gfx/qcms/transform_util.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/qcms/transform_util.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,514 @@
     1.4 +#define _ISOC99_SOURCE  /* for INFINITY */
     1.5 +
     1.6 +#include <math.h>
     1.7 +#include <assert.h>
     1.8 +#include <string.h> //memcpy
     1.9 +#include "qcmsint.h"
    1.10 +#include "transform_util.h"
    1.11 +#include "matrix.h"
    1.12 +
    1.13 +#if !defined(INFINITY)
    1.14 +#define INFINITY HUGE_VAL
    1.15 +#endif
    1.16 +
    1.17 +#define PARAMETRIC_CURVE_TYPE 0x70617261 //'para'
    1.18 +
    1.19 +/* value must be a value between 0 and 1 */
    1.20 +//XXX: is the above a good restriction to have?
    1.21 +// the output range of this functions is 0..1
    1.22 +float lut_interp_linear(double input_value, uint16_t *table, int length)
    1.23 +{
    1.24 +	int upper, lower;
    1.25 +	float value;
    1.26 +	input_value = input_value * (length - 1); // scale to length of the array
    1.27 +	upper = ceil(input_value);
    1.28 +	lower = floor(input_value);
    1.29 +	//XXX: can we be more performant here?
    1.30 +	value = table[upper]*(1. - (upper - input_value)) + table[lower]*(upper - input_value);
    1.31 +	/* scale the value */
    1.32 +	return value * (1.f/65535.f);
    1.33 +}
    1.34 +
    1.35 +/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
    1.36 +uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
    1.37 +{
    1.38 +	/* Start scaling input_value to the length of the array: 65535*(length-1).
    1.39 +	 * We'll divide out the 65535 next */
    1.40 +	uint32_t value = (input_value * (length - 1));
    1.41 +	uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
    1.42 +	uint32_t lower = value / 65535;           /* equivalent to floor(value/65535) */
    1.43 +	/* interp is the distance from upper to value scaled to 0..65535 */
    1.44 +	uint32_t interp = value % 65535;
    1.45 +
    1.46 +	value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
    1.47 +
    1.48 +	return value;
    1.49 +}
    1.50 +
    1.51 +/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
    1.52 + * and returns a uint8_t value representing a range from 0..1 */
    1.53 +static
    1.54 +uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length)
    1.55 +{
    1.56 +	/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
    1.57 +	 * We'll divide out the PRECACHE_OUTPUT_MAX next */
    1.58 +	uint32_t value = (input_value * (length - 1));
    1.59 +
    1.60 +	/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
    1.61 +	uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
    1.62 +	/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
    1.63 +	uint32_t lower = value / PRECACHE_OUTPUT_MAX;
    1.64 +	/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
    1.65 +	uint32_t interp = value % PRECACHE_OUTPUT_MAX;
    1.66 +
    1.67 +	/* the table values range from 0..65535 */
    1.68 +	value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
    1.69 +
    1.70 +	/* round and scale */
    1.71 +	value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
    1.72 +        value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
    1.73 +	return value;
    1.74 +}
    1.75 +
    1.76 +/* value must be a value between 0 and 1 */
    1.77 +//XXX: is the above a good restriction to have?
    1.78 +float lut_interp_linear_float(float value, float *table, int length)
    1.79 +{
    1.80 +        int upper, lower;
    1.81 +        value = value * (length - 1);
    1.82 +        upper = ceilf(value);
    1.83 +        lower = floorf(value);
    1.84 +        //XXX: can we be more performant here?
