gfx/skia/trunk/src/core/SkAAClip.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/core/SkAAClip.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,2169 @@
     1.4 +
     1.5 +/*
     1.6 + * Copyright 2011 Google Inc.
     1.7 + *
     1.8 + * Use of this source code is governed by a BSD-style license that can be
     1.9 + * found in the LICENSE file.
    1.10 + */
    1.11 +
    1.12 +#include "SkAAClip.h"
    1.13 +#include "SkBlitter.h"
    1.14 +#include "SkColorPriv.h"
    1.15 +#include "SkPath.h"
    1.16 +#include "SkScan.h"
    1.17 +#include "SkThread.h"
    1.18 +#include "SkUtils.h"
    1.19 +
    1.20 +class AutoAAClipValidate {
    1.21 +public:
    1.22 +    AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) {
    1.23 +        fClip.validate();
    1.24 +    }
    1.25 +    ~AutoAAClipValidate() {
    1.26 +        fClip.validate();
    1.27 +    }
    1.28 +private:
    1.29 +    const SkAAClip& fClip;
    1.30 +};
    1.31 +
    1.32 +#ifdef SK_DEBUG
    1.33 +    #define AUTO_AACLIP_VALIDATE(clip)  AutoAAClipValidate acv(clip)
    1.34 +#else
    1.35 +    #define AUTO_AACLIP_VALIDATE(clip)
    1.36 +#endif
    1.37 +
    1.38 +///////////////////////////////////////////////////////////////////////////////
    1.39 +
    1.40 +#define kMaxInt32   0x7FFFFFFF
    1.41 +
    1.42 +#ifdef SK_DEBUG
    1.43 +static inline bool x_in_rect(int x, const SkIRect& rect) {
    1.44 +    return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
    1.45 +}
    1.46 +#endif
    1.47 +
    1.48 +static inline bool y_in_rect(int y, const SkIRect& rect) {
    1.49 +    return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
    1.50 +}
    1.51 +
    1.52 +/*
    1.53 + *  Data runs are packed [count, alpha]
    1.54 + */
    1.55 +
    1.56 +struct SkAAClip::YOffset {
    1.57 +    int32_t  fY;
    1.58 +    uint32_t fOffset;
    1.59 +};
    1.60 +
    1.61 +struct SkAAClip::RunHead {
    1.62 +    int32_t fRefCnt;
    1.63 +    int32_t fRowCount;
    1.64 +    size_t  fDataSize;
    1.65 +
    1.66 +    YOffset* yoffsets() {
    1.67 +        return (YOffset*)((char*)this + sizeof(RunHead));
    1.68 +    }
    1.69 +    const YOffset* yoffsets() const {
    1.70 +        return (const YOffset*)((const char*)this + sizeof(RunHead));
    1.71 +    }
    1.72 +    uint8_t* data() {
    1.73 +        return (uint8_t*)(this->yoffsets() + fRowCount);
    1.74 +    }
    1.75 +    const uint8_t* data() const {
    1.76 +        return (const uint8_t*)(this->yoffsets() + fRowCount);
    1.77 +    }
    1.78 +
    1.79 +    static RunHead* Alloc(int rowCount, size_t dataSize) {
    1.80 +        size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize;
    1.81 +        RunHead* head = (RunHead*)sk_malloc_throw(size);
    1.82 +        head->fRefCnt = 1;
    1.83 +        head->fRowCount = rowCount;
    1.84 +        head->fDataSize = dataSize;
    1.85 +        return head;
    1.86 +    }
    1.87 +
    1.88 +    static int ComputeRowSizeForWidth(int width) {
    1.89 +        // 2 bytes per segment, where each segment can store up to 255 for count
    1.90 +        int segments = 0;
    1.91 +        while (width > 0) {
    1.92 +            segments += 1;
    1.93 +            int n = SkMin32(width, 255);
    1.94 +            width -= n;
    1.95 +        }
    1.96 +        return segments * 2;    // each segment is row[0] + row[1] (n + alpha)
    1.97 +    }
    1.98 +
    1.99 +    static RunHead* AllocRect(const SkIRect& bounds) {
   1.100 +        SkASSERT(!bounds.isEmpty());
   1.101 +        int width = bounds.width();
   1.102 +        size_t rowSize = ComputeRowSizeForWidth(width);
   1.103 +        RunHead* head = RunHead::Alloc(1, rowSize);
   1.104 +        YOffset* yoff = head->yoffsets();
   1.105 +        yoff->fY = bounds.height() - 1;
   1.106 +        yoff->fOffset = 0;
   1.107 +        uint8_t* row = head->data();
   1.108 +        while (width > 0) {
   1.109 +            int n = SkMin32(width, 255);
   1.110 +            row[0] = n;
   1.111 +            row[1] = 0xFF;
   1.112 +            width -= n;
   1.113 +            row += 2;
   1.114 +        }
   1.115 +        return head;
   1.116 +    }
   1.117 +};
   1.118 +
   1.119 +class SkAAClip::Iter {
   1.120 +public:
   1.121 +    Iter(const SkAAClip&);
   1.122 +
   1.123 +    bool done() const { return fDone; }
   1.124 +    int top() const { return fTop; }
   1.125 +    int bottom() const { return fBottom; }
   1.126 +    const uint8_t* data() const { return fData; }
   1.127 +    void next();
   1.128 +
   1.129 +private:
   1.130 +    const YOffset* fCurrYOff;
   1.131 +    const YOffset* fStopYOff;
   1.132 +    const uint8_t* fData;
   1.133 +
   1.134 +    int fTop, fBottom;
   1.135 +    bool fDone;
   1.136 +};
   1.137 +
   1.138 +SkAAClip::Iter::Iter(const SkAAClip& clip) {
   1.139 +    if (clip.isEmpty()) {
   1.140 +        fDone = true;
   1.141 +        fTop = fBottom = clip.fBounds.fBottom;
   1.142 +        fData = NULL;
   1.143 +        fCurrYOff = NULL;
   1.144 +        fStopYOff = NULL;
   1.145 +        return;
   1.146 +    }
   1.147 +
   1.148 +    const RunHead* head = clip.fRunHead;
   1.149 +    fCurrYOff = head->yoffsets();
   1.150 +    fStopYOff = fCurrYOff + head->fRowCount;
   1.151 +    fData     = head->data() + fCurrYOff->fOffset;
   1.152 +
   1.153 +    // setup first value
   1.154 +    fTop = clip.fBounds.fTop;
   1.155 +    fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1;
   1.156 +    fDone = false;
   1.157 +}
   1.158 +
   1.159 +void SkAAClip::Iter::next() {
   1.160 +    if (!fDone) {
   1.161 +        const YOffset* prev = fCurrYOff;
   1.162 +        const YOffset* curr = prev + 1;
   1.163 +        SkASSERT(curr <= fStopYOff);
   1.164 +
   1.165 +        fTop = fBottom;
   1.166 +        if (curr >= fStopYOff) {
   1.167 +            fDone = true;
   1.168 +            fBottom = kMaxInt32;
   1.169 +            fData = NULL;
   1.170 +        } else {
   1.171 +            fBottom += curr->fY - prev->fY;
   1.172 +            fData += curr->fOffset - prev->fOffset;
   1.173 +            fCurrYOff = curr;
   1.174 +        }
   1.175 +    }
   1.176 +}
   1.177 +
   1.178 +#ifdef SK_DEBUG
   1.179 +// assert we're exactly width-wide, and then return the number of bytes used
   1.180 +static size_t compute_row_length(const uint8_t row[], int width) {
   1.181 +    const uint8_t* origRow = row;
   1.182 +    while (width > 0) {
   1.183 +        int n = row[0];
   1.184 +        SkASSERT(n > 0);
   1.185 +        SkASSERT(n <= width);
   1.186 +        row += 2;
   1.187 +        width -= n;
   1.188 +    }
   1.189 +    SkASSERT(0 == width);
   1.190 +    return row - origRow;
   1.191 +}
   1.192 +
   1.193 +void SkAAClip::validate() const {
   1.194 +    if (NULL == fRunHead) {
   1.195 +        SkASSERT(fBounds.isEmpty());
   1.196 +        return;
   1.197 +    }
   1.198 +
   1.199 +    const RunHead* head = fRunHead;
   1.200 +    SkASSERT(head->fRefCnt > 0);
   1.201 +    SkASSERT(head->fRowCount > 0);
   1.202 +
   1.203 +    const YOffset* yoff = head->yoffsets();
   1.204 +    const YOffset* ystop = yoff + head->fRowCount;
   1.205 +    const int lastY = fBounds.height() - 1;
   1.206 +
   1.207 +    // Y and offset must be monotonic
   1.208 +    int prevY = -1;
   1.209 +    int32_t prevOffset = -1;
   1.210 +    while (yoff < ystop) {
   1.211 +        SkASSERT(prevY < yoff->fY);
   1.212 +        SkASSERT(yoff->fY <= lastY);
   1.213 +        prevY = yoff->fY;
   1.214 +        SkASSERT(prevOffset < (int32_t)yoff->fOffset);
   1.215 +        prevOffset = yoff->fOffset;
   1.216 +        const uint8_t* row = head->data() + yoff->fOffset;
   1.217 +        size_t rowLength = compute_row_length(row, fBounds.width());
   1.218 +        SkASSERT(yoff->fOffset + rowLength <= head->fDataSize);
   1.219 +        yoff += 1;
   1.220 +    }
   1.221 +    // check the last entry;
   1.222 +    --yoff;
   1.223 +    SkASSERT(yoff->fY == lastY);
   1.224 +}
   1.225 +#endif
   1.226 +
   1.227 +///////////////////////////////////////////////////////////////////////////////
   1.228 +
   1.229 +// Count the number of zeros on the left and right edges of the passed in
   1.230 +// RLE row. If 'row' is all zeros return 'width' in both variables.
   1.231 +static void count_left_right_zeros(const uint8_t* row, int width,
   1.232 +                                   int* leftZ, int* riteZ) {
   1.233 +    int zeros = 0;
   1.234 +    do {
   1.235 +        if (row[1]) {
   1.236 +            break;
   1.237 +        }
   1.238 +        int n = row[0];
   1.239 +        SkASSERT(n > 0);
   1.240 +        SkASSERT(n <= width);
   1.241 +        zeros += n;
   1.242 +        row += 2;
   1.243 +        width -= n;
   1.244 +    } while (width > 0);
   1.245 +    *leftZ = zeros;
   1.246 +
   1.247 +    if (0 == width) {
   1.248 +        // this line is completely empty return 'width' in both variables
   1.249 +        *riteZ = *leftZ;
   1.250 +        return;
   1.251 +    }
   1.252 +
   1.253 +    zeros = 0;
   1.254 +    while (width > 0) {
   1.255 +        int n = row[0];
   1.256 +        SkASSERT(n > 0);
   1.257 +        if (0 == row[1]) {
   1.258 +            zeros += n;
   1.259 +        } else {
   1.260 +            zeros = 0;
   1.261 +        }
   1.262 +        row += 2;
   1.263 +        width -= n;
   1.264 +    }
   1.265 +    *riteZ = zeros;
   1.266 +}
   1.267 +
   1.268 +#ifdef SK_DEBUG
   1.269 +static void test_count_left_right_zeros() {
   1.270 +    static bool gOnce;
   1.271 +    if (gOnce) {
   1.272 +        return;
   1.273 +    }
   1.274 +    gOnce = true;
   1.275 +
   1.276 +    const uint8_t data0[] = {  0, 0,     10, 0xFF };
   1.277 +    const uint8_t data1[] = {  0, 0,     5, 0xFF, 2, 0, 3, 0xFF };
   1.278 +    const uint8_t data2[] = {  7, 0,     5, 0, 2, 0, 3, 0xFF };
   1.279 +    const uint8_t data3[] = {  0, 5,     5, 0xFF, 2, 0, 3, 0 };
   1.280 +    const uint8_t data4[] = {  2, 3,     2, 0, 5, 0xFF, 3, 0 };
   1.281 +    const uint8_t data5[] = { 10, 10,    10, 0 };
   1.282 +    const uint8_t data6[] = {  2, 2,     2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
   1.283 +
   1.284 +    const uint8_t* array[] = {
   1.285 +        data0, data1, data2, data3, data4, data5, data6
   1.286 +    };
   1.287 +
   1.288 +    for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
   1.289 +        const uint8_t* data = array[i];
   1.290 +        const int expectedL = *data++;
   1.291 +        const int expectedR = *data++;
   1.292 +        int L = 12345, R = 12345;
   1.293 +        count_left_right_zeros(data, 10, &L, &R);
   1.294 +        SkASSERT(expectedL == L);
   1.295 +        SkASSERT(expectedR == R);
   1.296 +    }
   1.297 +}
   1.298 +#endif
   1.299 +
   1.300 +// modify row in place, trimming off (zeros) from the left and right sides.
