gfx/skia/trunk/src/core/SkEdgeClipper.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/core/SkEdgeClipper.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,531 @@
     1.4 +
     1.5 +/*
     1.6 + * Copyright 2009 The Android Open Source Project
     1.7 + *
     1.8 + * Use of this source code is governed by a BSD-style license that can be
     1.9 + * found in the LICENSE file.
    1.10 + */
    1.11 +
    1.12 +
    1.13 +#include "SkEdgeClipper.h"
    1.14 +#include "SkGeometry.h"
    1.15 +
    1.16 +static bool quick_reject(const SkRect& bounds, const SkRect& clip) {
    1.17 +    return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop;
    1.18 +}
    1.19 +
    1.20 +static inline void clamp_le(SkScalar& value, SkScalar max) {
    1.21 +    if (value > max) {
    1.22 +        value = max;
    1.23 +    }
    1.24 +}
    1.25 +
    1.26 +static inline void clamp_ge(SkScalar& value, SkScalar min) {
    1.27 +    if (value < min) {
    1.28 +        value = min;
    1.29 +    }
    1.30 +}
    1.31 +
    1.32 +/*  src[] must be monotonic in Y. This routine copies src into dst, and sorts
    1.33 + it to be increasing in Y. If it had to reverse the order of the points,
    1.34 + it returns true, otherwise it returns false
    1.35 + */
    1.36 +static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) {
    1.37 +    // we need the data to be monotonically increasing in Y
    1.38 +    if (src[0].fY > src[count - 1].fY) {
    1.39 +        for (int i = 0; i < count; i++) {
    1.40 +            dst[i] = src[count - i - 1];
    1.41 +        }
    1.42 +        return true;
    1.43 +    } else {
    1.44 +        memcpy(dst, src, count * sizeof(SkPoint));
    1.45 +        return false;
    1.46 +    }
    1.47 +}
    1.48 +
    1.49 +///////////////////////////////////////////////////////////////////////////////
    1.50 +
    1.51 +static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2,
    1.52 +                           SkScalar target, SkScalar* t) {
    1.53 +    /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2
    1.54 +     *  We solve for t, using quadratic equation, hence we have to rearrange
    1.55 +     * our cooefficents to look like At^2 + Bt + C
    1.56 +     */
    1.57 +    SkScalar A = c0 - c1 - c1 + c2;
    1.58 +    SkScalar B = 2*(c1 - c0);
    1.59 +    SkScalar C = c0 - target;
    1.60 +
    1.61 +    SkScalar roots[2];  // we only expect one, but make room for 2 for safety
    1.62 +    int count = SkFindUnitQuadRoots(A, B, C, roots);
    1.63 +    if (count) {
    1.64 +        *t = roots[0];
    1.65 +        return true;
    1.66 +    }
    1.67 +    return false;
    1.68 +}
    1.69 +
    1.70 +static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) {
    1.71 +    return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t);
    1.72 +}
    1.73 +
    1.74 +static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) {
    1.75 +    return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t);
    1.76 +}
    1.77 +
    1.78 +// Modify pts[] in place so that it is clipped in Y to the clip rect
    1.79 +static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) {
    1.80 +    SkScalar t;
    1.81 +    SkPoint tmp[5]; // for SkChopQuadAt
    1.82 +
    1.83 +    // are we partially above
    1.84 +    if (pts[0].fY < clip.fTop) {
    1.85 +        if (chopMonoQuadAtY(pts, clip.fTop, &t)) {
    1.86 +            // take the 2nd chopped quad
    1.87 +            SkChopQuadAt(pts, tmp, t);