    1.85 +        value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
    1.86 +        /* scale the value */
    1.87 +        return value;
    1.88 +}
    1.89 +
    1.90 +#if 0
    1.91 +/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
    1.92 + * because we can avoid the divisions and use a shifting instead */
    1.93 +/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
    1.94 +uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
    1.95 +{
    1.96 +	uint32_t value = (input_value * (length - 1));
    1.97 +	uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
    1.98 +	uint32_t lower = value / 4096;           /* equivalent to floor(value/4096) */
    1.99 +	uint32_t interp = value % 4096;
   1.100 +
   1.101 +	value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
   1.102 +
   1.103 +	return value;
   1.104 +}
   1.105 +#endif
   1.106 +
   1.107 +void compute_curve_gamma_table_type1(float gamma_table[256], uint16_t gamma)
   1.108 +{
   1.109 +	unsigned int i;
   1.110 +	float gamma_float = u8Fixed8Number_to_float(gamma);
   1.111 +	for (i = 0; i < 256; i++) {
   1.112 +                // 0..1^(0..255 + 255/256) will always be between 0 and 1
   1.113 +		gamma_table[i] = pow(i/255., gamma_float);
   1.114 +	}
   1.115 +}
   1.116 +
   1.117 +void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
   1.118 +{
   1.119 +	unsigned int i;
   1.120 +	for (i = 0; i < 256; i++) {
   1.121 +		gamma_table[i] = lut_interp_linear(i/255., table, length);
   1.122 +	}
   1.123 +}
   1.124 +
   1.125 +void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count)
   1.126 +{
   1.127 +        size_t X;
   1.128 +        float interval;
   1.129 +        float a, b, c, e, f;
   1.130 +        float y = parameter[0];
   1.131 +        if (count == 0) {
   1.132 +                a = 1;
   1.133 +                b = 0;
   1.134 +                c = 0;
   1.135 +                e = 0;
   1.136 +                f = 0;
   1.137 +                interval = -INFINITY;
   1.138 +        } else if(count == 1) {
   1.139 +                a = parameter[1];
   1.140 +                b = parameter[2];
   1.141 +                c = 0;
   1.142 +                e = 0;
   1.143 +                f = 0;
   1.144 +                interval = -1 * parameter[2] / parameter[1];
   1.145 +        } else if(count == 2) {
   1.146 +                a = parameter[1];
   1.147 +                b = parameter[2];
   1.148 +                c = 0;
   1.149 +                e = parameter[3];
   1.150 +                f = parameter[3];
   1.151 +                interval = -1 * parameter[2] / parameter[1];
   1.152 +        } else if(count == 3) {
   1.153 +                a = parameter[1];
   1.154 +                b = parameter[2];
   1.155 +                c = parameter[3];
   1.156 +                e = -c;
   1.157 +                f = 0;
   1.158 +                interval = parameter[4];
   1.159 +        } else if(count == 4) {
   1.160 +                a = parameter[1];
   1.161 +                b = parameter[2];
   1.162 +                c = parameter[3];
   1.163 +                e = parameter[5] - c;
   1.164 +                f = parameter[6];
   1.165 +                interval = parameter[4];
   1.166 +        } else {
   1.167 +                assert(0 && "invalid parametric function type.");
   1.168 +                a = 1;
   1.169 +                b = 0;
   1.170 +                c = 0;
   1.171 +                e = 0;
   1.172 +                f = 0;
   1.173 +                interval = -INFINITY;
   1.174 +        }       
   1.175 +        for (X = 0; X < 256; X++) {
   1.176 +                if (X >= interval) {
   1.177 +                        // XXX The equations are not exactly as definied in the spec but are
   1.178 +                        //     algebraic equivilent.
   1.179 +                        // TODO Should division by 255 be for the whole expression.
   1.180 +                        gamma_table[X] = clamp_float(pow(a * X / 255. + b, y) + c + e);
   1.181 +                } else {
   1.182 +                        gamma_table[X] = clamp_float(c * X / 255. + f);
   1.183 +                }
   1.184 +        }
   1.185 +}
   1.186 +
   1.187 +void compute_curve_gamma_table_type0(float gamma_table[256])
   1.188 +{
   1.189 +	unsigned int i;
   1.190 +	for (i = 0; i < 256; i++) {
   1.191 +		gamma_table[i] = i/255.;
   1.192 +	}
   1.193 +}
   1.194 +
   1.195 +float *build_input_gamma_table(struct curveType *TRC)
   1.196 +{
   1.197 +	float *gamma_table;
   1.198 +
   1.199 +	if (!TRC) return NULL;
   1.200 +	gamma_table = malloc(sizeof(float)*256);
   1.201 +	if (gamma_table) {
   1.202 +		if (TRC->type == PARAMETRIC_CURVE_TYPE) {
   1.203 +			compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count);
   1.204 +		} else {
   1.205 +			if (TRC->count == 0) {
   1.206 +				compute_curve_gamma_table_type0(gamma_table);
   1.207 +			} else if (TRC->count == 1) {
   1.208 +				compute_curve_gamma_table_type1(gamma_table, TRC->data[0]);
   1.209 +			} else {
   1.210 +				compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
   1.211 +			}
   1.212 +		}
   1.213 +	}
   1.214 +        return gamma_table;
   1.215 +}
   1.216 +
   1.217 +struct matrix build_colorant_matrix(qcms_profile *p)
   1.218 +{
   1.219 +	struct matrix result;
   1.220 +	result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
   1.221 +	result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
   1.222 +	result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
   1.223 +	result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
   1.224 +	result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
   1.225 +	result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
   1.226 +	result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
   1.227 +	result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
   1.228 +	result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
   1.229 +	result.invalid = false;
   1.230 +	return result;
   1.231 +}
   1.232 +
   1.233 +/* The following code is copied nearly directly from lcms.
