gfx/skia/trunk/include/core/SkPoint.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/include/core/SkPoint.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,511 @@
     1.4 +/*
     1.5 + * Copyright 2006 The Android Open Source Project
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +
    1.11 +#ifndef SkPoint_DEFINED
    1.12 +#define SkPoint_DEFINED
    1.13 +
    1.14 +#include "SkMath.h"
    1.15 +#include "SkScalar.h"
    1.16 +
    1.17 +/** \struct SkIPoint
    1.18 +
    1.19 +    SkIPoint holds two 32 bit integer coordinates
    1.20 +*/
    1.21 +struct SkIPoint {
    1.22 +    int32_t fX, fY;
    1.23 +
    1.24 +    static SkIPoint Make(int32_t x, int32_t y) {
    1.25 +        SkIPoint pt;
    1.26 +        pt.set(x, y);
    1.27 +        return pt;
    1.28 +    }
    1.29 +
    1.30 +    int32_t x() const { return fX; }
    1.31 +    int32_t y() const { return fY; }
    1.32 +    void setX(int32_t x) { fX = x; }
    1.33 +    void setY(int32_t y) { fY = y; }
    1.34 +
    1.35 +    /**
    1.36 +     *  Returns true iff fX and fY are both zero.
    1.37 +     */
    1.38 +    bool isZero() const { return (fX | fY) == 0; }
    1.39 +
    1.40 +    /**
    1.41 +     *  Set both fX and fY to zero. Same as set(0, 0)
    1.42 +     */
    1.43 +    void setZero() { fX = fY = 0; }
    1.44 +
    1.45 +    /** Set the x and y values of the point. */
    1.46 +    void set(int32_t x, int32_t y) { fX = x; fY = y; }
    1.47 +
    1.48 +    /** Rotate the point clockwise, writing the new point into dst
    1.49 +        It is legal for dst == this
    1.50 +    */
    1.51 +    void rotateCW(SkIPoint* dst) const;
    1.52 +
    1.53 +    /** Rotate the point clockwise, writing the new point back into the point
    1.54 +    */
    1.55 +
    1.56 +    void rotateCW() { this->rotateCW(this); }
    1.57 +
    1.58 +    /** Rotate the point counter-clockwise, writing the new point into dst.
    1.59 +        It is legal for dst == this
    1.60 +    */
    1.61 +    void rotateCCW(SkIPoint* dst) const;
    1.62 +
    1.63 +    /** Rotate the point counter-clockwise, writing the new point back into
    1.64 +        the point
    1.65 +    */
    1.66 +    void rotateCCW() { this->rotateCCW(this); }
    1.67 +
    1.68 +    /** Negate the X and Y coordinates of the point.
    1.69 +    */
    1.70 +    void negate() { fX = -fX; fY = -fY; }
    1.71 +
    1.72 +    /** Return a new point whose X and Y coordinates are the negative of the
    1.73 +        original point's
    1.74 +    */
    1.75 +    SkIPoint operator-() const {
    1.76 +        SkIPoint neg;
    1.77 +        neg.fX = -fX;
    1.78 +        neg.fY = -fY;
    1.79 +        return neg;
    1.80 +    }
    1.81 +
    1.82 +    /** Add v's coordinates to this point's */
    1.83 +    void operator+=(const SkIPoint& v) {
    1.84 +        fX += v.fX;
    1.85 +        fY += v.fY;
    1.86 +    }
    1.87 +
    1.88 +    /** Subtract v's coordinates from this point's */
