * This transaction will update the state of the window from which
   1.215 +   * this LayerManager was obtained.
   1.216 +   */
   1.217 +  virtual void BeginTransaction() = 0;
   1.218 +  /**
   1.219 +   * Start a new transaction. Nested transactions are not allowed so
   1.220 +   * there must be no transaction currently in progress.
   1.221 +   * This transaction will render the contents of the layer tree to
   1.222 +   * the given target context. The rendering will be complete when
   1.223 +   * EndTransaction returns.
   1.224 +   */
   1.225 +  virtual void BeginTransactionWithTarget(gfxContext* aTarget) = 0;
   1.226 +
   1.227 +  enum EndTransactionFlags {
   1.228 +    END_DEFAULT = 0,
   1.229 +    END_NO_IMMEDIATE_REDRAW = 1 << 0,  // Do not perform the drawing phase
   1.230 +    END_NO_COMPOSITE = 1 << 1, // Do not composite after drawing thebes layer contents.
   1.231 +    END_NO_REMOTE_COMPOSITE = 1 << 2 // Do not schedule a composition with a remote Compositor, if one exists.
   1.232 +  };
   1.233 +
   1.234 +  FrameLayerBuilder* GetLayerBuilder() {
   1.235 +    return reinterpret_cast<FrameLayerBuilder*>(GetUserData(&gLayerManagerLayerBuilder));
   1.236 +  }
   1.237 +
   1.238 +  /**
   1.239 +   * Attempts to end an "empty transaction". There must have been no
   1.240 +   * changes to the layer tree since the BeginTransaction().
   1.241 +   * It's possible for this to fail; ThebesLayers may need to be updated
   1.242 +   * due to VRAM data being lost, for example. In such cases this method
   1.243 +   * returns false, and the caller must proceed with a normal layer tree
   1.244 +   * update and EndTransaction.
   1.245 +   */
   1.246 +  virtual bool EndEmptyTransaction(EndTransactionFlags aFlags = END_DEFAULT) = 0;
   1.247 +
   1.248 +  /**
   1.249 +   * Function called to draw the contents of each ThebesLayer.
   1.250 +   * aRegionToDraw contains the region that needs to be drawn.
   1.251 +   * This would normally be a subregion of the visible region.
   1.252 +   * The callee must draw all of aRegionToDraw. Drawing outside
   1.253 +   * aRegionToDraw will be clipped out or ignored.
   1.254 +   * The callee must draw all of aRegionToDraw.
   1.255 +   * This region is relative to 0,0 in the ThebesLayer.
   1.256 +   *
   1.257 +   * aRegionToInvalidate contains a region whose contents have been
   1.258 +   * changed by the layer manager and which must therefore be invalidated.
   1.259 +   * For example, this could be non-empty if a retained layer internally
   1.260 +   * switches from RGBA to RGB or back ... we might want to repaint it to
   1.261 +   * consistently use subpixel-AA or not.
   1.262 +   * This region is relative to 0,0 in the ThebesLayer.
   1.263 +   * aRegionToInvalidate may contain areas that are outside
   1.264 +   * aRegionToDraw; the callee must ensure that these areas are repainted
   1.265 +   * in the current layer manager transaction or in a later layer
   1.266 +   * manager transaction.
   1.267 +   *
   1.268 +   * aContext must not be used after the call has returned.
   1.269 +   * We guarantee that buffered contents in the visible
   1.270 +   * region are valid once drawing is complete.
   1.271 +   *
   1.272 +   * The origin of aContext is 0,0 in the ThebesLayer.
   1.273 +   */
   1.274 +  typedef void (* DrawThebesLayerCallback)(ThebesLayer* aLayer,
   1.275 +                                           gfxContext* aContext,
   1.276 +                                           const nsIntRegion& aRegionToDraw,
   1.277 +                                           DrawRegionClip aClip,
   1.278 +                                           const nsIntRegion& aRegionToInvalidate,
   1.279 +                                           void* aCallbackData);
   1.280 +
   1.281 +  /**
   1.282 +   * Finish the construction phase of the transaction, perform the
   1.283 +   * drawing phase, and end the transaction.
   1.284 +   * During the drawing phase, all ThebesLayers in the tree are
   1.285 +   * drawn in tree order, exactly once each, except for those layers
   1.286 +   * where it is known that the visible region is empty.
   1.287 +   */
   1.288 +  virtual void EndTransaction(DrawThebesLayerCallback aCallback,
   1.289 +                              void* aCallbackData,
   1.290 +                              EndTransactionFlags aFlags = END_DEFAULT) = 0;
   1.291 +
   1.292 +  /**
   1.293 +   * Schedule a composition with the remote Compositor, if one exists
   1.294 +   * for this LayerManager. Useful in conjunction with the END_NO_REMOTE_COMPOSITE
   1.295 +   * flag to EndTransaction.
   1.296 +   */
   1.297 +  virtual void Composite() {}
   1.298 +
   1.299 +  virtual bool HasShadowManagerInternal() const { return false; }
   1.300 +  bool HasShadowManager() const { return HasShadowManagerInternal(); }
   1.301 +
   1.302 +  bool IsSnappingEffectiveTransforms() { return mSnapEffectiveTransforms; }
   1.303 +
   1.304 +  /**
   1.305 +   * Returns true if this LayerManager can properly support layers with
   1.306 +   * SurfaceMode::SURFACE_COMPONENT_ALPHA. This can include disabling component
   1.307 +   * alpha if required.
   1.308 +   */
   1.309 +  virtual bool AreComponentAlphaLayersEnabled() { return true; }
   1.310 +
   1.311 +  /**
   1.312 +   * CONSTRUCTION PHASE ONLY
   1.313 +   * Set the root layer. The root layer is initially null. If there is
   1.314 +   * no root layer, EndTransaction won't draw anything.
   1.315 +   */
   1.316 +  virtual void SetRoot(Layer* aLayer) = 0;
   1.317 +  /**
   1.318 +   * Can be called anytime
   1.319 +   */
   1.320 +  Layer* GetRoot() { return mRoot; }
   1.321 +
   1.322 +  /**
   1.323 +   * Does a breadth-first search from the root layer to find the first
   1.324 +   * scrollable layer.
   1.325 +   * Can be called any time.
   1.326 +   */
   1.327 +  Layer* GetPrimaryScrollableLayer();
   1.328 +
   1.329 +  /**
   1.330 +   * Returns a list of all descendant layers for which
   1.331 +   * GetFrameMetrics().IsScrollable() is true.
   1.332 +   */
   1.333 +  void GetScrollableLayers(nsTArray<Layer*>& aArray);
   1.334 +
   1.335 +  /**
   1.336 +   * CONSTRUCTION PHASE ONLY
   1.337 +   * Called when a managee has mutated.
   1.338 +   * Subclasses overriding this method must first call their
   1.339 +   * superclass's impl
   1.340 +   */
   1.341 +#ifdef DEBUG
   1.342 +  // In debug builds, we check some properties of |aLayer|.
   1.343 +  virtual void Mutated(Layer* aLayer);
   1.344 +#else
   1.345 +  virtual void Mutated(Layer* aLayer) { }
   1.346 +#endif
   1.347 +
   1.348 +  /**
   1.349 +   * Hints that can be used during Thebes layer creation to influence the type
   1.350 +   * or properties of the layer created.
   1.351 +   *
   1.352 +   * NONE: No hint.
   1.353 +   * SCROLLABLE: This layer may represent scrollable content.
   1.354 +   */
   1.355 +  enum ThebesLayerCreationHint {
   1.356 +    NONE, SCROLLABLE
   1.357 +  };
   1.358 +
   1.359 +  /**
   1.360 +   * CONSTRUCTION PHASE ONLY
   1.361 +   * Create a ThebesLayer for this manager's layer tree.
   1.362 +   */
   1.363 +  virtual already_AddRefed<ThebesLayer> CreateThebesLayer() = 0;
   1.364 +  /**
   1.365 +   * CONSTRUCTION PHASE ONLY
   1.366 +   * Create a ThebesLayer for this manager's layer tree, with a creation hint
   1.367 +   * parameter to help optimise the type of layer created.
   1.368 +   */
   1.369 +  virtual already_AddRefed<ThebesLayer> CreateThebesLayerWithHint(ThebesLayerCreationHint) {
   1.370 +    return CreateThebesLayer();
   1.371 +  }
   1.372 +  /**
   1.373 +   * CONSTRUCTION PHASE ONLY
   1.374 +   * Create a ContainerLayer for this manager's layer tree.
   1.375 +   */
   1.376 +  virtual already_AddRefed<ContainerLayer> CreateContainerLayer() = 0;
   1.377 +  /**
   1.378 +   * CONSTRUCTION PHASE ONLY
   1.379 +   * Create an ImageLayer for this manager's layer tree.
   1.380 +   */
   1.381 +  virtual already_AddRefed<ImageLayer> CreateImageLayer() = 0;
   1.382 +  /**
   1.383 +   * CONSTRUCTION PHASE ONLY
   1.384 +   * Create a ColorLayer for this manager's layer tree.
   1.385 +   */
   1.386 +  virtual already_AddRefed<ColorLayer> CreateColorLayer() = 0;
   1.387 +  /**
   1.388 +   * CONSTRUCTION PHASE ONLY
   1.389 +   * Create a CanvasLayer for this manager's layer tree.
   1.390 +   */
   1.391 +  virtual already_AddRefed<CanvasLayer> CreateCanvasLayer() = 0;
   1.392 +  /**
   1.393 +   * CONSTRUCTION PHASE ONLY
   1.394 +   * Create a ReadbackLayer for this manager's layer tree.
   1.395 +   */
   1.396 +  virtual already_AddRefed<ReadbackLayer> CreateReadbackLayer() { return nullptr; }
   1.397 +  /**
   1.398 +   * CONSTRUCTION PHASE ONLY
   1.399 +   * Create a RefLayer for this manager's layer tree.
   1.400 +   */
   1.401 +  virtual already_AddRefed<RefLayer> CreateRefLayer() { return nullptr; }
   1.402 +
   1.403 +
   1.404 +  /**
   1.405 +   * Can be called anytime, from any thread.
   1.406 +   *
   1.407 +   * Creates an Image container which forwards its images to the compositor within
   1.408 +   * layer transactions on the main thread.
   1.409 +   */
   1.410 +  static already_AddRefed<ImageContainer> CreateImageContainer();
   1.411 +
   1.412 +  /**
   1.413 +   * Can be called anytime, from any thread.
   1.414 +   *
   1.415 +   * Tries to create an Image container which forwards its images to the compositor
   1.416 +   * asynchronously using the ImageBridge IPDL protocol. If the protocol is not
   1.417 +   * available, the returned ImageContainer will forward images within layer
   1.418 +   * transactions, just like if it was created with CreateImageContainer().
   1.419 +   */
   1.420 +  static already_AddRefed<ImageContainer> CreateAsynchronousImageContainer();
   1.421 +
   1.422 +  /**
   1.423 +   * Type of layer manager his is. This is to be used sparsely in order to
   1.424 +   * avoid a lot of Layers backend specific code. It should be used only when
   1.425 +   * Layers backend specific functionality is necessary.
   1.426 +   */
   1.427 +  virtual LayersBackend GetBackendType() = 0;
   1.428 +
   1.429 +  /**
   1.430 +   * Type of layers backend that will be used to composite this layer tree.
   1.431 +   * When compositing is done remotely, then this returns the layers type
   1.432 +   * of the compositor.
   1.433 +   */
   1.434 +  virtual LayersBackend GetCompositorBackendType() { return GetBackendType(); }
   1.435 +
   1.436 +  /**
   1.437 +   * Creates a DrawTarget which is optimized for inter-operating with this
   1.438 +   * layer manager.