   1.234 + * I think it could be much better. For example, Argyll seems to have better code in
   1.235 + * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
   1.236 + * to a working solution and allows for easy comparing with lcms. */
   1.237 +uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
   1.238 +{
   1.239 +        int l = 1;
   1.240 +        int r = 0x10000;
   1.241 +        int x = 0, res;       // 'int' Give spacing for negative values
   1.242 +        int NumZeroes, NumPoles;
   1.243 +        int cell0, cell1;
   1.244 +        double val2;
   1.245 +        double y0, y1, x0, x1;
   1.246 +        double a, b, f;
   1.247 +
   1.248 +        // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
   1.249 +        // number of elements containing 0 at the begining of the table (Zeroes)
   1.250 +        // and another arbitrary number of poles (FFFFh) at the end.
   1.251 +        // First the zero and pole extents are computed, then value is compared.
   1.252 +
   1.253 +        NumZeroes = 0;
   1.254 +        while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
   1.255 +                        NumZeroes++;
   1.256 +
   1.257 +        // There are no zeros at the beginning and we are trying to find a zero, so
   1.258 +        // return anything. It seems zero would be the less destructive choice
   1.259 +	/* I'm not sure that this makes sense, but oh well... */
   1.260 +        if (NumZeroes == 0 && Value == 0)
   1.261 +            return 0;
   1.262 +
   1.263 +        NumPoles = 0;
   1.264 +        while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
   1.265 +                        NumPoles++;
   1.266 +
   1.267 +        // Does the curve belong to this case?
   1.268 +        if (NumZeroes > 1 || NumPoles > 1)
   1.269 +        {               
   1.270 +                int a, b;
   1.271 +
   1.272 +                // Identify if value fall downto 0 or FFFF zone             
   1.273 +                if (Value == 0) return 0;
   1.274 +               // if (Value == 0xFFFF) return 0xFFFF;
   1.275 +
   1.276 +                // else restrict to valid zone
   1.277 +
   1.278 +                a = ((NumZeroes-1) * 0xFFFF) / (length-1);               
   1.279 +                b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
   1.280 +                                                                
   1.281 +                l = a - 1;
   1.282 +                r = b + 1;
   1.283 +        }
   1.284 +
   1.285 +
   1.286 +        // Seems not a degenerated case... apply binary search
   1.287 +
   1.288 +        while (r > l) {
   1.289 +
   1.290 +                x = (l + r) / 2;
   1.291 +
   1.292 +		res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
   1.293 +
   1.294 +                if (res == Value) {
   1.295 +
   1.296 +                    // Found exact match. 
   1.297 +                    
   1.298 +                    return (uint16_fract_t) (x - 1);
   1.299 +                }
   1.300 +
   1.301 +                if (res > Value) r = x - 1;
   1.302 +                else l = x + 1;
   1.303 +        }
   1.304 +
   1.305 +        // Not found, should we interpolate?