    1.88 +            // clamp to clean up imprecise numerics in the chop
    1.89 +            tmp[2].fY = clip.fTop;
    1.90 +            clamp_ge(tmp[3].fY, clip.fTop);
    1.91 +
    1.92 +            pts[0] = tmp[2];
    1.93 +            pts[1] = tmp[3];
    1.94 +        } else {
    1.95 +            // if chopMonoQuadAtY failed, then we may have hit inexact numerics
    1.96 +            // so we just clamp against the top
    1.97 +            for (int i = 0; i < 3; i++) {
    1.98 +                if (pts[i].fY < clip.fTop) {
    1.99 +                    pts[i].fY = clip.fTop;
   1.100 +                }
   1.101 +            }
   1.102 +        }
   1.103 +    }
   1.104 +
   1.105 +    // are we partially below
   1.106 +    if (pts[2].fY > clip.fBottom) {
   1.107 +        if (chopMonoQuadAtY(pts, clip.fBottom, &t)) {
   1.108 +            SkChopQuadAt(pts, tmp, t);
   1.109 +            // clamp to clean up imprecise numerics in the chop
   1.110 +            clamp_le(tmp[1].fY, clip.fBottom);
   1.111 +            tmp[2].fY = clip.fBottom;
   1.112 +
   1.113 +            pts[1] = tmp[1];
   1.114 +            pts[2] = tmp[2];
   1.115 +        } else {
   1.116 +            // if chopMonoQuadAtY failed, then we may have hit inexact numerics
   1.117 +            // so we just clamp against the bottom
   1.118 +            for (int i = 0; i < 3; i++) {
   1.119 +                if (pts[i].fY > clip.fBottom) {
   1.120 +                    pts[i].fY = clip.fBottom;
   1.121 +                }
   1.122 +            }
   1.123 +        }
   1.124 +    }
   1.125 +}
   1.126 +
   1.127 +// srcPts[] must be monotonic in X and Y
   1.128 +void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) {
   1.129 +    SkPoint pts[3];
   1.130 +    bool reverse = sort_increasing_Y(pts, srcPts, 3);
   1.131 +
   1.132 +    // are we completely above or below
   1.133 +    if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) {
   1.134 +        return;
   1.135 +    }
   1.136 +
   1.137 +    // Now chop so that pts is contained within clip in Y
   1.138 +    chop_quad_in_Y(pts, clip);
   1.139 +
   1.140 +    if (pts[0].fX > pts[2].fX) {
   1.141 +        SkTSwap<SkPoint>(pts[0], pts[2]);
   1.142 +        reverse = !reverse;
   1.143 +    }
   1.144 +    SkASSERT(pts[0].fX <= pts[1].fX);
   1.145 +    SkASSERT(pts[1].fX <= pts[2].fX);
   1.146 +
   1.147 +    // Now chop in X has needed, and record the segments
   1.148 +
   1.149 +    if (pts[2].fX <= clip.fLeft) {  // wholly to the left
   1.150 +        this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse);
   1.151 +        return;
   1.152 +    }
   1.153 +    if (pts[0].fX >= clip.fRight) {  // wholly to the right
   1.154 +        this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse);
   1.155 +        return;
   1.156 +    }
   1.157 +
   1.158 +    SkScalar t;
   1.159 +    SkPoint tmp[5]; // for SkChopQuadAt
   1.160 +
   1.161 +    // are we partially to the left
   1.162 +    if (pts[0].fX < clip.fLeft) {
   1.163 +        if (chopMonoQuadAtX(pts, clip.fLeft, &t)) {
   1.164 +            SkChopQuadAt(pts, tmp, t);
   1.165 +            this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse);
   1.166 +            // clamp to clean up imprecise numerics in the chop
   1.167 +            tmp[2].fX = clip.fLeft;
   1.168 +            clamp_ge(tmp[3].fX, clip.fLeft);
   1.169 +
   1.170 +            pts[0] = tmp[2];
   1.171 +            pts[1] = tmp[3];
   1.172 +        } else {
