gfx/skia/trunk/include/core/SkTDArray.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/include/core/SkTDArray.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,389 @@
     1.4 +
     1.5 +/*
     1.6 + * Copyright 2006 The Android Open Source Project
     1.7 + *
     1.8 + * Use of this source code is governed by a BSD-style license that can be
     1.9 + * found in the LICENSE file.
    1.10 + */
    1.11 +
    1.12 +
    1.13 +#ifndef SkTDArray_DEFINED
    1.14 +#define SkTDArray_DEFINED
    1.15 +
    1.16 +#include "SkTypes.h"
    1.17 +
    1.18 +template <typename T> class SK_API SkTDArray {
    1.19 +public:
    1.20 +    SkTDArray() {
    1.21 +        fReserve = fCount = 0;
    1.22 +        fArray = NULL;
    1.23 +#ifdef SK_DEBUG
    1.24 +        fData = NULL;
    1.25 +#endif
    1.26 +    }
    1.27 +    SkTDArray(const T src[], int count) {
    1.28 +        SkASSERT(src || count == 0);
    1.29 +
    1.30 +        fReserve = fCount = 0;
    1.31 +        fArray = NULL;
    1.32 +#ifdef SK_DEBUG
    1.33 +        fData = NULL;
    1.34 +#endif
    1.35 +        if (count) {
    1.36 +            fArray = (T*)sk_malloc_throw(count * sizeof(T));
    1.37 +#ifdef SK_DEBUG
    1.38 +            fData = (ArrayT*)fArray;
    1.39 +#endif
    1.40 +            memcpy(fArray, src, sizeof(T) * count);
    1.41 +            fReserve = fCount = count;
    1.42 +        }
    1.43 +    }
    1.44 +    SkTDArray(const SkTDArray<T>& src) {
    1.45 +        fReserve = fCount = 0;
    1.46 +        fArray = NULL;
    1.47 +#ifdef SK_DEBUG
    1.48 +        fData = NULL;
    1.49 +#endif
    1.50 +        SkTDArray<T> tmp(src.fArray, src.fCount);
    1.51 +        this->swap(tmp);
    1.52 +    }
    1.53 +    ~SkTDArray() {
    1.54 +        sk_free(fArray);
    1.55 +    }
    1.56 +
    1.57 +    SkTDArray<T>& operator=(const SkTDArray<T>& src) {
    1.58 +        if (this != &src) {
    1.59 +            if (src.fCount > fReserve) {
    1.60 +                SkTDArray<T> tmp(src.fArray, src.fCount);
    1.61 +                this->swap(tmp);
    1.62 +            } else {
    1.63 +                memcpy(fArray, src.fArray, sizeof(T) * src.fCount);
    1.64 +                fCount = src.fCount;
    1.65 +            }
    1.66 +        }
    1.67 +        return *this;
    1.68 +    }
    1.69 +
    1.70 +    friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) {
    1.71 +        return  a.fCount == b.fCount &&
    1.72 +                (a.fCount == 0 ||
    1.73 +                 !memcmp(a.fArray, b.fArray, a.fCount * sizeof(T)));
    1.74 +    }
    1.75 +    friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) {
    1.76 +        return !(a == b);
    1.77 +    }
    1.78 +
    1.79 +    void swap(SkTDArray<T>& other) {
    1.80 +        SkTSwap(fArray, other.fArray);
    1.81 +#ifdef SK_DEBUG
    1.82 +        SkTSwap(fData, other.fData);
    1.83 +#endif
    1.84 +        SkTSwap(fReserve, other.fReserve);
    1.85 +        SkTSwap(fCount, other.fCount);
    1.86 +    }
    1.87 +
    1.88 +    /** Return a ptr to the array of data, to be freed with sk_free. This also
    1.89 +        resets the SkTDArray to be empty.