   1.439 +   */
   1.440 +  virtual TemporaryRef<DrawTarget>
   1.441 +    CreateOptimalDrawTarget(const IntSize &aSize,
   1.442 +                            SurfaceFormat imageFormat);
   1.443 +
   1.444 +  /**
   1.445 +   * Creates a DrawTarget for alpha masks which is optimized for inter-
   1.446 +   * operating with this layer manager. In contrast to CreateOptimalDrawTarget,
   1.447 +   * this surface is optimised for drawing alpha only and we assume that
   1.448 +   * drawing the mask is fairly simple.
   1.449 +   */
   1.450 +  virtual TemporaryRef<DrawTarget>
   1.451 +    CreateOptimalMaskDrawTarget(const IntSize &aSize);
   1.452 +
   1.453 +  /**
   1.454 +   * Creates a DrawTarget for use with canvas which is optimized for
   1.455 +   * inter-operating with this layermanager.
   1.456 +   */
   1.457 +  virtual TemporaryRef<mozilla::gfx::DrawTarget>
   1.458 +    CreateDrawTarget(const mozilla::gfx::IntSize &aSize,
   1.459 +                     mozilla::gfx::SurfaceFormat aFormat);
   1.460 +
   1.461 +  virtual bool CanUseCanvasLayerForSize(const gfx::IntSize &aSize) { return true; }
   1.462 +
   1.463 +  /**
   1.464 +   * returns the maximum texture size on this layer backend, or INT32_MAX
   1.465 +   * if there is no maximum
   1.466 +   */
   1.467 +  virtual int32_t GetMaxTextureSize() const = 0;
   1.468 +
   1.469 +  /**
   1.470 +   * Return the name of the layer manager's backend.
   1.471 +   */
   1.472 +  virtual void GetBackendName(nsAString& aName) = 0;
   1.473 +
   1.474 +  /**
   1.475 +   * This setter can be used anytime. The user data for all keys is
   1.476 +   * initially null. Ownership pases to the layer manager.
   1.477 +   */
   1.478 +  void SetUserData(void* aKey, LayerUserData* aData)
   1.479 +  {
   1.480 +    mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
   1.481 +  }
   1.482 +  /**
   1.483 +   * This can be used anytime. Ownership passes to the caller!
   1.484 +   */
   1.485 +  nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
   1.486 +  {
   1.487 +    nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
   1.488 +    return d;
   1.489 +  }
   1.490 +  /**
   1.491 +   * This getter can be used anytime.
   1.492 +   */
   1.493 +  bool HasUserData(void* aKey)
   1.494 +  {
   1.495 +    return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
   1.496 +  }
   1.497 +  /**
   1.498 +   * This getter can be used anytime. Ownership is retained by the layer
   1.499 +   * manager.
   1.500 +   */
   1.501 +  LayerUserData* GetUserData(void* aKey) const
   1.502 +  {
   1.503 +    return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
   1.504 +  }
   1.505 +
   1.506 +  /**
   1.507 +   * Must be called outside of a layers transaction.
   1.508 +   *
   1.509 +   * For the subtree rooted at |aSubtree|, this attempts to free up
   1.510 +   * any free-able resources like retained buffers, but may do nothing
   1.511 +   * at all.  After this call, the layer tree is left in an undefined
   1.512 +   * state; the layers in |aSubtree|'s subtree may no longer have
   1.513 +   * buffers with valid content and may no longer be able to draw
   1.514 +   * their visible and valid regions.
   1.515 +   *
   1.516 +   * In general, a painting or forwarding transaction on |this| must
   1.517 +   * complete on the tree before it returns to a valid state.
   1.518 +   *
   1.519 +   * Resource freeing begins from |aSubtree| or |mRoot| if |aSubtree|
   1.520 +   * is null.  |aSubtree|'s manager must be this.
   1.521 +   */
   1.522 +  virtual void ClearCachedResources(Layer* aSubtree = nullptr) {}
   1.523 +
   1.524 +  /**
   1.525 +   * Flag the next paint as the first for a document.
   1.526 +   */
   1.527 +  virtual void SetIsFirstPaint() {}
   1.528 +
   1.529 +  /**
   1.530 +   * Make sure that the previous transaction has been entirely
   1.531 +   * completed.
   1.532 +   *
   1.533 +   * Note: This may sychronously wait on a remote compositor
   1.534 +   * to complete rendering.
   1.535 +   */
   1.536 +  virtual void FlushRendering() { }
   1.537 +
   1.538 +  /**
   1.539 +   * Checks if we need to invalidate the OS widget to trigger
   1.540 +   * painting when updating this layer manager.
   1.541 +   */
   1.542 +  virtual bool NeedsWidgetInvalidation() { return true; }
   1.543 +
   1.544 +  virtual const char* Name() const { return "???"; }
   1.545 +
   1.546 +  /**
   1.547 +   * Dump information about this layer manager and its managed tree to
   1.548 +   * aFile, which defaults to stderr.
   1.549 +   */
   1.550 +  void Dump(FILE* aFile=nullptr, const char* aPrefix="", bool aDumpHtml=false);
   1.551 +  /**
   1.552 +   * Dump information about just this layer manager itself to aFile,
   1.553 +   * which defaults to stderr.
   1.554 +   */
   1.555 +  void DumpSelf(FILE* aFile=nullptr, const char* aPrefix="");
   1.556 +
   1.557 +  /**
   1.558 +   * Log information about this layer manager and its managed tree to
   1.559 +   * the NSPR log (if enabled for "Layers").
   1.560 +   */
   1.561 +  void Log(const char* aPrefix="");
   1.562 +  /**
   1.563 +   * Log information about just this layer manager itself to the NSPR
   1.564 +   * log (if enabled for "Layers").
   1.565 +   */
   1.566 +  void LogSelf(const char* aPrefix="");
   1.567 +
   1.568 +  /**
   1.569 +   * Record (and return) frame-intervals and paint-times for frames which were presented
   1.570 +   *   between calling StartFrameTimeRecording and StopFrameTimeRecording.
   1.571 +   *
   1.572 +   * - Uses a cyclic buffer and serves concurrent consumers, so if Stop is called too late
   1.573 +   *     (elements were overwritten since Start), result is considered invalid and hence empty.
   1.574 +   * - Buffer is capable of holding 10 seconds @ 60fps (or more if frames were less frequent).
   1.575 +   *     Can be changed (up to 1 hour) via pref: toolkit.framesRecording.bufferSize.
   1.576 +   * - Note: the first frame-interval may be longer than expected because last frame
   1.577 +   *     might have been presented some time before calling StartFrameTimeRecording.
   1.578 +   */
   1.579 +
   1.580 +  /**
   1.581 +   * Returns a handle which represents current recording start position.
   1.582 +   */
   1.583 +  virtual uint32_t StartFrameTimeRecording(int32_t aBufferSize);
   1.584 +
   1.585 +  /**
   1.586 +   *  Clears, then populates aFrameIntervals with the recorded frame timing
   1.587 +   *  data. The array will be empty if data was overwritten since
   1.588 +   *  aStartIndex was obtained.
   1.589 +   */
   1.590 +  virtual void StopFrameTimeRecording(uint32_t         aStartIndex,
   1.591 +                                      nsTArray<float>& aFrameIntervals);
   1.592 +
   1.593 +  void RecordFrame();
   1.594 +  void PostPresent();
   1.595 +
   1.596 +  void BeginTabSwitch();
   1.597 +
   1.598 +  static bool IsLogEnabled();
   1.599 +  static PRLogModuleInfo* GetLog() { return sLog; }
   1.600 +
   1.601 +  bool IsCompositingCheap(LayersBackend aBackend)
   1.602 +  {
   1.603 +    // LayersBackend::LAYERS_NONE is an error state, but in that case we should try to
   1.604 +    // avoid loading the compositor!
   1.605 +    return LayersBackend::LAYERS_BASIC != aBackend && LayersBackend::LAYERS_NONE != aBackend;
   1.606 +  }
   1.607 +
   1.608 +  virtual bool IsCompositingCheap() { return true; }
   1.609 +
   1.610 +  bool IsInTransaction() const { return mInTransaction; }
   1.611 +
   1.612 +  virtual void SetRegionToClear(const nsIntRegion& aRegion)
   1.613 +  {
   1.614 +    mRegionToClear = aRegion;
   1.615 +  }
   1.616 +
   1.617 +protected:
   1.618 +  nsRefPtr<Layer> mRoot;
   1.619 +  gfx::UserData mUserData;
   1.620 +  bool mDestroyed;
   1.621 +  bool mSnapEffectiveTransforms;
   1.622 +
   1.623 +  nsIntRegion mRegionToClear;
   1.624 +
   1.625 +  // Protected destructor, to discourage deletion outside of Release():
   1.626 +  virtual ~LayerManager() {}
   1.627 +
   1.628 +  // Print interesting information about this into aTo.  Internally
   1.629 +  // used to implement Dump*() and Log*().
   1.630 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
   1.631 +
   1.632 +  static void InitLog();
   1.633 +  static PRLogModuleInfo* sLog;
   1.634 +  uint64_t mId;
   1.635 +  bool mInTransaction;
   1.636 +private:
   1.637 +  struct FramesTimingRecording
   1.638 +  {
   1.639 +    // Stores state and data for frame intervals and paint times recording.
   1.640 +    // see LayerManager::StartFrameTimeRecording() at Layers.cpp for more details.
   1.641 +    FramesTimingRecording()
   1.642 +      : mIsPaused(true)
   1.643 +      , mNextIndex(0)
   1.644 +    {}
   1.645 +    bool mIsPaused;
   1.646 +    uint32_t mNextIndex;
   1.647 +    TimeStamp mLastFrameTime;
   1.648 +    nsTArray<float> mIntervals;
   1.649 +    uint32_t mLatestStartIndex;
   1.650 +    uint32_t mCurrentRunStartIndex;
   1.651 +  };
   1.652 +  FramesTimingRecording mRecording;
   1.653 +
   1.654 +  TimeStamp mTabSwitchStart;
   1.655 +};
   1.656 +
   1.657 +typedef InfallibleTArray<Animation> AnimationArray;
   1.658 +
   1.659 +struct AnimData {
   1.660 +  InfallibleTArray<nsStyleAnimation::Value> mStartValues;
   1.661 +  InfallibleTArray<nsStyleAnimation::Value> mEndValues;
   1.662 +  InfallibleTArray<nsAutoPtr<mozilla::css::ComputedTimingFunction> > mFunctions;
   1.663 +};
   1.664 +
   1.665 +/**
   1.666 + * A Layer represents anything that can be rendered onto a destination
   1.667 + * surface.
   1.668 + */
   1.669 +class Layer {
   1.670 +  NS_INLINE_DECL_REFCOUNTING(Layer)
   1.671 +
   1.672 +public:
   1.673 +  // Keep these in alphabetical order
   1.674 +  enum LayerType {
   1.675 +    TYPE_CANVAS,
   1.676 +    TYPE_COLOR,
   1.677 +    TYPE_CONTAINER,
   1.678 +    TYPE_IMAGE,
   1.679 +    TYPE_READBACK,
   1.680 +    TYPE_REF,
   1.681 +    TYPE_SHADOW,
   1.682 +    TYPE_THEBES
   1.683 +  };
   1.684 +
   1.685 +  /**
   1.686 +   * Returns the LayerManager this Layer belongs to. Note that the layer
   1.687 +   * manager might be in a destroyed state, at which point it's only
   1.688 +   * valid to set/get user data from it.
   1.689 +   */
   1.690 +  LayerManager* Manager() { return mManager; }
   1.691 +
   1.692 +  enum {
   1.693 +    /**
   1.694 +     * If this is set, the caller is promising that by the end of this
   1.695 +     * transaction the entire visible region (as specified by
   1.696 +     * SetVisibleRegion) will be filled with opaque content.
   1.697 +     */
   1.698 +    CONTENT_OPAQUE = 0x01,
   1.699 +    /**
   1.700 +     * If this is set, the caller is notifying that the contents of this layer
   1.701 +     * require per-component alpha for optimal fidelity. However, there is no
   1.702 +     * guarantee that component alpha will be supported for this layer at
   1.703 +     * paint time.
