gfx/layers/d3d9/LayerManagerD3D9Shaders.hlsl

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/layers/d3d9/LayerManagerD3D9Shaders.hlsl	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,277 @@
     1.4 +float4x4 mLayerTransform;
     1.5 +float4 vRenderTargetOffset;
     1.6 +float4x4 mProjection;
     1.7 +
     1.8 +typedef float4 rect;
     1.9 +rect vTextureCoords;
    1.10 +rect vLayerQuad;
    1.11 +rect vMaskQuad;
    1.12 +
    1.13 +texture tex0;
    1.14 +sampler s2D;
    1.15 +sampler s2DWhite;
    1.16 +sampler s2DY;
    1.17 +sampler s2DCb;
    1.18 +sampler s2DCr;
    1.19 +sampler s2DMask;
    1.20 +
    1.21 +
    1.22 +float fLayerOpacity;
    1.23 +float4 fLayerColor;
    1.24 +
    1.25 +struct VS_INPUT {
    1.26 +  float4 vPosition : POSITION;
    1.27 +};
    1.28 +
    1.29 +struct VS_OUTPUT {
    1.30 +  float4 vPosition : POSITION;
    1.31 +  float2 vTexCoords : TEXCOORD0;
    1.32 +};
    1.33 +
    1.34 +struct VS_OUTPUT_MASK {
    1.35 +  float4 vPosition : POSITION;
    1.36 +  float2 vTexCoords : TEXCOORD0;
    1.37 +  float2 vMaskCoords : TEXCOORD1;
    1.38 +};
    1.39 +
    1.40 +struct VS_OUTPUT_MASK_3D {
    1.41 +  float4 vPosition : POSITION;
    1.42 +  float2 vTexCoords : TEXCOORD0;
    1.43 +  float3 vMaskCoords : TEXCOORD1;
    1.44 +};
    1.45 +
    1.46 +VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex)
    1.47 +{
    1.48 +  VS_OUTPUT outp;
    1.49 +  outp.vPosition = aVertex.vPosition;
    1.50 +  
    1.51 +  // We use 4 component floats to uniquely describe a rectangle, by the structure
    1.52 +  // of x, y, width, height. This allows us to easily generate the 4 corners
    1.53 +  // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
    1.54 +  // stream source for our LayerQuad vertex shader. We do this by doing:
    1.55 +  // Xout = x + Xin * width
    1.56 +  // Yout = y + Yin * height
    1.57 +  float2 position = vLayerQuad.xy;
    1.58 +  float2 size = vLayerQuad.zw;
    1.59 +  outp.vPosition.x = position.x + outp.vPosition.x * size.x;
    1.60 +  outp.vPosition.y = position.y + outp.vPosition.y * size.y;
    1.61 +  
    1.62 +  outp.vPosition = mul(mLayerTransform, outp.vPosition);
    1.63 +  outp.vPosition.xyz /= outp.vPosition.w;
    1.64 +  outp.vPosition = outp.vPosition - vRenderTargetOffset;
    1.65 +  outp.vPosition.xyz *= outp.vPosition.w;
    1.66 +  
    1.67 +  // adjust our vertices to match d3d9's pixel coordinate system
    1.68 +  // which has pixel centers at integer locations
    1.69 +  outp.vPosition.xy -= 0.5;
    1.70 +  
    1.71 +  outp.vPosition = mul(mProjection, outp.vPosition);
    1.72 +
    1.73 +  position = vTextureCoords.xy;
    1.74 +  size = vTextureCoords.zw;
    1.75 +  outp.vTexCoords.x = position.x + aVertex.vPosition.x * size.x;
    1.76 +  outp.vTexCoords.y = position.y + aVertex.vPosition.y * size.y;
    1.77 +
    1.78 +  return outp;
    1.79 +}
    1.80 +
    1.81 +VS_OUTPUT_MASK LayerQuadVSMask(const VS_INPUT aVertex)
    1.82 +{
    1.83 +  VS_OUTPUT_MASK outp;
    1.84 +  float4 position = float4(0, 0, 0, 1);
    1.85 +  
    1.86 +  // We use 4 component floats to uniquely describe a rectangle, by the structure
    1.87 +  // of x, y, width, height. This allows us to easily generate the 4 corners
    1.88 +  // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
    1.89 +  // stream source for our LayerQuad vertex shader. We do this by doing:
    1.90 +  // Xout = x + Xin * width
    1.91 +  // Yout = y + Yin * height
    1.92 +  float2 size = vLayerQuad.zw;
    1.93 +  position.x = vLayerQuad.x + aVertex.vPosition.x * size.x;
    1.94 +  position.y = vLayerQuad.y + aVertex.vPosition.y * size.y;
    1.95 +  
    1.96 +  position = mul(mLayerTransform, position);
    1.97 +  outp.vPosition.w = position.w;
