gfx/skia/trunk/src/core/SkEdge.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/core/SkEdge.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,467 @@
     1.4 +
     1.5 +/*
     1.6 + * Copyright 2006 The Android Open Source Project
     1.7 + *
     1.8 + * Use of this source code is governed by a BSD-style license that can be
     1.9 + * found in the LICENSE file.
    1.10 + */
    1.11 +
    1.12 +
    1.13 +#include "SkEdge.h"
    1.14 +#include "SkFDot6.h"
    1.15 +#include "SkMath.h"
    1.16 +
    1.17 +/*
    1.18 +    In setLine, setQuadratic, setCubic, the first thing we do is to convert
    1.19 +    the points into FDot6. This is modulated by the shift parameter, which
    1.20 +    will either be 0, or something like 2 for antialiasing.
    1.21 +
    1.22 +    In the float case, we want to turn the float into .6 by saying pt * 64,
    1.23 +    or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
    1.24 +
    1.25 +    In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
    1.26 +    or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
    1.27 +*/
    1.28 +
    1.29 +static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
    1.30 +    // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
    1.31 +    // away data in value, so just perform a modify up-shift
    1.32 +    return value << (16 - 6 - 1);
    1.33 +}
    1.34 +
    1.35 +/////////////////////////////////////////////////////////////////////////
    1.36 +
    1.37 +int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
    1.38 +                    int shift) {
    1.39 +    SkFDot6 x0, y0, x1, y1;
    1.40 +
    1.41 +    {
    1.42 +        float scale = float(1 << (shift + 6));
    1.43 +        x0 = int(p0.fX * scale);
    1.44 +        y0 = int(p0.fY * scale);
    1.45 +        x1 = int(p1.fX * scale);
    1.46 +        y1 = int(p1.fY * scale);
    1.47 +    }
    1.48 +
    1.49 +    int winding = 1;
    1.50 +
    1.51 +    if (y0 > y1) {
    1.52 +        SkTSwap(x0, x1);
    1.53 +        SkTSwap(y0, y1);
    1.54 +        winding = -1;
    1.55 +    }
    1.56 +
    1.57 +    int top = SkFDot6Round(y0);
    1.58 +    int bot = SkFDot6Round(y1);
    1.59 +
    1.60 +    // are we a zero-height line?
    1.61 +    if (top == bot) {
    1.62 +        return 0;
    1.63 +    }
    1.64 +    // are we completely above or below the clip?
    1.65 +    if (NULL != clip && (top >= clip->fBottom || bot <= clip->fTop)) {
    1.66 +        return 0;
    1.67 +    }
    1.68 +
    1.69 +    SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    1.70 +    const int dy  = SkEdge_Compute_DY(top, y0);
    1.71 +
    1.72 +    fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    1.73 +    fDX         = slope;
    1.74 +    fFirstY     = top;
    1.75 +    fLastY      = bot - 1;
    1.76 +    fCurveCount = 0;
    1.77 +    fWinding    = SkToS8(winding);
    1.78 +    fCurveShift = 0;
    1.79 +
    1.80 +    if (clip) {
    1.81 +        this->chopLineWithClip(*clip);
    1.82 +    }
    1.83 +    return 1;
    1.84 +}
    1.85 +
    1.86 +// called from a curve subclass
    1.87 +int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
    1.88 +{
    1.89 +    SkASSERT(fWinding == 1 || fWinding == -1);
    1.90 +    SkASSERT(fCurveCount != 0);
    1.91 +//    SkASSERT(fCurveShift != 0);
    1.92 +
    1.93 +    y0 >>= 10;
    1.94 +    y1 >>= 10;
    1.95 +
    1.96 +    SkASSERT(y0 <= y1);
    1.97 +
    1.98 +    int top = SkFDot6Round(y0);
    1.99 +    int bot = SkFDot6Round(y1);
   1.100 +
   1.101 +//  SkASSERT(top >= fFirstY);
   1.102 +
   1.103 +    // are we a zero-height line?
   1.104 +    if (top == bot)
   1.105 +        return 0;
   1.106 +
   1.107 +    x0 >>= 10;
   1.108 +    x1 >>= 10;
   1.109 +
   1.110 +    SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
   1.111 +    const int dy  = SkEdge_Compute_DY(top, y0);
   1.112 +
   1.113 +    fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
   1.114 +    fDX         = slope;
   1.115 +    fFirstY     = top;
   1.116 +    fLastY      = bot - 1;
   1.117 +
   1.118 +    return 1;
   1.119 +}
   1.120 +
   1.121 +void SkEdge::chopLineWithClip(const SkIRect& clip)
   1.122 +{
   1.123 +    int top = fFirstY;
   1.124 +
   1.125 +    SkASSERT(top < clip.fBottom);
   1.126 +
   1.127 +    // clip the line to the top
   1.128 +    if (top < clip.fTop)
   1.129 +    {
   1.130 +        SkASSERT(fLastY >= clip.fTop);
   1.131 +        fX += fDX * (clip.fTop - top);
   1.132 +        fFirstY = clip.fTop;
   1.133 +    }
   1.134 +}
   1.135 +
   1.136 +///////////////////////////////////////////////////////////////////////////////
   1.137 +
   1.138 +/*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
   1.139 +    Note that this limits the number of lines we use to approximate a curve.