   1.301 +// return the number of bytes that were completely eliminated from the left
   1.302 +static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) {
   1.303 +    int trim = 0;
   1.304 +    while (leftZ > 0) {
   1.305 +        SkASSERT(0 == row[1]);
   1.306 +        int n = row[0];
   1.307 +        SkASSERT(n > 0);
   1.308 +        SkASSERT(n <= width);
   1.309 +        width -= n;
   1.310 +        row += 2;
   1.311 +        if (n > leftZ) {
   1.312 +            row[-2] = n - leftZ;
   1.313 +            break;
   1.314 +        }
   1.315 +        trim += 2;
   1.316 +        leftZ -= n;
   1.317 +        SkASSERT(leftZ >= 0);
   1.318 +    }
   1.319 +
   1.320 +    if (riteZ) {
   1.321 +        // walk row to the end, and then we'll back up to trim riteZ
   1.322 +        while (width > 0) {
   1.323 +            int n = row[0];
   1.324 +            SkASSERT(n <= width);
   1.325 +            width -= n;
   1.326 +            row += 2;
   1.327 +        }
   1.328 +        // now skip whole runs of zeros
   1.329 +        do {
   1.330 +            row -= 2;
   1.331 +            SkASSERT(0 == row[1]);
   1.332 +            int n = row[0];
   1.333 +            SkASSERT(n > 0);
   1.334 +            if (n > riteZ) {
   1.335 +                row[0] = n - riteZ;
   1.336 +                break;
   1.337 +            }
   1.338 +            riteZ -= n;
   1.339 +            SkASSERT(riteZ >= 0);
   1.340 +        } while (riteZ > 0);
   1.341 +    }
   1.342 +
   1.343 +    return trim;
   1.344 +}
   1.345 +
   1.346 +#ifdef SK_DEBUG
   1.347 +// assert that this row is exactly this width
   1.348 +static void assert_row_width(const uint8_t* row, int width) {
   1.349 +    while (width > 0) {
   1.350 +        int n = row[0];
   1.351 +        SkASSERT(n > 0);
   1.352 +        SkASSERT(n <= width);
   1.353 +        width -= n;
   1.354 +        row += 2;
   1.355 +    }
   1.356 +    SkASSERT(0 == width);
   1.357 +}
   1.358 +
   1.359 +static void test_trim_row_left_right() {
   1.360 +    static bool gOnce;
   1.361 +    if (gOnce) {
   1.362 +        return;
   1.363 +    }
   1.364 +    gOnce = true;
   1.365 +
   1.366 +    uint8_t data0[] = {  0, 0, 0,   10,    10, 0xFF };
   1.367 +    uint8_t data1[] = {  2, 0, 0,   10,    5, 0, 2, 0, 3, 0xFF };
   1.368 +    uint8_t data2[] = {  5, 0, 2,   10,    5, 0, 2, 0, 3, 0xFF };
   1.369 +    uint8_t data3[] = {  6, 0, 2,   10,    5, 0, 2, 0, 3, 0xFF };
   1.370 +    uint8_t data4[] = {  0, 0, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
   1.371 +    uint8_t data5[] = {  1, 0, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
   1.372 +    uint8_t data6[] = {  0, 1, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
   1.373 +    uint8_t data7[] = {  1, 1, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
   1.374 +    uint8_t data8[] = {  2, 2, 2,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
   1.375 +    uint8_t data9[] = {  5, 2, 4,   10,    2, 0, 2, 0, 2, 0, 2, 0xFF, 2, 0 };
   1.376 +    uint8_t data10[] ={  74, 0, 4, 150,    9, 0, 65, 0, 76, 0xFF };
   1.377 +
   1.378 +    uint8_t* array[] = {
   1.379 +        data0, data1, data2, data3, data4,
   1.380 +        data5, data6, data7, data8, data9,
   1.381 +        data10
   1.382 +    };
   1.383 +
   1.384 +    for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
   1.385 +        uint8_t* data = array[i];
   1.386 +        const int trimL = *data++;
   1.387 +        const int trimR = *data++;
   1.388 +        const int expectedSkip = *data++;
   1.389 +        const int origWidth = *data++;
   1.390 +        assert_row_width(data, origWidth);
   1.391 +        int skip = trim_row_left_right(data, origWidth, trimL, trimR);
   1.392 +        SkASSERT(expectedSkip == skip);
   1.393 +        int expectedWidth = origWidth - trimL - trimR;
   1.394 +        assert_row_width(data + skip, expectedWidth);
   1.395 +    }
   1.396 +}
   1.397 +#endif
   1.398 +
   1.399 +bool SkAAClip::trimLeftRight() {
   1.400 +    SkDEBUGCODE(test_trim_row_left_right();)
   1.401 +
   1.402 +    if (this->isEmpty()) {
   1.403 +        return false;
   1.404 +    }
   1.405 +
   1.406 +    AUTO_AACLIP_VALIDATE(*this);
   1.407 +
   1.408 +    const int width = fBounds.width();
   1.409 +    RunHead* head = fRunHead;
   1.410 +    YOffset* yoff = head->yoffsets();
   1.411 +    YOffset* stop = yoff + head->fRowCount;
   1.412 +    uint8_t* base = head->data();
   1.413 +
   1.414 +    // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum
   1.415 +    // number of zeros on the left and right of the clip. This information
   1.416 +    // can be used to shrink the bounding box.
   1.417 +    int leftZeros = width;
   1.418 +    int riteZeros = width;
   1.419 +    while (yoff < stop) {
   1.420 +        int L, R;
   1.421 +        count_left_right_zeros(base + yoff->fOffset, width, &L, &R);
   1.422 +        SkASSERT(L + R < width || (L == width && R == width));
   1.423 +        if (L < leftZeros) {
   1.424 +            leftZeros = L;
   1.425 +        }
   1.426 +        if (R < riteZeros) {
   1.427 +            riteZeros = R;
   1.428 +        }
   1.429 +        if (0 == (leftZeros | riteZeros)) {
   1.430 +            // no trimming to do
   1.431 +            return true;
   1.432 +        }
   1.433 +        yoff += 1;
   1.434 +    }
   1.435 +
   1.436 +    SkASSERT(leftZeros || riteZeros);
   1.437 +    if (width == leftZeros) {
   1.438 +        SkASSERT(width == riteZeros);
   1.439 +        return this->setEmpty();
   1.440 +    }
   1.441 +
   1.442 +    this->validate();
   1.443 +
   1.444 +    fBounds.fLeft += leftZeros;
   1.445 +    fBounds.fRight -= riteZeros;
   1.446 +    SkASSERT(!fBounds.isEmpty());
   1.447 +
   1.448 +    // For now we don't realloc the storage (for time), we just shrink in place
   1.449 +    // This means we don't have to do any memmoves either, since we can just
   1.450 +    // play tricks with the yoff->fOffset for each row
   1.451 +    yoff = head->yoffsets();
   1.452 +    while (yoff < stop) {
   1.453 +        uint8_t* row = base + yoff->fOffset;
   1.454 +        SkDEBUGCODE((void)compute_row_length(row, width);)
   1.455 +        yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros);
   1.456 +        SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);)
   1.457 +        yoff += 1;
   1.458 +    }
   1.459 +    return true;
   1.460 +}
   1.461 +
   1.462 +static bool row_is_all_zeros(const uint8_t* row, int width) {
   1.463 +    SkASSERT(width > 0);
   1.464 +    do {
   1.465 +        if (row[1]) {
   1.466 +            return false;
   1.467 +        }
   1.468 +        int n = row[0];
   1.469 +        SkASSERT(n <= width);
   1.470 +        width -= n;
   1.471 +        row += 2;
   1.472 +    } while (width > 0);
   1.473 +    SkASSERT(0 == width);
   1.474 +    return true;
   1.475 +}
   1.476 +
   1.477 +bool SkAAClip::trimTopBottom() {
   1.478 +    if (this->isEmpty()) {
   1.479 +        return false;
   1.480 +    }
   1.481 +
   1.482 +    this->validate();
   1.483 +
   1.484 +    const int width = fBounds.width();
   1.485 +    RunHead* head = fRunHead;
   1.486 +    YOffset* yoff = head->yoffsets();
   1.487 +    YOffset* stop = yoff + head->fRowCount;
   1.488 +    const uint8_t* base = head->data();
   1.489 +
   1.490 +    //  Look to trim away empty rows from the top.
   1.491 +    //
   1.492 +    int skip = 0;
   1.493 +    while (yoff < stop) {
   1.494 +        const uint8_t* data = base + yoff->fOffset;
   1.495 +        if (!row_is_all_zeros(data, width)) {
   1.496 +            break;
   1.497 +        }
   1.498 +        skip += 1;
   1.499 +        yoff += 1;
   1.500 +    }
   1.501 +    SkASSERT(skip <= head->fRowCount);
   1.502 +    if (skip == head->fRowCount) {
   1.503 +        return this->setEmpty();
   1.504 +    }
   1.505 +    if (skip > 0) {
   1.506 +        // adjust fRowCount and fBounds.fTop, and slide all the data up
   1.507 +        // as we remove [skip] number of YOffset entries
   1.508 +        yoff = head->yoffsets();
   1.509 +        int dy = yoff[skip - 1].fY + 1;
   1.510 +        for (int i = skip; i < head->fRowCount; ++i) {
   1.511 +            SkASSERT(yoff[i].fY >= dy);
   1.512 +            yoff[i].fY -= dy;
   1.513 +        }
   1.514 +        YOffset* dst = head->yoffsets();
   1.515 +        size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize;
   1.516 +        memmove(dst, dst + skip, size - skip * sizeof(YOffset));
   1.517 +
   1.518 +        fBounds.fTop += dy;
   1.519 +        SkASSERT(!fBounds.isEmpty());
   1.520 +        head->fRowCount -= skip;
   1.521 +        SkASSERT(head->fRowCount > 0);
   1.522 +
   1.523 +        this->validate();
   1.524 +        // need to reset this after the memmove
   1.525 +        base = head->data();
   1.526 +    }
   1.527 +
   1.528 +    //  Look to trim away empty rows from the bottom.
   1.529 +    //  We know that we have at least one non-zero row, so we can just walk
   1.530 +    //  backwards without checking for running past the start.
   1.531 +    //
   1.532 +    stop = yoff = head->yoffsets() + head->fRowCount;
   1.533 +    do {
   1.534 +        yoff -= 1;
   1.535 +    } while (row_is_all_zeros(base + yoff->fOffset, width));
   1.536 +    skip = SkToInt(stop - yoff - 1);
   1.537 +    SkASSERT(skip >= 0 && skip < head->fRowCount);
   1.538 +    if (skip > 0) {
   1.539 +        // removing from the bottom is easier than from the top, as we don't
   1.540 +        // have to adjust any of the Y values, we just have to trim the array
   1.541 +        memmove(stop - skip, stop, head->fDataSize);
   1.542 +
   1.543 +        fBounds.fBottom = fBounds.fTop + yoff->fY + 1;
   1.544 +        SkASSERT(!fBounds.isEmpty());
   1.545 +        head->fRowCount -= skip;
   1.546 +        SkASSERT(head->fRowCount > 0);
   1.547 +    }
   1.548 +    this->validate();
   1.549 +
   1.550 +    return true;
   1.551 +}
   1.552 +
   1.553 +// can't validate before we're done, since trimming is part of the process of
   1.554 +// making us valid after the Builder. Since we build from top to bottom, its
   1.555 +// possible our fBounds.fBottom is bigger than our last scanline of data, so
   1.556 +// we trim fBounds.fBottom back up.
