gfx/skia/trunk/include/core/SkTemplates.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/include/core/SkTemplates.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,489 @@
     1.4 +
     1.5 +/*
     1.6 + * Copyright 2006 The Android Open Source Project
     1.7 + *
     1.8 + * Use of this source code is governed by a BSD-style license that can be
     1.9 + * found in the LICENSE file.
    1.10 + */
    1.11 +
    1.12 +
    1.13 +#ifndef SkTemplates_DEFINED
    1.14 +#define SkTemplates_DEFINED
    1.15 +
    1.16 +#include "SkTypes.h"
    1.17 +#include <limits>
    1.18 +#include <limits.h>
    1.19 +#include <new>
    1.20 +
    1.21 +/** \file SkTemplates.h
    1.22 +
    1.23 +    This file contains light-weight template classes for type-safe and exception-safe
    1.24 +    resource management.
    1.25 +*/
    1.26 +
    1.27 +/**
    1.28 + *  Marks a local variable as known to be unused (to avoid warnings).
    1.29 + *  Note that this does *not* prevent the local variable from being optimized away.
    1.30 + */
    1.31 +template<typename T> inline void sk_ignore_unused_variable(const T&) { }
    1.32 +
    1.33 +/**
    1.34 + *  SkTIsConst<T>::value is true if the type T is const.
    1.35 + *  The type T is constrained not to be an array or reference type.
    1.36 + */
    1.37 +template <typename T> struct SkTIsConst {
    1.38 +    static T* t;
    1.39 +    static uint16_t test(const volatile void*);
    1.40 +    static uint32_t test(volatile void *);
    1.41 +    static const bool value = (sizeof(uint16_t) == sizeof(test(t)));
    1.42 +};
    1.43 +
    1.44 +///@{
    1.45 +/** SkTConstType<T, CONST>::type will be 'const T' if CONST is true, 'T' otherwise. */
    1.46 +template <typename T, bool CONST> struct SkTConstType {
    1.47 +    typedef T type;
    1.48 +};
    1.49 +template <typename T> struct SkTConstType<T, true> {
    1.50 +    typedef const T type;
    1.51 +};
    1.52 +///@}
    1.53 +
    1.54 +/**
    1.55 + *  Returns a pointer to a D which comes immediately after S[count].
    1.56 + */
    1.57 +template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
    1.58 +    return reinterpret_cast<D*>(ptr + count);
    1.59 +}
    1.60 +
    1.61 +/**
    1.62 + *  Returns a pointer to a D which comes byteOffset bytes after S.
    1.63 + */
    1.64 +template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) {
    1.65 +    // The intermediate char* has the same const-ness as D as this produces better error messages.
    1.66 +    // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
    1.67 +    return reinterpret_cast<D*>(
    1.68 +        reinterpret_cast<typename SkTConstType<char, SkTIsConst<D>::value>::type*>(ptr) + byteOffset
    1.69 +    );
    1.70 +}
    1.71 +
    1.72 +/** SkTSetBit<N, T>::value is a T with the Nth bit set. */
    1.73 +template<unsigned N, typename T = uintmax_t> struct SkTSetBit {
    1.74 +    static const T value = static_cast<T>(1) << N;
    1.75 +    SK_COMPILE_ASSERT(sizeof(T)*CHAR_BIT > N, SkTSetBit_N_too_large);
    1.76 +    SK_COMPILE_ASSERT(std::numeric_limits<T>::is_integer, SkTSetBit_T_must_be_integer);
    1.77 +    SK_COMPILE_ASSERT(!std::numeric_limits<T>::is_signed, SkTSetBit_T_must_be_unsigned);
    1.78 +    SK_COMPILE_ASSERT(std::numeric_limits<T>::radix == 2, SkTSetBit_T_radix_must_be_2);
    1.79 +};
    1.80 +
    1.81 +/** \class SkAutoTCallVProc
    1.82 +
    1.83 +    Call a function when this goes out of scope. The template uses two
    1.84 +    parameters, the object, and a function that is to be called in the destructor.
    1.85 +    If detach() is called, the object reference is set to null. If the object
    1.86 +    reference is null when the destructor is called, we do not call the
    1.87 +    function.