    1.90 +     */
    1.91 +    T* detach() {
    1.92 +        T* array = fArray;
    1.93 +        fArray = NULL;
    1.94 +        fReserve = fCount = 0;
    1.95 +        SkDEBUGCODE(fData = NULL;)
    1.96 +        return array;
    1.97 +    }
    1.98 +
    1.99 +    bool isEmpty() const { return fCount == 0; }
   1.100 +
   1.101 +    /**
   1.102 +     *  Return the number of elements in the array
   1.103 +     */
   1.104 +    int count() const { return fCount; }
   1.105 +
   1.106 +    /**
   1.107 +     *  Return the total number of elements allocated.
   1.108 +     *  reserved() - count() gives you the number of elements you can add
   1.109 +     *  without causing an allocation.
   1.110 +     */
   1.111 +    int reserved() const { return fReserve; }
   1.112 +
   1.113 +    /**
   1.114 +     *  return the number of bytes in the array: count * sizeof(T)
   1.115 +     */
   1.116 +    size_t bytes() const { return fCount * sizeof(T); }
   1.117 +
   1.118 +    T*  begin() { return fArray; }
   1.119 +    const T*  begin() const { return fArray; }
   1.120 +    T*  end() { return fArray ? fArray + fCount : NULL; }
   1.121 +    const T*  end() const { return fArray ? fArray + fCount : NULL; }
   1.122 +
   1.123 +    T&  operator[](int index) {
   1.124 +        SkASSERT(index < fCount);
   1.125 +        return fArray[index];
   1.126 +    }
   1.127 +    const T&  operator[](int index) const {
   1.128 +        SkASSERT(index < fCount);
   1.129 +        return fArray[index];
   1.130 +    }
   1.131 +
   1.132 +    T&  getAt(int index)  {
   1.133 +        return (*this)[index];
   1.134 +    }
   1.135 +    const T&  getAt(int index) const {
   1.136 +        return (*this)[index];
   1.137 +    }
   1.138 +
   1.139 +    void reset() {
   1.140 +        if (fArray) {
   1.141 +            sk_free(fArray);
   1.142 +            fArray = NULL;
   1.143 +#ifdef SK_DEBUG
   1.144 +            fData = NULL;
   1.145 +#endif
   1.146 +            fReserve = fCount = 0;
   1.147 +        } else {
   1.148 +            SkASSERT(fReserve == 0 && fCount == 0);
   1.149 +        }
   1.150 +    }
   1.151 +
   1.152 +    void rewind() {
   1.153 +        // same as setCount(0)
   1.154 +        fCount = 0;
   1.155 +    }
   1.156 +
   1.157 +    /**
   1.158 +     *  Sets the number of elements in the array.
   1.159 +     *  If the array does not have space for count elements, it will increase
   1.160 +     *  the storage allocated to some amount greater than that required.
   1.161 +     *  It will never shrink the shrink the storage.
   1.162 +     */
   1.163 +    void setCount(int count) {
   1.164 +        SkASSERT(count >= 0);
   1.165 +        if (count > fReserve) {
   1.166 +            this->resizeStorageToAtLeast(count);
   1.167 +        }
   1.168 +        fCount = count;
   1.169 +    }
   1.170 +
   1.171 +    void setReserve(int reserve) {
   1.172 +        if (reserve > fReserve) {
   1.173 +            this->resizeStorageToAtLeast(reserve);
   1.174 +        }
   1.175 +    }
   1.176 +
   1.177 +    T* prepend() {
   1.178 +        this->adjustCount(1);
   1.179 +        memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T));
   1.180 +        return fArray;
   1.181 +    }
