1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/core/SkGeometry.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,1468 @@ 1.4 +/* 1.5 + * Copyright 2006 The Android Open Source Project 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#include "SkGeometry.h" 1.12 +#include "SkMatrix.h" 1.13 + 1.14 +bool SkXRayCrossesLine(const SkXRay& pt, 1.15 + const SkPoint pts[2], 1.16 + bool* ambiguous) { 1.17 + if (ambiguous) { 1.18 + *ambiguous = false; 1.19 + } 1.20 + // Determine quick discards. 1.21 + // Consider query line going exactly through point 0 to not 1.22 + // intersect, for symmetry with SkXRayCrossesMonotonicCubic. 1.23 + if (pt.fY == pts[0].fY) { 1.24 + if (ambiguous) { 1.25 + *ambiguous = true; 1.26 + } 1.27 + return false; 1.28 + } 1.29 + if (pt.fY < pts[0].fY && pt.fY < pts[1].fY) 1.30 + return false; 1.31 + if (pt.fY > pts[0].fY && pt.fY > pts[1].fY) 1.32 + return false; 1.33 + if (pt.fX > pts[0].fX && pt.fX > pts[1].fX) 1.34 + return false; 1.35 + // Determine degenerate cases 1.36 + if (SkScalarNearlyZero(pts[0].fY - pts[1].fY)) 1.37 + return false; 1.38 + if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) { 1.39 + // We've already determined the query point lies within the 1.40 + // vertical range of the line segment. 1.41 + if (pt.fX <= pts[0].fX) { 1.42 + if (ambiguous) { 1.43 + *ambiguous = (pt.fY == pts[1].fY); 1.44 + } 1.45 + return true; 1.46 + } 1.47 + return false; 1.48 + } 1.49 + // Ambiguity check 1.50 + if (pt.fY == pts[1].fY) { 1.51 + if (pt.fX <= pts[1].fX) { 1.52 + if (ambiguous) { 1.53 + *ambiguous = true; 1.54 + } 1.55 + return true; 1.56 + } 1.57 + return false; 1.58 + } 1.59 + // Full line segment evaluation 1.60 + SkScalar delta_y = pts[1].fY - pts[0].fY; 1.61 + SkScalar delta_x = pts[1].fX - pts[0].fX; 1.62 + SkScalar slope = SkScalarDiv(delta_y, delta_x); 1.63 + SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX); 1.64 + // Solve for x coordinate at y = pt.fY 1.65 + SkScalar x = SkScalarDiv(pt.fY - b, slope); 1.66 + return pt.fX <= x; 1.67 +} 1.68 + 1.69 +/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes 1.70 + involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul. 1.71 + May also introduce overflow of fixed when we compute our setup. 1.72 +*/ 1.73 +// #define DIRECT_EVAL_OF_POLYNOMIALS 1.74 + 1.75 +//////////////////////////////////////////////////////////////////////// 1.76 + 1.77 +static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) { 1.78 + SkScalar ab = a - b; 1.79 + SkScalar bc = b - c; 1.80 + if (ab < 0) { 1.81 + bc = -bc; 1.82 + } 1.83 + return ab == 0 || bc < 0; 1.84 +} 1.85 + 1.86 +//////////////////////////////////////////////////////////////////////// 1.87 + 1.88 +static bool is_unit_interval(SkScalar x) { 1.89 + return x > 0 && x < SK_Scalar1; 1.90 +} 1.91 + 1.92 +static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) { 1.93 + SkASSERT(ratio); 1.94 + 1.95 + if (numer < 0) { 1.96 + numer = -numer; 1.97 + denom = -denom; 1.98 + } 1.99 + 1.100 + if (denom == 0 || numer == 0 || numer >= denom) { 1.101 + return 0; 1.102 + } 1.103 + 1.104 + SkScalar r = SkScalarDiv(numer, denom); 1.105 + if (SkScalarIsNaN(r)) { 1.106 + return 0; 1.107 + } 1.108 + SkASSERT(r >= 0 && r < SK_Scalar1); 1.109 + if (r == 0) { // catch underflow if numer <<<< denom 1.110 + return 0; 1.111 + } 1.112 + *ratio = r; 1.113 + return 1; 1.114 +} 1.115 + 1.116 +/** From Numerical Recipes in C. 1.117 + 1.118 + Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) 1.119 + x1 = Q / A 1.120 + x2 = C / Q 1.121 +*/ 1.122 +int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { 1.123 + SkASSERT(roots); 1.124 + 1.125 + if (A == 0) { 1.126 + return valid_unit_divide(-C, B, roots); 1.127 + } 1.128 + 1.129 + SkScalar* r = roots; 1.130 + 1.131 + SkScalar R = B*B - 4*A*C; 1.132 + if (R < 0 || SkScalarIsNaN(R)) { // complex roots 1.133 + return 0; 1.134 + } 1.135 + R = SkScalarSqrt(R); 1.136 + 1.137 + SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; 1.138 + r += valid_unit_divide(Q, A, r); 1.139 + r += valid_unit_divide(C, Q, r); 1.140 + if (r - roots == 2) { 1.141 + if (roots[0] > roots[1]) 1.142 + SkTSwap<SkScalar>(roots[0], roots[1]); 1.143 + else if (roots[0] == roots[1]) // nearly-equal? 