    1.88 +*/
    1.89 +template <typename T, void (*P)(T*)> class SkAutoTCallVProc : SkNoncopyable {
    1.90 +public:
    1.91 +    SkAutoTCallVProc(T* obj): fObj(obj) {}
    1.92 +    ~SkAutoTCallVProc() { if (fObj) P(fObj); }
    1.93 +    T* detach() { T* obj = fObj; fObj = NULL; return obj; }
    1.94 +private:
    1.95 +    T* fObj;
    1.96 +};
    1.97 +
    1.98 +/** \class SkAutoTCallIProc
    1.99 +
   1.100 +Call a function when this goes out of scope. The template uses two
   1.101 +parameters, the object, and a function that is to be called in the destructor.
   1.102 +If detach() is called, the object reference is set to null. If the object
   1.103 +reference is null when the destructor is called, we do not call the
   1.104 +function.
   1.105 +*/
   1.106 +template <typename T, int (*P)(T*)> class SkAutoTCallIProc : SkNoncopyable {
   1.107 +public:
   1.108 +    SkAutoTCallIProc(T* obj): fObj(obj) {}
   1.109 +    ~SkAutoTCallIProc() { if (fObj) P(fObj); }
   1.110 +    T* detach() { T* obj = fObj; fObj = NULL; return obj; }
   1.111 +private:
   1.112 +    T* fObj;
   1.113 +};
   1.114 +
   1.115 +/** \class SkAutoTDelete
   1.116 +  An SkAutoTDelete<T> is like a T*, except that the destructor of SkAutoTDelete<T>
   1.117 +  automatically deletes the pointer it holds (if any).  That is, SkAutoTDelete<T>
   1.118 +  owns the T object that it points to.  Like a T*, an SkAutoTDelete<T> may hold
   1.119 +  either NULL or a pointer to a T object.  Also like T*, SkAutoTDelete<T> is
   1.120 +  thread-compatible, and once you dereference it, you get the threadsafety
   1.121 +  guarantees of T.
   1.122 +
   1.123 +  The size of a SkAutoTDelete is small: sizeof(SkAutoTDelete<T>) == sizeof(T*)
   1.124 +*/
   1.125 +template <typename T> class SkAutoTDelete : SkNoncopyable {
   1.126 +public:
   1.127 +    SkAutoTDelete(T* obj = NULL) : fObj(obj) {}
   1.128 +    ~SkAutoTDelete() { SkDELETE(fObj); }
   1.129 +
   1.130 +    T* get() const { return fObj; }
   1.131 +    T& operator*() const { SkASSERT(fObj); return *fObj; }
   1.132 +    T* operator->() const { SkASSERT(fObj); return fObj; }
   1.133 +
   1.134 +    void reset(T* obj) {
   1.135 +        if (fObj != obj) {
   1.136 +            SkDELETE(fObj);
   1.137 +            fObj = obj;
   1.138 +        }
   1.139 +    }
   1.140 +
   1.141 +    /**
   1.142 +     *  Delete the owned object, setting the internal pointer to NULL.
   1.143 +     */
   1.144 +    void free() {
   1.145 +        SkDELETE(fObj);
   1.146 +        fObj = NULL;
   1.147 +    }
   1.148 +
   1.149 +    /**
   1.150 +     *  Transfer ownership of the object to the caller, setting the internal
   1.151 +     *  pointer to NULL. Note that this differs from get(), which also returns
   1.152 +     *  the pointer, but it does not transfer ownership.
   1.153 +     */
   1.154 +    T* detach() {
   1.155 +        T* obj = fObj;
   1.156 +        fObj = NULL;
   1.157 +        return obj;
   1.158 +    }
   1.159 +
   1.160 +    void swap(SkAutoTDelete* that) {
   1.161 +        SkTSwap(fObj, that->fObj);
   1.162 +    }
   1.163 +
   1.164 +private:
   1.165 +    T*  fObj;
   1.166 +};
   1.167 +
   1.168 +// Calls ~T() in the destructor.