    1.89 +    void operator-=(const SkIPoint& v) {
    1.90 +        fX -= v.fX;
    1.91 +        fY -= v.fY;
    1.92 +    }
    1.93 +
    1.94 +    /** Returns true if the point's coordinates equal (x,y) */
    1.95 +    bool equals(int32_t x, int32_t y) const {
    1.96 +        return fX == x && fY == y;
    1.97 +    }
    1.98 +
    1.99 +    friend bool operator==(const SkIPoint& a, const SkIPoint& b) {
   1.100 +        return a.fX == b.fX && a.fY == b.fY;
   1.101 +    }
   1.102 +
   1.103 +    friend bool operator!=(const SkIPoint& a, const SkIPoint& b) {
   1.104 +        return a.fX != b.fX || a.fY != b.fY;
   1.105 +    }
   1.106 +
   1.107 +    /** Returns a new point whose coordinates are the difference between
   1.108 +        a and b (i.e. a - b)
   1.109 +    */
   1.110 +    friend SkIPoint operator-(const SkIPoint& a, const SkIPoint& b) {
   1.111 +        SkIPoint v;
   1.112 +        v.set(a.fX - b.fX, a.fY - b.fY);
   1.113 +        return v;
   1.114 +    }
   1.115 +
   1.116 +    /** Returns a new point whose coordinates are the sum of a and b (a + b)
   1.117 +    */
   1.118 +    friend SkIPoint operator+(const SkIPoint& a, const SkIPoint& b) {
   1.119 +        SkIPoint v;
   1.120 +        v.set(a.fX + b.fX, a.fY + b.fY);
   1.121 +        return v;
   1.122 +    }
   1.123 +
   1.124 +    /** Returns the dot product of a and b, treating them as 2D vectors
   1.125 +    */
   1.126 +    static int32_t DotProduct(const SkIPoint& a, const SkIPoint& b) {
   1.127 +        return a.fX * b.fX + a.fY * b.fY;
   1.128 +    }
   1.129 +
   1.130 +    /** Returns the cross product of a and b, treating them as 2D vectors
   1.131 +    */
   1.132 +    static int32_t CrossProduct(const SkIPoint& a, const SkIPoint& b) {
   1.133 +        return a.fX * b.fY - a.fY * b.fX;
   1.134 +    }
   1.135 +};
   1.136 +
   1.137 +struct SK_API SkPoint {
   1.138 +    SkScalar    fX, fY;
   1.139 +
   1.140 +    static SkPoint Make(SkScalar x, SkScalar y) {
   1.141 +        SkPoint pt;
   1.142 +        pt.set(x, y);
   1.143 +        return pt;
   1.144 +    }
   1.145 +
   1.146 +    SkScalar x() const { return fX; }
   1.147 +    SkScalar y() const { return fY; }
   1.148 +
   1.149 +    /**
   1.150 +     *  Returns true iff fX and fY are both zero.
   1.151 +     */
   1.152 +    bool isZero() const { return (0 == fX) & (0 == fY); }
   1.153 +
   1.154 +    /** Set the point's X and Y coordinates */
   1.155 +    void set(SkScalar x, SkScalar y) { fX = x; fY = y; }
   1.156 +
   1.157 +    /** Set the point's X and Y coordinates by automatically promoting (x,y) to
   1.158 +        SkScalar values.
   1.159 +    */
   1.160 +    void iset(int32_t x, int32_t y) {
   1.161 +        fX = SkIntToScalar(x);
   1.162 +        fY = SkIntToScalar(y);
   1.163 +    }
   1.164 +
   1.165 +    /** Set the point's X and Y coordinates by automatically promoting p's
   1.166 +        coordinates to SkScalar values.