   1.704 +     * This should never be set at the same time as CONTENT_OPAQUE.
   1.705 +     */
   1.706 +    CONTENT_COMPONENT_ALPHA = 0x02,
   1.707 +
   1.708 +    /**
   1.709 +     * If this is set then this layer is part of a preserve-3d group, and should
   1.710 +     * be sorted with sibling layers that are also part of the same group.
   1.711 +     */
   1.712 +    CONTENT_PRESERVE_3D = 0x04,
   1.713 +    /**
   1.714 +     * This indicates that the transform may be changed on during an empty
   1.715 +     * transaction where there is no possibility of redrawing the content, so the
   1.716 +     * implementation should be ready for that.
   1.717 +     */
   1.718 +    CONTENT_MAY_CHANGE_TRANSFORM = 0x08,
   1.719 +
   1.720 +    /**
   1.721 +     * Disable subpixel AA for this layer. This is used if the display isn't suited
   1.722 +     * for subpixel AA like hidpi or rotated content.
   1.723 +     */
   1.724 +    CONTENT_DISABLE_SUBPIXEL_AA = 0x10
   1.725 +  };
   1.726 +  /**
   1.727 +   * CONSTRUCTION PHASE ONLY
   1.728 +   * This lets layout make some promises about what will be drawn into the
   1.729 +   * visible region of the ThebesLayer. This enables internal quality
   1.730 +   * and performance optimizations.
   1.731 +   */
   1.732 +  void SetContentFlags(uint32_t aFlags)
   1.733 +  {
   1.734 +    NS_ASSERTION((aFlags & (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA)) !=
   1.735 +                 (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA),
   1.736 +                 "Can't be opaque and require component alpha");
   1.737 +    if (mContentFlags != aFlags) {
   1.738 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ContentFlags", this));
   1.739 +      mContentFlags = aFlags;
   1.740 +      Mutated();
   1.741 +    }
   1.742 +  }
   1.743 +  /**
   1.744 +   * CONSTRUCTION PHASE ONLY
   1.745 +   * Tell this layer which region will be visible. The visible region
   1.746 +   * is a region which contains all the contents of the layer that can
   1.747 +   * actually affect the rendering of the window. It can exclude areas
   1.748 +   * that are covered by opaque contents of other layers, and it can
   1.749 +   * exclude areas where this layer simply contains no content at all.
   1.750 +   * (This can be an overapproximation to the "true" visible region.)
   1.751 +   *
   1.752 +   * There is no general guarantee that drawing outside the bounds of the
   1.753 +   * visible region will be ignored. So if a layer draws outside the bounds
   1.754 +   * of its visible region, it needs to ensure that what it draws is valid.
   1.755 +   */
   1.756 +  virtual void SetVisibleRegion(const nsIntRegion& aRegion)
   1.757 +  {
   1.758 +    if (!mVisibleRegion.IsEqual(aRegion)) {
   1.759 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) VisibleRegion was %s is %s", this,
   1.760 +        mVisibleRegion.ToString().get(), aRegion.ToString().get()));
   1.761 +      mVisibleRegion = aRegion;
   1.762 +      Mutated();
   1.763 +    }
   1.764 +  }
   1.765 +
   1.766 +  /*
   1.767 +   * Compositor event handling
   1.768 +   * =========================
   1.769 +   * When a touch-start event (or similar) is sent to the AsyncPanZoomController,
   1.770 +   * it needs to decide whether the event should be sent to the main thread.
   1.771 +   * Each layer has a list of event handling regions. When the compositor needs
   1.772 +   * to determine how to handle a touch event, it scans the layer tree from top
   1.773 +   * to bottom in z-order (traversing children before their parents). Points
   1.774 +   * outside the clip region for a layer cause that layer (and its subtree)
   1.775 +   * to be ignored. If a layer has a mask layer, and that mask layer's alpha
   1.776 +   * value is zero at the event point, then the layer and its subtree should
   1.777 +   * be ignored.
   1.778 +   * For each layer, if the point is outside its hit region, we ignore the layer
   1.779 +   * and move onto the next. If the point is inside its hit region but
   1.780 +   * outside the dispatch-to-content region, we can initiate a gesture without
   1.781 +   * consulting the content thread. Otherwise we must dispatch the event to
   1.782 +   * content.
   1.783 +   */
   1.784 +  /**
   1.785 +   * CONSTRUCTION PHASE ONLY
   1.786 +   * Set the event handling region.
   1.787 +   */
   1.788 +  void SetEventRegions(const EventRegions& aRegions)
   1.789 +  {
   1.790 +    if (mEventRegions != aRegions) {
   1.791 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) eventregions were %s, now %s", this,
   1.792 +        mEventRegions.ToString().get(), aRegions.ToString().get()));
   1.793 +      mEventRegions = aRegions;
   1.794 +      Mutated();
   1.795 +    }
   1.796 +  }
   1.797 +
   1.798 +  /**
   1.799 +   * CONSTRUCTION PHASE ONLY
   1.800 +   * Set the opacity which will be applied to this layer as it
   1.801 +   * is composited to the destination.
   1.802 +   */
   1.803 +  void SetOpacity(float aOpacity)
   1.804 +  {
   1.805 +    if (mOpacity != aOpacity) {
   1.806 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Opacity", this));
   1.807 +      mOpacity = aOpacity;
   1.808 +      Mutated();
   1.809 +    }
   1.810 +  }
   1.811 +
   1.812 +  void SetMixBlendMode(gfx::CompositionOp aMixBlendMode)
   1.813 +  {
   1.814 +    if (mMixBlendMode != aMixBlendMode) {
   1.815 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MixBlendMode", this));
   1.816 +      mMixBlendMode = aMixBlendMode;
   1.817 +      Mutated();
   1.818 +    }
   1.819 +  }
   1.820 +  
   1.821 +  void DeprecatedSetMixBlendMode(gfxContext::GraphicsOperator aMixBlendMode)
   1.822 +  {
   1.823 +    SetMixBlendMode(gfx::CompositionOpForOp(aMixBlendMode));
   1.824 +  }
   1.825 +
   1.826 +  void SetForceIsolatedGroup(bool aForceIsolatedGroup)
   1.827 +  {
   1.828 +    if(mForceIsolatedGroup != aForceIsolatedGroup) {
   1.829 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ForceIsolatedGroup", this));
   1.830 +      mForceIsolatedGroup = aForceIsolatedGroup;
   1.831 +      Mutated();
   1.832 +    }
   1.833 +  }
   1.834 +  
   1.835 +  bool GetForceIsolatedGroup() const
   1.836 +  {
   1.837 +    return mForceIsolatedGroup;
   1.838 +  }
   1.839 +
   1.840 +  /**
   1.841 +   * CONSTRUCTION PHASE ONLY
   1.842 +   * Set a clip rect which will be applied to this layer as it is
   1.843 +   * composited to the destination. The coordinates are relative to
   1.844 +   * the parent layer (i.e. the contents of this layer
   1.845 +   * are transformed before this clip rect is applied).
   1.846 +   * For the root layer, the coordinates are relative to the widget,
   1.847 +   * in device pixels.
   1.848 +   * If aRect is null no clipping will be performed.
   1.849 +   */
   1.850 +  void SetClipRect(const nsIntRect* aRect)
   1.851 +  {
   1.852 +    if (mUseClipRect) {
   1.853 +      if (!aRect) {
   1.854 +        MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is <none>", this,
   1.855 +                         mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height));
   1.856 +        mUseClipRect = false;
   1.857 +        Mutated();
   1.858 +      } else {
   1.859 +        if (!aRect->IsEqualEdges(mClipRect)) {
   1.860 +          MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is %d,%d,%d,%d", this,
   1.861 +                           mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height,
   1.862 +                           aRect->x, aRect->y, aRect->width, aRect->height));
   1.863 +          mClipRect = *aRect;
   1.864 +          Mutated();
   1.865 +        }
   1.866 +      }
   1.867 +    } else {
   1.868 +      if (aRect) {
   1.869 +        MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was <none> is %d,%d,%d,%d", this,
   1.870 +                         aRect->x, aRect->y, aRect->width, aRect->height));
   1.871 +        mUseClipRect = true;
   1.872 +        mClipRect = *aRect;
   1.873 +        Mutated();
   1.874 +      }
   1.875 +    }
   1.876 +  }
   1.877 +
   1.878 +  /**
   1.879 +   * CONSTRUCTION PHASE ONLY
   1.880 +   * Set a layer to mask this layer.
   1.881 +   *
   1.882 +   * The mask layer should be applied using its effective transform (after it
   1.883 +   * is calculated by ComputeEffectiveTransformForMaskLayer), this should use
   1.884 +   * this layer's parent's transform and the mask layer's transform, but not
   1.885 +   * this layer's. That is, the mask layer is specified relative to this layer's
   1.886 +   * position in it's parent layer's coord space.
   1.887 +   * Currently, only 2D translations are supported for the mask layer transform.
   1.888 +   *
   1.889 +   * Ownership of aMaskLayer passes to this.
   1.890 +   * Typical use would be an ImageLayer with an alpha image used for masking.
   1.891 +   * See also ContainerState::BuildMaskLayer in FrameLayerBuilder.cpp.
   1.892 +   */
   1.893 +  void SetMaskLayer(Layer* aMaskLayer)
   1.894 +  {
   1.895 +#ifdef DEBUG
   1.896 +    if (aMaskLayer) {
   1.897 +      bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D();
   1.898 +      NS_ASSERTION(maskIs2D, "Mask layer has invalid transform.");
   1.899 +    }
   1.900 +#endif
   1.901 +
   1.902 +    if (mMaskLayer != aMaskLayer) {
   1.903 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MaskLayer", this));
   1.904 +      mMaskLayer = aMaskLayer;
   1.905 +      Mutated();
   1.906 +    }
   1.907 +  }
   1.908 +
   1.909 +  /**
   1.910 +   * CONSTRUCTION PHASE ONLY
   1.911 +   * Tell this layer what its transform should be. The transformation
   1.912 +   * is applied when compositing the layer into its parent container.
   1.913 +   */
   1.914 +  void SetBaseTransform(const gfx::Matrix4x4& aMatrix)
   1.915 +  {
   1.916 +    NS_ASSERTION(!aMatrix.IsSingular(),
   1.917 +                 "Shouldn't be trying to draw with a singular matrix!");
   1.918 +    mPendingTransform = nullptr;
   1.919 +    if (mTransform == aMatrix) {
   1.920 +      return;
   1.921 +    }
   1.922 +    MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) BaseTransform", this));
   1.923 +    mTransform = aMatrix;
   1.924 +    Mutated();
   1.925 +  }
   1.926 +
   1.927 +  /**
   1.928 +   * Can be called at any time.
   1.929 +   *
   1.930 +   * Like SetBaseTransform(), but can be called before the next
   1.931 +   * transform (i.e. outside an open transaction).  Semantically, this
   1.932 +   * method enqueues a new transform value to be set immediately after
   1.933 +   * the next transaction is opened.
   1.934 +   */
   1.935 +  void SetBaseTransformForNextTransaction(const gfx::Matrix4x4& aMatrix)
   1.936 +  {
   1.937 +    mPendingTransform = new gfx::Matrix4x4(aMatrix);
   1.938 +  }
   1.939 +
   1.940 +  void SetPostScale(float aXScale, float aYScale)
   1.941 +  {
   1.942 +    if (mPostXScale == aXScale && mPostYScale == aYScale) {
   1.943 +      return;
   1.944 +    }
   1.945 +    MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PostScale", this));
   1.946 +    mPostXScale = aXScale;
   1.947 +    mPostYScale = aYScale;
   1.948 +    Mutated();
   1.949 +  }
   1.950 +
   1.951 +  /**
   1.952 +   * CONSTRUCTION PHASE ONLY
   1.953 +   * A layer is "fixed position" when it draws content from a content
   1.954 +   * (not chrome) document, the topmost content document has a root scrollframe
   1.955 +   * with a displayport, but the layer does not move when that displayport scrolls.