   1.169 +template <typename T> class SkAutoTDestroy : SkNoncopyable {
   1.170 +public:
   1.171 +    SkAutoTDestroy(T* obj = NULL) : fObj(obj) {}
   1.172 +    ~SkAutoTDestroy() {
   1.173 +        if (NULL != fObj) {
   1.174 +            fObj->~T();
   1.175 +        }
   1.176 +    }
   1.177 +
   1.178 +    T* get() const { return fObj; }
   1.179 +    T& operator*() const { SkASSERT(fObj); return *fObj; }
   1.180 +    T* operator->() const { SkASSERT(fObj); return fObj; }
   1.181 +
   1.182 +private:
   1.183 +    T*  fObj;
   1.184 +};
   1.185 +
   1.186 +template <typename T> class SkAutoTDeleteArray : SkNoncopyable {
   1.187 +public:
   1.188 +    SkAutoTDeleteArray(T array[]) : fArray(array) {}
   1.189 +    ~SkAutoTDeleteArray() { SkDELETE_ARRAY(fArray); }
   1.190 +
   1.191 +    T*      get() const { return fArray; }
   1.192 +    void    free() { SkDELETE_ARRAY(fArray); fArray = NULL; }
   1.193 +    T*      detach() { T* array = fArray; fArray = NULL; return array; }
   1.194 +
   1.195 +    void reset(T array[]) {
   1.196 +        if (fArray != array) {
   1.197 +            SkDELETE_ARRAY(fArray);
   1.198 +            fArray = array;
   1.199 +        }
   1.200 +    }
   1.201 +
   1.202 +private:
   1.203 +    T*  fArray;
   1.204 +};
   1.205 +
   1.206 +/** Allocate an array of T elements, and free the array in the destructor
   1.207 + */
   1.208 +template <typename T> class SkAutoTArray : SkNoncopyable {
   1.209 +public:
   1.210 +    SkAutoTArray() {
   1.211 +        fArray = NULL;
   1.212 +        SkDEBUGCODE(fCount = 0;)
   1.213 +    }
   1.214 +    /** Allocate count number of T elements
   1.215 +     */
   1.216 +    explicit SkAutoTArray(int count) {
   1.217 +        SkASSERT(count >= 0);
   1.218 +        fArray = NULL;
   1.219 +        if (count) {
   1.220 +            fArray = SkNEW_ARRAY(T, count);
   1.221 +        }
   1.222 +        SkDEBUGCODE(fCount = count;)
   1.223 +    }
   1.224 +
   1.225 +    /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
   1.226 +     */
   1.227 +    void reset(int count) {
   1.228 +        SkDELETE_ARRAY(fArray);
   1.229 +        SkASSERT(count >= 0);
   1.230 +        fArray = NULL;
   1.231 +        if (count) {
   1.232 +            fArray = SkNEW_ARRAY(T, count);
   1.233 +        }
   1.234 +        SkDEBUGCODE(fCount = count;)
   1.235 +    }
   1.236 +
   1.237 +    ~SkAutoTArray() {
   1.238 +        SkDELETE_ARRAY(fArray);
   1.239 +    }
   1.240 +
   1.241 +    /** Return the array of T elements. Will be NULL if count == 0
   1.242 +     */
   1.243 +    T* get() const { return fArray; }
   1.244 +
   1.245 +    /** Return the nth element in the array
   1.246 +     */
   1.247 +    T&  operator[](int index) const {
   1.248 +        SkASSERT((unsigned)index < (unsigned)fCount);
   1.249 +        return fArray[index];
   1.250 +    }
   1.251 +
   1.252 +private:
   1.253 +    T*  fArray;
   1.254 +    SkDEBUGCODE(int fCount;)
   1.255 +};
   1.256 +
   1.257 +/** Wraps SkAutoTArray, with room for up to N elements preallocated
   1.258 + */
   1.259 +template <int N, typename T> class SkAutoSTArray : SkNoncopyable {
   1.260 +public:
   1.261 +    /** Initialize with no objects */
   1.262 +    SkAutoSTArray() {
   1.263 +        fArray = NULL;
   1.264 +        fCount = 0;
   1.265 +    }
   1.266 +
   1.267 +    /** Allocate count number of T elements
   1.268 +     */
   1.269 +    SkAutoSTArray(int count) {
   1.270 +        fArray = NULL;
   1.271 +        fCount = 0;
   1.272 +        this->reset(count);
   1.273 +    }
   1.274 +
   1.275 +    ~SkAutoSTArray() {
   1.276 +        this->reset(0);
   1.277 +    }
   1.278 +
   1.279 +    /** Destroys previous objects in the array and default constructs count number of objects */
   1.280 +    void reset(int count) {