   1.557 +//
   1.558 +// TODO: check for duplicates in X and Y to further compress our data
   1.559 +//
   1.560 +bool SkAAClip::trimBounds() {
   1.561 +    if (this->isEmpty()) {
   1.562 +        return false;
   1.563 +    }
   1.564 +
   1.565 +    const RunHead* head = fRunHead;
   1.566 +    const YOffset* yoff = head->yoffsets();
   1.567 +
   1.568 +    SkASSERT(head->fRowCount > 0);
   1.569 +    const YOffset& lastY = yoff[head->fRowCount - 1];
   1.570 +    SkASSERT(lastY.fY + 1 <= fBounds.height());
   1.571 +    fBounds.fBottom = fBounds.fTop + lastY.fY + 1;
   1.572 +    SkASSERT(lastY.fY + 1 == fBounds.height());
   1.573 +    SkASSERT(!fBounds.isEmpty());
   1.574 +
   1.575 +    return this->trimTopBottom() && this->trimLeftRight();
   1.576 +}
   1.577 +
   1.578 +///////////////////////////////////////////////////////////////////////////////
   1.579 +
   1.580 +void SkAAClip::freeRuns() {
   1.581 +    if (fRunHead) {
   1.582 +        SkASSERT(fRunHead->fRefCnt >= 1);
   1.583 +        if (1 == sk_atomic_dec(&fRunHead->fRefCnt)) {
   1.584 +            sk_free(fRunHead);
   1.585 +        }
   1.586 +    }
   1.587 +}
   1.588 +
   1.589 +SkAAClip::SkAAClip() {
   1.590 +    fBounds.setEmpty();
   1.591 +    fRunHead = NULL;
   1.592 +}
   1.593 +
   1.594 +SkAAClip::SkAAClip(const SkAAClip& src) {
   1.595 +    SkDEBUGCODE(fBounds.setEmpty();)    // need this for validate
   1.596 +    fRunHead = NULL;
   1.597 +    *this = src;
   1.598 +}
   1.599 +
   1.600 +SkAAClip::~SkAAClip() {
   1.601 +    this->freeRuns();
   1.602 +}
   1.603 +
   1.604 +SkAAClip& SkAAClip::operator=(const SkAAClip& src) {
   1.605 +    AUTO_AACLIP_VALIDATE(*this);
   1.606 +    src.validate();
   1.607 +
   1.608 +    if (this != &src) {
   1.609 +        this->freeRuns();
   1.610 +        fBounds = src.fBounds;
   1.611 +        fRunHead = src.fRunHead;
   1.612 +        if (fRunHead) {
   1.613 +            sk_atomic_inc(&fRunHead->fRefCnt);
   1.614 +        }
   1.615 +    }
   1.616 +    return *this;
   1.617 +}
   1.618 +
   1.619 +bool operator==(const SkAAClip& a, const SkAAClip& b) {
   1.620 +    a.validate();
   1.621 +    b.validate();
   1.622 +
   1.623 +    if (&a == &b) {
   1.624 +        return true;
   1.625 +    }
   1.626 +    if (a.fBounds != b.fBounds) {
   1.627 +        return false;
   1.628 +    }
   1.629 +
   1.630 +    const SkAAClip::RunHead* ah = a.fRunHead;
   1.631 +    const SkAAClip::RunHead* bh = b.fRunHead;
   1.632 +
   1.633 +    // this catches empties and rects being equal
   1.634 +    if (ah == bh) {
   1.635 +        return true;
   1.636 +    }
   1.637 +
   1.638 +    // now we insist that both are complex (but different ptrs)
   1.639 +    if (!a.fRunHead || !b.fRunHead) {
   1.640 +        return false;
   1.641 +    }
   1.642 +
   1.643 +    return  ah->fRowCount == bh->fRowCount &&
   1.644 +            ah->fDataSize == bh->fDataSize &&
   1.645 +            !memcmp(ah->data(), bh->data(), ah->fDataSize);
   1.646 +}
   1.647 +
   1.648 +void SkAAClip::swap(SkAAClip& other) {
   1.649 +    AUTO_AACLIP_VALIDATE(*this);
   1.650 +    other.validate();
   1.651 +
   1.652 +    SkTSwap(fBounds, other.fBounds);
   1.653 +    SkTSwap(fRunHead, other.fRunHead);
   1.654 +}
   1.655 +
   1.656 +bool SkAAClip::set(const SkAAClip& src) {
   1.657 +    *this = src;
   1.658 +    return !this->isEmpty();
   1.659 +}
   1.660 +
   1.661 +bool SkAAClip::setEmpty() {
   1.662 +    this->freeRuns();
   1.663 +    fBounds.setEmpty();
   1.664 +    fRunHead = NULL;
   1.665 +    return false;
   1.666 +}
   1.667 +
   1.668 +bool SkAAClip::setRect(const SkIRect& bounds) {
   1.669 +    if (bounds.isEmpty()) {
   1.670 +        return this->setEmpty();
   1.671 +    }
   1.672 +
   1.673 +    AUTO_AACLIP_VALIDATE(*this);
   1.674 +
   1.675 +#if 0
   1.676 +    SkRect r;
   1.677 +    r.set(bounds);
   1.678 +    SkPath path;
   1.679 +    path.addRect(r);
   1.680 +    return this->setPath(path);
   1.681 +#else
   1.682 +    this->freeRuns();
   1.683 +    fBounds = bounds;
   1.684 +    fRunHead = RunHead::AllocRect(bounds);
   1.685 +    SkASSERT(!this->isEmpty());
   1.686 +    return true;
   1.687 +#endif
   1.688 +}
   1.689 +
   1.690 +bool SkAAClip::setRect(const SkRect& r, bool doAA) {
   1.691 +    if (r.isEmpty()) {
   1.692 +        return this->setEmpty();
   1.693 +    }
   1.694 +
   1.695 +    AUTO_AACLIP_VALIDATE(*this);
   1.696 +
   1.697 +    // TODO: special case this
   1.698 +
   1.699 +    SkPath path;
   1.700 +    path.addRect(r);
   1.701 +    return this->setPath(path, NULL, doAA);
   1.702 +}
   1.703 +
   1.704 +static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) {
   1.705 +    SkASSERT(count >= 0);
   1.706 +    while (count > 0) {
   1.707 +        int n = count;
   1.708 +        if (n > 255) {
   1.709 +            n = 255;
   1.710 +        }
   1.711 +        uint8_t* data = array.append(2);
   1.712 +        data[0] = n;
   1.713 +        data[1] = value;
   1.714 +        count -= n;
   1.715 +    }
   1.716 +}
   1.717 +
   1.718 +bool SkAAClip::setRegion(const SkRegion& rgn) {
   1.719 +    if (rgn.isEmpty()) {
   1.720 +        return this->setEmpty();
   1.721 +    }
   1.722 +    if (rgn.isRect()) {
   1.723 +        return this->setRect(rgn.getBounds());
   1.724 +    }
   1.725 +
   1.726 +#if 0
   1.727 +    SkAAClip clip;
   1.728 +    SkRegion::Iterator iter(rgn);
   1.729 +    for (; !iter.done(); iter.next()) {
   1.730 +        clip.op(iter.rect(), SkRegion::kUnion_Op);
   1.731 +    }
   1.732 +    this->swap(clip);
   1.733 +    return !this->isEmpty();
   1.734 +#else
   1.735 +    const SkIRect& bounds = rgn.getBounds();
   1.736 +    const int offsetX = bounds.fLeft;
   1.737 +    const int offsetY = bounds.fTop;
   1.738 +
   1.739 +    SkTDArray<YOffset> yArray;
   1.740 +    SkTDArray<uint8_t> xArray;
   1.741 +
   1.742 +    yArray.setReserve(SkMin32(bounds.height(), 1024));
   1.743 +    xArray.setReserve(SkMin32(bounds.width() * 128, 64 * 1024));
   1.744 +
   1.745 +    SkRegion::Iterator iter(rgn);
   1.746 +    int prevRight = 0;
   1.747 +    int prevBot = 0;
   1.748 +    YOffset* currY = NULL;
   1.749 +
   1.750 +    for (; !iter.done(); iter.next()) {
   1.751 +        const SkIRect& r = iter.rect();
   1.752 +        SkASSERT(bounds.contains(r));
   1.753 +
   1.754 +        int bot = r.fBottom - offsetY;
   1.755 +        SkASSERT(bot >= prevBot);
   1.756 +        if (bot > prevBot) {
   1.757 +            if (currY) {
   1.758 +                // flush current row
   1.759 +                append_run(xArray, 0, bounds.width() - prevRight);
   1.760 +            }
   1.761 +            // did we introduce an empty-gap from the prev row?