   1.167 +    */
   1.168 +    void iset(const SkIPoint& p) {
   1.169 +        fX = SkIntToScalar(p.fX);
   1.170 +        fY = SkIntToScalar(p.fY);
   1.171 +    }
   1.172 +
   1.173 +    void setAbs(const SkPoint& pt) {
   1.174 +        fX = SkScalarAbs(pt.fX);
   1.175 +        fY = SkScalarAbs(pt.fY);
   1.176 +    }
   1.177 +
   1.178 +    // counter-clockwise fan
   1.179 +    void setIRectFan(int l, int t, int r, int b) {
   1.180 +        SkPoint* v = this;
   1.181 +        v[0].set(SkIntToScalar(l), SkIntToScalar(t));
   1.182 +        v[1].set(SkIntToScalar(l), SkIntToScalar(b));
   1.183 +        v[2].set(SkIntToScalar(r), SkIntToScalar(b));
   1.184 +        v[3].set(SkIntToScalar(r), SkIntToScalar(t));
   1.185 +    }
   1.186 +    void setIRectFan(int l, int t, int r, int b, size_t stride);
   1.187 +
   1.188 +    // counter-clockwise fan
   1.189 +    void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
   1.190 +        SkPoint* v = this;
   1.191 +        v[0].set(l, t);
   1.192 +        v[1].set(l, b);
   1.193 +        v[2].set(r, b);
   1.194 +        v[3].set(r, t);
   1.195 +    }
   1.196 +    void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride);
   1.197 +
   1.198 +    static void Offset(SkPoint points[], int count, const SkPoint& offset) {
   1.199 +        Offset(points, count, offset.fX, offset.fY);
   1.200 +    }
   1.201 +
   1.202 +    static void Offset(SkPoint points[], int count, SkScalar dx, SkScalar dy) {
   1.203 +        for (int i = 0; i < count; ++i) {
   1.204 +            points[i].offset(dx, dy);
   1.205 +        }
   1.206 +    }
   1.207 +
   1.208 +    void offset(SkScalar dx, SkScalar dy) {
   1.209 +        fX += dx;
   1.210 +        fY += dy;
   1.211 +    }
   1.212 +
   1.213 +    /** Return the euclidian distance from (0,0) to the point
   1.214 +    */
   1.215 +    SkScalar length() const { return SkPoint::Length(fX, fY); }
   1.216 +    SkScalar distanceToOrigin() const { return this->length(); }
   1.217 +
   1.218 +    /**
   1.219 +     *  Return true if the computed length of the vector is >= the internal
   1.220 +     *  tolerance (used to avoid dividing by tiny values).
   1.221 +     */
   1.222 +    static bool CanNormalize(SkScalar dx, SkScalar dy) {
   1.223 +        // Simple enough (and performance critical sometimes) so we inline it.
   1.224 +        return (dx*dx + dy*dy) > (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
   1.225 +    }
   1.226 +
   1.227 +    bool canNormalize() const {
   1.228 +        return CanNormalize(fX, fY);
   1.229 +    }
   1.230 +
   1.231 +    /** Set the point (vector) to be unit-length in the same direction as it
   1.232 +        already points.  If the point has a degenerate length (i.e. nearly 0)
   1.233 +        then return false and do nothing; otherwise return true.
   1.234 +    */
   1.235 +    bool normalize();
   1.236 +
   1.237 +    /** Set the point (vector) to be unit-length in the same direction as the
   1.238 +        x,y params. If the vector (x,y) has a degenerate length (i.e. nearly 0)
   1.239 +        then return false and do nothing, otherwise return true.
   1.240 +    */
   1.241 +    bool setNormalize(SkScalar x, SkScalar y);
   1.242 +
   1.243 +    /** Scale the point (vector) to have the specified length, and return that
   1.244 +        length. If the original length is degenerately small (nearly zero),
   1.245 +        do nothing and return false, otherwise return true.
   1.246 +    */
   1.247 +    bool setLength(SkScalar length);
   1.248 +
   1.249 +    /** Set the point (vector) to have the specified length in the same
   1.250 +     direction as (x,y). If the vector (x,y) has a degenerate length
   1.251 +     (i.e. nearly 0) then return false and do nothing, otherwise return true.
   1.252 +    */
   1.253 +    bool setLength(SkScalar x, SkScalar y, SkScalar length);
   1.254 +
   1.255 +    /** Same as setLength, but favoring speed over accuracy.
   1.256 +    */
   1.257 +    bool setLengthFast(SkScalar length);
   1.258 +
   1.259 +    /** Same as setLength, but favoring speed over accuracy.