   1.173 +            // if chopMonoQuadAtY failed, then we may have hit inexact numerics
   1.174 +            // so we just clamp against the left
   1.175 +            this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse);
   1.176 +            return;
   1.177 +        }
   1.178 +    }
   1.179 +
   1.180 +    // are we partially to the right
   1.181 +    if (pts[2].fX > clip.fRight) {
   1.182 +        if (chopMonoQuadAtX(pts, clip.fRight, &t)) {
   1.183 +            SkChopQuadAt(pts, tmp, t);
   1.184 +            // clamp to clean up imprecise numerics in the chop
   1.185 +            clamp_le(tmp[1].fX, clip.fRight);
   1.186 +            tmp[2].fX = clip.fRight;
   1.187 +
   1.188 +            this->appendQuad(tmp, reverse);
   1.189 +            this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse);
   1.190 +        } else {
   1.191 +            // if chopMonoQuadAtY failed, then we may have hit inexact numerics
   1.192 +            // so we just clamp against the right
   1.193 +            this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse);
   1.194 +        }
   1.195 +    } else {    // wholly inside the clip
   1.196 +        this->appendQuad(pts, reverse);
   1.197 +    }
   1.198 +}
   1.199 +
   1.200 +bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) {
   1.201 +    fCurrPoint = fPoints;
   1.202 +    fCurrVerb = fVerbs;
   1.203 +
   1.204 +    SkRect  bounds;
   1.205 +    bounds.set(srcPts, 3);
   1.206 +
   1.207 +    if (!quick_reject(bounds, clip)) {
   1.208 +        SkPoint monoY[5];
   1.209 +        int countY = SkChopQuadAtYExtrema(srcPts, monoY);
   1.210 +        for (int y = 0; y <= countY; y++) {
   1.211 +            SkPoint monoX[5];
   1.212 +            int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX);
   1.213 +            for (int x = 0; x <= countX; x++) {
   1.214 +                this->clipMonoQuad(&monoX[x * 2], clip);
   1.215 +                SkASSERT(fCurrVerb - fVerbs < kMaxVerbs);
   1.216 +                SkASSERT(fCurrPoint - fPoints <= kMaxPoints);
   1.217 +            }
   1.218 +        }
   1.219 +    }
   1.220 +
   1.221 +    *fCurrVerb = SkPath::kDone_Verb;
   1.222 +    fCurrPoint = fPoints;
   1.223 +    fCurrVerb = fVerbs;
   1.224 +    return SkPath::kDone_Verb != fVerbs[0];
   1.225 +}
   1.226 +
   1.227 +///////////////////////////////////////////////////////////////////////////////
   1.228 +
   1.229 +static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
   1.230 +                                 SkScalar D, SkScalar t) {
   1.231 +    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
   1.232 +}
   1.233 +
   1.234 +/*  Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
   1.235 +    t value such that cubic(t) = target
   1.236 + */
   1.237 +static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
   1.238 +                           SkScalar target, SkScalar* t) {
   1.239 + //   SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
   1.240 +    SkASSERT(c0 < target && target < c3);
   1.241 +
   1.242 +    SkScalar D = c0 - target;
   1.243 +    SkScalar A = c3 + 3*(c1 - c2) - c0;
   1.244 +    SkScalar B = 3*(c2 - c1 - c1 + c0);
   1.245 +    SkScalar C = 3*(c1 - c0);
   1.246 +
   1.247 +    const SkScalar TOLERANCE = SK_Scalar1 / 4096;
   1.248 +    SkScalar minT = 0;
   1.249 +    SkScalar maxT = SK_Scalar1;
   1.250 +    SkScalar mid;
   1.251 +
   1.252 +    // This is a lot of iterations. Is there a faster way?
