1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/include/gpu/GrEffect.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,365 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#ifndef GrEffect_DEFINED 1.12 +#define GrEffect_DEFINED 1.13 + 1.14 +#include "GrColor.h" 1.15 +#include "GrEffectUnitTest.h" 1.16 +#include "GrTexture.h" 1.17 +#include "GrTextureAccess.h" 1.18 +#include "GrTypesPriv.h" 1.19 + 1.20 +class GrBackendEffectFactory; 1.21 +class GrContext; 1.22 +class GrCoordTransform; 1.23 +class GrEffect; 1.24 +class GrVertexEffect; 1.25 +class SkString; 1.26 + 1.27 +/** 1.28 + * A Wrapper class for GrEffect. Its ref-count will track owners that may use effects to enqueue 1.29 + * new draw operations separately from ownership within a deferred drawing queue. When the 1.30 + * GrEffectRef ref count reaches zero the scratch GrResources owned by the effect can be recycled 1.31 + * in service of later draws. However, the deferred draw queue may still own direct references to 1.32 + * the underlying GrEffect. 1.33 + * 1.34 + * GrEffectRefs created by new are placed in a per-thread managed pool. The pool is destroyed when 1.35 + * the thread ends. Therefore, all dynamically allocated GrEffectRefs must be unreffed before thread 1.36 + * termination. 1.37 + */ 1.38 +class GrEffectRef : public SkRefCnt { 1.39 +public: 1.40 + SK_DECLARE_INST_COUNT(GrEffectRef); 1.41 + virtual ~GrEffectRef(); 1.42 + 1.43 + GrEffect* get() { return fEffect; } 1.44 + const GrEffect* get() const { return fEffect; } 1.45 + 1.46 + const GrEffect* operator-> () { return fEffect; } 1.47 + const GrEffect* operator-> () const { return fEffect; } 1.48 + 1.49 + void* operator new(size_t size); 1.50 + void operator delete(void* target); 1.51 + 1.52 + void* operator new(size_t size, void* placement) { 1.53 + return ::operator new(size, placement); 1.54 + } 1.55 + void operator delete(void* target, void* placement) { 1.56 + ::operator delete(target, placement); 1.57 + } 1.58 + 1.59 +private: 1.60 + friend class GrEffect; // to construct these 1.61 + 1.62 + explicit GrEffectRef(GrEffect* effect); 1.63 + 1.64 + GrEffect* fEffect; 1.65 + 1.66 + typedef SkRefCnt INHERITED; 1.67 +}; 1.68 + 1.69 +/** Provides custom vertex shader, fragment shader, uniform data for a particular stage of the 1.70 + Ganesh shading pipeline. 1.71 + Subclasses must have a function that produces a human-readable name: 1.72 + static const char* Name(); 1.73 + GrEffect objects *must* be immutable: after being constructed, their fields may not change. 1.74 + 1.75 + GrEffect subclass objects should be created by factory functions that return GrEffectRef. 1.76 + There is no public way to wrap a GrEffect in a GrEffectRef. Thus, a factory should be a static 1.77 + member function of a GrEffect subclass. 1.78 + 1.79 + Because almost no code should ever handle a GrEffect directly outside of a GrEffectRef, we 1.80 + privately inherit from SkRefCnt to help prevent accidental direct ref'ing/unref'ing of effects. 1.81 + 1.82 + Dynamically allocated GrEffects and their corresponding GrEffectRefs are managed by a per-thread 1.83 + memory pool. The ref count of an effect must reach 0 before the thread terminates and the pool 1.84 + is destroyed. To create a static effect use the macro GR_CREATE_STATIC_EFFECT declared below. 1.85 + */ 1.86 +class GrEffect : private SkRefCnt { 1.87 +public: 1.88 + SK_DECLARE_INST_COUNT(GrEffect) 1.89 + 1.90 + virtual ~GrEffect(); 1.91 + 1.92 + /** 1.93 + * This function is used to perform optimizations. When called the color and validFlags params 1.94 + * indicate whether the input components to this effect in the FS will have known values. 