   1.956 +   */
   1.957 +  void SetIsFixedPosition(bool aFixedPosition)
   1.958 +  {
   1.959 +    if (mIsFixedPosition != aFixedPosition) {
   1.960 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) IsFixedPosition", this));
   1.961 +      mIsFixedPosition = aFixedPosition;
   1.962 +      Mutated();
   1.963 +    }
   1.964 +  }
   1.965 +
   1.966 +  // Call AddAnimation to add a new animation to this layer from layout code.
   1.967 +  // Caller must fill in all the properties of the returned animation.
   1.968 +  Animation* AddAnimation();
   1.969 +  // ClearAnimations clears animations on this layer.
   1.970 +  void ClearAnimations();
   1.971 +  // This is only called when the layer tree is updated. Do not call this from
   1.972 +  // layout code.  To add an animation to this layer, use AddAnimation.
   1.973 +  void SetAnimations(const AnimationArray& aAnimations);
   1.974 +
   1.975 +  // These are a parallel to AddAnimation and clearAnimations, except
   1.976 +  // they add pending animations that apply only when the next
   1.977 +  // transaction is begun.  (See also
   1.978 +  // SetBaseTransformForNextTransaction.)
   1.979 +  Animation* AddAnimationForNextTransaction();
   1.980 +  void ClearAnimationsForNextTransaction();
   1.981 +
   1.982 +  /**
   1.983 +   * CONSTRUCTION PHASE ONLY
   1.984 +   * If a layer is "fixed position", this determines which point on the layer
   1.985 +   * is considered the "anchor" point, that is, the point which remains in the
   1.986 +   * same position when compositing the layer tree with a transformation
   1.987 +   * (such as when asynchronously scrolling and zooming).
   1.988 +   */
   1.989 +  void SetFixedPositionAnchor(const LayerPoint& aAnchor)
   1.990 +  {
   1.991 +    if (mAnchor != aAnchor) {
   1.992 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionAnchor", this));
   1.993 +      mAnchor = aAnchor;
   1.994 +      Mutated();
   1.995 +    }
   1.996 +  }
   1.997 +
   1.998 +  /**
   1.999 +   * CONSTRUCTION PHASE ONLY
  1.1000 +   * If a layer represents a fixed position element or elements that are on
  1.1001 +   * a document that has had fixed position element margins set on it, these
  1.1002 +   * will be mirrored here. This allows for asynchronous animation of the
  1.1003 +   * margins by reconciling the difference between this value and a value that
  1.1004 +   * is updated more frequently.
  1.1005 +   * If the left or top margins are negative, it means that the elements this
  1.1006 +   * layer represents are auto-positioned, and so fixed position margins should
  1.1007 +   * not have an effect on the corresponding axis.
  1.1008 +   */
  1.1009 +  void SetFixedPositionMargins(const LayerMargin& aMargins)
  1.1010 +  {
  1.1011 +    if (mMargins != aMargins) {
  1.1012 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionMargins", this));
  1.1013 +      mMargins = aMargins;
  1.1014 +      Mutated();
  1.1015 +    }
  1.1016 +  }
  1.1017 +
  1.1018 +  /**
  1.1019 +   * CONSTRUCTION PHASE ONLY
  1.1020 +   * If a layer is "sticky position", |aScrollId| holds the scroll identifier
  1.1021 +   * of the scrollable content that contains it. The difference between the two
  1.1022 +   * rectangles |aOuter| and |aInner| is treated as two intervals in each
  1.1023 +   * dimension, with the current scroll position at the origin. For each
  1.1024 +   * dimension, while that component of the scroll position lies within either
  1.1025 +   * interval, the layer should not move relative to its scrolling container.
  1.1026 +   */
  1.1027 +  void SetStickyPositionData(FrameMetrics::ViewID aScrollId, LayerRect aOuter,
  1.1028 +                             LayerRect aInner)
  1.1029 +  {
  1.1030 +    if (!mStickyPositionData ||
  1.1031 +        !mStickyPositionData->mOuter.IsEqualEdges(aOuter) ||
  1.1032 +        !mStickyPositionData->mInner.IsEqualEdges(aInner)) {
  1.1033 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) StickyPositionData", this));
  1.1034 +      if (!mStickyPositionData) {
  1.1035 +        mStickyPositionData = new StickyPositionData;
  1.1036 +      }
  1.1037 +      mStickyPositionData->mScrollId = aScrollId;
  1.1038 +      mStickyPositionData->mOuter = aOuter;
  1.1039 +      mStickyPositionData->mInner = aInner;
  1.1040 +      Mutated();
  1.1041 +    }
  1.1042 +  }
  1.1043 +
  1.1044 +  enum ScrollDirection {
  1.1045 +    NONE,
  1.1046 +    VERTICAL,
  1.1047 +    HORIZONTAL
  1.1048 +  };
  1.1049 +
  1.1050 +  /**
  1.1051 +   * CONSTRUCTION PHASE ONLY
  1.1052 +   * If a layer is a scrollbar layer, |aScrollId| holds the scroll identifier
  1.1053 +   * of the scrollable content that the scrollbar is for.
  1.1054 +   */
  1.1055 +  void SetScrollbarData(FrameMetrics::ViewID aScrollId, ScrollDirection aDir)
  1.1056 +  {
  1.1057 +    if (mScrollbarTargetId != aScrollId ||
  1.1058 +        mScrollbarDirection != aDir) {
  1.1059 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScrollbarData", this));
  1.1060 +      mScrollbarTargetId = aScrollId;
  1.1061 +      mScrollbarDirection = aDir;
  1.1062 +      Mutated();
  1.1063 +    }
  1.1064 +  }
  1.1065 +
  1.1066 +  // These getters can be used anytime.
  1.1067 +  float GetOpacity() { return mOpacity; }
  1.1068 +  gfx::CompositionOp GetMixBlendMode() const { return mMixBlendMode; }
  1.1069 +  const nsIntRect* GetClipRect() { return mUseClipRect ? &mClipRect : nullptr; }
  1.1070 +  uint32_t GetContentFlags() { return mContentFlags; }
  1.1071 +  const nsIntRegion& GetVisibleRegion() { return mVisibleRegion; }
  1.1072 +  const EventRegions& GetEventRegions() const { return mEventRegions; }
  1.1073 +  ContainerLayer* GetParent() { return mParent; }
  1.1074 +  Layer* GetNextSibling() { return mNextSibling; }
  1.1075 +  const Layer* GetNextSibling() const { return mNextSibling; }
  1.1076 +  Layer* GetPrevSibling() { return mPrevSibling; }
  1.1077 +  const Layer* GetPrevSibling() const { return mPrevSibling; }
  1.1078 +  virtual Layer* GetFirstChild() const { return nullptr; }
  1.1079 +  virtual Layer* GetLastChild() const { return nullptr; }
  1.1080 +  const gfx::Matrix4x4 GetTransform() const;
  1.1081 +  const gfx::Matrix4x4& GetBaseTransform() const { return mTransform; }
  1.1082 +  float GetPostXScale() const { return mPostXScale; }
  1.1083 +  float GetPostYScale() const { return mPostYScale; }
  1.1084 +  bool GetIsFixedPosition() { return mIsFixedPosition; }
  1.1085 +  bool GetIsStickyPosition() { return mStickyPositionData; }
  1.1086 +  LayerPoint GetFixedPositionAnchor() { return mAnchor; }
  1.1087 +  const LayerMargin& GetFixedPositionMargins() { return mMargins; }
  1.1088 +  FrameMetrics::ViewID GetStickyScrollContainerId() { return mStickyPositionData->mScrollId; }
  1.1089 +  const LayerRect& GetStickyScrollRangeOuter() { return mStickyPositionData->mOuter; }
  1.1090 +  const LayerRect& GetStickyScrollRangeInner() { return mStickyPositionData->mInner; }
  1.1091 +  FrameMetrics::ViewID GetScrollbarTargetContainerId() { return mScrollbarTargetId; }
  1.1092 +  ScrollDirection GetScrollbarDirection() { return mScrollbarDirection; }
  1.1093 +  Layer* GetMaskLayer() const { return mMaskLayer; }
  1.1094 +
  1.1095 +  // Note that all lengths in animation data are either in CSS pixels or app
  1.1096 +  // units and must be converted to device pixels by the compositor.
  1.1097 +  AnimationArray& GetAnimations() { return mAnimations; }
  1.1098 +  InfallibleTArray<AnimData>& GetAnimationData() { return mAnimationData; }
  1.1099 +
  1.1100 +  uint64_t GetAnimationGeneration() { return mAnimationGeneration; }
  1.1101 +  void SetAnimationGeneration(uint64_t aCount) { mAnimationGeneration = aCount; }
  1.1102 +
  1.1103 +  /**
  1.1104 +   * Returns the local transform for this layer: either mTransform or,
  1.1105 +   * for shadow layers, GetShadowTransform()
  1.1106 +   */
  1.1107 +  const gfx::Matrix4x4 GetLocalTransform();
  1.1108 +
  1.1109 +  /**
  1.1110 +   * Returns the local opacity for this layer: either mOpacity or,
  1.1111 +   * for shadow layers, GetShadowOpacity()
  1.1112 +   */
  1.1113 +  const float GetLocalOpacity();
  1.1114 +
  1.1115 +  /**
  1.1116 +   * DRAWING PHASE ONLY
  1.1117 +   *
  1.1118 +   * Apply pending changes to layers before drawing them, if those
  1.1119 +   * pending changes haven't been overridden by later changes.
  1.1120 +   */
  1.1121 +  void ApplyPendingUpdatesToSubtree();
  1.1122 +
  1.1123 +  /**
  1.1124 +   * DRAWING PHASE ONLY
  1.1125 +   *
  1.1126 +   * Write layer-subtype-specific attributes into aAttrs.  Used to
  1.1127 +   * synchronize layer attributes to their shadows'.
  1.1128 +   */
  1.1129 +  virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { }
  1.1130 +
  1.1131 +  // Returns true if it's OK to save the contents of aLayer in an
  1.1132 +  // opaque surface (a surface without an alpha channel).
  1.1133 +  // If we can use a surface without an alpha channel, we should, because
  1.1134 +  // it will often make painting of antialiased text faster and higher
  1.1135 +  // quality.
  1.1136 +  bool CanUseOpaqueSurface();
  1.1137 +
  1.1138 +  SurfaceMode GetSurfaceMode()
  1.1139 +  {
  1.1140 +    if (CanUseOpaqueSurface())
  1.1141 +      return SurfaceMode::SURFACE_OPAQUE;
  1.1142 +    if (mContentFlags & CONTENT_COMPONENT_ALPHA)
  1.1143 +      return SurfaceMode::SURFACE_COMPONENT_ALPHA;
  1.1144 +    return SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA;
  1.1145 +  }
  1.1146 +
  1.1147 +  /**
  1.1148 +   * This setter can be used anytime. The user data for all keys is
  1.1149 +   * initially null. Ownership pases to the layer manager.
  1.1150 +   */
  1.1151 +  void SetUserData(void* aKey, LayerUserData* aData)
  1.1152 +  {
  1.1153 +    mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
  1.1154 +  }
  1.1155 +  /**
  1.1156 +   * This can be used anytime. Ownership passes to the caller!
  1.1157 +   */
  1.1158 +  nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
  1.1159 +  {
  1.1160 +    nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
  1.1161 +    return d;
  1.1162 +  }
  1.1163 +  /**
  1.1164 +   * This getter can be used anytime.
  1.1165 +   */
  1.1166 +  bool HasUserData(void* aKey)
  1.1167 +  {
  1.1168 +    return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
  1.1169 +  }
  1.1170 +  /**
  1.1171 +   * This getter can be used anytime. Ownership is retained by the layer
  1.1172 +   * manager.