   1.253 +    for (int i = 0; i < 24; i++) {
   1.254 +        mid = SkScalarAve(minT, maxT);
   1.255 +        SkScalar delta = eval_cubic_coeff(A, B, C, D, mid);
   1.256 +        if (delta < 0) {
   1.257 +            minT = mid;
   1.258 +            delta = -delta;
   1.259 +        } else {
   1.260 +            maxT = mid;
   1.261 +        }
   1.262 +        if (delta < TOLERANCE) {
   1.263 +            break;
   1.264 +        }
   1.265 +    }
   1.266 +    *t = mid;
   1.267 +//    SkDebugf("-- evalCubicAt %d delta %g\n", i, eval_cubic_coeff(A, B, C, D, *t));
   1.268 +    return true;
   1.269 +}
   1.270 +
   1.271 +static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
   1.272 +    return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t);
   1.273 +}
   1.274 +
   1.275 +static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) {
   1.276 +    return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t);
   1.277 +}
   1.278 +
   1.279 +// Modify pts[] in place so that it is clipped in Y to the clip rect
   1.280 +static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) {
   1.281 +
   1.282 +    // are we partially above
   1.283 +    if (pts[0].fY < clip.fTop) {
   1.284 +        SkScalar t;
   1.285 +        if (chopMonoCubicAtY(pts, clip.fTop, &t)) {
   1.286 +            SkPoint tmp[7];
   1.287 +            SkChopCubicAt(pts, tmp, t);
   1.288 +
   1.289 +            // tmp[3, 4, 5].fY should all be to the below clip.fTop.
   1.290 +            // Since we can't trust the numerics of
   1.291 +            // the chopper, we force those conditions now
   1.292 +            tmp[3].fY = clip.fTop;
   1.293 +            clamp_ge(tmp[4].fY, clip.fTop);
   1.294 +            clamp_ge(tmp[5].fY, clip.fTop);
   1.295 +
   1.296 +            pts[0] = tmp[3];
   1.297 +            pts[1] = tmp[4];
   1.298 +            pts[2] = tmp[5];
   1.299 +        } else {
   1.300 +            // if chopMonoCubicAtY failed, then we may have hit inexact numerics
   1.301 +            // so we just clamp against the top
   1.302 +            for (int i = 0; i < 4; i++) {
   1.303 +                clamp_ge(pts[i].fY, clip.fTop);
   1.304 +            }
   1.305 +        }
   1.306 +    }
   1.307 +
   1.308 +    // are we partially below
   1.309 +    if (pts[3].fY > clip.fBottom) {
   1.310 +        SkScalar t;
   1.311 +        if (chopMonoCubicAtY(pts, clip.fBottom, &t)) {
   1.312 +            SkPoint tmp[7];
   1.313 +            SkChopCubicAt(pts, tmp, t);
   1.314 +            tmp[3].fY = clip.fBottom;
   1.315 +            clamp_le(tmp[2].fY, clip.fBottom);
   1.316 +
   1.317 +            pts[1] = tmp[1];
   1.318 +            pts[2] = tmp[2];
   1.319 +            pts[3] = tmp[3];
   1.320 +        } else {
   1.321 +            // if chopMonoCubicAtY failed, then we may have hit inexact numerics
   1.322 +            // so we just clamp against the bottom
   1.323 +            for (int i = 0; i < 4; i++) {
   1.324 +                clamp_le(pts[i].fY, clip.fBottom);
   1.325 +            }
   1.326 +        }
   1.327 +    }
   1.328 +}
   1.329 +
   1.330 +// srcPts[] must be monotonic in X and Y
   1.331 +void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) {
   1.332 +    SkPoint pts[4];
   1.333 +    bool reverse = sort_increasing_Y(pts, src, 4);
   1.334 +
   1.335 +    // are we completely above or below
   1.336 +    if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) {
   1.337 +        return;
   1.338 +    }
   1.339 +
   1.340 +    // Now chop so that pts is contained within clip in Y
   1.341 +    chop_cubic_in_Y(pts, clip);
   1.342 +
   1.343 +    if (pts[0].fX > pts[3].fX) {
   1.344 +        SkTSwap<SkPoint>(pts[0], pts[3]);
   1.345 +        SkTSwap<SkPoint>(pts[1], pts[2]);
   1.346 +        reverse = !reverse;
   1.347 +    }
   1.348 +
   1.349 +    // Now chop in X has needed, and record the segments
   1.350 +
   1.351 +    if (pts[3].fX <= clip.fLeft) {  // wholly to the left
   1.352 +        this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse);
   1.353 +        return;
   1.354 +    }
   1.355 +    if (pts[0].fX >= clip.fRight) {  // wholly to the right
   1.356 +        this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
   1.357 +        return;
   1.358 +    }
   1.359 +
   1.360 +    // are we partially to the left
   1.361 +    if (pts[0].fX < clip.fLeft) {
   1.362 +        SkScalar t;
   1.363 +        if (chopMonoCubicAtX(pts, clip.fLeft, &t)) {
   1.364 +            SkPoint tmp[7];
   1.365 +            SkChopCubicAt(pts, tmp, t);
   1.366 +            this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse);
   1.367 +
   1.368 +            // tmp[3, 4, 5].fX should all be to the right of clip.fLeft.