   1.182 +
   1.183 +    T* append() {
   1.184 +        return this->append(1, NULL);
   1.185 +    }
   1.186 +    T* append(int count, const T* src = NULL) {
   1.187 +        int oldCount = fCount;
   1.188 +        if (count)  {
   1.189 +            SkASSERT(src == NULL || fArray == NULL ||
   1.190 +                    src + count <= fArray || fArray + oldCount <= src);
   1.191 +
   1.192 +            this->adjustCount(count);
   1.193 +            if (src) {
   1.194 +                memcpy(fArray + oldCount, src, sizeof(T) * count);
   1.195 +            }
   1.196 +        }
   1.197 +        return fArray + oldCount;
   1.198 +    }
   1.199 +
   1.200 +    T* appendClear() {
   1.201 +        T* result = this->append();
   1.202 +        *result = 0;
   1.203 +        return result;
   1.204 +    }
   1.205 +
   1.206 +    T* insert(int index) {
   1.207 +        return this->insert(index, 1, NULL);
   1.208 +    }
   1.209 +    T* insert(int index, int count, const T* src = NULL) {
   1.210 +        SkASSERT(count);
   1.211 +        SkASSERT(index <= fCount);
   1.212 +        size_t oldCount = fCount;
   1.213 +        this->adjustCount(count);
   1.214 +        T* dst = fArray + index;
   1.215 +        memmove(dst + count, dst, sizeof(T) * (oldCount - index));
   1.216 +        if (src) {
   1.217 +            memcpy(dst, src, sizeof(T) * count);
   1.218 +        }
   1.219 +        return dst;
   1.220 +    }
   1.221 +
   1.222 +    void remove(int index, int count = 1) {
   1.223 +        SkASSERT(index + count <= fCount);
   1.224 +        fCount = fCount - count;
   1.225 +        memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index));
   1.226 +    }
   1.227 +
   1.228 +    void removeShuffle(int index) {
   1.229 +        SkASSERT(index < fCount);
   1.230 +        int newCount = fCount - 1;
   1.231 +        fCount = newCount;
   1.232 +        if (index != newCount) {
   1.233 +            memcpy(fArray + index, fArray + newCount, sizeof(T));
   1.234 +        }
   1.235 +    }
   1.236 +
   1.237 +    int find(const T& elem) const {
   1.238 +        const T* iter = fArray;
   1.239 +        const T* stop = fArray + fCount;
   1.240 +
   1.241 +        for (; iter < stop; iter++) {
   1.242 +            if (*iter == elem) {
   1.243 +                return (int) (iter - fArray);
   1.244 +            }
   1.245 +        }
   1.246 +        return -1;
   1.247 +    }
   1.248 +
   1.249 +    int rfind(const T& elem) const {
   1.250 +        const T* iter = fArray + fCount;
   1.251 +        const T* stop = fArray;
   1.252 +
   1.253 +        while (iter > stop) {
   1.254 +            if (*--iter == elem) {
   1.255 +                return SkToInt(iter - stop);
   1.256 +            }
   1.257 +        }
   1.258 +        return -1;
   1.259 +    }
   1.260 +
   1.261 +    /**
   1.262 +     * Returns true iff the array contains this element.
   1.263 +     */
   1.264 +    bool contains(const T& elem) const {
   1.265 +        return (this->find(elem) >= 0);
   1.266 +    }
   1.267 +
   1.268 +    /**
   1.269 +     * Copies up to max elements into dst. The number of items copied is
   1.270 +     * capped by count - index. The actual number copied is returned.