   1.140 +    If we need to increase this, we need to store fCurveCount in something
   1.141 +    larger than int8_t.
   1.142 +*/
   1.143 +#define MAX_COEFF_SHIFT     6
   1.144 +
   1.145 +static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
   1.146 +{
   1.147 +    dx = SkAbs32(dx);
   1.148 +    dy = SkAbs32(dy);
   1.149 +    // return max + min/2
   1.150 +    if (dx > dy)
   1.151 +        dx += dy >> 1;
   1.152 +    else
   1.153 +        dx = dy + (dx >> 1);
   1.154 +    return dx;
   1.155 +}
   1.156 +
   1.157 +static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
   1.158 +{
   1.159 +    // cheap calc of distance from center of p0-p2 to the center of the curve
   1.160 +    SkFDot6 dist = cheap_distance(dx, dy);
   1.161 +
   1.162 +    // shift down dist (it is currently in dot6)
   1.163 +    // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
   1.164 +    // this is chosen by heuristic: make it as big as possible (to minimize segments)
   1.165 +    // ... but small enough so that our curves still look smooth
   1.166 +    dist = (dist + (1 << 4)) >> 5;
   1.167 +
   1.168 +    // each subdivision (shift value) cuts this dist (error) by 1/4
   1.169 +    return (32 - SkCLZ(dist)) >> 1;
   1.170 +}
   1.171 +
   1.172 +int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
   1.173 +{
   1.174 +    SkFDot6 x0, y0, x1, y1, x2, y2;
   1.175 +
   1.176 +    {
   1.177 +        float scale = float(1 << (shift + 6));
   1.178 +        x0 = int(pts[0].fX * scale);
   1.179 +        y0 = int(pts[0].fY * scale);
   1.180 +        x1 = int(pts[1].fX * scale);
   1.181 +        y1 = int(pts[1].fY * scale);
   1.182 +        x2 = int(pts[2].fX * scale);
   1.183 +        y2 = int(pts[2].fY * scale);
   1.184 +    }
   1.185 +
   1.186 +    int winding = 1;
   1.187 +    if (y0 > y2)
   1.188 +    {
   1.189 +        SkTSwap(x0, x2);
   1.190 +        SkTSwap(y0, y2);
   1.191 +        winding = -1;
   1.192 +    }
   1.193 +    SkASSERT(y0 <= y1 && y1 <= y2);
   1.194 +
   1.195 +    int top = SkFDot6Round(y0);
   1.196 +    int bot = SkFDot6Round(y2);
   1.197 +
   1.198 +    // are we a zero-height quad (line)?
   1.199 +    if (top == bot)
   1.200 +        return 0;
   1.201 +
   1.202 +    // compute number of steps needed (1 << shift)
   1.203 +    {
   1.204 +        SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
   1.205 +        SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
   1.206 +        shift = diff_to_shift(dx, dy);
   1.207 +        SkASSERT(shift >= 0);
   1.208 +    }
   1.209 +    // need at least 1 subdivision for our bias trick
   1.210 +    if (shift == 0) {
   1.211 +        shift = 1;
   1.212 +    } else if (shift > MAX_COEFF_SHIFT) {
   1.213 +        shift = MAX_COEFF_SHIFT;
   1.214 +    }
   1.215 +
   1.216 +    fWinding    = SkToS8(winding);
   1.217 +    //fCubicDShift only set for cubics
   1.218 +    fCurveCount = SkToS8(1 << shift);
   1.219 +
   1.220 +    /*
   1.221 +     *  We want to reformulate into polynomial form, to make it clear how we
   1.222 +     *  should forward-difference.
   1.223 +     *
   1.224 +     *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
   1.225 +     *
   1.226 +     *  A = p0 - 2p1 + p2
   1.227 +     *  B = 2(p1 - p0)
   1.228 +     *  C = p0
   1.229 +     *
   1.230 +     *  Our caller must have constrained our inputs (p0..p2) to all fit into
   1.231 +     *  16.16. However, as seen above, we sometimes compute values that can be
   1.232 +     *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
   1.233 +     *  A and B at 1/2 of their actual value, and just apply a 2x scale during
   1.234 +     *  application in updateQuadratic(). Hence we store (shift - 1) in
   1.235 +     *  fCurveShift.