   1.369 +            // Since we can't trust the numerics of
   1.370 +            // the chopper, we force those conditions now
   1.371 +            tmp[3].fX = clip.fLeft;
   1.372 +            clamp_ge(tmp[4].fX, clip.fLeft);
   1.373 +            clamp_ge(tmp[5].fX, clip.fLeft);
   1.374 +
   1.375 +            pts[0] = tmp[3];
   1.376 +            pts[1] = tmp[4];
   1.377 +            pts[2] = tmp[5];
   1.378 +        } else {
   1.379 +            // if chopMonocubicAtY failed, then we may have hit inexact numerics
   1.380 +            // so we just clamp against the left
   1.381 +            this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse);
   1.382 +            return;
   1.383 +        }
   1.384 +    }
   1.385 +
   1.386 +    // are we partially to the right
   1.387 +    if (pts[3].fX > clip.fRight) {
   1.388 +        SkScalar t;
   1.389 +        if (chopMonoCubicAtX(pts, clip.fRight, &t)) {
   1.390 +            SkPoint tmp[7];
   1.391 +            SkChopCubicAt(pts, tmp, t);
   1.392 +            tmp[3].fX = clip.fRight;
   1.393 +            clamp_le(tmp[2].fX, clip.fRight);
   1.394 +            clamp_le(tmp[1].fX, clip.fRight);
   1.395 +
   1.396 +            this->appendCubic(tmp, reverse);
   1.397 +            this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse);
   1.398 +        } else {
   1.399 +            // if chopMonoCubicAtX failed, then we may have hit inexact numerics
   1.400 +            // so we just clamp against the right
   1.401 +            this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
   1.402 +        }
   1.403 +    } else {    // wholly inside the clip
   1.404 +        this->appendCubic(pts, reverse);
   1.405 +    }
   1.406 +}
   1.407 +
   1.408 +bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) {
   1.409 +    fCurrPoint = fPoints;
   1.410 +    fCurrVerb = fVerbs;
   1.411 +
   1.412 +    SkRect  bounds;
   1.413 +    bounds.set(srcPts, 4);
   1.414 +
   1.415 +    if (!quick_reject(bounds, clip)) {
   1.416 +        SkPoint monoY[10];
   1.417 +        int countY = SkChopCubicAtYExtrema(srcPts, monoY);
   1.418 +        for (int y = 0; y <= countY; y++) {
   1.419 +            SkPoint monoX[10];
   1.420 +            int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX);
   1.421 +            for (int x = 0; x <= countX; x++) {
   1.422 +                this->clipMonoCubic(&monoX[x * 3], clip);
   1.423 +                SkASSERT(fCurrVerb - fVerbs < kMaxVerbs);
   1.424 +                SkASSERT(fCurrPoint - fPoints <= kMaxPoints);
   1.425 +            }
   1.426 +        }
   1.427 +    }
   1.428 +
   1.429 +    *fCurrVerb = SkPath::kDone_Verb;
   1.430 +    fCurrPoint = fPoints;
   1.431 +    fCurrVerb = fVerbs;
   1.432 +    return SkPath::kDone_Verb != fVerbs[0];
   1.433 +}
   1.434 +
   1.435 +///////////////////////////////////////////////////////////////////////////////
   1.436 +
   1.437 +void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1,
   1.438 +                                bool reverse) {
   1.439 +    *fCurrVerb++ = SkPath::kLine_Verb;
   1.440 +
   1.441 +    if (reverse) {
   1.442 +        SkTSwap<SkScalar>(y0, y1);
   1.443 +    }
   1.444 +    fCurrPoint[0].set(x, y0);
   1.445 +    fCurrPoint[1].set(x, y1);