   1.281 +        T* start = fArray;
   1.282 +        T* iter = start + fCount;
   1.283 +        while (iter > start) {
   1.284 +            (--iter)->~T();
   1.285 +        }
   1.286 +
   1.287 +        if (fCount != count) {
   1.288 +            if (fCount > N) {
   1.289 +                // 'fArray' was allocated last time so free it now
   1.290 +                SkASSERT((T*) fStorage != fArray);
   1.291 +                sk_free(fArray);
   1.292 +            }
   1.293 +
   1.294 +            if (count > N) {
   1.295 +                fArray = (T*) sk_malloc_throw(count * sizeof(T));
   1.296 +            } else if (count > 0) {
   1.297 +                fArray = (T*) fStorage;
   1.298 +            } else {
   1.299 +                fArray = NULL;
   1.300 +            }
   1.301 +
   1.302 +            fCount = count;
   1.303 +        }
   1.304 +
   1.305 +        iter = fArray;
   1.306 +        T* stop = fArray + count;
   1.307 +        while (iter < stop) {
   1.308 +            SkNEW_PLACEMENT(iter++, T);
   1.309 +        }
   1.310 +    }
   1.311 +
   1.312 +    /** Return the number of T elements in the array
   1.313 +     */
   1.314 +    int count() const { return fCount; }
   1.315 +
   1.316 +    /** Return the array of T elements. Will be NULL if count == 0
   1.317 +     */
   1.318 +    T* get() const { return fArray; }
   1.319 +
   1.320 +    /** Return the nth element in the array
   1.321 +     */
   1.322 +    T&  operator[](int index) const {
   1.323 +        SkASSERT(index < fCount);
   1.324 +        return fArray[index];
   1.325 +    }
   1.326 +
   1.327 +private:
   1.328 +    int     fCount;
   1.329 +    T*      fArray;
   1.330 +    // since we come right after fArray, fStorage should be properly aligned
   1.331 +    char    fStorage[N * sizeof(T)];
   1.332 +};
   1.333 +
   1.334 +/** Manages an array of T elements, freeing the array in the destructor.
   1.335 + *  Does NOT call any constructors/destructors on T (T must be POD).
   1.336 + */
   1.337 +template <typename T> class SkAutoTMalloc : SkNoncopyable {
   1.338 +public:
   1.339 +    /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
   1.340 +    explicit SkAutoTMalloc(T* ptr = NULL) {
   1.341 +        fPtr = ptr;
   1.342 +    }
   1.343 +
   1.344 +    /** Allocates space for 'count' Ts. */
   1.345 +    explicit SkAutoTMalloc(size_t count) {
   1.346 +        fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
   1.347 +    }
   1.348 +
   1.349 +    ~SkAutoTMalloc() {
   1.350 +        sk_free(fPtr);
   1.351 +    }
   1.352 +
   1.353 +    /** Resize the memory area pointed to by the current ptr preserving contents. */
   1.354 +    void realloc(size_t count) {
   1.355 +        fPtr = reinterpret_cast<T*>(sk_realloc_throw(fPtr, count * sizeof(T)));
   1.356 +    }
   1.357 +
   1.358 +    /** Resize the memory area pointed to by the current ptr without preserving contents. */
   1.359 +    void reset(size_t count) {
   1.360 +        sk_free(fPtr);
   1.361 +        fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
   1.362 +    }
   1.363 +
   1.364 +    T* get() const { return fPtr; }
   1.365 +
   1.366 +    operator T*() {
   1.367 +        return fPtr;
   1.368 +    }
   1.369 +
   1.370 +    operator const T*() const {
   1.371 +        return fPtr;
   1.372 +    }
   1.373 +
   1.374 +    T& operator[](int index) {
   1.375 +        return fPtr[index];
   1.376 +    }
   1.377 +
   1.378 +    const T& operator[](int index) const {
   1.379 +        return fPtr[index];
   1.380 +    }
   1.381 +
   1.382 +    /**
   1.383 +     *  Transfer ownership of the ptr to the caller, setting the internal
   1.384 +     *  pointer to NULL. Note that this differs from get(), which also returns
   1.385 +     *  the pointer, but it does not transfer ownership.
