1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/core/SkDistanceFieldGen.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,451 @@ 1.4 +/* 1.5 + * Copyright 2014 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#include "SkDistanceFieldGen.h" 1.12 +#include "SkPoint.h" 1.13 + 1.14 +struct DFData { 1.15 + float fAlpha; // alpha value of source texel 1.16 + float fDistSq; // distance squared to nearest (so far) edge texel 1.17 + SkPoint fDistVector; // distance vector to nearest (so far) edge texel 1.18 +}; 1.19 + 1.20 +enum NeighborFlags { 1.21 + kLeft_NeighborFlag = 0x01, 1.22 + kRight_NeighborFlag = 0x02, 1.23 + kTopLeft_NeighborFlag = 0x04, 1.24 + kTop_NeighborFlag = 0x08, 1.25 + kTopRight_NeighborFlag = 0x10, 1.26 + kBottomLeft_NeighborFlag = 0x20, 1.27 + kBottom_NeighborFlag = 0x40, 1.28 + kBottomRight_NeighborFlag = 0x80, 1.29 + kAll_NeighborFlags = 0xff, 1.30 + 1.31 + kNeighborFlagCount = 8 1.32 +}; 1.33 + 1.34 +// We treat an "edge" as a place where we cross from black to non-black, or vice versa. 1.35 +// 'neighborFlags' is used to limit the directions in which we test to avoid indexing 1.36 +// outside of the image 1.37 +static bool found_edge(const unsigned char* imagePtr, int width, int neighborFlags) { 1.38 + // the order of these should match the neighbor flags above 1.39 + const int kNum8ConnectedNeighbors = 8; 1.40 + const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 }; 1.41 + SkASSERT(kNum8ConnectedNeighbors == kNeighborFlagCount); 1.42 + 1.43 + // search for an edge 1.44 + bool currVal = (*imagePtr != 0); 1.45 + for (int i = 0; i < kNum8ConnectedNeighbors; ++i) { 1.46 + bool checkVal; 1.47 + if ((1 << i) & neighborFlags) { 1.48 + const unsigned char* checkPtr = imagePtr + offsets[i]; 1.49 + checkVal = (*checkPtr != 0); 1.50 + } else { 1.51 + checkVal = false; 1.52 + } 1.53 + SkASSERT(checkVal == 0 || checkVal == 1); 1.54 + SkASSERT(currVal == 0 || currVal == 1); 1.55 + if (checkVal != currVal) { 1.56 + return true; 1.57 + } 1.58 + } 1.59 + 1.60 + return false; 1.61 +} 1.62 + 1.63 +static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image, 1.64 + int dataWidth, int dataHeight, 1.65 + int imageWidth, int imageHeight, 1.66 + int pad) { 1.67 + data += pad*dataWidth; 1.68 + data += pad; 1.69 + edges += (pad*dataWidth + pad); 1.70 + 1.71 + for (int j = 0; j < imageHeight; ++j) { 1.72 + for (int i = 0; i < imageWidth; ++i) { 1.73 + if (255 == *image) { 1.74 + data->fAlpha = 1.0f; 1.75 + } else { 1.76 + data->fAlpha = (*image)*0.00392156862f; // 1/255 1.77 + } 1.78 + int checkMask = kAll_NeighborFlags; 1.79 + if (i == 0) { 1.80 + checkMask &= ~(kLeft_NeighborFlag|kTopLeft_NeighborFlag|kBottomLeft_NeighborFlag); 1.81 + } 1.82 + if (i == imageWidth-1) { 1.83 + checkMask &= ~(kRight_NeighborFlag|kTopRight_NeighborFlag|kBottomRight_NeighborFlag); 1.84 + } 1.85 + if (j == 0) { 1.86 + checkMask &= ~(kTopLeft_NeighborFlag|kTop_NeighborFlag|kTopRight_NeighborFlag); 1.87 + } 1.88 + if (j == imageHeight-1) { 1.89 + checkMask &= ~(kBottomLeft_NeighborFlag|kBottom_NeighborFlag|kBottomRight_NeighborFlag); 1.90 + } 1.91 + if (found_edge(image, imageWidth, checkMask)) { 1.92 + *edges = 255; // using 255 makes for convenient debug rendering 1.93 + } 1.94 + ++data; 1.95 + ++image; 1.96 + ++edges; 1.97 + } 1.98 + data += 2*pad; 1.99 + edges += 2*pad; 1.100 + } 1.101 +} 1.102 + 1.103 +// from Gustavson (2011) 1.104 +// computes the distance to an edge given an edge normal vector and a pixel's alpha value 1.105 +// assumes that direction has been pre-normalized 1.106 +static float edge_distance(const SkPoint& direction, float alpha) { 1.107 + float dx = direction.fX; 1.108 + float dy = direction.fY; 1.109 + float distance; 1.110 + if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) { 1.111 + distance = 