  1.1173 +   */
  1.1174 +  LayerUserData* GetUserData(void* aKey) const
  1.1175 +  {
  1.1176 +    return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
  1.1177 +  }
  1.1178 +
  1.1179 +  /**
  1.1180 +   * |Disconnect()| is used by layers hooked up over IPC.  It may be
  1.1181 +   * called at any time, and may not be called at all.  Using an
  1.1182 +   * IPC-enabled layer after Destroy() (drawing etc.) results in a
  1.1183 +   * safe no-op; no crashy or uaf etc.
  1.1184 +   *
  1.1185 +   * XXX: this interface is essentially LayerManager::Destroy, but at
  1.1186 +   * Layer granularity.  It might be beneficial to unify them.
  1.1187 +   */
  1.1188 +  virtual void Disconnect() {}
  1.1189 +
  1.1190 +  /**
  1.1191 +   * Dynamic downcast to a Thebes layer. Returns null if this is not
  1.1192 +   * a ThebesLayer.
  1.1193 +   */
  1.1194 +  virtual ThebesLayer* AsThebesLayer() { return nullptr; }
  1.1195 +
  1.1196 +  /**
  1.1197 +   * Dynamic cast to a ContainerLayer. Returns null if this is not
  1.1198 +   * a ContainerLayer.
  1.1199 +   */
  1.1200 +  virtual ContainerLayer* AsContainerLayer() { return nullptr; }
  1.1201 +  virtual const ContainerLayer* AsContainerLayer() const { return nullptr; }
  1.1202 +
  1.1203 +   /**
  1.1204 +    * Dynamic cast to a RefLayer. Returns null if this is not a
  1.1205 +    * RefLayer.
  1.1206 +    */
  1.1207 +  virtual RefLayer* AsRefLayer() { return nullptr; }
  1.1208 +
  1.1209 +   /**
  1.1210 +    * Dynamic cast to a Color. Returns null if this is not a
  1.1211 +    * ColorLayer.
  1.1212 +    */
  1.1213 +  virtual ColorLayer* AsColorLayer() { return nullptr; }
  1.1214 +
  1.1215 +  /**
  1.1216 +   * Dynamic cast to a LayerComposite.  Return null if this is not a
  1.1217 +   * LayerComposite.  Can be used anytime.
  1.1218 +   */
  1.1219 +  virtual LayerComposite* AsLayerComposite() { return nullptr; }
  1.1220 +
  1.1221 +  /**
  1.1222 +   * Dynamic cast to a ShadowableLayer.  Return null if this is not a
  1.1223 +   * ShadowableLayer.  Can be used anytime.
  1.1224 +   */
  1.1225 +  virtual ShadowableLayer* AsShadowableLayer() { return nullptr; }
  1.1226 +
  1.1227 +  // These getters can be used anytime.  They return the effective
  1.1228 +  // values that should be used when drawing this layer to screen,
  1.1229 +  // accounting for this layer possibly being a shadow.
  1.1230 +  const nsIntRect* GetEffectiveClipRect();
  1.1231 +  const nsIntRegion& GetEffectiveVisibleRegion();
  1.1232 +
  1.1233 +  /**
  1.1234 +   * Returns the product of the opacities of this layer and all ancestors up
  1.1235 +   * to and excluding the nearest ancestor that has UseIntermediateSurface() set.
  1.1236 +   */
  1.1237 +  float GetEffectiveOpacity();
  1.1238 +  
  1.1239 +  /**
  1.1240 +   * Returns the blendmode of this layer.
  1.1241 +   */
  1.1242 +  gfx::CompositionOp GetEffectiveMixBlendMode();
  1.1243 +  gfxContext::GraphicsOperator DeprecatedGetEffectiveMixBlendMode();
  1.1244 +  
  1.1245 +  /**
  1.1246 +   * This returns the effective transform computed by
  1.1247 +   * ComputeEffectiveTransforms. Typically this is a transform that transforms
  1.1248 +   * this layer all the way to some intermediate surface or destination
  1.1249 +   * surface. For non-BasicLayers this will be a transform to the nearest
  1.1250 +   * ancestor with UseIntermediateSurface() (or to the root, if there is no
  1.1251 +   * such ancestor), but for BasicLayers it's different.
  1.1252 +   */
  1.1253 +  const gfx::Matrix4x4& GetEffectiveTransform() const { return mEffectiveTransform; }
  1.1254 +
  1.1255 +  /**
  1.1256 +   * @param aTransformToSurface the composition of the transforms
  1.1257 +   * from the parent layer (if any) to the destination pixel grid.
  1.1258 +   *
  1.1259 +   * Computes mEffectiveTransform for this layer and all its descendants.
  1.1260 +   * mEffectiveTransform transforms this layer up to the destination
  1.1261 +   * pixel grid (whatever aTransformToSurface is relative to).
  1.1262 +   *
  1.1263 +   * We promise that when this is called on a layer, all ancestor layers
  1.1264 +   * have already had ComputeEffectiveTransforms called.
  1.1265 +   */
  1.1266 +  virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) = 0;
  1.1267 +
  1.1268 +  /**
  1.1269 +   * computes the effective transform for a mask layer, if this layer has one
  1.1270 +   */
  1.1271 +  void ComputeEffectiveTransformForMaskLayer(const gfx::Matrix4x4& aTransformToSurface);
  1.1272 +
  1.1273 +  /**
  1.1274 +   * Calculate the scissor rect required when rendering this layer.
  1.1275 +   * Returns a rectangle relative to the intermediate surface belonging to the
  1.1276 +   * nearest ancestor that has an intermediate surface, or relative to the root
  1.1277 +   * viewport if no ancestor has an intermediate surface, corresponding to the
  1.1278 +   * clip rect for this layer intersected with aCurrentScissorRect.
  1.1279 +   * If no ancestor has an intermediate surface, the clip rect is transformed
  1.1280 +   * by aWorldTransform before being combined with aCurrentScissorRect, if
  1.1281 +   * aWorldTransform is non-null.
  1.1282 +   */
  1.1283 +  nsIntRect CalculateScissorRect(const nsIntRect& aCurrentScissorRect,
  1.1284 +                                 const gfx::Matrix* aWorldTransform);
  1.1285 +
  1.1286 +  virtual const char* Name() const =0;
  1.1287 +  virtual LayerType GetType() const =0;
  1.1288 +
  1.1289 +  /**
  1.1290 +   * Only the implementation should call this. This is per-implementation
  1.1291 +   * private data. Normally, all layers with a given layer manager
  1.1292 +   * use the same type of ImplData.
  1.1293 +   */
  1.1294 +  void* ImplData() { return mImplData; }
  1.1295 +
  1.1296 +  /**
  1.1297 +   * Only the implementation should use these methods.
  1.1298 +   */
  1.1299 +  void SetParent(ContainerLayer* aParent) { mParent = aParent; }
  1.1300 +  void SetNextSibling(Layer* aSibling) { mNextSibling = aSibling; }
  1.1301 +  void SetPrevSibling(Layer* aSibling) { mPrevSibling = aSibling; }
  1.1302 +
  1.1303 +  /**
  1.1304 +   * Dump information about this layer manager and its managed tree to
  1.1305 +   * aFile, which defaults to stderr.
  1.1306 +   */
  1.1307 +  void Dump(FILE* aFile=nullptr, const char* aPrefix="", bool aDumpHtml=false);
  1.1308 +  /**
  1.1309 +   * Dump information about just this layer manager itself to aFile,
  1.1310 +   * which defaults to stderr.
  1.1311 +   */
  1.1312 +  void DumpSelf(FILE* aFile=nullptr, const char* aPrefix="");
  1.1313 +
  1.1314 +  /**
  1.1315 +   * Log information about this layer manager and its managed tree to
  1.1316 +   * the NSPR log (if enabled for "Layers").
  1.1317 +   */
  1.1318 +  void Log(const char* aPrefix="");
  1.1319 +  /**
  1.1320 +   * Log information about just this layer manager itself to the NSPR
  1.1321 +   * log (if enabled for "Layers").
  1.1322 +   */
  1.1323 +  void LogSelf(const char* aPrefix="");
  1.1324 +
  1.1325 +  // Print interesting information about this into aTo.  Internally
  1.1326 +  // used to implement Dump*() and Log*().  If subclasses have
  1.1327 +  // additional interesting properties, they should override this with
  1.1328 +  // an implementation that first calls the base implementation then
  1.1329 +  // appends additional info to aTo.
  1.1330 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
  1.1331 +
  1.1332 +  static bool IsLogEnabled() { return LayerManager::IsLogEnabled(); }
  1.1333 +
  1.1334 +  /**
  1.1335 +   * Returns the current area of the layer (in layer-space coordinates)
  1.1336 +   * marked as needed to be recomposited.
  1.1337 +   */
  1.1338 +  const nsIntRegion& GetInvalidRegion() { return mInvalidRegion; }
  1.1339 +  const void SetInvalidRegion(const nsIntRegion& aRect) { mInvalidRegion = aRect; }
  1.1340 +
  1.1341 +  /**
  1.1342 +   * Mark the entirety of the layer's visible region as being invalid.
  1.1343 +   */
  1.1344 +  void SetInvalidRectToVisibleRegion() { mInvalidRegion = GetVisibleRegion(); }
  1.1345 +
  1.1346 +  /**
  1.1347 +   * Adds to the current invalid rect.
  1.1348 +   */
  1.1349 +  void AddInvalidRect(const nsIntRect& aRect) { mInvalidRegion.Or(mInvalidRegion, aRect); }
  1.1350 +
  1.1351 +  /**
  1.1352 +   * Clear the invalid rect, marking the layer as being identical to what is currently
  1.1353 +   * composited.
  1.1354 +   */
  1.1355 +  void ClearInvalidRect() { mInvalidRegion.SetEmpty(); }
  1.1356 +
  1.1357 +  void ApplyPendingUpdatesForThisTransaction();
  1.1358 +
  1.1359 +#ifdef DEBUG
  1.1360 +  void SetDebugColorIndex(uint32_t aIndex) { mDebugColorIndex = aIndex; }
  1.1361 +  uint32_t GetDebugColorIndex() { return mDebugColorIndex; }
  1.1362 +#endif
  1.1363 +
  1.1364 +  virtual LayerRenderState GetRenderState() { return LayerRenderState(); }
  1.1365 +
  1.1366 +
  1.1367 +  void Mutated()
  1.1368 +  {
  1.1369 +    mManager->Mutated(this);
  1.1370 +  }
  1.1371 +
  1.1372 +protected:
  1.1373 +  Layer(LayerManager* aManager, void* aImplData);
  1.1374 +
  1.1375 +  // Protected destructor, to discourage deletion outside of Release():
  1.1376 +  virtual ~Layer();
  1.1377 +
  1.1378 +  /**
  1.1379 +   * We can snap layer transforms for two reasons:
  1.1380 +   * 1) To avoid unnecessary resampling when a transform is a translation
  1.1381 +   * by a non-integer number of pixels.
  1.1382 +   * Snapping the translation to an integer number of pixels avoids
  1.1383 +   * blurring the layer and can be faster to composite.
  1.1384 +   * 2) When a layer is used to render a rectangular object, we need to
  1.1385 +   * emulate the rendering of rectangular inactive content and snap the
  1.1386 +   * edges of the rectangle to pixel boundaries. This is both to ensure
  1.1387 +   * layer rendering is consistent with inactive content rendering, and to
  1.1388 +   * avoid seams.
  1.1389 +   * This function implements type 1 snapping. If aTransform is a 2D
  1.1390 +   * translation, and this layer's layer manager has enabled snapping
  1.1391 +   * (which is the default), return aTransform with the translation snapped
  1.1392 +   * to nearest pixels. Otherwise just return aTransform. Call this when the
  1.1393 +   * layer does not correspond to a single rectangular content object.
  1.1394 +   * This function does not try to snap if aTransform has a scale, because in
  1.1395 +   * that case resampling is inevitable and there's no point in trying to
  1.1396 +   * avoid it. In fact snapping can cause problems because pixel edges in the
  1.1397 +   * layer's content can be rendered unpredictably (jiggling) as the scale
  1.1398 +   * interacts with the snapping of the translation, especially with animated
  1.1399 +   * transforms.