   1.236 +     */
   1.237 +
   1.238 +    fCurveShift = SkToU8(shift - 1);
   1.239 +
   1.240 +    SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
   1.241 +    SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
   1.242 +
   1.243 +    fQx     = SkFDot6ToFixed(x0);
   1.244 +    fQDx    = B + (A >> shift);     // biased by shift
   1.245 +    fQDDx   = A >> (shift - 1);     // biased by shift
   1.246 +
   1.247 +    A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
   1.248 +    B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
   1.249 +
   1.250 +    fQy     = SkFDot6ToFixed(y0);
   1.251 +    fQDy    = B + (A >> shift);     // biased by shift
   1.252 +    fQDDy   = A >> (shift - 1);     // biased by shift
   1.253 +
   1.254 +    fQLastX = SkFDot6ToFixed(x2);
   1.255 +    fQLastY = SkFDot6ToFixed(y2);
   1.256 +
   1.257 +    return this->updateQuadratic();
   1.258 +}
   1.259 +
   1.260 +int SkQuadraticEdge::updateQuadratic()
   1.261 +{
   1.262 +    int     success;
   1.263 +    int     count = fCurveCount;
   1.264 +    SkFixed oldx = fQx;
   1.265 +    SkFixed oldy = fQy;
   1.266 +    SkFixed dx = fQDx;
   1.267 +    SkFixed dy = fQDy;
   1.268 +    SkFixed newx, newy;
   1.269 +    int     shift = fCurveShift;
   1.270 +
   1.271 +    SkASSERT(count > 0);
   1.272 +
   1.273 +    do {
   1.274 +        if (--count > 0)
   1.275 +        {
   1.276 +            newx    = oldx + (dx >> shift);
   1.277 +            dx    += fQDDx;
   1.278 +            newy    = oldy + (dy >> shift);
   1.279 +            dy    += fQDDy;
   1.280 +        }
   1.281 +        else    // last segment
   1.282 +        {
   1.283 +            newx    = fQLastX;
   1.284 +            newy    = fQLastY;
   1.285 +        }
   1.286 +        success = this->updateLine(oldx, oldy, newx, newy);
   1.287 +        oldx = newx;
   1.288 +        oldy = newy;
   1.289 +    } while (count > 0 && !success);
   1.290 +
   1.291 +    fQx         = newx;
   1.292 +    fQy         = newy;
   1.293 +    fQDx        = dx;
   1.294 +    fQDy        = dy;
   1.295 +    fCurveCount = SkToS8(count);
   1.296 +    return success;
   1.297 +}
   1.298 +
   1.299 +/////////////////////////////////////////////////////////////////////////
   1.300 +
   1.301 +static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
   1.302 +    SkASSERT((x << upShift >> upShift) == x);
   1.303 +    return x << upShift;
   1.304 +}
   1.305 +
   1.306 +/*  f(1/3) = (8a + 12b + 6c + d) / 27
   1.307 +    f(2/3) = (a + 6b + 12c + 8d) / 27
   1.308 +
   1.309 +    f(1/3)-b = (8a - 15b + 6c + d) / 27
   1.310 +    f(2/3)-c = (a + 6b - 15c + 8d) / 27
   1.311 +
   1.312 +    use 16/512 to approximate 1/27
   1.313 +*/
   1.314 +static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
   1.315 +{
   1.316 +    SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
   1.317 +    SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
   1.318 +
   1.319 +    return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
   1.320 +}
   1.321 +
   1.322 +int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
   1.323 +{
   1.324 +    SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
   1.325 +
   1.326 +    {
   1.327 +        float scale = float(1 << (shift + 6));
   1.328 +        x0 = int(pts[0].fX * scale);
   1.329 +        y0 = int(pts[0].fY * scale);
   1.330 +        x1 = int(pts[1].fX * scale);
   1.331 +        y1 = int(pts[1].fY * scale);
   1.332 +        x2 = int(pts[2].fX * scale);
   1.333 +        y2 = int(pts[2].fY * scale);
   1.334 +        x3 = int(pts[3].fX * scale);
   1.335 +        y3 = int(pts[3].fY * scale);
   1.336 +    }
   1.337 +
   1.338 +    int winding = 1;
   1.339 +    if (y0 > y3)
   1.340 +    {
   1.341 +        SkTSwap(x0, x3);
   1.342 +        SkTSwap(x1, x2);
   1.343 +        SkTSwap(y0, y3);
   1.344 +        SkTSwap(y1, y2);
   1.345 +        winding = -1;
   1.346 +    }
   1.347 +
   1.348 +    int top = SkFDot6Round(y0);
   1.349 +    int bot = SkFDot6Round(y3);
   1.350 +
   1.351 +    // are we a zero-height cubic (line)?
   1.352 +    if (top == bot)
   1.353 +        return 0;
   1.354 +
   1.355 +    // are we completely above or below the clip?