0.5f - alpha; 1.112 + } else { 1.113 + // this is easier if we treat the direction as being in the first octant 1.114 + // (other octants are symmetrical) 1.115 + dx = SkScalarAbs(dx); 1.116 + dy = SkScalarAbs(dy); 1.117 + if (dx < dy) { 1.118 + SkTSwap(dx, dy); 1.119 + } 1.120 + 1.121 + // a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge 1.122 + // to avoid the divide, we just consider the numerator 1.123 + float a1num = 0.5f*dy; 1.124 + 1.125 + // we now compute the approximate distance, depending where the alpha falls 1.126 + // relative to the edge fractional area 1.127 + 1.128 + // if 0 <= alpha < a1 1.129 + if (alpha*dx < a1num) { 1.130 + // TODO: find a way to do this without square roots? 1.131 + distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha); 1.132 + // if a1 <= alpha <= 1 - a1 1.133 + } else if (alpha*dx < (dx - a1num)) { 1.134 + distance = (0.5f - alpha)*dx; 1.135 + // if 1 - a1 < alpha <= 1 1.136 + } else { 1.137 + // TODO: find a way to do this without square roots? 1.138 + distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha)); 1.139 + } 1.140 + } 1.141 + 1.142 + return distance; 1.143 +} 1.144 + 1.145 +static void init_distances(DFData* data, unsigned char* edges, int width, int height) { 1.146 + // skip one pixel border 1.147 + DFData* currData = data; 1.148 + DFData* prevData = data - width; 1.149 + DFData* nextData = data + width; 1.150 + 1.151 + for (int j = 0; j < height; ++j) { 1.152 + for (int i = 0; i < width; ++i) { 1.153 + if (*edges) { 1.154 + // we should not be in the one-pixel outside band 1.155 + SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1); 1.156 + // gradient will point from low to high 1.157 + // +y is down in this case 1.158 + // i.e., if you're outside, gradient points towards edge 1.159 + // if you're inside, gradient points away from edge 1.160 + SkPoint currGrad; 1.161 + currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha 1.162 + + SK_ScalarSqrt2*(currData+1)->fAlpha 1.163 + - SK_ScalarSqrt2*(currData-1)->fAlpha 1.164 + + (nextData+1)->fAlpha - (nextData-1)->fAlpha; 1.165 + currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha 1.166 + + SK_ScalarSqrt2*nextData->fAlpha 1.167 + - SK_ScalarSqrt2*prevData->fAlpha 1.168 + + (nextData+1)->fAlpha - (prevData+1)->fAlpha; 1.169 + currGrad.setLengthFast(1.0f); 1.170 + 1.171 + // init squared distance to edge and distance vector 1.172 + float dist = edge_distance(currGrad, currData->fAlpha); 1.173 + currGrad.scale(dist, &currData->fDistVector); 1.174 + currData->fDistSq = dist*dist; 1.175 + } else { 1.176 + // init distance to "far away" 1.177 + currData->fDistSq = 2000000.f; 1.178 + currData->fDistVector.fX = 1000.f; 1.179 + currData->fDistVector.fY = 1000.f; 1.180 + } 1.181 + ++currData; 1.182 + ++prevData; 1.183 + ++nextData; 1.184 + ++edges; 1.185 + } 1.186 + } 1.187 +} 1.188 + 1.189 +// Danielsson's 8SSEDT 1.190 + 1.191 +// first stage forward pass 1.192 +// (forward in Y, forward in X) 1.193 +static void F1(DFData* curr, int width) { 1.194 + // upper left 1.195 + DFData* check = curr - width-1; 1.196 + SkPoint distVec = check->fDistVector; 1.197 + float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f); 1.198 + if (distSq < curr->fDistSq) { 1.199 + distVec.fX -= 1.0f; 1.200 + distVec.fY -= 1.0f; 1.201 + curr->fDistSq = distSq; 1.202 + curr->fDistVector = distVec; 1.203 + } 1.204 + 1.205 + // up 1.206 + check = curr - width; 1.207 + distVec = check->fDistVector; 1.208 + distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f; 1.209 + if (distSq < curr->fDistSq) { 1.210 + distVec.fY -= 1.0f; 1.211 + curr->fDistSq = distSq; 1.212 + curr->fDistVector = distVec; 1.213 + } 1.214 + 1.215 + // upper right 1.216 + check = curr - width+1; 1.217 + distVec = check->fDistVector; 1.218 + distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f); 1.219 + if (distSq < curr->fDistSq) { 1.220 + distVec.fX += 1.0f; 1.221 + distVec.fY -= 1.0f; 1.222 + curr->fDistSq = distSq; 1.223 + curr->fDistVector = distVec; 1.224 + } 1.225 + 1.226 + // left 1.227 + check = curr - 1; 1.228 + distVec = check->fDistVector; 1.229 + distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; 1.230 + if (distSq < curr->fDistSq) { 1.231 + distVec.fX -= 1.0f; 1.232 + curr->fDistSq = distSq; 1.233 + curr->fDistVector = distVec; 1.234 + } 1.235 +} 1.236 + 1.237 +// second stage forward pass 1.238 +// (forward in Y, backward in X) 1.239 +static void F2(DFData* curr, int width) { 1.240 + // right 1.241 + DFData* check = curr + 1; 1.242 + float distSq = check->fDistSq; 1.243 + SkPoint distVec = check->fDistVector; 1.244 + distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; 1.245 + if (distSq < curr->fDistSq) { 1.246 + distVec.fX += 1.0f; 1.247 + curr->fDistSq = distSq; 1.248 + curr->fDistVector = distVec; 1.249 + } 1.250 +} 1.251 + 1.252 +// first stage backward pass 1.253 +// (backward in Y, forward in X) 1.254 +static void B1(DFData* curr, int width) { 1.255 + // left 1.256 + DFData* check = curr - 1; 1.257 + SkPoint distVec = check->fDistVector; 1.258 + float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; 1.259 + if (distSq < curr->fDistSq) { 1.260 + distVec.fX -= 1.0f; 1.261 + curr->fDistSq = distSq; 1.262 + curr->fDistVector = distVec; 1.263 + } 1.264 +} 1.265 + 1.266 +// second stage backward pass 1.267 +// (backward in Y, backwards in X) 1.268 +static void B2(DFData* curr, int width) { 1.269 + // right 1.270 + DFData* check = curr + 1; 1.271 + SkPoint distVec = check->fDistVector; 1.272 + float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; 1.273 + if (distSq < curr->fDistSq) { 1.274 + distVec.fX += 1.0f; 1.275 + curr->fDistSq = distSq; 1.276 + curr->fDistVector = distVec; 1.277 + } 1.278 + 1.279 + // bottom left 1.280 + check = curr + width-1; 1.281 + distVec = check->fDistVector; 1.282 + distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f); 1.283 + if (distSq < curr->fDistSq) { 1.284 + distVec.fX -= 1.0f; 1.285 + distVec.fY += 1.0f; 1.286 + curr->fDistSq = distSq; 1.287 + curr->fDistVector = distVec; 1.288 + } 1.289 + 1.290 + // bottom 1.291 + check = curr + width; 1.292 + distVec = check->fDistVector; 1.293 + distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f; 1.294 + if (distSq < curr->fDistSq) { 1.295 + distVec.fY += 1.0f; 1.296 + curr->fDistSq = distSq; 1.297 + curr->fDistVector = distVec; 1.298 + } 1.299 + 1.300 + // bottom right 1.301 + check = curr + width+1; 1.302 + distVec = check->fDistVector; 1.303 + distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f); 1.304 + if (distSq < curr->fDistSq) { 1.305 + distVec.fX += 1.0f; 1.306 + distVec.fY += 1.0f; 1.307 + curr->fDistSq = distSq; 1.308 + curr->fDistVector = distVec; 1.309 + } 1.310 +} 1.311 + 1.312 +// enable this to output edge data rather than the distance field 1.313 +#define DUMP_EDGE 0 1.314 + 1.315 +#if !DUMP_EDGE 1.316 +static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) { 1.317 + if (dist <= -distanceMagnitude) { 1.318 + return 255; 1.319 + } else if (dist > distanceMagnitude) { 1.320 + return 0; 1.321 + } else { 1.322 + return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude); 1.323 + } 1.324 +} 1.325 +#endif 1.326 + 1.327 +// assumes an 8-bit image and distance field 1.328 +bool SkGenerateDistanceFieldFromImage(unsigned char* distanceField, 1.329 + const unsigned char* image, 1.330 + int width, int height, 1.331 + int distanceMagnitude) { 1.332 + SkASSERT(NULL != distanceField); 1.333 + SkASSERT(NULL != image); 1.334 + 1.335 + // the final distance field will have additional texels on each side to handle 1.336 + // the maximum distance 1.337 + // we expand our temp data by one more on each side to simplify 1.338 + // the scanning code -- will always be treated as infinitely far away 1.339 + int pad = distanceMagnitude+1; 1.340 + 1.341 + // set params for distance field data 1.342 + int dataWidth = width + 2*pad; 1.343 + int dataHeight = height + 2*pad; 1.344 + 1.345 + // create temp data 1.346 + size_t dataSize = dataWidth*dataHeight*sizeof(DFData); 1.347 + SkAutoSMalloc<1024> dfStorage(dataSize); 1.348 + DFData* dataPtr = (DFData*) dfStorage.get(); 1.349 + sk_bzero(dataPtr, dataSize); 1.350 + 1.351 + SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char)); 1.352 + unsigned char* edgePtr = (unsigned char*) edgeStorage.get(); 1.353 + sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char)); 1.354 + 1.355 + // copy glyph into distance field storage 1.356 + init_glyph_data(dataPtr, edgePtr, image, 1.357 + dataWidth, dataHeight, 1.358 + width, height, pad); 1.359 + 1.360 + // create initial distance data, particularly at edges 1.361 + init_distances(dataPtr, edgePtr, dataWidth, dataHeight); 1.362 + 1.363 + // now perform Euclidean distance transform to propagate distances 1.364 + 1.365 + // forwards in y 1.366 + DFData* currData = dataPtr+dataWidth+1; // skip outer buffer 1.367 + unsigned char* currEdge = edgePtr+dataWidth+1; 1.368 + for (int j = 1; j < dataHeight-1; ++j) { 1.369 + // forwards in x 1.370 + for (int i = 1; i < dataWidth-1; ++i) { 1.371 + // don't need to calculate distance for edge pixels 1.372 + if (!*currEdge) { 1.373 + F1(currData, dataWidth); 1.374 + } 1.375 + ++currData; 1.376 + ++currEdge; 1.377 + } 1.378 + 1.379 + // backwards in x 1.380 + --currData; // reset to end 1.381 + --currEdge; 1.382 + for (int i = 1; i < dataWidth-1; ++i) { 1.383 + // don't need to calculate distance for edge pixels 1.384 + if (!*currEdge) { 1.385 + F2(currData, dataWidth); 1.386 + } 1.387 + --currData; 1.388 + --currEdge; 1.389 + } 1.390 + 1.391 + currData += dataWidth+1; 1.392 + currEdge += dataWidth+1; 1.393 + } 1.394 + 1.395 + // backwards in y 1.396 + currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer 1.397 + currEdge = edgePtr+dataWidth*(dataHeight-2) - 1; 1.398 + for (int j = 1; j < dataHeight-1; ++j) { 1.399 + // forwards in x 1.400 + for (int i = 1; i < dataWidth-1; ++i) { 1.401 + // don't need to calculate distance for edge pixels 1.402 + if (!*currEdge) { 1.403 + B1(currData, dataWidth); 1.404 + } 1.405 + ++currData; 1.406 + ++currEdge; 1.407 + } 1.408 + 1.409 + // backwards in x 1.410 + --currData; // reset to end 1.411 + --currEdge; 1.412 + for (int i = 1; i < dataWidth-1; ++i) { 1.413 + // don't need to calculate distance for edge pixels 1.414 + if (!*currEdge) { 1.415 + B2(currData, dataWidth); 1.416 + } 1.417 + --currData; 1.418 + --currEdge; 1.419 + } 1.420 + 1.421 + currData -= dataWidth-1; 1.422 + currEdge -= dataWidth-1; 1.423 + } 1.424 + 1.425 + // copy results to final distance field data 1.426 + currData = dataPtr + dataWidth+1; 1.427 + currEdge = edgePtr + dataWidth+1; 1.428 + unsigned char *dfPtr = distanceField; 1.429 + for (int j = 1; j < dataHeight-1; ++j) { 1.430 + for (int i = 1; i < dataWidth-1; ++i) { 1.431 +#if DUMP_EDGE 1.432 + unsigned char val = sk_float_round2int(255*currData->fAlpha); 1.433 + if (*currEdge) { 1.434 + val = 128; 1.435 + } 1.436 + *dfPtr++ = val; 1.437 +#else 1.438 + float dist; 1.439 + if (currData->fAlpha > 0.5f) { 1.440 + dist = -SkScalarSqrt(currData->fDistSq); 1.441 + } else { 1.442 + dist = SkScalarSqrt(currData->fDistSq); 1.443 + } 1.444 + *dfPtr++ = pack_distance_field_val(dist, (float)distanceMagnitude); 1.445 +#endif 1.446 + ++currData; 1.447 + ++currEdge; 1.448 + } 1.449 + currData += 2; 1.450 + currEdge += 2; 1.451 + } 1.452 + 1.453 + return true; 1.454 +}