    1.98 +  outp.vPosition.xyz = position.xyz / position.w;
    1.99 +  outp.vPosition = outp.vPosition - vRenderTargetOffset;
   1.100 +  outp.vPosition.xyz *= outp.vPosition.w;
   1.101 +  
   1.102 +  // adjust our vertices to match d3d9's pixel coordinate system
   1.103 +  // which has pixel centers at integer locations
   1.104 +  outp.vPosition.xy -= 0.5;
   1.105 +  
   1.106 +  outp.vPosition = mul(mProjection, outp.vPosition);
   1.107 +
   1.108 +  // calculate the position on the mask texture
   1.109 +  outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
   1.110 +  outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
   1.111 +
   1.112 +  size = vTextureCoords.zw;
   1.113 +  outp.vTexCoords.x = vTextureCoords.x + aVertex.vPosition.x * size.x;
   1.114 +  outp.vTexCoords.y = vTextureCoords.y + aVertex.vPosition.y * size.y;
   1.115 +
   1.116 +  return outp;
   1.117 +}
   1.118 +
   1.119 +VS_OUTPUT_MASK_3D LayerQuadVSMask3D(const VS_INPUT aVertex)
   1.120 +{
   1.121 +  VS_OUTPUT_MASK_3D outp;
   1.122 +  float4 position = float4(0, 0, 0, 1);
   1.123 +  
   1.124 +  // We use 4 component floats to uniquely describe a rectangle, by the structure
   1.125 +  // of x, y, width, height. This allows us to easily generate the 4 corners
   1.126 +  // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
   1.127 +  // stream source for our LayerQuad vertex shader. We do this by doing:
   1.128 +  // Xout = x + Xin * width
   1.129 +  // Yout = y + Yin * height
   1.130 +  float2 size = vLayerQuad.zw;
   1.131 +  position.x = vLayerQuad.x + aVertex.vPosition.x * size.x;
   1.132 +  position.y = vLayerQuad.y + aVertex.vPosition.y * size.y;
   1.133 +  
   1.134 +  position = mul(mLayerTransform, position);
   1.135 +  outp.vPosition.w = position.w;
   1.136 +  outp.vPosition.xyz = position.xyz / position.w;
   1.137 +  outp.vPosition = outp.vPosition - vRenderTargetOffset;
   1.138 +  outp.vPosition.xyz *= outp.vPosition.w;
   1.139 +  
   1.140 +  // adjust our vertices to match d3d9's pixel coordinate system
   1.141 +  // which has pixel centers at integer locations
   1.142 +  outp.vPosition.xy -= 0.5;
   1.143 +  
   1.144 +  outp.vPosition = mul(mProjection, outp.vPosition);
   1.145 +
   1.146 +  // calculate the position on the mask texture
   1.147 +  position.xyz /= position.w;
   1.148 +  outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
   1.149 +  outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
   1.150 +  // correct for perspective correct interpolation, see comment in D3D10 shader
   1.151 +  outp.vMaskCoords.z = 1;
   1.152 +  outp.vMaskCoords *= position.w;
   1.153 +
   1.154 +  size = vTextureCoords.zw;
   1.155 +  outp.vTexCoords.x = vTextureCoords.x + aVertex.vPosition.x * size.x;
   1.156 +  outp.vTexCoords.y = vTextureCoords.y + aVertex.vPosition.y * size.y;
   1.157 +
   1.158 +  return outp;
   1.159 +}
   1.160 +
   1.161 +float4 ComponentPass1Shader(const VS_OUTPUT aVertex) : COLOR
   1.162 +{
   1.163 +  float4 src = tex2D(s2D, aVertex.vTexCoords);
   1.164 +  float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
   1.165 +  alphas.a = alphas.g;
   1.166 +  return alphas * fLayerOpacity;
   1.167 +}
   1.168 +
   1.169 +float4 ComponentPass2Shader(const VS_OUTPUT aVertex) : COLOR
   1.170 +{
   1.171 +  float4 src = tex2D(s2D, aVertex.vTexCoords);
   1.172 +  float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
   1.173 +  src.a = alphas.g;
   1.174 +  return src * fLayerOpacity;
   1.175 +}
   1.176 +
   1.177 +float4 RGBAShader(const VS_OUTPUT aVertex) : COLOR
   1.178 +{
   1.179 +  return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity;
   1.180 +}
   1.181 +
   1.182 +float4 RGBShader(const VS_OUTPUT aVertex) : COLOR
   1.183 +{
   1.184 +  float4 result;