   1.356 +    if (clip && (top >= clip->fBottom || bot <= clip->fTop))
   1.357 +        return 0;
   1.358 +
   1.359 +    // compute number of steps needed (1 << shift)
   1.360 +    {
   1.361 +        // Can't use (center of curve - center of baseline), since center-of-curve
   1.362 +        // need not be the max delta from the baseline (it could even be coincident)
   1.363 +        // so we try just looking at the two off-curve points
   1.364 +        SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
   1.365 +        SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
   1.366 +        // add 1 (by observation)
   1.367 +        shift = diff_to_shift(dx, dy) + 1;
   1.368 +    }
   1.369 +    // need at least 1 subdivision for our bias trick
   1.370 +    SkASSERT(shift > 0);
   1.371 +    if (shift > MAX_COEFF_SHIFT) {
   1.372 +        shift = MAX_COEFF_SHIFT;
   1.373 +    }
   1.374 +
   1.375 +    /*  Since our in coming data is initially shifted down by 10 (or 8 in
   1.376 +        antialias). That means the most we can shift up is 8. However, we
   1.377 +        compute coefficients with a 3*, so the safest upshift is really 6
   1.378 +    */
   1.379 +    int upShift = 6;    // largest safe value
   1.380 +    int downShift = shift + upShift - 10;
   1.381 +    if (downShift < 0) {
   1.382 +        downShift = 0;
   1.383 +        upShift = 10 - shift;
   1.384 +    }
   1.385 +
   1.386 +    fWinding    = SkToS8(winding);
   1.387 +    fCurveCount = SkToS8(-1 << shift);
   1.388 +    fCurveShift = SkToU8(shift);
   1.389 +    fCubicDShift = SkToU8(downShift);
   1.390 +
   1.391 +    SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
   1.392 +    SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
   1.393 +    SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
   1.394 +
   1.395 +    fCx     = SkFDot6ToFixed(x0);
   1.396 +    fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
   1.397 +    fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
   1.398 +    fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
   1.399 +
   1.400 +    B = SkFDot6UpShift(3 * (y1 - y0), upShift);
   1.401 +    C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
   1.402 +    D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
   1.403 +
   1.404 +    fCy     = SkFDot6ToFixed(y0);
   1.405 +    fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
   1.406 +    fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
   1.407 +    fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
   1.408 +
   1.409 +    fCLastX = SkFDot6ToFixed(x3);
   1.410 +    fCLastY = SkFDot6ToFixed(y3);
   1.411 +
   1.412 +    if (clip)
   1.413 +    {
   1.414 +        do {
   1.415 +            if (!this->updateCubic()) {
   1.416 +                return 0;
   1.417 +            }
   1.418 +        } while (!this->intersectsClip(*clip));
   1.419 +        this->chopLineWithClip(*clip);
   1.420 +        return 1;
   1.421 +    }
   1.422 +    return this->updateCubic();
   1.423 +}
   1.424 +
   1.425 +int SkCubicEdge::updateCubic()
   1.426 +{
   1.427 +    int     success;
   1.428 +    int     count = fCurveCount;
   1.429 +    SkFixed oldx = fCx;
   1.430 +    SkFixed oldy = fCy;
   1.431 +    SkFixed newx, newy;
   1.432 +    const int ddshift = fCurveShift;
   1.433 +    const int dshift = fCubicDShift;
   1.434 +
   1.435 +    SkASSERT(count < 0);
   1.436 +
   1.437 +    do {
   1.438 +        if (++count < 0)
   1.439 +        {
   1.440 +            newx    = oldx + (fCDx >> dshift);
   1.441 +            fCDx    += fCDDx >> ddshift;
   1.442 +            fCDDx   += fCDDDx;
   1.443 +
   1.444 +            newy    = oldy + (fCDy >> dshift);
   1.445 +            fCDy    += fCDDy >> ddshift;
   1.446 +            fCDDy   += fCDDDy;
   1.447 +        }
   1.448 +        else    // last segment
   1.449 +        {
   1.450 +        //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
   1.451 +            newx    = fCLastX;
   1.452 +            newy    = fCLastY;
   1.453 +        }
   1.454 +
   1.455 +        // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
   1.456 +        // doesn't always achieve that, so we have to explicitly pin it here.
   1.457 +        if (newy < oldy) {
   1.458 +            newy = oldy;
   1.459 +        }
   1.460 +
   1.461 +        success = this->updateLine(oldx, oldy, newx, newy);
   1.462 +        oldx = newx;
   1.463 +        oldy = newy;
   1.464 +    } while (count < 0 && !success);
   1.465 +
   1.466 +    fCx         = newx;
   1.467 +    fCy         = newy;
   1.468 +    fCurveCount = SkToS8(count);
   1.469 +    return success;
   1.470 +}

mercurial