   1.762 +            int top = r.fTop - offsetY;
   1.763 +            if (top > prevBot) {
   1.764 +                currY = yArray.append();
   1.765 +                currY->fY = top - 1;
   1.766 +                currY->fOffset = xArray.count();
   1.767 +                append_run(xArray, 0, bounds.width());
   1.768 +            }
   1.769 +            // create a new record for this Y value
   1.770 +            currY = yArray.append();
   1.771 +            currY->fY = bot - 1;
   1.772 +            currY->fOffset = xArray.count();
   1.773 +            prevRight = 0;
   1.774 +            prevBot = bot;
   1.775 +        }
   1.776 +
   1.777 +        int x = r.fLeft - offsetX;
   1.778 +        append_run(xArray, 0, x - prevRight);
   1.779 +
   1.780 +        int w = r.fRight - r.fLeft;
   1.781 +        append_run(xArray, 0xFF, w);
   1.782 +        prevRight = x + w;
   1.783 +        SkASSERT(prevRight <= bounds.width());
   1.784 +    }
   1.785 +    // flush last row
   1.786 +    append_run(xArray, 0, bounds.width() - prevRight);
   1.787 +
   1.788 +    // now pack everything into a RunHead
   1.789 +    RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes());
   1.790 +    memcpy(head->yoffsets(), yArray.begin(), yArray.bytes());
   1.791 +    memcpy(head->data(), xArray.begin(), xArray.bytes());
   1.792 +
   1.793 +    this->setEmpty();
   1.794 +    fBounds = bounds;
   1.795 +    fRunHead = head;
   1.796 +    this->validate();
   1.797 +    return true;
   1.798 +#endif
   1.799 +}
   1.800 +
   1.801 +///////////////////////////////////////////////////////////////////////////////
   1.802 +
   1.803 +const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const {
   1.804 +    SkASSERT(fRunHead);
   1.805 +
   1.806 +    if (!y_in_rect(y, fBounds)) {
   1.807 +        return NULL;
   1.808 +    }
   1.809 +    y -= fBounds.y();  // our yoffs values are relative to the top
   1.810 +
   1.811 +    const YOffset* yoff = fRunHead->yoffsets();
   1.812 +    while (yoff->fY < y) {
   1.813 +        yoff += 1;
   1.814 +        SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount);
   1.815 +    }
   1.816 +
   1.817 +    if (lastYForRow) {
   1.818 +        *lastYForRow = fBounds.y() + yoff->fY;
   1.819 +    }
   1.820 +    return fRunHead->data() + yoff->fOffset;
   1.821 +}
   1.822 +
   1.823 +const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const {
   1.824 +    SkASSERT(x_in_rect(x, fBounds));
   1.825 +    x -= fBounds.x();
   1.826 +
   1.827 +    // first skip up to X
   1.828 +    for (;;) {
   1.829 +        int n = data[0];
   1.830 +        if (x < n) {
   1.831 +            if (initialCount) {
   1.832 +                *initialCount = n - x;
   1.833 +            }
   1.834 +            break;
   1.835 +        }
   1.836 +        data += 2;
   1.837 +        x -= n;
   1.838 +    }
   1.839 +    return data;
   1.840 +}
   1.841 +
   1.842 +bool SkAAClip::quickContains(int left, int top, int right, int bottom) const {
   1.843 +    if (this->isEmpty()) {
   1.844 +        return false;
   1.845 +    }
   1.846 +    if (!fBounds.contains(left, top, right, bottom)) {
   1.847 +        return false;
   1.848 +    }
   1.849 +#if 0
   1.850 +    if (this->isRect()) {
   1.851 +        return true;
   1.852 +    }
   1.853 +#endif
   1.854 +
   1.855 +    int lastY SK_INIT_TO_AVOID_WARNING;
   1.856 +    const uint8_t* row = this->findRow(top, &lastY);
   1.857 +    if (lastY < bottom) {
   1.858 +        return false;
   1.859 +    }
   1.860 +    // now just need to check in X
   1.861 +    int count;
   1.862 +    row = this->findX(row, left, &count);
   1.863 +#if 0
   1.864 +    return count >= (right - left) && 0xFF == row[1];
   1.865 +#else
   1.866 +    int rectWidth = right - left;
   1.867 +    while (0xFF == row[1]) {
   1.868 +        if (count >= rectWidth) {
   1.869 +            return true;
   1.870 +        }
   1.871 +        rectWidth -= count;
   1.872 +        row += 2;
   1.873 +        count = row[0];
   1.874 +    }
   1.875 +    return false;
   1.876 +#endif
   1.877 +}
   1.878 +
   1.879 +///////////////////////////////////////////////////////////////////////////////
   1.880 +
   1.881 +class SkAAClip::Builder {
   1.882 +    SkIRect fBounds;
   1.883 +    struct Row {
   1.884 +        int fY;
   1.885 +        int fWidth;
   1.886 +        SkTDArray<uint8_t>* fData;
   1.887 +    };
   1.888 +    SkTDArray<Row>  fRows;
   1.889 +    Row* fCurrRow;
   1.890 +    int fPrevY;
   1.891 +    int fWidth;
   1.892 +    int fMinY;
   1.893 +
   1.894 +public:
   1.895 +    Builder(const SkIRect& bounds) : fBounds(bounds) {
   1.896 +        fPrevY = -1;
   1.897 +        fWidth = bounds.width();
   1.898 +        fCurrRow = NULL;
   1.899 +        fMinY = bounds.fTop;
   1.900 +    }
   1.901 +
   1.902 +    ~Builder() {
   1.903 +        Row* row = fRows.begin();
   1.904 +        Row* stop = fRows.end();
   1.905 +        while (row < stop) {
   1.906 +            delete row->fData;
   1.907 +            row += 1;
   1.908 +        }
   1.909 +    }
   1.910 +
   1.911 +    const SkIRect& getBounds() const { return fBounds; }
   1.912 +
   1.913 +    void addRun(int x, int y, U8CPU alpha, int count) {
   1.914 +        SkASSERT(count > 0);
   1.915 +        SkASSERT(fBounds.contains(x, y));
   1.916 +        SkASSERT(fBounds.contains(x + count - 1, y));
   1.917 +
   1.918 +        x -= fBounds.left();
   1.919 +        y -= fBounds.top();
   1.920 +
   1.921 +        Row* row = fCurrRow;
   1.922 +        if (y != fPrevY) {
   1.923 +            SkASSERT(y > fPrevY);
   1.924 +            fPrevY = y;
   1.925 +            row = this->flushRow(true);
   1.926 +            row->fY = y;
   1.927 +            row->fWidth = 0;
   1.928 +            SkASSERT(row->fData);
   1.929 +            SkASSERT(0 == row->fData->count());
   1.930 +            fCurrRow = row;
   1.931 +        }
   1.932 +
   1.933 +        SkASSERT(row->fWidth <= x);
   1.934 +        SkASSERT(row->fWidth < fBounds.width());
   1.935 +
   1.936 +        SkTDArray<uint8_t>& data = *row->fData;
   1.937 +
   1.938 +        int gap = x - row->fWidth;
   1.939 +        if (gap) {
   1.940 +            AppendRun(data, 0, gap);
   1.941 +            row->fWidth += gap;
   1.942 +            SkASSERT(row->fWidth < fBounds.width());
   1.943 +        }
   1.944 +
   1.945 +        AppendRun(data, alpha, count);
   1.946 +        row->fWidth += count;
   1.947 +        SkASSERT(row->fWidth <= fBounds.width());
   1.948 +    }
   1.949 +
   1.950 +    void addColumn(int x, int y, U8CPU alpha, int height) {
   1.951 +        SkASSERT(fBounds.contains(x, y + height - 1));
   1.952 +
   1.953 +        this->addRun(x, y, alpha, 1);
   1.954 +        this->flushRowH(fCurrRow);
   1.955 +        y -= fBounds.fTop;
   1.956 +        SkASSERT(y == fCurrRow->fY);
   1.957 +        fCurrRow->fY = y + height - 1;
   1.958 +    }
   1.959 +
   1.960 +    void addRectRun(int x, int y, int width, int height) {
   1.961 +        SkASSERT(fBounds.contains(x + width - 1, y + height - 1));
   1.962 +        this->addRun(x, y, 0xFF, width);
   1.963 +
   1.964 +        // we assum the rect must be all we'll see for these scanlines
   1.965 +        // so we ensure our row goes all the way to our right
   1.966 +        this->flushRowH(fCurrRow);
   1.967 +
   1.968 +        y -= fBounds.fTop;
   1.969 +        SkASSERT(y == fCurrRow->fY);
   1.970 +        fCurrRow->fY = y + height - 1;
   1.971 +    }
   1.972 +
   1.973 +    void addAntiRectRun(int x, int y, int width, int height,
   1.974 +                        SkAlpha leftAlpha, SkAlpha rightAlpha) {
   1.975 +        SkASSERT(fBounds.contains(x + width - 1 +
   1.976 +                 (leftAlpha > 0 ? 1 : 0) + (rightAlpha > 0 ? 1 : 0),
   1.977 +                 y + height - 1));
   1.978 +        SkASSERT(width >= 0);
   1.979 +
   1.980 +        // Conceptually we're always adding 3 runs, but we should
   1.981 +        // merge or omit them if possible.
   1.982 +        if (leftAlpha == 0xFF) {
   1.983 +            width++;
   1.984 +        } else if (leftAlpha > 0) {
   1.985 +          this->addRun(x++, y, leftAlpha, 1);
   1.986 +        }
   1.987 +        if (rightAlpha == 0xFF) {
   1.988 +            width++;
   1.989 +        }
   1.990 +        if (width > 0) {
   1.991 +            this->addRun(x, y, 0xFF, width);
   1.992 +        }
   1.993 +        if (rightAlpha > 0 && rightAlpha < 255) {
   1.994 +            this->addRun(x + width, y, rightAlpha, 1);
   1.995 +        }
   1.996 +
   1.997 +        // we assume the rect must be all we'll see for these scanlines
   1.998 +        // so we ensure our row goes all the way to our right
   1.999 +        this->flushRowH(fCurrRow);
  1.1000 +
  1.1001 +        y -= fBounds.fTop;
  1.1002 +        SkASSERT(y == fCurrRow->fY);
  1.1003 +        fCurrRow->fY = y + height - 1;
  1.1004 +    }
  1.1005 +
  1.1006 +    bool finish(SkAAClip* target) {
  1.1007 +        this->flushRow(false);
  1.1008 +
  1.1009 +        const Row* row = fRows.begin();
  1.1010 +        const Row* stop = fRows.end();
  1.1011 +
  1.1012 +        size_t dataSize = 0;
  1.1013 +        while (row < stop) {
  1.1014 +            dataSize += row->fData->count();
  1.1015 +            row += 1;
  1.1016 +        }
  1.1017 +
  1.1018 +        if (0 == dataSize) {
  1.1019 +            return target->setEmpty();
  1.1020 +        }
  1.1021 +
  1.1022 +        SkASSERT(fMinY >= fBounds.fTop);
  1.1023 +        SkASSERT(fMinY < fBounds.fBottom);
  1.1024 +        int adjustY = fMinY - fBounds.fTop;
  1.1025 +        fBounds.fTop = fMinY;
  1.1026 +
  1.1027 +        RunHead* head = RunHead::Alloc(fRows.count(), dataSize);
  1.1028 +        YOffset* yoffset = head->yoffsets();
  1.1029 +        uint8_t* data = head->data();
  1.1030 +        uint8_t* baseData = data;
  1.1031 +
  1.1032 +        row = fRows.begin();
  1.1033 +        SkDEBUGCODE(int prevY = row->fY - 1;)
  1.1034 +        while (row < stop) {
  1.1035 +            SkASSERT(prevY < row->fY);  // must be monotonic
  1.1036 +            SkDEBUGCODE(prevY = row->fY);
  1.1037 +
  1.1038 +            yoffset->fY = row->fY - adjustY;
  1.1039 +            yoffset->fOffset = SkToU32(data - baseData);
  1.1040 +            yoffset += 1;
  1.1041 +
  1.1042 +            size_t n = row->fData->count();
  1.1043 +            memcpy(data, row->fData->begin(), n);
  1.1044 +#ifdef SK_DEBUG
  1.1045 +            size_t bytesNeeded = compute_row_length(data, fBounds.width());
  1.1046 +            SkASSERT(bytesNeeded == n);
  1.1047 +#endif
  1.1048 +            data += n;
  1.1049 +
  1.1050 +            row += 1;
  1.1051 +        }
  1.1052 +
  1.1053 +        target->freeRuns();
  1.1054 +        target->fBounds = fBounds;
  1.1055 +        target->fRunHead = head;
  1.1056 +        return target->trimBounds();
  1.1057 +    }
  1.1058 +
  1.1059 +    void dump() {
  1.1060 +        this->validate();
  1.1061 +        int y;
  1.1062 +        for (y = 0; y < fRows.count(); ++y) {
  1.1063 +            const Row& row = fRows[y];
  1.1064 +            SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth);
  1.1065 +            const SkTDArray<uint8_t>& data = *row.fData;
  1.1066 +            int count = data.count();
  1.1067 +            SkASSERT(!(count & 1));
  1.1068 +            const uint8_t* ptr = data.begin();
  1.1069 +            for (int x = 0; x < count; x += 2) {
  1.1070 +                SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]);
  1.1071 +                ptr += 2;
  1.1072 +            }
  1.1073 +            SkDebugf("\n");
  1.1074 +        }
  1.1075 +    }
  1.1076 +
  1.1077 +    void validate() {
  1.1078 +#ifdef SK_DEBUG
  1.1079 +        if (false) { // avoid bit rot, suppress warning
  1.1080 +            test_count_left_right_zeros();
  1.1081 +        }
  1.1082 +        int prevY = -1;
  1.1083 +        for (int i = 0; i < fRows.count(); ++i) {
  1.1084 +            const Row& row = fRows[i];
  1.1085 +            SkASSERT(prevY < row.fY);
  1.1086 +            SkASSERT(fWidth == row.fWidth);
  1.1087 +            int count = row.fData->count();
  1.1088 +            const uint8_t* ptr = row.fData->begin();
  1.1089 +            SkASSERT(!(count & 1));
  1.1090 +            int w = 0;
  1.1091 +            for (int x = 0; x < count; x += 2) {
  1.1092 +                int n = ptr[0];
  1.1093 +                SkASSERT(n > 0);
  1.1094 +                w += n;
  1.1095 +                SkASSERT(w <= fWidth);
  1.1096 +                ptr += 2;
  1.1097 +            }
  1.1098 +            SkASSERT(w == fWidth);
  1.1099 +            prevY = row.fY;
  1.1100 +        }
  1.1101 +#endif
  1.1102 +    }
  1.1103 +
  1.1104 +    // only called by BuilderBlitter
  1.1105 +    void setMinY(int y) {
  1.1106 +        fMinY = y;
  1.1107 +    }
  1.1108 +
  1.1109 +private:
  1.1110 +    void flushRowH(Row* row) {
  1.1111 +        // flush current row if needed
  1.1112 +        if (row->fWidth < fWidth) {
  1.1113 +            AppendRun(*row->fData, 0, fWidth - row->fWidth);
  1.1114 +            row->fWidth = fWidth;
  1.1115 +        }
  1.1116 +    }
  1.1117 +
  1.1118 +    Row* flushRow(bool readyForAnother) {
  1.1119 +        Row* next = NULL;
  1.1120 +        int count = fRows.count();
  1.1121 +        if (count > 0) {
  1.1122 +            this->flushRowH(&fRows[count - 1]);
  1.1123 +        }
  1.1124 +        if (count > 1) {
  1.1125 +            // are our last two runs the same?