   1.446 +    fCurrPoint += 2;
   1.447 +}
   1.448 +
   1.449 +void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) {
   1.450 +    *fCurrVerb++ = SkPath::kQuad_Verb;
   1.451 +
   1.452 +    if (reverse) {
   1.453 +        fCurrPoint[0] = pts[2];
   1.454 +        fCurrPoint[2] = pts[0];
   1.455 +    } else {
   1.456 +        fCurrPoint[0] = pts[0];
   1.457 +        fCurrPoint[2] = pts[2];
   1.458 +    }
   1.459 +    fCurrPoint[1] = pts[1];
   1.460 +    fCurrPoint += 3;
   1.461 +}
   1.462 +
   1.463 +void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) {
   1.464 +    *fCurrVerb++ = SkPath::kCubic_Verb;
   1.465 +
   1.466 +    if (reverse) {
   1.467 +        for (int i = 0; i < 4; i++) {
   1.468 +            fCurrPoint[i] = pts[3 - i];
   1.469 +        }
   1.470 +    } else {
   1.471 +        memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint));
   1.472 +    }
   1.473 +    fCurrPoint += 4;
   1.474 +}
   1.475 +
   1.476 +SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) {
   1.477 +    SkPath::Verb verb = *fCurrVerb;
   1.478 +
   1.479 +    switch (verb) {
   1.480 +        case SkPath::kLine_Verb:
   1.481 +            memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint));
   1.482 +            fCurrPoint += 2;
   1.483 +            fCurrVerb += 1;
   1.484 +            break;
   1.485 +        case SkPath::kQuad_Verb:
   1.486 +            memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint));
   1.487 +            fCurrPoint += 3;
   1.488 +            fCurrVerb += 1;
   1.489 +            break;
   1.490 +        case SkPath::kCubic_Verb:
   1.491 +            memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint));
   1.492 +            fCurrPoint += 4;
   1.493 +            fCurrVerb += 1;
   1.494 +            break;
   1.495 +        case SkPath::kDone_Verb:
   1.496 +            break;
   1.497 +        default:
   1.498 +            SkDEBUGFAIL("unexpected verb in quadclippper2 iter");
   1.499 +            break;
   1.500 +    }
   1.501 +    return verb;
   1.502 +}
   1.503 +
   1.504 +///////////////////////////////////////////////////////////////////////////////
   1.505 +
   1.506 +#ifdef SK_DEBUG
   1.507 +static void assert_monotonic(const SkScalar coord[], int count) {
   1.508 +    if (coord[0] > coord[(count - 1) * 2]) {
   1.509 +        for (int i = 1; i < count; i++) {
   1.510 +            SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]);
   1.511 +        }
   1.512 +    } else if (coord[0] < coord[(count - 1) * 2]) {
   1.513 +        for (int i = 1; i < count; i++) {
   1.514 +            SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]);
   1.515 +        }
   1.516 +    } else {
   1.517 +        for (int i = 1; i < count; i++) {
   1.518 +            SkASSERT(coord[2 * (i - 1)] == coord[i * 2]);
   1.519 +        }
   1.520 +    }
   1.521 +}
   1.522 +
   1.523 +void sk_assert_monotonic_y(const SkPoint pts[], int count) {
   1.524 +    if (count > 1) {
   1.525 +        assert_monotonic(&pts[0].fY, count);
   1.526 +    }
   1.527 +}
   1.528 +
   1.529 +void sk_assert_monotonic_x(const SkPoint pts[], int count) {
   1.530 +    if (count > 1) {
   1.531 +        assert_monotonic(&pts[0].fX, count);
   1.532 +    }
   1.533 +}
   1.534 +#endif

mercurial