   1.271 +     */
   1.272 +    int copyRange(T* dst, int index, int max) const {
   1.273 +        SkASSERT(max >= 0);
   1.274 +        SkASSERT(!max || dst);
   1.275 +        if (index >= fCount) {
   1.276 +            return 0;
   1.277 +        }
   1.278 +        int count = SkMin32(max, fCount - index);
   1.279 +        memcpy(dst, fArray + index, sizeof(T) * count);
   1.280 +        return count;
   1.281 +    }
   1.282 +
   1.283 +    void copy(T* dst) const {
   1.284 +        this->copyRange(dst, 0, fCount);
   1.285 +    }
   1.286 +
   1.287 +    // routines to treat the array like a stack
   1.288 +    T*          push() { return this->append(); }
   1.289 +    void        push(const T& elem) { *this->append() = elem; }
   1.290 +    const T&    top() const { return (*this)[fCount - 1]; }
   1.291 +    T&          top() { return (*this)[fCount - 1]; }
   1.292 +    void        pop(T* elem) { if (elem) *elem = (*this)[fCount - 1]; --fCount; }
   1.293 +    void        pop() { --fCount; }
   1.294 +
   1.295 +    void deleteAll() {
   1.296 +        T*  iter = fArray;
   1.297 +        T*  stop = fArray + fCount;
   1.298 +        while (iter < stop) {
   1.299 +            SkDELETE (*iter);
   1.300 +            iter += 1;
   1.301 +        }
   1.302 +        this->reset();
   1.303 +    }
   1.304 +
   1.305 +    void freeAll() {
   1.306 +        T*  iter = fArray;
   1.307 +        T*  stop = fArray + fCount;
   1.308 +        while (iter < stop) {
   1.309 +            sk_free(*iter);
   1.310 +            iter += 1;
   1.311 +        }
   1.312 +        this->reset();
   1.313 +    }
   1.314 +
   1.315 +    void unrefAll() {
   1.316 +        T*  iter = fArray;
   1.317 +        T*  stop = fArray + fCount;
   1.318 +        while (iter < stop) {
   1.319 +            (*iter)->unref();
   1.320 +            iter += 1;
   1.321 +        }
   1.322 +        this->reset();
   1.323 +    }
   1.324 +
   1.325 +    void safeUnrefAll() {
   1.326 +        T*  iter = fArray;
   1.327 +        T*  stop = fArray + fCount;
   1.328 +        while (iter < stop) {
   1.329 +            SkSafeUnref(*iter);
   1.330 +            iter += 1;
   1.331 +        }
   1.332 +        this->reset();
   1.333 +    }
   1.334 +
   1.335 +    void visitAll(void visitor(T&)) {
   1.336 +        T* stop = this->end();
   1.337 +        for (T* curr = this->begin(); curr < stop; curr++) {
   1.338 +            if (*curr) {
   1.339 +                visitor(*curr);
   1.340 +            }
   1.341 +        }
   1.342 +    }
   1.343 +
   1.344 +#ifdef SK_DEBUG
   1.345 +    void validate() const {
   1.346 +        SkASSERT((fReserve == 0 && fArray == NULL) ||
   1.347 +                 (fReserve > 0 && fArray != NULL));
   1.348 +        SkASSERT(fCount <= fReserve);
   1.349 +        SkASSERT(fData == (ArrayT*)fArray);
   1.350 +    }
   1.351 +#endif
   1.352 +
   1.353 +private:
   1.354 +#ifdef SK_DEBUG
   1.355 +    enum {
   1.356 +        kDebugArraySize = 16
   1.357 +    };
   1.358 +    typedef T ArrayT[kDebugArraySize];
   1.359 +    ArrayT* fData;
   1.360 +#endif
   1.361 +    T*      fArray;
   1.362 +    int     fReserve;
   1.363 +    int     fCount;
   1.364 +
   1.365 +    /**
   1.366 +     *  Adjusts the number of elements in the array.
   1.367 +     *  This is the same as calling setCount(count() + delta).
   1.368 +     */
   1.369 +    void adjustCount(int delta) {
   1.370 +        this->setCount(fCount + delta);
   1.371 +    }
   1.372 +
   1.373 +    /**
   1.374 +     *  Increase the storage allocation such that it can hold (fCount + extra)
   1.375 +     *  elements.
   1.376 +     *  It never shrinks the allocation, and it may increase the allocation by
   1.377 +     *  more than is strictly required, based on a private growth heuristic.
   1.378 +     *
   1.379 +     *  note: does NOT modify fCount
   1.380 +     */
   1.381 +    void resizeStorageToAtLeast(int count) {
   1.382 +        SkASSERT(count > fReserve);
   1.383 +        fReserve = count + 4;
   1.384 +        fReserve += fReserve / 4;
   1.385 +        fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T));
   1.386 +#ifdef SK_DEBUG
   1.387 +        fData = (ArrayT*)fArray;
   1.388 +#endif
   1.389 +    }
   1.390 +};
   1.391 +
   1.392 +#endif

mercurial