   1.185 +  result = tex2D(s2D, aVertex.vTexCoords);
   1.186 +  result.a = 1.0;
   1.187 +  return result * fLayerOpacity;
   1.188 +}
   1.189 +
   1.190 +float4 YCbCrShader(const VS_OUTPUT aVertex) : COLOR
   1.191 +{
   1.192 +  float4 yuv;
   1.193 +  float4 color;
   1.194 +
   1.195 +  yuv.r = tex2D(s2DCr, aVertex.vTexCoords).a - 0.5;
   1.196 +  yuv.g = tex2D(s2DY, aVertex.vTexCoords).a - 0.0625;
   1.197 +  yuv.b = tex2D(s2DCb, aVertex.vTexCoords).a - 0.5;
   1.198 +
   1.199 +  color.r = yuv.g * 1.164 + yuv.r * 1.596;
   1.200 +  color.g = yuv.g * 1.164 - 0.813 * yuv.r - 0.391 * yuv.b;
   1.201 +  color.b = yuv.g * 1.164 + yuv.b * 2.018;
   1.202 +  color.a = 1.0f;
   1.203 + 
   1.204 +  return color * fLayerOpacity;
   1.205 +}
   1.206 +
   1.207 +float4 SolidColorShader(const VS_OUTPUT aVertex) : COLOR
   1.208 +{
   1.209 +  return fLayerColor;
   1.210 +}
   1.211 +
   1.212 +float4 ComponentPass1ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
   1.213 +{
   1.214 +  float4 src = tex2D(s2D, aVertex.vTexCoords);
   1.215 +  float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
   1.216 +  alphas.a = alphas.g;
   1.217 +  float2 maskCoords = aVertex.vMaskCoords;
   1.218 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.219 +  return alphas * fLayerOpacity * mask;
   1.220 +}
   1.221 +
   1.222 +float4 ComponentPass2ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
   1.223 +{
   1.224 +  float4 src = tex2D(s2D, aVertex.vTexCoords);
   1.225 +  float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
   1.226 +  src.a = alphas.g;
   1.227 +  float2 maskCoords = aVertex.vMaskCoords;
   1.228 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.229 +  return src * fLayerOpacity * mask;
   1.230 +}
   1.231 +
   1.232 +float4 RGBAShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
   1.233 +{
   1.234 +  float2 maskCoords = aVertex.vMaskCoords;
   1.235 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.236 +  return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity * mask;
   1.237 +}
   1.238 +
   1.239 +float4 RGBAShaderMask3D(const VS_OUTPUT_MASK_3D aVertex) : COLOR
   1.240 +{
   1.241 +  float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
   1.242 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.243 +  return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity * mask;
   1.244 +}
   1.245 +
   1.246 +float4 RGBShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
   1.247 +{
   1.248 +  float4 result;
   1.249 +  result = tex2D(s2D, aVertex.vTexCoords);
   1.250 +  result.a = 1.0;
   1.251 +  float2 maskCoords = aVertex.vMaskCoords;
   1.252 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.253 +  return result * fLayerOpacity * mask;
   1.254 +}
   1.255 +
   1.256 +float4 YCbCrShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
   1.257 +{
   1.258 +  float4 yuv;
   1.259 +  float4 color;
   1.260 +
   1.261 +  yuv.r = tex2D(s2DCr, aVertex.vTexCoords).a - 0.5;
   1.262 +  yuv.g = tex2D(s2DY, aVertex.vTexCoords).a - 0.0625;
   1.263 +  yuv.b = tex2D(s2DCb, aVertex.vTexCoords).a - 0.5;
   1.264 +
   1.265 +  color.r = yuv.g * 1.164 + yuv.r * 1.596;
   1.266 +  color.g = yuv.g * 1.164 - 0.813 * yuv.r - 0.391 * yuv.b;
   1.267 +  color.b = yuv.g * 1.164 + yuv.b * 2.018;
   1.268 +  color.a = 1.0f;
   1.269 + 
   1.270 +  float2 maskCoords = aVertex.vMaskCoords;
   1.271 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.272 +  return color * fLayerOpacity * mask;
   1.273 +}
   1.274 +
   1.275 +float4 SolidColorShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
   1.276 +{
   1.277 +  float2 maskCoords = aVertex.vMaskCoords;
   1.278 +  float mask = tex2D(s2DMask, maskCoords).a;
   1.279 +  return fLayerColor * mask;
   1.280 +}

mercurial