  1.1126 +            Row* prev = &fRows[count - 2];
  1.1127 +            Row* curr = &fRows[count - 1];
  1.1128 +            SkASSERT(prev->fWidth == fWidth);
  1.1129 +            SkASSERT(curr->fWidth == fWidth);
  1.1130 +            if (*prev->fData == *curr->fData) {
  1.1131 +                prev->fY = curr->fY;
  1.1132 +                if (readyForAnother) {
  1.1133 +                    curr->fData->rewind();
  1.1134 +                    next = curr;
  1.1135 +                } else {
  1.1136 +                    delete curr->fData;
  1.1137 +                    fRows.removeShuffle(count - 1);
  1.1138 +                }
  1.1139 +            } else {
  1.1140 +                if (readyForAnother) {
  1.1141 +                    next = fRows.append();
  1.1142 +                    next->fData = new SkTDArray<uint8_t>;
  1.1143 +                }
  1.1144 +            }
  1.1145 +        } else {
  1.1146 +            if (readyForAnother) {
  1.1147 +                next = fRows.append();
  1.1148 +                next->fData = new SkTDArray<uint8_t>;
  1.1149 +            }
  1.1150 +        }
  1.1151 +        return next;
  1.1152 +    }
  1.1153 +
  1.1154 +    static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) {
  1.1155 +        do {
  1.1156 +            int n = count;
  1.1157 +            if (n > 255) {
  1.1158 +                n = 255;
  1.1159 +            }
  1.1160 +            uint8_t* ptr = data.append(2);
  1.1161 +            ptr[0] = n;
  1.1162 +            ptr[1] = alpha;
  1.1163 +            count -= n;
  1.1164 +        } while (count > 0);
  1.1165 +    }
  1.1166 +};
  1.1167 +
  1.1168 +class SkAAClip::BuilderBlitter : public SkBlitter {
  1.1169 +    int fLastY;
  1.1170 +
  1.1171 +    /*
  1.1172 +        If we see a gap of 1 or more empty scanlines while building in Y-order,
  1.1173 +        we inject an explicit empty scanline (alpha==0)
  1.1174 +
  1.1175 +        See AAClipTest.cpp : test_path_with_hole()
  1.1176 +     */
  1.1177 +    void checkForYGap(int y) {
  1.1178 +        SkASSERT(y >= fLastY);
  1.1179 +        if (fLastY > -SK_MaxS32) {
  1.1180 +            int gap = y - fLastY;
  1.1181 +            if (gap > 1) {
  1.1182 +                fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft);
  1.1183 +            }
  1.1184 +        }
  1.1185 +        fLastY = y;
  1.1186 +    }
  1.1187 +
  1.1188 +public:
  1.1189 +
  1.1190 +    BuilderBlitter(Builder* builder) {
  1.1191 +        fBuilder = builder;
  1.1192 +        fLeft = builder->getBounds().fLeft;
  1.1193 +        fRight = builder->getBounds().fRight;
  1.1194 +        fMinY = SK_MaxS32;
  1.1195 +        fLastY = -SK_MaxS32;    // sentinel
  1.1196 +    }
  1.1197 +
  1.1198 +    void finish() {
  1.1199 +        if (fMinY < SK_MaxS32) {
  1.1200 +            fBuilder->setMinY(fMinY);
  1.1201 +        }
  1.1202 +    }
  1.1203 +
  1.1204 +    /**
  1.1205 +       Must evaluate clips in scan-line order, so don't want to allow blitV(),
  1.1206 +       but an AAClip can be clipped down to a single pixel wide, so we
  1.1207 +       must support it (given AntiRect semantics: minimum width is 2).
  1.1208 +       Instead we'll rely on the runtime asserts to guarantee Y monotonicity;
  1.1209 +       any failure cases that misses may have minor artifacts.
  1.1210 +    */
  1.1211 +    virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
  1.1212 +        this->recordMinY(y);
  1.1213 +        fBuilder->addColumn(x, y, alpha, height);
  1.1214 +        fLastY = y + height - 1;
  1.1215 +    }
  1.1216 +
  1.1217 +    virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
  1.1218 +        this->recordMinY(y);
  1.1219 +        this->checkForYGap(y);
  1.1220 +        fBuilder->addRectRun(x, y, width, height);
  1.1221 +        fLastY = y + height - 1;
  1.1222 +    }
  1.1223 +
  1.1224 +    virtual void blitAntiRect(int x, int y, int width, int height,
  1.1225 +                     SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
  1.1226 +        this->recordMinY(y);
  1.1227 +        this->checkForYGap(y);
  1.1228 +        fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha);
  1.1229 +        fLastY = y + height - 1;
  1.1230 +    }
  1.1231 +
  1.1232 +    virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE
  1.1233 +        { unexpected(); }
  1.1234 +
  1.1235 +    virtual const SkBitmap* justAnOpaqueColor(uint32_t*) SK_OVERRIDE {
  1.1236 +        return NULL;
  1.1237 +    }
  1.1238 +
  1.1239 +    virtual void blitH(int x, int y, int width) SK_OVERRIDE {
  1.1240 +        this->recordMinY(y);
  1.1241 +        this->checkForYGap(y);
  1.1242 +        fBuilder->addRun(x, y, 0xFF, width);
  1.1243 +    }
  1.1244 +
  1.1245 +    virtual void blitAntiH(int x, int y, const SkAlpha alpha[],
  1.1246 +                           const int16_t runs[]) SK_OVERRIDE {
  1.1247 +        this->recordMinY(y);
  1.1248 +        this->checkForYGap(y);
  1.1249 +        for (;;) {
  1.1250 +            int count = *runs;
  1.1251 +            if (count <= 0) {
  1.1252 +                return;
  1.1253 +            }
  1.1254 +
  1.1255 +            // The supersampler's buffer can be the width of the device, so
  1.1256 +            // we may have to trim the run to our bounds. If so, we assert that
  1.1257 +            // the extra spans are always alpha==0
  1.1258 +            int localX = x;
  1.1259 +            int localCount = count;
  1.1260 +            if (x < fLeft) {
  1.1261 +                SkASSERT(0 == *alpha);
  1.1262 +                int gap = fLeft - x;
  1.1263 +                SkASSERT(gap <= count);
  1.1264 +                localX += gap;
  1.1265 +                localCount -= gap;
  1.1266 +            }
  1.1267 +            int right = x + count;
  1.1268 +            if (right > fRight) {
  1.1269 +                SkASSERT(0 == *alpha);
  1.1270 +                localCount -= right - fRight;
  1.1271 +                SkASSERT(localCount >= 0);
  1.1272 +            }
  1.1273 +
  1.1274 +            if (localCount) {
  1.1275 +                fBuilder->addRun(localX, y, *alpha, localCount);
  1.1276 +            }
  1.1277 +            // Next run
  1.1278 +            runs += count;
  1.1279 +            alpha += count;
  1.1280 +            x += count;
  1.1281 +        }
  1.1282 +    }
  1.1283 +
  1.1284 +private:
  1.1285 +    Builder* fBuilder;
  1.1286 +    int      fLeft; // cache of builder's bounds' left edge
  1.1287 +    int      fRight;
  1.1288 +    int      fMinY;
  1.1289 +
  1.1290 +    /*
  1.1291 +     *  We track this, in case the scan converter skipped some number of
  1.1292 +     *  scanlines at the (relative to the bounds it was given). This allows
  1.1293 +     *  the builder, during its finish, to trip its bounds down to the "real"
  1.1294 +     *  top.