  1.1400 +   * @param aResidualTransform a transform to apply before the result transform
  1.1401 +   * in order to get the results to completely match aTransform.
  1.1402 +   */
  1.1403 +  gfx::Matrix4x4 SnapTransformTranslation(const gfx::Matrix4x4& aTransform,
  1.1404 +                                          gfx::Matrix* aResidualTransform);
  1.1405 +  /**
  1.1406 +   * See comment for SnapTransformTranslation.
  1.1407 +   * This function implements type 2 snapping. If aTransform is a translation
  1.1408 +   * and/or scale, transform aSnapRect by aTransform, snap to pixel boundaries,
  1.1409 +   * and return the transform that maps aSnapRect to that rect. Otherwise
  1.1410 +   * just return aTransform.
  1.1411 +   * @param aSnapRect a rectangle whose edges should be snapped to pixel
  1.1412 +   * boundaries in the destination surface.
  1.1413 +   * @param aResidualTransform a transform to apply before the result transform
  1.1414 +   * in order to get the results to completely match aTransform.
  1.1415 +   */
  1.1416 +  gfx::Matrix4x4 SnapTransform(const gfx::Matrix4x4& aTransform,
  1.1417 +                               const gfxRect& aSnapRect,
  1.1418 +                               gfx::Matrix* aResidualTransform);
  1.1419 +
  1.1420 +  /**
  1.1421 +   * Returns true if this layer's effective transform is not just
  1.1422 +   * a translation by integers, or if this layer or some ancestor layer
  1.1423 +   * is marked as having a transform that may change without a full layer
  1.1424 +   * transaction.
  1.1425 +   */
  1.1426 +  bool MayResample();
  1.1427 +
  1.1428 +  LayerManager* mManager;
  1.1429 +  ContainerLayer* mParent;
  1.1430 +  Layer* mNextSibling;
  1.1431 +  Layer* mPrevSibling;
  1.1432 +  void* mImplData;
  1.1433 +  nsRefPtr<Layer> mMaskLayer;
  1.1434 +  gfx::UserData mUserData;
  1.1435 +  nsIntRegion mVisibleRegion;
  1.1436 +  EventRegions mEventRegions;
  1.1437 +  gfx::Matrix4x4 mTransform;
  1.1438 +  // A mutation of |mTransform| that we've queued to be applied at the
  1.1439 +  // end of the next transaction (if nothing else overrides it in the
  1.1440 +  // meantime).
  1.1441 +  nsAutoPtr<gfx::Matrix4x4> mPendingTransform;
  1.1442 +  float mPostXScale;
  1.1443 +  float mPostYScale;
  1.1444 +  gfx::Matrix4x4 mEffectiveTransform;
  1.1445 +  AnimationArray mAnimations;
  1.1446 +  // See mPendingTransform above.
  1.1447 +  nsAutoPtr<AnimationArray> mPendingAnimations;
  1.1448 +  InfallibleTArray<AnimData> mAnimationData;
  1.1449 +  float mOpacity;
  1.1450 +  gfx::CompositionOp mMixBlendMode;
  1.1451 +  bool mForceIsolatedGroup;
  1.1452 +  nsIntRect mClipRect;
  1.1453 +  nsIntRect mTileSourceRect;
  1.1454 +  nsIntRegion mInvalidRegion;
  1.1455 +  uint32_t mContentFlags;
  1.1456 +  bool mUseClipRect;
  1.1457 +  bool mUseTileSourceRect;
  1.1458 +  bool mIsFixedPosition;
  1.1459 +  LayerPoint mAnchor;
  1.1460 +  LayerMargin mMargins;
  1.1461 +  struct StickyPositionData {
  1.1462 +    FrameMetrics::ViewID mScrollId;
  1.1463 +    LayerRect mOuter;
  1.1464 +    LayerRect mInner;
  1.1465 +  };
  1.1466 +  nsAutoPtr<StickyPositionData> mStickyPositionData;
  1.1467 +  FrameMetrics::ViewID mScrollbarTargetId;
  1.1468 +  ScrollDirection mScrollbarDirection;
  1.1469 +  DebugOnly<uint32_t> mDebugColorIndex;
  1.1470 +  // If this layer is used for OMTA, then this counter is used to ensure we
  1.1471 +  // stay in sync with the animation manager
  1.1472 +  uint64_t mAnimationGeneration;
  1.1473 +};
  1.1474 +
  1.1475 +/**
  1.1476 + * A Layer which we can draw into using Thebes. It is a conceptually
  1.1477 + * infinite surface, but each ThebesLayer has an associated "valid region"
  1.1478 + * of contents that it is currently storing, which is finite. ThebesLayer
  1.1479 + * implementations can store content between paints.
  1.1480 + *
  1.1481 + * ThebesLayers are rendered into during the drawing phase of a transaction.
  1.1482 + *
  1.1483 + * Currently the contents of a ThebesLayer are in the device output color
  1.1484 + * space.
  1.1485 + */
  1.1486 +class ThebesLayer : public Layer {
  1.1487 +public:
  1.1488 +  /**
  1.1489 +   * CONSTRUCTION PHASE ONLY
  1.1490 +   * Tell this layer that the content in some region has changed and
  1.1491 +   * will need to be repainted. This area is removed from the valid
  1.1492 +   * region.
  1.1493 +   */
  1.1494 +  virtual void InvalidateRegion(const nsIntRegion& aRegion) = 0;
  1.1495 +  /**
  1.1496 +   * CONSTRUCTION PHASE ONLY
  1.1497 +   * Set whether ComputeEffectiveTransforms should compute the
  1.1498 +   * "residual translation" --- the translation that should be applied *before*
  1.1499 +   * mEffectiveTransform to get the ideal transform for this ThebesLayer.
  1.1500 +   * When this is true, ComputeEffectiveTransforms will compute the residual
  1.1501 +   * and ensure that the layer is invalidated whenever the residual changes.
  1.1502 +   * When it's false, a change in the residual will not trigger invalidation
  1.1503 +   * and GetResidualTranslation will return 0,0.
  1.1504 +   * So when the residual is to be ignored, set this to false for better
  1.1505 +   * performance.
  1.1506 +   */
  1.1507 +  void SetAllowResidualTranslation(bool aAllow) { mAllowResidualTranslation = aAllow; }
  1.1508 +
  1.1509 +  /**
  1.1510 +   * Can be used anytime
  1.1511 +   */
  1.1512 +  const nsIntRegion& GetValidRegion() const { return mValidRegion; }
  1.1513 +
  1.1514 +  virtual ThebesLayer* AsThebesLayer() { return this; }
  1.1515 +
  1.1516 +  MOZ_LAYER_DECL_NAME("ThebesLayer", TYPE_THEBES)
  1.1517 +
  1.1518 +  virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface)
  1.1519 +  {
  1.1520 +    gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
  1.1521 +    gfx::Matrix residual;
  1.1522 +    mEffectiveTransform = SnapTransformTranslation(idealTransform,
  1.1523 +        mAllowResidualTranslation ? &residual : nullptr);
  1.1524 +    // The residual can only be a translation because SnapTransformTranslation
  1.1525 +    // only changes the transform if it's a translation
  1.1526 +    NS_ASSERTION(residual.IsTranslation(),
  1.1527 +                 "Residual transform can only be a translation");
  1.1528 +    if (!gfx::ThebesPoint(residual.GetTranslation()).WithinEpsilonOf(mResidualTranslation, 1e-3f)) {
  1.1529 +      mResidualTranslation = gfx::ThebesPoint(residual.GetTranslation());
  1.1530 +      NS_ASSERTION(-0.5 <= mResidualTranslation.x && mResidualTranslation.x < 0.5 &&
  1.1531 +                   -0.5 <= mResidualTranslation.y && mResidualTranslation.y < 0.5,
  1.1532 +                   "Residual translation out of range");
  1.1533 +      mValidRegion.SetEmpty();
  1.1534 +    }
  1.1535 +    ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
  1.1536 +  }
  1.1537 +
  1.1538 +  bool UsedForReadback() { return mUsedForReadback; }
  1.1539 +  void SetUsedForReadback(bool aUsed) { mUsedForReadback = aUsed; }
  1.1540 +  /**
  1.1541 +   * Returns the residual translation. Apply this translation when drawing
  1.1542 +   * into the ThebesLayer so that when mEffectiveTransform is applied afterwards
  1.1543 +   * by layer compositing, the results exactly match the "ideal transform"
  1.1544 +   * (the product of the transform of this layer and its ancestors).
  1.1545 +   * Returns 0,0 unless SetAllowResidualTranslation(true) has been called.
  1.1546 +   * The residual translation components are always in the range [-0.5, 0.5).
  1.1547 +   */
  1.1548 +  gfxPoint GetResidualTranslation() const { return mResidualTranslation; }
  1.1549 +
  1.1550 +protected:
  1.1551 +  ThebesLayer(LayerManager* aManager, void* aImplData)
  1.1552 +    : Layer(aManager, aImplData)
  1.1553 +    , mValidRegion()
  1.1554 +    , mUsedForReadback(false)
  1.1555 +    , mAllowResidualTranslation(false)
  1.1556 +  {
  1.1557 +    mContentFlags = 0; // Clear NO_TEXT, NO_TEXT_OVER_TRANSPARENT
  1.1558 +  }
  1.1559 +
  1.1560 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
  1.1561 +
  1.1562 +  /**
  1.1563 +   * ComputeEffectiveTransforms snaps the ideal transform to get mEffectiveTransform.
  1.1564 +   * mResidualTranslation is the translation that should be applied *before*
  1.1565 +   * mEffectiveTransform to get the ideal transform.
  1.1566 +   */
  1.1567 +  gfxPoint mResidualTranslation;
  1.1568 +  nsIntRegion mValidRegion;
  1.1569 +  /**
  1.1570 +   * Set when this ThebesLayer is participating in readback, i.e. some
  1.1571 +   * ReadbackLayer (may) be getting its background from this layer.
  1.1572 +   */
  1.1573 +  bool mUsedForReadback;
  1.1574 +  /**
  1.1575 +   * True when
  1.1576 +   */
  1.1577 +  bool mAllowResidualTranslation;
  1.1578 +};
  1.1579 +
  1.1580 +/**
  1.1581 + * A Layer which other layers render into. It holds references to its
  1.1582 + * children.
  1.1583 + */
  1.1584 +class ContainerLayer : public Layer {
  1.1585 +public:
  1.1586 +
  1.1587 +  ~ContainerLayer();
  1.1588 +
  1.1589 +  /**
  1.1590 +   * CONSTRUCTION PHASE ONLY
  1.1591 +   * Insert aChild into the child list of this container. aChild must
  1.1592 +   * not be currently in any child list or the root for the layer manager.
  1.1593 +   * If aAfter is non-null, it must be a child of this container and
  1.1594 +   * we insert after that layer. If it's null we insert at the start.
  1.1595 +   */
  1.1596 +  virtual bool InsertAfter(Layer* aChild, Layer* aAfter);
  1.1597 +  /**
  1.1598 +   * CONSTRUCTION PHASE ONLY
  1.1599 +   * Remove aChild from the child list of this container. aChild must
  1.1600 +   * be a child of this container.
  1.1601 +   */
  1.1602 +  virtual bool RemoveChild(Layer* aChild);
  1.1603 +  /**
  1.1604 +   * CONSTRUCTION PHASE ONLY
  1.1605 +   * Reposition aChild from the child list of this container. aChild must
  1.1606 +   * be a child of this container.
  1.1607 +   * If aAfter is non-null, it must be a child of this container and we
  1.1608 +   * reposition after that layer. If it's null, we reposition at the start.
  1.1609 +   */
  1.1610 +  virtual bool RepositionChild(Layer* aChild, Layer* aAfter);
  1.1611 +
  1.1612 +  /**
  1.1613 +   * CONSTRUCTION PHASE ONLY
  1.1614 +   * Set the (sub)document metrics used to render the Layer subtree
  1.1615 +   * rooted at this.