   1.306 +
   1.307 +                
   1.308 +        // Get surrounding nodes
   1.309 +        
   1.310 +        val2 = (length-1) * ((double) (x - 1) / 65535.0);
   1.311 +
   1.312 +        cell0 = (int) floor(val2);
   1.313 +        cell1 = (int) ceil(val2);
   1.314 +           
   1.315 +        if (cell0 == cell1) return (uint16_fract_t) x;
   1.316 +
   1.317 +        y0 = LutTable[cell0] ;
   1.318 +        x0 = (65535.0 * cell0) / (length-1); 
   1.319 +
   1.320 +        y1 = LutTable[cell1] ;
   1.321 +        x1 = (65535.0 * cell1) / (length-1);
   1.322 +
   1.323 +        a = (y1 - y0) / (x1 - x0);
   1.324 +        b = y0 - a * x0;
   1.325 +
   1.326 +        if (fabs(a) < 0.01) return (uint16_fract_t) x;
   1.327 +
   1.328 +        f = ((Value - b) / a);
   1.329 +
   1.330 +        if (f < 0.0) return (uint16_fract_t) 0;
   1.331 +        if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
   1.332 +
   1.333 +        return (uint16_fract_t) floor(f + 0.5);                        
   1.334 +
   1.335 +}
   1.336 +
   1.337 +/*
   1.338 + The number of entries needed to invert a lookup table should not
   1.339 + necessarily be the same as the original number of entries.  This is
   1.340 + especially true of lookup tables that have a small number of entries.
   1.341 +
   1.342 + For example:
   1.343 + Using a table like:
   1.344 +    {0, 3104, 14263, 34802, 65535}
   1.345 + invert_lut will produce an inverse of:
   1.346 +    {3, 34459, 47529, 56801, 65535}
   1.347 + which has an maximum error of about 9855 (pixel difference of ~38.346)
   1.348 +
   1.349 + For now, we punt the decision of output size to the caller. */
   1.350 +static uint16_t *invert_lut(uint16_t *table, int length, int out_length)
   1.351 +{
   1.352 +        int i;
   1.353 +        /* for now we invert the lut by creating a lut of size out_length
   1.354 +         * and attempting to lookup a value for each entry using lut_inverse_interp16 */
   1.355 +        uint16_t *output = malloc(sizeof(uint16_t)*out_length);
   1.356 +        if (!output)
   1.357 +                return NULL;
   1.358 +
   1.359 +        for (i = 0; i < out_length; i++) {
   1.360 +                double x = ((double) i * 65535.) / (double) (out_length - 1);
   1.361 +                uint16_fract_t input = floor(x + .5);
   1.362 +                output[i] = lut_inverse_interp16(input, table, length);
   1.363 +        }
   1.364 +        return output;
   1.365 +}
   1.366 +
   1.367 +static void compute_precache_pow(uint8_t *output, float gamma)
   1.368 +{
   1.369 +	uint32_t v = 0;
   1.370 +	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
   1.371 +		//XXX: don't do integer/float conversion... and round?
   1.372 +		output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
   1.373 +	}
   1.374 +}
   1.375 +
   1.376 +void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
   1.377 +{
   1.378 +	uint32_t v = 0;
   1.379 +	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
   1.380 +		output[v] = lut_interp_linear_precache_output(v, table, length);
   1.381 +	}
   1.382 +}
   1.383 +
   1.384 +void compute_precache_linear(uint8_t *output)
   1.385 +{
   1.386 +	uint32_t v = 0;
   1.387 +	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
   1.388 +		//XXX: round?
   1.389 +		output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
   1.390 +	}
   1.391 +}
   1.392 +
   1.393 +qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
   1.394 +{
   1.395 +        
   1.396 +        if (trc->type == PARAMETRIC_CURVE_TYPE) {
   1.397 +                        float gamma_table[256];
   1.398 +                        uint16_t gamma_table_uint[256];
   1.399 +                        uint16_t i;
   1.400 +                        uint16_t *inverted;
   1.401 +                        int inverted_size = 256;
   1.402 +
   1.403 +                        compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
   1.404 +                        for(i = 0; i < 256; i++) {
   1.405 +                                gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535);
   1.406 +                        }
   1.407 +
   1.408 +                        //XXX: the choice of a minimum of 256 here is not backed by any theory, 
   1.409 +                        //     measurement or data, howeve r it is what lcms uses.
   1.410 +                        //     the maximum number we would need is 65535 because that's the 
   1.411 +                        //     accuracy used for computing the pre cache table
   1.412 +                        if (inverted_size < 256)
   1.413 +                                inverted_size = 256;
   1.414 +
   1.415 +                        inverted = invert_lut(gamma_table_uint, 256, inverted_size);
   1.416 +                        if (!inverted)
   1.417 +                                return false;
   1.418 +                        compute_precache_lut(output, inverted, inverted_size);
   1.419 +                        free(inverted);
   1.420 +        } else {
   1.421 +                if (trc->count == 0) {
   1.422 +                        compute_precache_linear(output);
   1.423 +                } else if (trc->count == 1) {
   1.424 +                        compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
   1.425 +                } else {
   1.426 +                        uint16_t *inverted;
   1.427 +                        int inverted_size = trc->count;
   1.428 +                        //XXX: the choice of a minimum of 256 here is not backed by any theory, 
   1.429 +                        //     measurement or data, howeve r it is what lcms uses.