  1.1295 +     */
  1.1296 +    void recordMinY(int y) {
  1.1297 +        if (y < fMinY) {
  1.1298 +            fMinY = y;
  1.1299 +        }
  1.1300 +    }
  1.1301 +
  1.1302 +    void unexpected() {
  1.1303 +        SkDebugf("---- did not expect to get called here");
  1.1304 +        sk_throw();
  1.1305 +    }
  1.1306 +};
  1.1307 +
  1.1308 +bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) {
  1.1309 +    AUTO_AACLIP_VALIDATE(*this);
  1.1310 +
  1.1311 +    if (clip && clip->isEmpty()) {
  1.1312 +        return this->setEmpty();
  1.1313 +    }
  1.1314 +
  1.1315 +    SkIRect ibounds;
  1.1316 +    path.getBounds().roundOut(&ibounds);
  1.1317 +
  1.1318 +    SkRegion tmpClip;
  1.1319 +    if (NULL == clip) {
  1.1320 +        tmpClip.setRect(ibounds);
  1.1321 +        clip = &tmpClip;
  1.1322 +    }
  1.1323 +
  1.1324 +    if (path.isInverseFillType()) {
  1.1325 +        ibounds = clip->getBounds();
  1.1326 +    } else {
  1.1327 +        if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) {
  1.1328 +            return this->setEmpty();
  1.1329 +        }
  1.1330 +    }
  1.1331 +
  1.1332 +    Builder        builder(ibounds);
  1.1333 +    BuilderBlitter blitter(&builder);
  1.1334 +
  1.1335 +    if (doAA) {
  1.1336 +        SkScan::AntiFillPath(path, *clip, &blitter, true);
  1.1337 +    } else {
  1.1338 +        SkScan::FillPath(path, *clip, &blitter);
  1.1339 +    }
  1.1340 +
  1.1341 +    blitter.finish();
  1.1342 +    return builder.finish(this);
  1.1343 +}
  1.1344 +
  1.1345 +///////////////////////////////////////////////////////////////////////////////
  1.1346 +
  1.1347 +typedef void (*RowProc)(SkAAClip::Builder&, int bottom,
  1.1348 +                        const uint8_t* rowA, const SkIRect& rectA,
  1.1349 +                        const uint8_t* rowB, const SkIRect& rectB);
  1.1350 +
  1.1351 +typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB);
  1.1352 +
  1.1353 +static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) {
  1.1354 +    // Multiply
  1.1355 +    return SkMulDiv255Round(alphaA, alphaB);
  1.1356 +}
  1.1357 +
  1.1358 +static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) {
  1.1359 +    // SrcOver
  1.1360 +    return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB);
  1.1361 +}
  1.1362 +
  1.1363 +static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) {
  1.1364 +    // SrcOut
  1.1365 +    return SkMulDiv255Round(alphaA, 0xFF - alphaB);
  1.1366 +}
  1.1367 +
  1.1368 +static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) {
  1.1369 +    // XOR
  1.1370 +    return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB);
  1.1371 +}
  1.1372 +
  1.1373 +static AlphaProc find_alpha_proc(SkRegion::Op op) {
  1.1374 +    switch (op) {
  1.1375 +        case SkRegion::kIntersect_Op:
  1.1376 +            return sectAlphaProc;
  1.1377 +        case SkRegion::kDifference_Op:
  1.1378 +            return diffAlphaProc;
  1.1379 +        case SkRegion::kUnion_Op:
  1.1380 +            return unionAlphaProc;
  1.1381 +        case SkRegion::kXOR_Op:
  1.1382 +            return xorAlphaProc;
  1.1383 +        default:
  1.1384 +            SkDEBUGFAIL("unexpected region op");
  1.1385 +            return sectAlphaProc;
  1.1386 +    }
  1.1387 +}
  1.1388 +
  1.1389 +class RowIter {
  1.1390 +public:
  1.1391 +    RowIter(const uint8_t* row, const SkIRect& bounds) {
  1.1392 +        fRow = row;
  1.1393 +        fLeft = bounds.fLeft;
  1.1394 +        fBoundsRight = bounds.fRight;
  1.1395 +        if (row) {
  1.1396 +            fRight = bounds.fLeft + row[0];
  1.1397 +            SkASSERT(fRight <= fBoundsRight);
  1.1398 +            fAlpha = row[1];
  1.1399 +            fDone = false;
  1.1400 +        } else {
  1.1401 +            fDone = true;
  1.1402 +            fRight = kMaxInt32;
  1.1403 +            fAlpha = 0;
  1.1404 +        }
  1.1405 +    }
  1.1406 +
  1.1407 +    bool done() const { return fDone; }
  1.1408 +    int left() const { return fLeft; }
  1.1409 +    int right() const { return fRight; }
  1.1410 +    U8CPU alpha() const { return fAlpha; }
  1.1411 +    void next() {
  1.1412 +        if (!fDone) {
  1.1413 +            fLeft = fRight;
  1.1414 +            if (fRight == fBoundsRight) {
  1.1415 +                fDone = true;
  1.1416 +                fRight = kMaxInt32;
  1.1417 +                fAlpha = 0;
  1.1418 +            } else {
  1.1419 +                fRow += 2;
  1.1420 +                fRight += fRow[0];
  1.1421 +                fAlpha = fRow[1];
  1.1422 +                SkASSERT(fRight <= fBoundsRight);
  1.1423 +            }
  1.1424 +        }
  1.1425 +    }
  1.1426 +
  1.1427 +private:
  1.1428 +    const uint8_t*  fRow;
  1.1429 +    int             fLeft;
  1.1430 +    int             fRight;
  1.1431 +    int             fBoundsRight;
  1.1432 +    bool            fDone;
  1.1433 +    uint8_t         fAlpha;
  1.1434 +};
  1.1435 +
  1.1436 +static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) {
  1.1437 +    if (rite == riteA) {
  1.1438 +        iter.next();
  1.1439 +        leftA = iter.left();
  1.1440 +        riteA = iter.right();
  1.1441 +    }
  1.1442 +}
  1.1443 +
  1.1444 +#if 0 // UNUSED
  1.1445 +static bool intersect(int& min, int& max, int boundsMin, int boundsMax) {
  1.1446 +    SkASSERT(min < max);
  1.1447 +    SkASSERT(boundsMin < boundsMax);
  1.1448 +    if (min >= boundsMax || max <= boundsMin) {
  1.1449 +        return false;
  1.1450 +    }
  1.1451 +    if (min < boundsMin) {
  1.1452 +        min = boundsMin;
  1.1453 +    }
  1.1454 +    if (max > boundsMax) {
  1.1455 +        max = boundsMax;
  1.1456 +    }
  1.1457 +    return true;
  1.1458 +}
  1.1459 +#endif
  1.1460 +
  1.1461 +static void operatorX(SkAAClip::Builder& builder, int lastY,
  1.1462 +                      RowIter& iterA, RowIter& iterB,
  1.1463 +                      AlphaProc proc, const SkIRect& bounds) {
  1.1464 +    int leftA = iterA.left();
  1.1465 +    int riteA = iterA.right();
  1.1466 +    int leftB = iterB.left();
  1.1467 +    int riteB = iterB.right();
  1.1468 +
  1.1469 +    int prevRite = bounds.fLeft;
  1.1470 +
  1.1471 +    do {
  1.1472 +        U8CPU alphaA = 0;
  1.1473 +        U8CPU alphaB = 0;
  1.1474 +        int left, rite;
  1.1475 +
  1.1476 +        if (leftA < leftB) {
  1.1477 +            left = leftA;
  1.1478 +            alphaA = iterA.alpha();
  1.1479 +            if (riteA <= leftB) {
  1.1480 +                rite = riteA;
  1.1481 +            } else {
  1.1482 +                rite = leftA = leftB;
  1.1483 +            }
  1.1484 +        } else if (leftB < leftA) {
  1.1485 +            left = leftB;
  1.1486 +            alphaB = iterB.alpha();
  1.1487 +            if (riteB <= leftA) {
  1.1488 +                rite = riteB;
  1.1489 +            } else {
  1.1490 +                rite = leftB = leftA;
  1.1491 +            }
  1.1492 +        } else {
  1.1493 +            left = leftA;   // or leftB, since leftA == leftB
  1.1494 +            rite = leftA = leftB = SkMin32(riteA, riteB);
  1.1495 +            alphaA = iterA.alpha();
  1.1496 +            alphaB = iterB.alpha();
  1.1497 +        }
  1.1498 +
  1.1499 +        if (left >= bounds.fRight) {
  1.1500 +            break;
  1.1501 +        }
  1.1502 +        if (rite > bounds.fRight) {
  1.1503 +            rite = bounds.fRight;
  1.1504 +        }
  1.1505 +
  1.1506 +        if (left >= bounds.fLeft) {
  1.1507 +            SkASSERT(rite > left);
  1.1508 +            builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left);
  1.1509 +            prevRite = rite;
  1.1510 +        }
  1.1511 +
  1.1512 +        adjust_row(iterA, leftA, riteA, rite);
  1.1513 +        adjust_row(iterB, leftB, riteB, rite);
  1.1514 +    } while (!iterA.done() || !iterB.done());
  1.1515 +
  1.1516 +    if (prevRite < bounds.fRight) {
  1.1517 +        builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite);
  1.1518 +    }
  1.1519 +}
  1.1520 +
  1.1521 +static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) {
  1.1522 +    if (bot == botA) {
  1.1523 +        iter.next();
  1.1524 +        topA = botA;
  1.1525 +        SkASSERT(botA == iter.top());
  1.1526 +        botA = iter.bottom();
  1.1527 +    }
  1.1528 +}
  1.1529 +
  1.1530 +static void operateY(SkAAClip::Builder& builder, const SkAAClip& A,
  1.1531 +                     const SkAAClip& B, SkRegion::Op op) {
  1.1532 +    AlphaProc proc = find_alpha_proc(op);
  1.1533 +    const SkIRect& bounds = builder.getBounds();
  1.1534 +
  1.1535 +    SkAAClip::Iter iterA(A);
  1.1536 +    SkAAClip::Iter iterB(B);
  1.1537 +
  1.1538 +    SkASSERT(!iterA.done());
  1.1539 +    int topA = iterA.top();
  1.1540 +    int botA = iterA.bottom();
  1.1541 +    SkASSERT(!iterB.done());
  1.1542 +    int topB = iterB.top();
  1.1543 +    int botB = iterB.bottom();
  1.1544 +
  1.1545 +    do {
  1.1546 +        const uint8_t* rowA = NULL;
  1.1547 +        const uint8_t* rowB = NULL;
  1.1548 +        int top, bot;
  1.1549 +
  1.1550 +        if (topA < topB) {
  1.1551 +            top = topA;
  1.1552 +            rowA = iterA.data();
  1.1553 +            if (botA <= topB) {
  1.1554 +                bot = botA;
  1.1555 +            } else {
  1.1556 +                bot = topA = topB;
  1.1557 +            }
  1.1558 +
  1.1559 +        } else if (topB < topA) {
  1.1560 +            top = topB;
  1.1561 +            rowB = iterB.data();
  1.1562 +            if (botB <= topA) {
  1.1563 +                bot = botB;
  1.1564 +            } else {
  1.1565 +                bot = topB = topA;
  1.1566 +            }
  1.1567 +        } else {
  1.1568 +            top = topA;   // or topB, since topA == topB
  1.1569 +            bot = topA = topB = SkMin32(botA, botB);
  1.1570 +            rowA = iterA.data();
  1.1571 +            rowB = iterB.data();
  1.1572 +        }
  1.1573 +
  1.1574 +        if (top >= bounds.fBottom) {
  1.1575 +            break;
  1.1576 +        }
  1.1577 +
  1.1578 +        if (bot > bounds.fBottom) {
  1.1579 +            bot = bounds.fBottom;
  1.1580 +        }
  1.1581 +        SkASSERT(top < bot);
  1.1582 +
  1.1583 +        if (!rowA && !rowB) {
  1.1584 +            builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width());
  1.1585 +        } else if (top >= bounds.fTop) {
  1.1586 +            SkASSERT(bot <= bounds.fBottom);
  1.1587 +            RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds);
  1.1588 +            RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds);
  1.1589 +            operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds);
  1.1590 +        }
  1.1591 +
  1.1592 +        adjust_iter(iterA, topA, botA, bot);
  1.1593 +        adjust_iter(iterB, topB, botB, bot);
  1.1594 +    } while (!iterA.done() || !iterB.done());
  1.1595 +}
  1.1596 +
  1.1597 +bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig,
  1.1598 +                  SkRegion::Op op) {
  1.1599 +    AUTO_AACLIP_VALIDATE(*this);
  1.1600 +
  1.1601 +    if (SkRegion::kReplace_Op == op) {
  1.1602 +        return this->set(clipBOrig);
  1.1603 +    }
  1.1604 +
  1.1605 +    const SkAAClip* clipA = &clipAOrig;
  1.1606 +    const SkAAClip* clipB = &clipBOrig;
  1.1607 +
  1.1608 +    if (SkRegion::kReverseDifference_Op == op) {
  1.1609 +        SkTSwap(clipA, clipB);
  1.1610 +        op = SkRegion::kDifference_Op;
  1.1611 +    }
  1.1612 +
  1.1613 +    bool a_empty = clipA->isEmpty();
  1.1614 +    bool b_empty = clipB->isEmpty();
  1.1615 +
  1.1616 +    SkIRect bounds;
  1.1617 +    switch (op) {
  1.1618 +        case SkRegion::kDifference_Op:
  1.1619 +            if (a_empty) {
  1.1620 +                return this->setEmpty();
  1.1621 +            }
  1.1622 +            if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) {
  1.1623 +                return this->set(*clipA);
  1.1624 +            }
  1.1625 +            bounds = clipA->fBounds;
  1.1626 +            break;
  1.1627 +
  1.1628 +        case SkRegion::kIntersect_Op:
  1.1629 +            if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds,
  1.1630 +                                                         clipB->fBounds)) {
  1.1631 +                return this->setEmpty();
  1.1632 +            }
  1.1633 +            break;
  1.1634 +
  1.1635 +        case SkRegion::kUnion_Op:
  1.1636 +        case SkRegion::kXOR_Op:
  1.1637 +            if (a_empty) {
  1.1638 +                return this->set(*clipB);
  1.1639 +            }
  1.1640 +            if (b_empty) {
  1.1641 +                return this->set(*clipA);
  1.1642 +            }
  1.1643 +            bounds = clipA->fBounds;
  1.1644 +            bounds.join(clipB->fBounds);
  1.1645 +            break;
  1.1646 +
  1.1647 +        default:
  1.1648 +            SkDEBUGFAIL("unknown region op");
  1.1649 +            return !this->isEmpty();
  1.1650 +    }
  1.1651 +
  1.1652 +    SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
  1.1653 +    SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
  1.1654 +
  1.1655 +    Builder builder(bounds);
  1.1656 +    operateY(builder, *clipA, *clipB, op);
  1.1657 +
  1.1658 +    return builder.finish(this);
  1.1659 +}
  1.1660 +
  1.1661 +/*
  1.1662 + *  It can be expensive to build a local aaclip before applying the op, so
  1.1663 + *  we first see if we can restrict the bounds of new rect to our current
  1.1664 + *  bounds, or note that the new rect subsumes our current clip.