   1.260 +    */
   1.261 +    bool setLengthFast(SkScalar x, SkScalar y, SkScalar length);
   1.262 +
   1.263 +    /** Scale the point's coordinates by scale, writing the answer into dst.
   1.264 +        It is legal for dst == this.
   1.265 +    */
   1.266 +    void scale(SkScalar scale, SkPoint* dst) const;
   1.267 +
   1.268 +    /** Scale the point's coordinates by scale, writing the answer back into
   1.269 +        the point.
   1.270 +    */
   1.271 +    void scale(SkScalar value) { this->scale(value, this); }
   1.272 +
   1.273 +    /** Rotate the point clockwise by 90 degrees, writing the answer into dst.
   1.274 +        It is legal for dst == this.
   1.275 +    */
   1.276 +    void rotateCW(SkPoint* dst) const;
   1.277 +
   1.278 +    /** Rotate the point clockwise by 90 degrees, writing the answer back into
   1.279 +        the point.
   1.280 +    */
   1.281 +    void rotateCW() { this->rotateCW(this); }
   1.282 +
   1.283 +    /** Rotate the point counter-clockwise by 90 degrees, writing the answer
   1.284 +        into dst. It is legal for dst == this.
   1.285 +    */
   1.286 +    void rotateCCW(SkPoint* dst) const;
   1.287 +
   1.288 +    /** Rotate the point counter-clockwise by 90 degrees, writing the answer
   1.289 +        back into the point.
   1.290 +    */
   1.291 +    void rotateCCW() { this->rotateCCW(this); }
   1.292 +
   1.293 +    /** Negate the point's coordinates
   1.294 +    */
   1.295 +    void negate() {
   1.296 +        fX = -fX;
   1.297 +        fY = -fY;
   1.298 +    }
   1.299 +
   1.300 +    /** Returns a new point whose coordinates are the negative of the point's
   1.301 +    */
   1.302 +    SkPoint operator-() const {
   1.303 +        SkPoint neg;
   1.304 +        neg.fX = -fX;
   1.305 +        neg.fY = -fY;
   1.306 +        return neg;
   1.307 +    }
   1.308 +
   1.309 +    /** Add v's coordinates to the point's
   1.310 +    */
   1.311 +    void operator+=(const SkPoint& v) {
   1.312 +        fX += v.fX;
   1.313 +        fY += v.fY;
   1.314 +    }
   1.315 +
   1.316 +    /** Subtract v's coordinates from the point's
   1.317 +    */
   1.318 +    void operator-=(const SkPoint& v) {
   1.319 +        fX -= v.fX;
   1.320 +        fY -= v.fY;
   1.321 +    }
   1.322 +
   1.323 +    /**
   1.324 +     *  Returns true if both X and Y are finite (not infinity or NaN)
   1.325 +     */
   1.326 +    bool isFinite() const {
   1.327 +        SkScalar accum = 0;
   1.328 +        accum *= fX;
   1.329 +        accum *= fY;
   1.330 +
   1.331 +        // accum is either NaN or it is finite (zero).
   1.332 +        SkASSERT(0 == accum || !(accum == accum));
   1.333 +
   1.334 +        // value==value will be true iff value is not NaN
   1.335 +        // TODO: is it faster to say !accum or accum==accum?
   1.336 +        return accum == accum;
   1.337 +    }
   1.338 +
   1.339 +    /**
   1.340 +     *  Returns true if the point's coordinates equal (x,y)
   1.341 +     */
   1.342 +    bool equals(SkScalar x, SkScalar y) const {
   1.343 +        return fX == x && fY == y;
   1.344 +    }
   1.345 +
   1.346 +    friend bool operator==(const SkPoint& a, const SkPoint& b) {
   1.347 +        return a.fX == b.fX && a.fY == b.fY;
   1.348 +    }
   1.349 +
   1.350 +    friend bool operator!=(const SkPoint& a, const SkPoint& b) {
   1.351 +        return a.fX != b.fX || a.fY != b.fY;
   1.352 +    }
   1.353 +
   1.354 +    /** Return true if this point and the given point are far enough apart
   1.355 +        such that a vector between them would be non-degenerate.