  1.1616 +   */
  1.1617 +  void SetFrameMetrics(const FrameMetrics& aFrameMetrics)
  1.1618 +  {
  1.1619 +    if (mFrameMetrics != aFrameMetrics) {
  1.1620 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
  1.1621 +      mFrameMetrics = aFrameMetrics;
  1.1622 +      Mutated();
  1.1623 +    }
  1.1624 +  }
  1.1625 +
  1.1626 +  // These functions allow attaching an AsyncPanZoomController to this layer,
  1.1627 +  // and can be used anytime.
  1.1628 +  // A container layer has an APZC only-if GetFrameMetrics().IsScrollable()
  1.1629 +  void SetAsyncPanZoomController(AsyncPanZoomController *controller);
  1.1630 +  AsyncPanZoomController* GetAsyncPanZoomController() const;
  1.1631 +
  1.1632 +  /**
  1.1633 +   * CONSTRUCTION PHASE ONLY
  1.1634 +   * Set the ViewID of the ContainerLayer to which overscroll should be handed
  1.1635 +   * off. A value of NULL_SCROLL_ID means that the default handoff-parent-finding
  1.1636 +   * behaviour should be used (i.e. walk up the layer tree to find the next
  1.1637 +   * scrollable ancestor layer).
  1.1638 +   */
  1.1639 +  void SetScrollHandoffParentId(FrameMetrics::ViewID aScrollParentId)
  1.1640 +  {
  1.1641 +    if (mScrollHandoffParentId != aScrollParentId) {
  1.1642 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScrollHandoffParentId", this));
  1.1643 +      mScrollHandoffParentId = aScrollParentId;
  1.1644 +      Mutated();
  1.1645 +    }
  1.1646 +  }
  1.1647 +
  1.1648 +  void SetPreScale(float aXScale, float aYScale)
  1.1649 +  {
  1.1650 +    if (mPreXScale == aXScale && mPreYScale == aYScale) {
  1.1651 +      return;
  1.1652 +    }
  1.1653 +
  1.1654 +    MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PreScale", this));
  1.1655 +    mPreXScale = aXScale;
  1.1656 +    mPreYScale = aYScale;
  1.1657 +    Mutated();
  1.1658 +  }
  1.1659 +
  1.1660 +  void SetInheritedScale(float aXScale, float aYScale)
  1.1661 +  {
  1.1662 +    if (mInheritedXScale == aXScale && mInheritedYScale == aYScale) {
  1.1663 +      return;
  1.1664 +    }
  1.1665 +
  1.1666 +    MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) InheritedScale", this));
  1.1667 +    mInheritedXScale = aXScale;
  1.1668 +    mInheritedYScale = aYScale;
  1.1669 +    Mutated();
  1.1670 +  }
  1.1671 +
  1.1672 +  virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs);
  1.1673 +
  1.1674 +  void SortChildrenBy3DZOrder(nsTArray<Layer*>& aArray);
  1.1675 +
  1.1676 +  // These getters can be used anytime.
  1.1677 +
  1.1678 +  virtual ContainerLayer* AsContainerLayer() { return this; }
  1.1679 +  virtual const ContainerLayer* AsContainerLayer() const { return this; }
  1.1680 +
  1.1681 +  virtual Layer* GetFirstChild() const { return mFirstChild; }
  1.1682 +  virtual Layer* GetLastChild() const { return mLastChild; }
  1.1683 +  const FrameMetrics& GetFrameMetrics() const { return mFrameMetrics; }
  1.1684 +  FrameMetrics::ViewID GetScrollHandoffParentId() const { return mScrollHandoffParentId; }
  1.1685 +  float GetPreXScale() const { return mPreXScale; }
  1.1686 +  float GetPreYScale() const { return mPreYScale; }
  1.1687 +  float GetInheritedXScale() const { return mInheritedXScale; }
  1.1688 +  float GetInheritedYScale() const { return mInheritedYScale; }
  1.1689 +
  1.1690 +  MOZ_LAYER_DECL_NAME("ContainerLayer", TYPE_CONTAINER)
  1.1691 +
  1.1692 +  /**
  1.1693 +   * ContainerLayer backends need to override ComputeEffectiveTransforms
  1.1694 +   * since the decision about whether to use a temporary surface for the
  1.1695 +   * container is backend-specific. ComputeEffectiveTransforms must also set
  1.1696 +   * mUseIntermediateSurface.
  1.1697 +   */
  1.1698 +  virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) = 0;
  1.1699 +
  1.1700 +  /**
  1.1701 +   * Call this only after ComputeEffectiveTransforms has been invoked
  1.1702 +   * on this layer.
  1.1703 +   * Returns true if this will use an intermediate surface. This is largely
  1.1704 +   * backend-dependent, but it affects the operation of GetEffectiveOpacity().
  1.1705 +   */
  1.1706 +  bool UseIntermediateSurface() { return mUseIntermediateSurface; }
  1.1707 +
  1.1708 +  /**
  1.1709 +   * Returns the rectangle covered by the intermediate surface,
  1.1710 +   * in this layer's coordinate system
  1.1711 +   */
  1.1712 +  nsIntRect GetIntermediateSurfaceRect()
  1.1713 +  {
  1.1714 +    NS_ASSERTION(mUseIntermediateSurface, "Must have intermediate surface");
  1.1715 +    return mVisibleRegion.GetBounds();
  1.1716 +  }
  1.1717 +
  1.1718 +  /**
  1.1719 +   * Returns true if this container has more than one non-empty child
  1.1720 +   */
  1.1721 +  bool HasMultipleChildren();
  1.1722 +
  1.1723 +  /**
  1.1724 +   * Returns true if this container supports children with component alpha.
  1.1725 +   * Should only be called while painting a child of this layer.
  1.1726 +   */
  1.1727 +  bool SupportsComponentAlphaChildren() { return mSupportsComponentAlphaChildren; }
  1.1728 +
  1.1729 +  /**
  1.1730 +   * Returns true if aLayer or any layer in its parent chain has the opaque
  1.1731 +   * content flag set.
  1.1732 +   */
  1.1733 +  static bool HasOpaqueAncestorLayer(Layer* aLayer);
  1.1734 +
  1.1735 +protected:
  1.1736 +  friend class ReadbackProcessor;
  1.1737 +
  1.1738 +  void DidInsertChild(Layer* aLayer);
  1.1739 +  void DidRemoveChild(Layer* aLayer);
  1.1740 +
  1.1741 +  ContainerLayer(LayerManager* aManager, void* aImplData);
  1.1742 +
  1.1743 +  /**
  1.1744 +   * A default implementation of ComputeEffectiveTransforms for use by OpenGL
  1.1745 +   * and D3D.
  1.1746 +   */
  1.1747 +  void DefaultComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface);
  1.1748 +
  1.1749 +  /**
  1.1750 +   * Loops over the children calling ComputeEffectiveTransforms on them.
  1.1751 +   */
  1.1752 +  void ComputeEffectiveTransformsForChildren(const gfx::Matrix4x4& aTransformToSurface);
  1.1753 +
  1.1754 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
  1.1755 +
  1.1756 +  Layer* mFirstChild;
  1.1757 +  Layer* mLastChild;
  1.1758 +  FrameMetrics mFrameMetrics;
  1.1759 +  nsRefPtr<AsyncPanZoomController> mAPZC;
  1.1760 +  FrameMetrics::ViewID mScrollHandoffParentId;
  1.1761 +  float mPreXScale;
  1.1762 +  float mPreYScale;
  1.1763 +  // The resolution scale inherited from the parent layer. This will already
  1.1764 +  // be part of mTransform.
  1.1765 +  float mInheritedXScale;
  1.1766 +  float mInheritedYScale;
  1.1767 +  bool mUseIntermediateSurface;
  1.1768 +  bool mSupportsComponentAlphaChildren;
  1.1769 +  bool mMayHaveReadbackChild;
  1.1770 +};
  1.1771 +
  1.1772 +/**
  1.1773 + * A Layer which just renders a solid color in its visible region. It actually
  1.1774 + * can fill any area that contains the visible region, so if you need to
  1.1775 + * restrict the area filled, set a clip region on this layer.
  1.1776 + */
  1.1777 +class ColorLayer : public Layer {
  1.1778 +public:
  1.1779 +  virtual ColorLayer* AsColorLayer() { return this; }
  1.1780 +
  1.1781 +  /**
  1.1782 +   * CONSTRUCTION PHASE ONLY
  1.1783 +   * Set the color of the layer.
  1.1784 +   */
  1.1785 +  virtual void SetColor(const gfxRGBA& aColor)
  1.1786 +  {
  1.1787 +    if (mColor != aColor) {
  1.1788 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Color", this));
  1.1789 +      mColor = aColor;
  1.1790 +      Mutated();
  1.1791 +    }
  1.1792 +  }
  1.1793 +
  1.1794 +  void SetBounds(const nsIntRect& aBounds)
  1.1795 +  {
  1.1796 +    if (!mBounds.IsEqualEdges(aBounds)) {
  1.1797 +      mBounds = aBounds;
  1.1798 +      Mutated();
  1.1799 +    }
  1.1800 +  }
  1.1801 +
  1.1802 +  const nsIntRect& GetBounds()
  1.1803 +  {
  1.1804 +    return mBounds;
  1.1805 +  }
  1.1806 +
  1.1807 +  // This getter can be used anytime.
  1.1808 +  virtual const gfxRGBA& GetColor() { return mColor; }
  1.1809 +
  1.1810 +  MOZ_LAYER_DECL_NAME("ColorLayer", TYPE_COLOR)
  1.1811 +
  1.1812 +  virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface)
  1.1813 +  {
  1.1814 +    gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
  1.1815 +    mEffectiveTransform = SnapTransformTranslation(idealTransform, nullptr);
  1.1816 +    ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
  1.1817 +  }
  1.1818 +
  1.1819 +protected:
  1.1820 +  ColorLayer(LayerManager* aManager, void* aImplData)
  1.1821 +    : Layer(aManager, aImplData),
  1.1822 +      mColor(0.0, 0.0, 0.0, 0.0)
  1.1823 +  {}
  1.1824 +
  1.1825 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
  1.1826 +
  1.1827 +  nsIntRect mBounds;
  1.1828 +  gfxRGBA mColor;
  1.1829 +};
  1.1830 +
  1.1831 +/**
  1.1832 + * A Layer for HTML Canvas elements.  It's backed by either a
  1.1833 + * gfxASurface or a GLContext (for WebGL layers), and has some control
  1.1834 + * for intelligent updating from the source if necessary (for example,
  1.1835 + * if hardware compositing is not available, for reading from the GL
  1.1836 + * buffer into an image surface that we can layer composite.)
  1.1837 + *
  1.1838 + * After Initialize is called, the underlying canvas Surface/GLContext
  1.1839 + * must not be modified during a layer transaction.
  1.1840 + */
  1.1841 +class CanvasLayer : public Layer {
  1.1842 +public:
  1.1843 +  struct Data {
  1.1844 +    Data()
  1.1845 +      : mDrawTarget(nullptr)
  1.1846 +      , mGLContext(nullptr)
  1.1847 +      , mStream(nullptr)
  1.1848 +      , mTexID(0)
  1.1849 +      , mSize(0,0)
  1.1850 +      , mIsGLAlphaPremult(false)
  1.1851 +    { }
  1.1852 +
  1.1853 +    // One of these two must be specified for Canvas2D, but never both
  1.1854 +    mozilla::gfx::DrawTarget *mDrawTarget; // a DrawTarget for the canvas contents
  1.1855 +    mozilla::gl::GLContext* mGLContext; // or this, for GL.
  1.1856 +
  1.1857 +    // Canvas/SkiaGL uses this
  1.1858 +    mozilla::gfx::SurfaceStream* mStream;
  1.1859 +
  1.1860 +    // ID of the texture backing the canvas layer (defaults to 0)
  1.1861 +    uint32_t mTexID;
  1.1862 +
  1.1863 +    // The size of the canvas content
  1.1864 +    nsIntSize mSize;
  1.1865 +
  1.1866 +    // Whether mGLContext contains data that is alpha-premultiplied.