  1.1665 + */
  1.1666 +
  1.1667 +bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) {
  1.1668 +    SkIRect        rStorage;
  1.1669 +    const SkIRect* r = &rOrig;
  1.1670 +
  1.1671 +    switch (op) {
  1.1672 +        case SkRegion::kIntersect_Op:
  1.1673 +            if (!rStorage.intersect(rOrig, fBounds)) {
  1.1674 +                // no overlap, so we're empty
  1.1675 +                return this->setEmpty();
  1.1676 +            }
  1.1677 +            if (rStorage == fBounds) {
  1.1678 +                // we were wholly inside the rect, no change
  1.1679 +                return !this->isEmpty();
  1.1680 +            }
  1.1681 +            if (this->quickContains(rStorage)) {
  1.1682 +                // the intersection is wholly inside us, we're a rect
  1.1683 +                return this->setRect(rStorage);
  1.1684 +            }
  1.1685 +            r = &rStorage;   // use the intersected bounds
  1.1686 +            break;
  1.1687 +        case SkRegion::kDifference_Op:
  1.1688 +            break;
  1.1689 +        case SkRegion::kUnion_Op:
  1.1690 +            if (rOrig.contains(fBounds)) {
  1.1691 +                return this->setRect(rOrig);
  1.1692 +            }
  1.1693 +            break;
  1.1694 +        default:
  1.1695 +            break;
  1.1696 +    }
  1.1697 +
  1.1698 +    SkAAClip clip;
  1.1699 +    clip.setRect(*r);
  1.1700 +    return this->op(*this, clip, op);
  1.1701 +}
  1.1702 +
  1.1703 +bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) {
  1.1704 +    SkRect        rStorage, boundsStorage;
  1.1705 +    const SkRect* r = &rOrig;
  1.1706 +
  1.1707 +    boundsStorage.set(fBounds);
  1.1708 +    switch (op) {
  1.1709 +        case SkRegion::kIntersect_Op:
  1.1710 +        case SkRegion::kDifference_Op:
  1.1711 +            if (!rStorage.intersect(rOrig, boundsStorage)) {
  1.1712 +                if (SkRegion::kIntersect_Op == op) {
  1.1713 +                    return this->setEmpty();
  1.1714 +                } else {    // kDifference
  1.1715 +                    return !this->isEmpty();
  1.1716 +                }
  1.1717 +            }
  1.1718 +            r = &rStorage;   // use the intersected bounds
  1.1719 +            break;
  1.1720 +        case SkRegion::kUnion_Op:
  1.1721 +            if (rOrig.contains(boundsStorage)) {
  1.1722 +                return this->setRect(rOrig);
  1.1723 +            }
  1.1724 +            break;
  1.1725 +        default:
  1.1726 +            break;
  1.1727 +    }
  1.1728 +
  1.1729 +    SkAAClip clip;
  1.1730 +    clip.setRect(*r, doAA);
  1.1731 +    return this->op(*this, clip, op);
  1.1732 +}
  1.1733 +
  1.1734 +bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) {
  1.1735 +    return this->op(*this, clip, op);
  1.1736 +}
  1.1737 +
  1.1738 +///////////////////////////////////////////////////////////////////////////////
  1.1739 +
  1.1740 +bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const {
  1.1741 +    if (NULL == dst) {
  1.1742 +        return !this->isEmpty();
  1.1743 +    }
  1.1744 +
  1.1745 +    if (this->isEmpty()) {
  1.1746 +        return dst->setEmpty();
  1.1747 +    }
  1.1748 +
  1.1749 +    if (this != dst) {
  1.1750 +        sk_atomic_inc(&fRunHead->fRefCnt);
  1.1751 +        dst->freeRuns();
  1.1752 +        dst->fRunHead = fRunHead;
  1.1753 +        dst->fBounds = fBounds;
  1.1754 +    }
  1.1755 +    dst->fBounds.offset(dx, dy);
  1.1756 +    return true;
  1.1757 +}
  1.1758 +
  1.1759 +static void expand_row_to_mask(uint8_t* SK_RESTRICT mask,
  1.1760 +                               const uint8_t* SK_RESTRICT row,
  1.1761 +                               int width) {
  1.1762 +    while (width > 0) {
  1.1763 +        int n = row[0];
  1.1764 +        SkASSERT(width >= n);
  1.1765 +        memset(mask, row[1], n);
  1.1766 +        mask += n;
  1.1767 +        row += 2;
  1.1768 +        width -= n;
  1.1769 +    }
  1.1770 +    SkASSERT(0 == width);
  1.1771 +}
  1.1772 +
  1.1773 +void SkAAClip::copyToMask(SkMask* mask) const {
  1.1774 +    mask->fFormat = SkMask::kA8_Format;
  1.1775 +    if (this->isEmpty()) {
  1.1776 +        mask->fBounds.setEmpty();
  1.1777 +        mask->fImage = NULL;
  1.1778 +        mask->fRowBytes = 0;
  1.1779 +        return;
  1.1780 +    }
  1.1781 +
  1.1782 +    mask->fBounds = fBounds;
  1.1783 +    mask->fRowBytes = fBounds.width();
  1.1784 +    size_t size = mask->computeImageSize();
  1.1785 +    mask->fImage = SkMask::AllocImage(size);
  1.1786 +
  1.1787 +    Iter iter(*this);
  1.1788 +    uint8_t* dst = mask->fImage;
  1.1789 +    const int width = fBounds.width();
  1.1790 +
  1.1791 +    int y = fBounds.fTop;
  1.1792 +    while (!iter.done()) {
  1.1793 +        do {
  1.1794 +            expand_row_to_mask(dst, iter.data(), width);
  1.1795 +            dst += mask->fRowBytes;
  1.1796 +        } while (++y < iter.bottom());
  1.1797 +        iter.next();
  1.1798 +    }
  1.1799 +}
  1.1800 +
  1.1801 +///////////////////////////////////////////////////////////////////////////////
  1.1802 +///////////////////////////////////////////////////////////////////////////////
  1.1803 +
  1.1804 +static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width,
  1.1805 +                         int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) {
  1.1806 +    // we don't read our initial n from data, since the caller may have had to
  1.1807 +    // clip it, hence the initialCount parameter.
  1.1808 +    int n = initialCount;
  1.1809 +    for (;;) {
  1.1810 +        if (n > width) {
  1.1811 +            n = width;
  1.1812 +        }
  1.1813 +        SkASSERT(n > 0);
  1.1814 +        runs[0] = n;
  1.1815 +        runs += n;
  1.1816 +
  1.1817 +        aa[0] = data[1];
  1.1818 +        aa += n;
  1.1819 +
  1.1820 +        data += 2;
  1.1821 +        width -= n;
  1.1822 +        if (0 == width) {
  1.1823 +            break;
  1.1824 +        }
  1.1825 +        // load the next count
  1.1826 +        n = data[0];
  1.1827 +    }
  1.1828 +    runs[0] = 0;    // sentinel
  1.1829 +}
  1.1830 +
  1.1831 +SkAAClipBlitter::~SkAAClipBlitter() {
  1.1832 +    sk_free(fScanlineScratch);
  1.1833 +}
  1.1834 +
  1.1835 +void SkAAClipBlitter::ensureRunsAndAA() {
  1.1836 +    if (NULL == fScanlineScratch) {
  1.1837 +        // add 1 so we can store the terminating run count of 0
  1.1838 +        int count = fAAClipBounds.width() + 1;
  1.1839 +        // we use this either for fRuns + fAA, or a scaline of a mask
  1.1840 +        // which may be as deep as 32bits
  1.1841 +        fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor));
  1.1842 +        fRuns = (int16_t*)fScanlineScratch;
  1.1843 +        fAA = (SkAlpha*)(fRuns + count);
  1.1844 +    }
  1.1845 +}
  1.1846 +
  1.1847 +void SkAAClipBlitter::blitH(int x, int y, int width) {
  1.1848 +    SkASSERT(width > 0);
  1.1849 +    SkASSERT(fAAClipBounds.contains(x, y));
  1.1850 +    SkASSERT(fAAClipBounds.contains(x + width  - 1, y));
  1.1851 +
  1.1852 +    const uint8_t* row = fAAClip->findRow(y);
  1.1853 +    int initialCount;
  1.1854 +    row = fAAClip->findX(row, x, &initialCount);
  1.1855 +
  1.1856 +    if (initialCount >= width) {
  1.1857 +        SkAlpha alpha = row[1];
  1.1858 +        if (0 == alpha) {
  1.1859 +            return;
  1.1860 +        }
  1.1861 +        if (0xFF == alpha) {
  1.1862 +            fBlitter->blitH(x, y, width);
  1.1863 +            return;
  1.1864 +        }
  1.1865 +    }
  1.1866 +
  1.1867 +    this->ensureRunsAndAA();
  1.1868 +    expandToRuns(row, initialCount, width, fRuns, fAA);
  1.1869 +
  1.1870 +    fBlitter->blitAntiH(x, y, fAA, fRuns);
  1.1871 +}
  1.1872 +
  1.1873 +static void merge(const uint8_t* SK_RESTRICT row, int rowN,
  1.1874 +                  const SkAlpha* SK_RESTRICT srcAA,
  1.1875 +                  const int16_t* SK_RESTRICT srcRuns,
  1.1876 +                  SkAlpha* SK_RESTRICT dstAA,
  1.1877 +                  int16_t* SK_RESTRICT dstRuns,
  1.1878 +                  int width) {
  1.1879 +    SkDEBUGCODE(int accumulated = 0;)
  1.1880 +    int srcN = srcRuns[0];
  1.1881 +    // do we need this check?