   1.356 +
   1.357 +        WARNING: Unlike the explicit tolerance version,
   1.358 +        this method does not use componentwise comparison.  Instead, it
   1.359 +        uses a comparison designed to match judgments elsewhere regarding
   1.360 +        degeneracy ("points A and B are so close that the vector between them
   1.361 +        is essentially zero").
   1.362 +    */
   1.363 +    bool equalsWithinTolerance(const SkPoint& p) const {
   1.364 +        return !CanNormalize(fX - p.fX, fY - p.fY);
   1.365 +    }
   1.366 +
   1.367 +    /** WARNING: There is no guarantee that the result will reflect judgments
   1.368 +        elsewhere regarding degeneracy ("points A and B are so close that the
   1.369 +        vector between them is essentially zero").
   1.370 +    */
   1.371 +    bool equalsWithinTolerance(const SkPoint& p, SkScalar tol) const {
   1.372 +        return SkScalarNearlyZero(fX - p.fX, tol)
   1.373 +               && SkScalarNearlyZero(fY - p.fY, tol);
   1.374 +    }
   1.375 +
   1.376 +    /** Returns a new point whose coordinates are the difference between
   1.377 +        a's and b's (a - b)
   1.378 +    */
   1.379 +    friend SkPoint operator-(const SkPoint& a, const SkPoint& b) {
   1.380 +        SkPoint v;
   1.381 +        v.set(a.fX - b.fX, a.fY - b.fY);
   1.382 +        return v;
   1.383 +    }
   1.384 +
   1.385 +    /** Returns a new point whose coordinates are the sum of a's and b's (a + b)
   1.386 +    */
   1.387 +    friend SkPoint operator+(const SkPoint& a, const SkPoint& b) {
   1.388 +        SkPoint v;
   1.389 +        v.set(a.fX + b.fX, a.fY + b.fY);
   1.390 +        return v;
   1.391 +    }
   1.392 +
   1.393 +    /** Returns the euclidian distance from (0,0) to (x,y)
   1.394 +    */
   1.395 +    static SkScalar Length(SkScalar x, SkScalar y);
   1.396 +
   1.397 +    /** Normalize pt, returning its previous length. If the prev length is too
   1.398 +        small (degenerate), return 0 and leave pt unchanged. This uses the same
   1.399 +        tolerance as CanNormalize.
   1.400 +
   1.401 +        Note that this method may be significantly more expensive than
   1.402 +        the non-static normalize(), because it has to return the previous length
   1.403 +        of the point.  If you don't need the previous length, call the
   1.404 +        non-static normalize() method instead.