   1.430 +                        //     the maximum number we would need is 65535 because that's the 
   1.431 +                        //     accuracy used for computing the pre cache table
   1.432 +                        if (inverted_size < 256)
   1.433 +                                inverted_size = 256;
   1.434 +
   1.435 +                        inverted = invert_lut(trc->data, trc->count, inverted_size);
   1.436 +                        if (!inverted)
   1.437 +                                return false;
   1.438 +                        compute_precache_lut(output, inverted, inverted_size);
   1.439 +                        free(inverted);
   1.440 +                }
   1.441 +        }
   1.442 +        return true;
   1.443 +}
   1.444 +
   1.445 +
   1.446 +static uint16_t *build_linear_table(int length)
   1.447 +{
   1.448 +        int i;
   1.449 +        uint16_t *output = malloc(sizeof(uint16_t)*length);
   1.450 +        if (!output)
   1.451 +                return NULL;
   1.452 +
   1.453 +        for (i = 0; i < length; i++) {
   1.454 +                double x = ((double) i * 65535.) / (double) (length - 1);
   1.455 +                uint16_fract_t input = floor(x + .5);
   1.456 +                output[i] = input;
   1.457 +        }
   1.458 +        return output;
   1.459 +}
   1.460 +
   1.461 +static uint16_t *build_pow_table(float gamma, int length)
   1.462 +{
   1.463 +        int i;
   1.464 +        uint16_t *output = malloc(sizeof(uint16_t)*length);
   1.465 +        if (!output)
   1.466 +                return NULL;
   1.467 +
   1.468 +        for (i = 0; i < length; i++) {
   1.469 +                uint16_fract_t result;
   1.470 +                double x = ((double) i) / (double) (length - 1);
   1.471 +                x = pow(x, gamma);                //XXX turn this conversion into a function
   1.472 +                result = floor(x*65535. + .5);
   1.473 +                output[i] = result;
   1.474 +        }
   1.475 +        return output;
   1.476 +}
   1.477 +
   1.478 +void build_output_lut(struct curveType *trc,
   1.479 +                uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
   1.480 +{
   1.481 +        if (trc->type == PARAMETRIC_CURVE_TYPE) {
   1.482 +                float gamma_table[256];
   1.483 +                uint16_t i;
   1.484 +                uint16_t *output = malloc(sizeof(uint16_t)*256);
   1.485 +
   1.486 +                if (!output) {
   1.487 +                        *output_gamma_lut = NULL;
   1.488 +                        return;
   1.489 +                }
   1.490 +
   1.491 +                compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
   1.492 +                *output_gamma_lut_length = 256;
   1.493 +                for(i = 0; i < 256; i++) {
   1.494 +                        output[i] = (uint16_t)(gamma_table[i] * 65535);
   1.495 +                }
   1.496 +                *output_gamma_lut = output;
   1.497 +        } else {
   1.498 +                if (trc->count == 0) {
   1.499 +                        *output_gamma_lut = build_linear_table(4096);
   1.500 +                        *output_gamma_lut_length = 4096;
   1.501 +                } else if (trc->count == 1) {
   1.502 +                        float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
   1.503 +                        *output_gamma_lut = build_pow_table(gamma, 4096);
   1.504 +                        *output_gamma_lut_length = 4096;
   1.505 +                } else {
   1.506 +                        //XXX: the choice of a minimum of 256 here is not backed by any theory, 
   1.507 +                        //     measurement or data, however it is what lcms uses.
   1.508 +                        *output_gamma_lut_length = trc->count;
   1.509 +                        if (*output_gamma_lut_length < 256)
   1.510 +                                *output_gamma_lut_length = 256;
   1.511 +
   1.512 +                        *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);
   1.513 +                }
   1.514 +        }
   1.515 +
   1.516 +}
   1.517 +

mercurial