  1.1882 +    if (0 == srcN) {
  1.1883 +        return;
  1.1884 +    }
  1.1885 +
  1.1886 +    for (;;) {
  1.1887 +        SkASSERT(rowN > 0);
  1.1888 +        SkASSERT(srcN > 0);
  1.1889 +
  1.1890 +        unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]);
  1.1891 +        int minN = SkMin32(srcN, rowN);
  1.1892 +        dstRuns[0] = minN;
  1.1893 +        dstRuns += minN;
  1.1894 +        dstAA[0] = newAlpha;
  1.1895 +        dstAA += minN;
  1.1896 +
  1.1897 +        if (0 == (srcN -= minN)) {
  1.1898 +            srcN = srcRuns[0];  // refresh
  1.1899 +            srcRuns += srcN;
  1.1900 +            srcAA += srcN;
  1.1901 +            srcN = srcRuns[0];  // reload
  1.1902 +            if (0 == srcN) {
  1.1903 +                break;
  1.1904 +            }
  1.1905 +        }
  1.1906 +        if (0 == (rowN -= minN)) {
  1.1907 +            row += 2;
  1.1908 +            rowN = row[0];  // reload
  1.1909 +        }
  1.1910 +
  1.1911 +        SkDEBUGCODE(accumulated += minN;)
  1.1912 +        SkASSERT(accumulated <= width);
  1.1913 +    }
  1.1914 +    dstRuns[0] = 0;
  1.1915 +}
  1.1916 +
  1.1917 +void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
  1.1918 +                                const int16_t runs[]) {
  1.1919 +
  1.1920 +    const uint8_t* row = fAAClip->findRow(y);
  1.1921 +    int initialCount;
  1.1922 +    row = fAAClip->findX(row, x, &initialCount);
  1.1923 +
  1.1924 +    this->ensureRunsAndAA();
  1.1925 +
  1.1926 +    merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width());
  1.1927 +    fBlitter->blitAntiH(x, y, fAA, fRuns);
  1.1928 +}
  1.1929 +
  1.1930 +void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
  1.1931 +    if (fAAClip->quickContains(x, y, x + 1, y + height)) {
  1.1932 +        fBlitter->blitV(x, y, height, alpha);
  1.1933 +        return;
  1.1934 +    }
  1.1935 +
  1.1936 +    for (;;) {
  1.1937 +        int lastY SK_INIT_TO_AVOID_WARNING;
  1.1938 +        const uint8_t* row = fAAClip->findRow(y, &lastY);
  1.1939 +        int dy = lastY - y + 1;
  1.1940 +        if (dy > height) {
  1.1941 +            dy = height;
  1.1942 +        }
  1.1943 +        height -= dy;
  1.1944 +
  1.1945 +        row = fAAClip->findX(row, x);
  1.1946 +        SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]);
  1.1947 +        if (newAlpha) {
  1.1948 +            fBlitter->blitV(x, y, dy, newAlpha);
  1.1949 +        }
  1.1950 +        SkASSERT(height >= 0);
  1.1951 +        if (height <= 0) {
  1.1952 +            break;
  1.1953 +        }
  1.1954 +        y = lastY + 1;
  1.1955 +    }
  1.1956 +}
  1.1957 +
  1.1958 +void SkAAClipBlitter::blitRect(int x, int y, int width, int height) {
  1.1959 +    if (fAAClip->quickContains(x, y, x + width, y + height)) {
  1.1960 +        fBlitter->blitRect(x, y, width, height);
  1.1961 +        return;
  1.1962 +    }
  1.1963 +
  1.1964 +    while (--height >= 0) {
  1.1965 +        this->blitH(x, y, width);
  1.1966 +        y += 1;
  1.1967 +    }
  1.1968 +}
  1.1969 +
  1.1970 +typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row,
  1.1971 +                            int initialRowCount, void* dst);
  1.1972 +
  1.1973 +static void small_memcpy(void* dst, const void* src, size_t n) {
  1.1974 +    memcpy(dst, src, n);
  1.1975 +}
  1.1976 +
  1.1977 +static void small_bzero(void* dst, size_t n) {
  1.1978 +    sk_bzero(dst, n);
  1.1979 +}
  1.1980 +
  1.1981 +static inline uint8_t mergeOne(uint8_t value, unsigned alpha) {
  1.1982 +    return SkMulDiv255Round(value, alpha);
  1.1983 +}
  1.1984 +static inline uint16_t mergeOne(uint16_t value, unsigned alpha) {
  1.1985 +    unsigned r = SkGetPackedR16(value);
  1.1986 +    unsigned g = SkGetPackedG16(value);
  1.1987 +    unsigned b = SkGetPackedB16(value);
  1.1988 +    return SkPackRGB16(SkMulDiv255Round(r, alpha),
  1.1989 +                       SkMulDiv255Round(g, alpha),
  1.1990 +                       SkMulDiv255Round(b, alpha));
  1.1991 +}
  1.1992 +static inline SkPMColor mergeOne(SkPMColor value, unsigned alpha) {
  1.1993 +    unsigned a = SkGetPackedA32(value);
  1.1994 +    unsigned r = SkGetPackedR32(value);
  1.1995 +    unsigned g = SkGetPackedG32(value);
  1.1996 +    unsigned b = SkGetPackedB32(value);
  1.1997 +    return SkPackARGB32(SkMulDiv255Round(a, alpha),
  1.1998 +                        SkMulDiv255Round(r, alpha),
  1.1999 +                        SkMulDiv255Round(g, alpha),
  1.2000 +                        SkMulDiv255Round(b, alpha));
  1.2001 +}
  1.2002 +
  1.2003 +template <typename T> void mergeT(const T* SK_RESTRICT src, int srcN,
  1.2004 +                                 const uint8_t* SK_RESTRICT row, int rowN,
  1.2005 +                                 T* SK_RESTRICT dst) {
  1.2006 +    for (;;) {
  1.2007 +        SkASSERT(rowN > 0);
  1.2008 +        SkASSERT(srcN > 0);
  1.2009 +
  1.2010 +        int n = SkMin32(rowN, srcN);
  1.2011 +        unsigned rowA = row[1];
  1.2012 +        if (0xFF == rowA) {
  1.2013 +            small_memcpy(dst, src, n * sizeof(T));
  1.2014 +        } else if (0 == rowA) {
  1.2015 +            small_bzero(dst, n * sizeof(T));
  1.2016 +        } else {
  1.2017 +            for (int i = 0; i < n; ++i) {
  1.2018 +                dst[i] = mergeOne(src[i], rowA);
  1.2019 +            }
  1.2020 +        }
  1.2021 +
  1.2022 +        if (0 == (srcN -= n)) {
  1.2023 +            break;
  1.2024 +        }
  1.2025 +
  1.2026 +        src += n;
  1.2027 +        dst += n;
  1.2028 +
  1.2029 +        SkASSERT(rowN == n);
  1.2030 +        row += 2;
  1.2031 +        rowN = row[0];
  1.2032 +    }
  1.2033 +}
  1.2034 +
  1.2035 +static MergeAAProc find_merge_aa_proc(SkMask::Format format) {
  1.2036 +    switch (format) {
  1.2037 +        case SkMask::kBW_Format:
  1.2038 +            SkDEBUGFAIL("unsupported");
  1.2039 +            return NULL;
  1.2040 +        case SkMask::kA8_Format:
  1.2041 +        case SkMask::k3D_Format: {
  1.2042 +            void (*proc8)(const uint8_t*, int, const uint8_t*, int, uint8_t*) = mergeT;
  1.2043 +            return (MergeAAProc)proc8;
  1.2044 +        }
  1.2045 +        case SkMask::kLCD16_Format: {
  1.2046 +            void (*proc16)(const uint16_t*, int, const uint8_t*, int, uint16_t*) = mergeT;
  1.2047 +            return (MergeAAProc)proc16;
  1.2048 +        }
  1.2049 +        case SkMask::kLCD32_Format: {
  1.2050 +            void (*proc32)(const SkPMColor*, int, const uint8_t*, int, SkPMColor*) = mergeT;
  1.2051 +            return (MergeAAProc)proc32;
  1.2052 +        }
  1.2053 +        default:
  1.2054 +            SkDEBUGFAIL("unsupported");
  1.2055 +            return NULL;
  1.2056 +    }
  1.2057 +}
  1.2058 +
  1.2059 +static U8CPU bit2byte(int bitInAByte) {
  1.2060 +    SkASSERT(bitInAByte <= 0xFF);
  1.2061 +    // negation turns any non-zero into 0xFFFFFF??, so we just shift down
  1.2062 +    // some value >= 8 to get a full FF value
  1.2063 +    return -bitInAByte >> 8;
  1.2064 +}
  1.2065 +
  1.2066 +static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) {
  1.2067 +    SkASSERT(SkMask::kBW_Format == srcMask.fFormat);
  1.2068 +    SkASSERT(SkMask::kA8_Format == dstMask->fFormat);
  1.2069 +
  1.2070 +    const int width = srcMask.fBounds.width();
  1.2071 +    const int height = srcMask.fBounds.height();
  1.2072 +
  1.2073 +    const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage;
  1.2074 +    const size_t srcRB = srcMask.fRowBytes;
  1.2075 +    uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage;
  1.2076 +    const size_t dstRB = dstMask->fRowBytes;
  1.2077 +
  1.2078 +    const int wholeBytes = width >> 3;
  1.2079 +    const int leftOverBits = width & 7;
  1.2080 +
  1.2081 +    for (int y = 0; y < height; ++y) {
  1.2082 +        uint8_t* SK_RESTRICT d = dst;
  1.2083 +        for (int i = 0; i < wholeBytes; ++i) {
  1.2084 +            int srcByte = src[i];
  1.2085 +            d[0] = bit2byte(srcByte & (1 << 7));
  1.2086 +            d[1] = bit2byte(srcByte & (1 << 6));
  1.2087 +            d[2] = bit2byte(srcByte & (1 << 5));
  1.2088 +            d[3] = bit2byte(srcByte & (1 << 4));
  1.2089 +            d[4] = bit2byte(srcByte & (1 << 3));
  1.2090 +            d[5] = bit2byte(srcByte & (1 << 2));
  1.2091 +            d[6] = bit2byte(srcByte & (1 << 1));
  1.2092 +            d[7] = bit2byte(srcByte & (1 << 0));
  1.2093 +            d += 8;
  1.2094 +        }
  1.2095 +        if (leftOverBits) {
  1.2096 +            int srcByte = src[wholeBytes];
  1.2097 +            for (int x = 0; x < leftOverBits; ++x) {
  1.2098 +                *d++ = bit2byte(srcByte & 0x80);
  1.2099 +                srcByte <<= 1;
  1.2100 +            }
  1.2101 +        }
  1.2102 +        src += srcRB;
  1.2103 +        dst += dstRB;
  1.2104 +    }
  1.2105 +}
  1.2106 +
  1.2107 +void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) {
  1.2108 +    SkASSERT(fAAClip->getBounds().contains(clip));
  1.2109 +
  1.2110 +    if (fAAClip->quickContains(clip)) {
  1.2111 +        fBlitter->blitMask(origMask, clip);
  1.2112 +        return;
  1.2113 +    }
  1.2114 +
  1.2115 +    const SkMask* mask = &origMask;
  1.2116 +
  1.2117 +    // if we're BW, we need to upscale to A8 (ugh)
  1.2118 +    SkMask  grayMask;
  1.2119 +    grayMask.fImage = NULL;
  1.2120 +    if (SkMask::kBW_Format == origMask.fFormat) {
  1.2121 +        grayMask.fFormat = SkMask::kA8_Format;
  1.2122 +        grayMask.fBounds = origMask.fBounds;
  1.2123 +        grayMask.fRowBytes = origMask.fBounds.width();
  1.2124 +        size_t size = grayMask.computeImageSize();
  1.2125 +        grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size,
  1.2126 +                                               SkAutoMalloc::kReuse_OnShrink);
  1.2127 +
  1.2128 +        upscaleBW2A8(&grayMask, origMask);
  1.2129 +        mask = &grayMask;
  1.2130 +    }
  1.2131 +
  1.2132 +    this->ensureRunsAndAA();
  1.2133 +
  1.2134 +    // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D
  1.2135 +    // data into a temp block to support it better (ugh)
  1.2136 +
  1.2137 +    const void* src = mask->getAddr(clip.fLeft, clip.fTop);
  1.2138 +    const size_t srcRB = mask->fRowBytes;
  1.2139 +    const int width = clip.width();
  1.2140 +    MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat);
  1.2141 +
  1.2142 +    SkMask rowMask;
  1.2143 +    rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat;
  1.2144 +    rowMask.fBounds.fLeft = clip.fLeft;
  1.2145 +    rowMask.fBounds.fRight = clip.fRight;
  1.2146 +    rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1
  1.2147 +    rowMask.fImage = (uint8_t*)fScanlineScratch;
  1.2148 +
  1.2149 +    int y = clip.fTop;
  1.2150 +    const int stopY = y + clip.height();
  1.2151 +
  1.2152 +    do {
  1.2153 +        int localStopY SK_INIT_TO_AVOID_WARNING;
  1.2154 +        const uint8_t* row = fAAClip->findRow(y, &localStopY);
  1.2155 +        // findRow returns last Y, not stop, so we add 1
  1.2156 +        localStopY = SkMin32(localStopY + 1, stopY);
  1.2157 +
  1.2158 +        int initialCount;
  1.2159 +        row = fAAClip->findX(row, clip.fLeft, &initialCount);
  1.2160 +        do {
  1.2161 +            mergeProc(src, width, row, initialCount, rowMask.fImage);
  1.2162 +            rowMask.fBounds.fTop = y;
  1.2163 +            rowMask.fBounds.fBottom = y + 1;
  1.2164 +            fBlitter->blitMask(rowMask, rowMask.fBounds);
  1.2165 +            src = (const void*)((const char*)src + srcRB);
  1.2166 +        } while (++y < localStopY);
  1.2167 +    } while (y < stopY);
  1.2168 +}
  1.2169 +
  1.2170 +const SkBitmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) {
  1.2171 +    return NULL;
  1.2172 +}

mercurial