   1.386 +     */
   1.387 +    T* detach() {
   1.388 +        T* ptr = fPtr;
   1.389 +        fPtr = NULL;
   1.390 +        return ptr;
   1.391 +    }
   1.392 +
   1.393 +private:
   1.394 +    T* fPtr;
   1.395 +};
   1.396 +
   1.397 +template <size_t N, typename T> class SkAutoSTMalloc : SkNoncopyable {
   1.398 +public:
   1.399 +    SkAutoSTMalloc() {
   1.400 +        fPtr = NULL;
   1.401 +    }
   1.402 +
   1.403 +    SkAutoSTMalloc(size_t count) {
   1.404 +        if (count > N) {
   1.405 +            fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
   1.406 +        } else if (count) {
   1.407 +            fPtr = fTStorage;
   1.408 +        } else {
   1.409 +            fPtr = NULL;
   1.410 +        }
   1.411 +    }
   1.412 +
   1.413 +    ~SkAutoSTMalloc() {
   1.414 +        if (fPtr != fTStorage) {
   1.415 +            sk_free(fPtr);
   1.416 +        }
   1.417 +    }
   1.418 +
   1.419 +    // doesn't preserve contents
   1.420 +    T* reset(size_t count) {
   1.421 +        if (fPtr != fTStorage) {
   1.422 +            sk_free(fPtr);
   1.423 +        }
   1.424 +        if (count > N) {
   1.425 +            fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
   1.426 +        } else if (count) {
   1.427 +            fPtr = fTStorage;
   1.428 +        } else {
   1.429 +            fPtr = NULL;
   1.430 +        }
   1.431 +        return fPtr;
   1.432 +    }
   1.433 +
   1.434 +    T* get() const { return fPtr; }
   1.435 +
   1.436 +    operator T*() {
   1.437 +        return fPtr;
   1.438 +    }
   1.439 +
   1.440 +    operator const T*() const {
   1.441 +        return fPtr;
   1.442 +    }
   1.443 +
   1.444 +    T& operator[](int index) {
   1.445 +        return fPtr[index];
   1.446 +    }
   1.447 +
   1.448 +    const T& operator[](int index) const {
   1.449 +        return fPtr[index];
   1.450 +    }
   1.451 +
   1.452 +private:
   1.453 +    T*          fPtr;
   1.454 +    union {
   1.455 +        uint32_t    fStorage32[(N*sizeof(T) + 3) >> 2];
   1.456 +        T           fTStorage[1];   // do NOT want to invoke T::T()
   1.457 +    };
   1.458 +};
   1.459 +
   1.460 +/**
   1.461 + * Reserves memory that is aligned on double and pointer boundaries.
   1.462 + * Hopefully this is sufficient for all practical purposes.
   1.463 + */
   1.464 +template <size_t N> class SkAlignedSStorage : SkNoncopyable {
   1.465 +public:
   1.466 +    void* get() { return fData; }
   1.467 +private:
   1.468 +    union {
   1.469 +        void*   fPtr;
   1.470 +        double  fDouble;
   1.471 +        char    fData[N];
   1.472 +    };
   1.473 +};
   1.474 +
   1.475 +/**
   1.476 + * Reserves memory that is aligned on double and pointer boundaries.
   1.477 + * Hopefully this is sufficient for all practical purposes. Otherwise,
   1.478 + * we have to do some arcane trickery to determine alignment of non-POD
   1.479 + * types. Lifetime of the memory is the lifetime of the object.
   1.480 + */
   1.481 +template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
   1.482 +public:
   1.483 +    /**
   1.484 +     * Returns void* because this object does not initialize the
   1.485 +     * memory. Use placement new for types that require a cons.
   1.486 +     */
   1.487 +    void* get() { return fStorage.get(); }
   1.488 +private:
   1.489 +    SkAlignedSStorage<sizeof(T)*N> fStorage;
   1.490 +};
   1.491 +
   1.492 +#endif

mercurial