1.95 + * validFlags is a bitfield of GrColorComponentFlags. The function updates both params to 1.96 + * indicate known values of its output. A component of the color param only has meaning if the 1.97 + * corresponding bit in validFlags is set. 1.98 + */ 1.99 + virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const = 0; 1.100 + 1.101 + /** Will this effect read the source color value? */ 1.102 + bool willUseInputColor() const { return fWillUseInputColor; } 1.103 + 1.104 + /** This object, besides creating back-end-specific helper objects, is used for run-time-type- 1.105 + identification. The factory should be an instance of templated class, 1.106 + GrTBackendEffectFactory. It is templated on the subclass of GrEffect. The subclass must have 1.107 + a nested type (or typedef) named GLEffect which will be the subclass of GrGLEffect created 1.108 + by the factory. 1.109 + 1.110 + Example: 1.111 + class MyCustomEffect : public GrEffect { 1.112 + ... 1.113 + virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { 1.114 + return GrTBackendEffectFactory<MyCustomEffect>::getInstance(); 1.115 + } 1.116 + ... 1.117 + }; 1.118 + */ 1.119 + virtual const GrBackendEffectFactory& getFactory() const = 0; 1.120 + 1.121 + /** Returns true if this and other effect conservatively draw identically. It can only return 1.122 + true when the two effects are of the same subclass (i.e. they return the same object from 1.123 + from getFactory()). 1.124 + 1.125 + A return value of true from isEqual() should not be used to test whether the effects would 1.126 + generate the same shader code. To test for identical code generation use the EffectKey 1.127 + computed by the GrBackendEffectFactory: 1.128 + effectA.getFactory().glEffectKey(effectA) == effectB.getFactory().glEffectKey(effectB). 1.129 + */ 1.130 + bool isEqual(const GrEffectRef& other) const { 1.131 + return this->isEqual(*other.get()); 1.132 + } 1.133 + 1.134 + /** Human-meaningful string to identify this effect; may be embedded 1.135 + in generated shader code. */ 1.136 + const char* name() const; 1.137 + 1.138 + int numTransforms() const { return fCoordTransforms.count(); } 1.139 + 1.140 + /** Returns the coordinate transformation at index. index must be valid according to 1.141 + numTransforms(). */ 1.142 + const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; } 1.143 + 1.144 + int numTextures() const { return fTextureAccesses.count(); } 1.145 + 1.146 + /** Returns the access pattern for the texture at index. index must be valid according to 1.147 + numTextures(). */ 1.148 + const GrTextureAccess& textureAccess(int index) const { return *fTextureAccesses[index]; } 1.149 + 1.150 + /** Shortcut for textureAccess(index).texture(); */ 1.151 + GrTexture* texture(int index) const { return this->textureAccess(index).getTexture(); } 1.152 + 1.153 + /** Will this effect read the destination pixel value? */ 1.154 + bool willReadDstColor() const { return fWillReadDstColor; } 1.155 + 1.156 + /** Will this effect read the fragment position? */ 1.157 + bool willReadFragmentPosition() const { return fWillReadFragmentPosition; } 1.158 + 1.159 + /** Will this effect emit custom vertex shader code? 1.160 + (To set this value the effect must inherit from GrVertexEffect.) */ 1.161 + bool hasVertexCode() const { return fHasVertexCode; } 1.162 + 1.163 + int numVertexAttribs() const { 1.164 + SkASSERT(0 == fVertexAttribTypes.count() || fHasVertexCode); 1.165 + return fVertexAttribTypes.count(); 1.166 + } 1.167 + 1.168 + GrSLType vertexAttribType(int index) const { return fVertexAttribTypes[index]; } 1.169 + 1.170 + static const int kMaxVertexAttribs = 2; 1.171 + 1.172 + /** Useful for effects that want to insert a texture matrix that is implied by the texture 1.173 + dimensions */ 1.174 + static inline SkMatrix MakeDivByTextureWHMatrix(const GrTexture* texture) { 1.175 + SkASSERT(NULL != texture); 1.176 + SkMatrix mat; 1.177 + mat.setIDiv(texture->width(), texture->height()); 1.178 + return mat; 1.179 + } 1.180 + 1.181 + void* operator new(size_t size); 1.182 + void operator delete(void* target); 1.183 + 1.184 + void* operator new(size_t size, void* placement) { 1.185 + return ::operator new(size, placement); 1.186 + } 1.187 + void operator delete(void* target, void* placement) { 