  1.1867 +    bool mIsGLAlphaPremult;
  1.1868 +  };
  1.1869 +
  1.1870 +  /**
  1.1871 +   * CONSTRUCTION PHASE ONLY
  1.1872 +   * Initialize this CanvasLayer with the given data.  The data must
  1.1873 +   * have either mSurface or mGLContext initialized (but not both), as
  1.1874 +   * well as mSize.
  1.1875 +   *
  1.1876 +   * This must only be called once.
  1.1877 +   */
  1.1878 +  virtual void Initialize(const Data& aData) = 0;
  1.1879 +
  1.1880 +  /**
  1.1881 +   * Check the data is owned by this layer is still valid for rendering
  1.1882 +   */
  1.1883 +  virtual bool IsDataValid(const Data& aData) { return true; }
  1.1884 +
  1.1885 +  /**
  1.1886 +   * Notify this CanvasLayer that the canvas surface contents have
  1.1887 +   * changed (or will change) before the next transaction.
  1.1888 +   */
  1.1889 +  void Updated() { mDirty = true; SetInvalidRectToVisibleRegion(); }
  1.1890 +
  1.1891 +  /**
  1.1892 +   * Notify this CanvasLayer that the canvas surface contents have
  1.1893 +   * been painted since the last change.
  1.1894 +   */
  1.1895 +  void Painted() { mDirty = false; }
  1.1896 +
  1.1897 +  /**
  1.1898 +   * Returns true if the canvas surface contents have changed since the
  1.1899 +   * last paint.
  1.1900 +   */
  1.1901 +  bool IsDirty()
  1.1902 +  {
  1.1903 +    // We can only tell if we are dirty if we're part of the
  1.1904 +    // widget's retained layer tree.
  1.1905 +    if (!mManager || !mManager->IsWidgetLayerManager()) {
  1.1906 +      return true;
  1.1907 +    }
  1.1908 +    return mDirty;
  1.1909 +  }
  1.1910 +
  1.1911 +  /**
  1.1912 +   * Register a callback to be called at the start of each transaction.
  1.1913 +   */
  1.1914 +  typedef void PreTransactionCallback(void* closureData);
  1.1915 +  void SetPreTransactionCallback(PreTransactionCallback* callback, void* closureData)
  1.1916 +  {
  1.1917 +    mPreTransCallback = callback;
  1.1918 +    mPreTransCallbackData = closureData;
  1.1919 +  }
  1.1920 +
  1.1921 +protected:
  1.1922 +  void FirePreTransactionCallback()
  1.1923 +  {
  1.1924 +    if (mPreTransCallback) {
  1.1925 +      mPreTransCallback(mPreTransCallbackData);
  1.1926 +    }
  1.1927 +  }
  1.1928 +
  1.1929 +public:
  1.1930 +  /**
  1.1931 +   * Register a callback to be called at the end of each transaction.
  1.1932 +   */
  1.1933 +  typedef void (* DidTransactionCallback)(void* aClosureData);
  1.1934 +  void SetDidTransactionCallback(DidTransactionCallback aCallback, void* aClosureData)
  1.1935 +  {
  1.1936 +    mPostTransCallback = aCallback;
  1.1937 +    mPostTransCallbackData = aClosureData;
  1.1938 +  }
  1.1939 +
  1.1940 +  /**
  1.1941 +   * CONSTRUCTION PHASE ONLY
  1.1942 +   * Set the filter used to resample this image (if necessary).
  1.1943 +   */
  1.1944 +  void SetFilter(GraphicsFilter aFilter)
  1.1945 +  {
  1.1946 +    if (mFilter != aFilter) {
  1.1947 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Filter", this));
  1.1948 +      mFilter = aFilter;
  1.1949 +      Mutated();
  1.1950 +    }
  1.1951 +  }
  1.1952 +  GraphicsFilter GetFilter() const { return mFilter; }
  1.1953 +
  1.1954 +  MOZ_LAYER_DECL_NAME("CanvasLayer", TYPE_CANVAS)
  1.1955 +
  1.1956 +  virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface)
  1.1957 +  {
  1.1958 +    // Snap our local transform first, and snap the inherited transform as well.
  1.1959 +    // This makes our snapping equivalent to what would happen if our content
  1.1960 +    // was drawn into a ThebesLayer (gfxContext would snap using the local
  1.1961 +    // transform, then we'd snap again when compositing the ThebesLayer).
  1.1962 +    mEffectiveTransform =
  1.1963 +        SnapTransform(GetLocalTransform(), gfxRect(0, 0, mBounds.width, mBounds.height),
  1.1964 +                      nullptr)*
  1.1965 +        SnapTransformTranslation(aTransformToSurface, nullptr);
  1.1966 +    ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
  1.1967 +  }
  1.1968 +
  1.1969 +protected:
  1.1970 +  CanvasLayer(LayerManager* aManager, void* aImplData)
  1.1971 +    : Layer(aManager, aImplData)
  1.1972 +    , mPreTransCallback(nullptr)
  1.1973 +    , mPreTransCallbackData(nullptr)
  1.1974 +    , mPostTransCallback(nullptr)
  1.1975 +    , mPostTransCallbackData(nullptr)
  1.1976 +    , mFilter(GraphicsFilter::FILTER_GOOD)
  1.1977 +    , mDirty(false)
  1.1978 +  {}
  1.1979 +
  1.1980 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
  1.1981 +
  1.1982 +  void FireDidTransactionCallback()
  1.1983 +  {
  1.1984 +    if (mPostTransCallback) {
  1.1985 +      mPostTransCallback(mPostTransCallbackData);
  1.1986 +    }
  1.1987 +  }
  1.1988 +
  1.1989 +  /**
  1.1990 +   * 0, 0, canvaswidth, canvasheight
  1.1991 +   */
  1.1992 +  nsIntRect mBounds;
  1.1993 +  PreTransactionCallback* mPreTransCallback;
  1.1994 +  void* mPreTransCallbackData;
  1.1995 +  DidTransactionCallback mPostTransCallback;
  1.1996 +  void* mPostTransCallbackData;
  1.1997 +  GraphicsFilter mFilter;
  1.1998 +
  1.1999 +private:
  1.2000 +  /**
  1.2001 +   * Set to true in Updated(), cleared during a transaction.
  1.2002 +   */
  1.2003 +  bool mDirty;
  1.2004 +};
  1.2005 +
  1.2006 +/**
  1.2007 + * ContainerLayer that refers to a "foreign" layer tree, through an
  1.2008 + * ID.  Usage of RefLayer looks like
  1.2009 + *
  1.2010 + * Construction phase:
  1.2011 + *   allocate ID for layer subtree
  1.2012 + *   create RefLayer, SetReferentId(ID)
  1.2013 + *
  1.2014 + * Composition:
  1.2015 + *   look up subtree for GetReferentId()
  1.2016 + *   ConnectReferentLayer(subtree)
  1.2017 + *   compose
  1.2018 + *   ClearReferentLayer()
  1.2019 + *
  1.2020 + * Clients will usually want to Connect/Clear() on each transaction to
  1.2021 + * avoid difficulties managing memory across multiple layer subtrees.
  1.2022 + */
  1.2023 +class RefLayer : public ContainerLayer {
  1.2024 +  friend class LayerManager;
  1.2025 +
  1.2026 +private:
  1.2027 +  virtual bool InsertAfter(Layer* aChild, Layer* aAfter) MOZ_OVERRIDE
  1.2028 +  { MOZ_CRASH(); return false; }
  1.2029 +
  1.2030 +  virtual bool RemoveChild(Layer* aChild)
  1.2031 +  { MOZ_CRASH(); return false; }
  1.2032 +
  1.2033 +  virtual bool RepositionChild(Layer* aChild, Layer* aAfter)
  1.2034 +  { MOZ_CRASH(); return false; }
  1.2035 +
  1.2036 +  using ContainerLayer::SetFrameMetrics;
  1.2037 +
  1.2038 +public:
  1.2039 +  /**
  1.2040 +   * CONSTRUCTION PHASE ONLY
  1.2041 +   * Set the ID of the layer's referent.
  1.2042 +   */
  1.2043 +  void SetReferentId(uint64_t aId)
  1.2044 +  {
  1.2045 +    MOZ_ASSERT(aId != 0);
  1.2046 +    if (mId != aId) {
  1.2047 +      MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ReferentId", this));
  1.2048 +      mId = aId;
  1.2049 +      Mutated();
  1.2050 +    }
  1.2051 +  }
  1.2052 +  /**
  1.2053 +   * CONSTRUCTION PHASE ONLY
  1.2054 +   * Connect this ref layer to its referent, temporarily.
  1.2055 +   * ClearReferentLayer() must be called after composition.
  1.2056 +   */
  1.2057 +  void ConnectReferentLayer(Layer* aLayer)
  1.2058 +  {
  1.2059 +    MOZ_ASSERT(!mFirstChild && !mLastChild);
  1.2060 +    MOZ_ASSERT(!aLayer->GetParent());
  1.2061 +    MOZ_ASSERT(aLayer->Manager() == Manager());
  1.2062 +
  1.2063 +    mFirstChild = mLastChild = aLayer;
  1.2064 +    aLayer->SetParent(this);
  1.2065 +  }
  1.2066 +
  1.2067 +  /**
  1.2068 +   * DRAWING PHASE ONLY
  1.2069 +   * |aLayer| is the same as the argument to ConnectReferentLayer().
  1.2070 +   */
  1.2071 +  void DetachReferentLayer(Layer* aLayer)
  1.2072 +  {
  1.2073 +    MOZ_ASSERT(aLayer == mFirstChild && mFirstChild == mLastChild);
  1.2074 +    MOZ_ASSERT(aLayer->GetParent() == this);
  1.2075 +
  1.2076 +    mFirstChild = mLastChild = nullptr;
  1.2077 +    aLayer->SetParent(nullptr);
  1.2078 +  }
  1.2079 +
  1.2080 +  // These getters can be used anytime.
  1.2081 +  virtual RefLayer* AsRefLayer() { return this; }
  1.2082 +
  1.2083 +  virtual int64_t GetReferentId() { return mId; }
  1.2084 +
  1.2085 +  /**
  1.2086 +   * DRAWING PHASE ONLY
  1.2087 +   */
  1.2088 +  virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs);
  1.2089 +
  1.2090 +  MOZ_LAYER_DECL_NAME("RefLayer", TYPE_REF)
  1.2091 +
  1.2092 +protected:
  1.2093 +  RefLayer(LayerManager* aManager, void* aImplData)
  1.2094 +    : ContainerLayer(aManager, aImplData) , mId(0)
  1.2095 +  {}
  1.2096 +
  1.2097 +  virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
  1.2098 +
  1.2099 +  Layer* mTempReferent;
  1.2100 +  // 0 is a special value that means "no ID".
  1.2101 +  uint64_t mId;
  1.2102 +};
  1.2103 +
  1.2104 +void SetAntialiasingFlags(Layer* aLayer, gfxContext* aTarget);
  1.2105 +void SetAntialiasingFlags(Layer* aLayer, gfx::DrawTarget* aTarget);
  1.2106 +
  1.2107 +#ifdef MOZ_DUMP_PAINTING
  1.2108 +void WriteSnapshotToDumpFile(Layer* aLayer, gfx::DataSourceSurface* aSurf);
  1.2109 +void WriteSnapshotToDumpFile(LayerManager* aManager, gfx::DataSourceSurface* aSurf);
  1.2110 +void WriteSnapshotToDumpFile(Compositor* aCompositor, gfx::DrawTarget* aTarget);
  1.2111 +#endif
  1.2112 +
  1.2113 +}
  1.2114 +}
  1.2115 +
  1.2116 +#endif /* GFX_LAYERS_H */

mercurial