   1.405 +     */
   1.406 +    static SkScalar Normalize(SkPoint* pt);
   1.407 +
   1.408 +    /** Returns the euclidian distance between a and b
   1.409 +    */
   1.410 +    static SkScalar Distance(const SkPoint& a, const SkPoint& b) {
   1.411 +        return Length(a.fX - b.fX, a.fY - b.fY);
   1.412 +    }
   1.413 +
   1.414 +    /** Returns the dot product of a and b, treating them as 2D vectors
   1.415 +    */
   1.416 +    static SkScalar DotProduct(const SkPoint& a, const SkPoint& b) {
   1.417 +        return a.fX * b.fX + a.fY * b.fY;
   1.418 +    }
   1.419 +
   1.420 +    /** Returns the cross product of a and b, treating them as 2D vectors
   1.421 +    */
   1.422 +    static SkScalar CrossProduct(const SkPoint& a, const SkPoint& b) {
   1.423 +        return a.fX * b.fY - a.fY * b.fX;
   1.424 +    }
   1.425 +
   1.426 +    SkScalar cross(const SkPoint& vec) const {
   1.427 +        return CrossProduct(*this, vec);
   1.428 +    }
   1.429 +
   1.430 +    SkScalar dot(const SkPoint& vec) const {
   1.431 +        return DotProduct(*this, vec);
   1.432 +    }
   1.433 +
   1.434 +    SkScalar lengthSqd() const {
   1.435 +        return DotProduct(*this, *this);
   1.436 +    }
   1.437 +
   1.438 +    SkScalar distanceToSqd(const SkPoint& pt) const {
   1.439 +        SkScalar dx = fX - pt.fX;
   1.440 +        SkScalar dy = fY - pt.fY;
   1.441 +        return dx * dx + dy * dy;
   1.442 +    }
   1.443 +
   1.444 +    /**
   1.445 +     * The side of a point relative to a line. If the line is from a to b then
   1.446 +     * the values are consistent with the sign of (b-a) cross (pt-a)
   1.447 +     */
   1.448 +    enum Side {
   1.449 +        kLeft_Side  = -1,
   1.450 +        kOn_Side    =  0,
   1.451 +        kRight_Side =  1
   1.452 +    };
   1.453 +
   1.454 +    /**
   1.455 +     * Returns the squared distance to the infinite line between two pts. Also
   1.456 +     * optionally returns the side of the line that the pt falls on (looking
   1.457 +     * along line from a to b)
   1.458 +     */
   1.459 +    SkScalar distanceToLineBetweenSqd(const SkPoint& a,
   1.460 +                                      const SkPoint& b,
   1.461 +                                      Side* side = NULL) const;
   1.462 +
   1.463 +    /**
   1.464 +     * Returns the distance to the infinite line between two pts. Also
   1.465 +     * optionally returns the side of the line that the pt falls on (looking
   1.466 +     * along the line from a to b)
   1.467 +     */
   1.468 +    SkScalar distanceToLineBetween(const SkPoint& a,
   1.469 +                                   const SkPoint& b,
   1.470 +                                   Side* side = NULL) const {
   1.471 +        return SkScalarSqrt(this->distanceToLineBetweenSqd(a, b, side));
   1.472 +    }
   1.473 +
   1.474 +    /**
   1.475 +     * Returns the squared distance to the line segment between pts a and b
   1.476 +     */
   1.477 +    SkScalar distanceToLineSegmentBetweenSqd(const SkPoint& a,
   1.478 +                                             const SkPoint& b) const;
   1.479 +
   1.480 +    /**
   1.481 +     * Returns the distance to the line segment between pts a and b.
   1.482 +     */
   1.483 +    SkScalar distanceToLineSegmentBetween(const SkPoint& a,
   1.484 +                                          const SkPoint& b) const {
   1.485 +        return SkScalarSqrt(this->distanceToLineSegmentBetweenSqd(a, b));
   1.486 +    }
   1.487 +
   1.488 +    /**
   1.489 +     * Make this vector be orthogonal to vec. Looking down vec the
   1.490 +     * new vector will point in direction indicated by side (which
   1.491 +     * must be kLeft_Side or kRight_Side).
   1.492 +     */
   1.493 +    void setOrthog(const SkPoint& vec, Side side = kLeft_Side) {
   1.494 +        // vec could be this
   1.495 +        SkScalar tmp = vec.fX;
   1.496 +        if (kRight_Side == side) {
   1.497 +            fX = -vec.fY;
   1.498 +            fY = tmp;
   1.499 +        } else {
   1.500 +            SkASSERT(kLeft_Side == side);
   1.501 +            fX = vec.fY;
   1.502 +            fY = -tmp;
   1.503 +        }
   1.504 +    }
   1.505 +
   1.506 +    /**
   1.507 +     *  cast-safe way to treat the point as an array of (2) SkScalars.
   1.508 +     */
   1.509 +    const SkScalar* asScalars() const { return &fX; }
   1.510 +};
   1.511 +
   1.512 +typedef SkPoint SkVector;
   1.513 +
   1.514 +#endif

mercurial