1.188 + ::operator delete(target, placement); 1.189 + } 1.190 + 1.191 + /** These functions are used when recording effects into a deferred drawing queue. The inc call 1.192 + keeps the effect alive outside of GrEffectRef while allowing any resources owned by the 1.193 + effect to be returned to the cache for reuse. The dec call must balance the inc call. */ 1.194 + void incDeferredRefCounts() const { 1.195 + this->ref(); 1.196 + int count = fTextureAccesses.count(); 1.197 + for (int t = 0; t < count; ++t) { 1.198 + fTextureAccesses[t]->getTexture()->incDeferredRefCount(); 1.199 + } 1.200 + } 1.201 + void decDeferredRefCounts() const { 1.202 + int count = fTextureAccesses.count(); 1.203 + for (int t = 0; t < count; ++t) { 1.204 + fTextureAccesses[t]->getTexture()->decDeferredRefCount(); 1.205 + } 1.206 + this->unref(); 1.207 + } 1.208 + 1.209 +protected: 1.210 + /** 1.211 + * Subclasses call this from their constructor to register coordinate transformations. The 1.212 + * effect subclass manages the lifetime of the transformations (this function only stores a 1.213 + * pointer). The GrCoordTransform is typically a member field of the GrEffect subclass. When the 1.214 + * matrix has perspective, the transformed coordinates will have 3 components. Otherwise they'll 1.215 + * have 2. This must only be called from the constructor because GrEffects are immutable. 1.216 + */ 1.217 + void addCoordTransform(const GrCoordTransform* coordTransform); 1.218 + 1.219 + /** 1.220 + * Subclasses call this from their constructor to register GrTextureAccesses. The effect 1.221 + * subclass manages the lifetime of the accesses (this function only stores a pointer). The 1.222 + * GrTextureAccess is typically a member field of the GrEffect subclass. This must only be 1.223 + * called from the constructor because GrEffects are immutable. 1.224 + */ 1.225 + void addTextureAccess(const GrTextureAccess* textureAccess); 1.226 + 1.227 + GrEffect() 1.228 + : fWillReadDstColor(false) 1.229 + , fWillReadFragmentPosition(false) 1.230 + , fWillUseInputColor(true) 1.231 + , fHasVertexCode(false) 1.232 + , fEffectRef(NULL) {} 1.233 + 1.234 + /** This should be called by GrEffect subclass factories. See the comment on AutoEffectUnref for 1.235 + an example factory function. */ 1.236 + static GrEffectRef* CreateEffectRef(GrEffect* effect) { 1.237 + if (NULL == effect->fEffectRef) { 1.238 + effect->fEffectRef = SkNEW_ARGS(GrEffectRef, (effect)); 1.239 + } else { 1.240 + effect->fEffectRef->ref(); 1.241 + } 1.242 + return effect->fEffectRef; 1.243 + } 1.244 + 1.245 + static const GrEffectRef* CreateEffectRef(const GrEffect* effect) { 1.246 + return CreateEffectRef(const_cast<GrEffect*>(effect)); 1.247 + } 1.248 + 1.249 + /** Used by GR_CREATE_STATIC_EFFECT below */ 1.250 + static GrEffectRef* CreateStaticEffectRef(void* refStorage, GrEffect* effect) { 1.251 + SkASSERT(NULL == effect->fEffectRef); 1.252 + effect->fEffectRef = SkNEW_PLACEMENT_ARGS(refStorage, GrEffectRef, (effect)); 1.253 + return effect->fEffectRef; 1.254 + } 1.255 + 1.256 + 1.257 + /** Helper used in subclass factory functions to unref the effect after it has been wrapped in a 1.258 + GrEffectRef. E.g.: 1.259 + 1.260 + class EffectSubclass : public GrEffect { 1.261 + public: 1.262 + GrEffectRef* Create(ParamType1 param1, ParamType2 param2, ...) { 1.263 + AutoEffectUnref effect(SkNEW_ARGS(EffectSubclass, (param1, param2, ...))); 1.264 + return CreateEffectRef(effect); 1.265 + } 1.266 + */ 1.267 + class AutoEffectUnref { 1.268 + public: 1.269 + AutoEffectUnref(GrEffect* effect) : fEffect(effect) { } 1.270 + ~AutoEffectUnref() { fEffect->unref(); } 1.271 + operator GrEffect*() { return fEffect; } 1.272 + private: 1.273 + GrEffect* fEffect; 1.274 + }; 1.275 + 1.276 + /** Helper for getting the GrEffect out of a GrEffectRef and down-casting to a GrEffect subclass 1.277 + */ 1.278 + template <typename T> 1.279 + static const T& CastEffect(const GrEffect& effectRef) { 1.280 + return *static_cast<const T*>(&effectRef); 1.281 + } 1.282 + 1.283 + /** 1.284 + * If the effect subclass will read the destination pixel value then it must call this function 1.285 + * from its constructor. Otherwise, when its generated backend-specific effect class attempts 1.286 + * to generate code that reads the destination pixel it will fail. 1.287 + */ 1.288 + void setWillReadDstColor() { fWillReadDstColor = true; } 1.289 + 1.290 + /** 1.291 + * If the effect will generate a backend-specific effect that will read the fragment position 1.292 + * in the FS then it must call this method from its constructor. Otherwise, the request to 1.293 + * access the fragment position will be denied. 1.294 + */ 1.295 + void setWillReadFragmentPosition() { fWillReadFragmentPosition = true; } 1.296 + 1.297 + /** 1.298 + * If the effect will generate a result that does not depend on the input color value then it must 1.299 + * call this function from its constructor. Otherwise, when its generated backend-specific code 1.300 + * might fail during variable binding due to unused variables. 1.301 + */ 1.302 + void setWillNotUseInputColor() { fWillUseInputColor = false; } 1.303 + 1.304 +private: 1.305 + bool isEqual(const GrEffect& other) const { 1.306 + if (&this->getFactory() != &other.getFactory()) { 1.307 + return false; 1.308 + } 1.309 + bool result = this->onIsEqual(other); 1.310 +#ifdef SK_DEBUG 1.311 + if (result) { 1.312 + this->assertEquality(other); 1.313 + } 1.314 +#endif 1.315 + return result; 1.316 + } 1.317 + 1.318 + SkDEBUGCODE(void assertEquality(const GrEffect& other) const;) 1.319 + 1.320 + /** Subclass implements this to support isEqual(). It will only be called if it is known that 1.321 + the two effects are of the same subclass (i.e. they return the same object from 1.322 + getFactory()).*/ 1.323 + virtual bool onIsEqual(const GrEffect& other) const = 0; 1.324 + 1.325 + void EffectRefDestroyed() { fEffectRef = NULL; } 1.326 + 1.327 + friend class GrEffectRef; // to call EffectRefDestroyed() 1.328 + friend class GrEffectStage; // to rewrap GrEffect in GrEffectRef when restoring an effect-stage 1.329 + // from deferred state, to call isEqual on naked GrEffects, and 1.330 + // to inc/dec deferred ref counts. 1.331 + friend class GrVertexEffect; // to set fHasVertexCode and build fVertexAttribTypes. 1.332 + 1.333 + SkSTArray<4, const GrCoordTransform*, true> fCoordTransforms; 1.334 + SkSTArray<4, const GrTextureAccess*, true> fTextureAccesses; 1.335 + SkSTArray<kMaxVertexAttribs, GrSLType, true> fVertexAttribTypes; 1.336 + bool fWillReadDstColor; 1.337 + bool fWillReadFragmentPosition; 1.338 + bool fWillUseInputColor; 1.339 + bool fHasVertexCode; 1.340 + GrEffectRef* fEffectRef; 1.341 + 1.342 + typedef SkRefCnt INHERITED; 1.343 +}; 1.344 + 1.345 +inline GrEffectRef::GrEffectRef(GrEffect* effect) { 1.346 + SkASSERT(NULL != effect); 1.347 + effect->ref(); 1.348 + fEffect = effect; 1.349 +} 1.350 + 1.351 +/** 1.352 + * This creates an effect outside of the effect memory pool. The effect's destructor will be called 1.353 + * at global destruction time. NAME will be the name of the created GrEffectRef. 1.354 + */ 1.355 +#define GR_CREATE_STATIC_EFFECT(NAME, EFFECT_CLASS, ARGS) \ 1.356 +enum { \ 1.357 + k_##NAME##_EffectRefOffset = GR_CT_ALIGN_UP(sizeof(EFFECT_CLASS), 8), \ 1.358 + k_##NAME##_StorageSize = k_##NAME##_EffectRefOffset + sizeof(GrEffectRef) \ 1.359 +}; \ 1.360 +static SkAlignedSStorage<k_##NAME##_StorageSize> g_##NAME##_Storage; \ 1.361 +static void* NAME##_RefLocation = (char*)g_##NAME##_Storage.get() + k_##NAME##_EffectRefOffset; \ 1.362 +static GrEffect* NAME##_Effect SkNEW_PLACEMENT_ARGS(g_##NAME##_Storage.get(), EFFECT_CLASS, ARGS);\ 1.363 +static SkAutoTDestroy<GrEffect> NAME##_ad(NAME##_Effect); \ 1.364 +static GrEffectRef* NAME(GrEffect::CreateStaticEffectRef(NAME##_RefLocation, NAME##_Effect)); \ 1.365 +static SkAutoTDestroy<GrEffectRef> NAME##_Ref_ad(NAME) 1.366 + 1.367 + 1.368 +#endif