1.144 + r -= 1; // skip the double root 1.145 + } 1.146 + return (int)(r - roots); 1.147 +} 1.148 + 1.149 +/////////////////////////////////////////////////////////////////////////////// 1.150 +/////////////////////////////////////////////////////////////////////////////// 1.151 + 1.152 +static SkScalar eval_quad(const SkScalar src[], SkScalar t) { 1.153 + SkASSERT(src); 1.154 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.155 + 1.156 +#ifdef DIRECT_EVAL_OF_POLYNOMIALS 1.157 + SkScalar C = src[0]; 1.158 + SkScalar A = src[4] - 2 * src[2] + C; 1.159 + SkScalar B = 2 * (src[2] - C); 1.160 + return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); 1.161 +#else 1.162 + SkScalar ab = SkScalarInterp(src[0], src[2], t); 1.163 + SkScalar bc = SkScalarInterp(src[2], src[4], t); 1.164 + return SkScalarInterp(ab, bc, t); 1.165 +#endif 1.166 +} 1.167 + 1.168 +static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) { 1.169 + SkScalar A = src[4] - 2 * src[2] + src[0]; 1.170 + SkScalar B = src[2] - src[0]; 1.171 + 1.172 + return 2 * SkScalarMulAdd(A, t, B); 1.173 +} 1.174 + 1.175 +static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) { 1.176 + SkScalar A = src[4] - 2 * src[2] + src[0]; 1.177 + SkScalar B = src[2] - src[0]; 1.178 + return A + 2 * B; 1.179 +} 1.180 + 1.181 +void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, 1.182 + SkVector* tangent) { 1.183 + SkASSERT(src); 1.184 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.185 + 1.186 + if (pt) { 1.187 + pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); 1.188 + } 1.189 + if (tangent) { 1.190 + tangent->set(eval_quad_derivative(&src[0].fX, t), 1.191 + eval_quad_derivative(&src[0].fY, t)); 1.192 + } 1.193 +} 1.194 + 1.195 +void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) { 1.196 + SkASSERT(src); 1.197 + 1.198 + if (pt) { 1.199 + SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); 1.200 + SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); 1.201 + SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); 1.202 + SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); 1.203 + pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); 1.204 + } 1.205 + if (tangent) { 1.206 + tangent->set(eval_quad_derivative_at_half(&src[0].fX), 1.207 + eval_quad_derivative_at_half(&src[0].fY)); 1.208 + } 1.209 +} 1.210 + 1.211 +static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) { 1.212 + SkScalar ab = SkScalarInterp(src[0], src[2], t); 1.213 + SkScalar bc = SkScalarInterp(src[2], src[4], t); 1.214 + 1.215 + dst[0] = src[0]; 1.216 + dst[2] = ab; 1.217 + dst[4] = SkScalarInterp(ab, bc, t); 1.218 + dst[6] = bc; 1.219 + dst[8] = src[4]; 1.220 +} 1.221 + 1.222 +void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) { 1.223 + SkASSERT(t > 0 && t < SK_Scalar1); 1.224 + 1.225 + interp_quad_coords(&src[0].fX, &dst[0].fX, t); 1.226 + interp_quad_coords(&src[0].fY, &dst[0].fY, t); 1.227 +} 1.228 + 1.229 +void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) { 1.230 + SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); 1.231 + SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); 1.232 + SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); 1.233 + SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); 1.234 + 1.235 + dst[0] = src[0]; 1.236 + dst[1].set(x01, y01); 1.237 + dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); 1.238 + dst[3].set(x12, y12); 1.239 + dst[4] = src[2]; 1.240 +} 1.241 + 1.242 +/** Quad'(t) = At + B, where 1.243 + A = 2(a - 2b + c) 1.244 + B = 2(b - a) 1.245 + Solve for t, only if it fits between 0 < t < 1 1.246 +*/ 1.247 +int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) { 1.248 + /* At + B == 0 1.249 + t = -B / A 1.250 + */ 1.251 + return valid_unit_divide(a - b, a - b - b + c, tValue); 1.252 +} 1.253 + 1.254 +static inline void flatten_double_quad_extrema(SkScalar coords[14]) { 1.255 + coords[2] = coords[6] = coords[4]; 1.256 +} 1.257 + 1.258 +/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is 1.259 + stored in dst[]. Guarantees that the 1/2 quads will be monotonic. 1.260 + */ 1.261 +int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) { 1.262 + SkASSERT(src); 1.263 + SkASSERT(dst); 1.264 + 1.265 + SkScalar a = src[0].fY; 1.266 + SkScalar b = src[1].fY; 1.267 + SkScalar c = src[2].fY; 1.268 + 1.269 + if (is_not_monotonic(a, b, c)) { 1.270 + SkScalar tValue; 1.271 + if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { 1.272 + SkChopQuadAt(src, dst, tValue); 1.273 + flatten_double_quad_extrema(&dst[0].fY); 1.274 + return 1; 1.275 + } 1.276 + // if we get here, we need to force dst to be monotonic, even though 1.277 + // we couldn't compute a unit_divide value (probably underflow). 1.278 + b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; 1.279 + } 1.280 + dst[0].set(src[0].fX, a); 1.281 + dst[1].set(src[1].fX, b); 1.282 + dst[2].set(src[2].fX, c); 1.283 + return 0; 1.284 +} 1.285 + 1.286 +/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is 1.287 + stored in dst[]. Guarantees that the 1/2 quads will be monotonic. 1.288 + */ 1.289 +int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) { 1.290 + SkASSERT(src); 1.291 + SkASSERT(dst); 1.292 + 1.293 + SkScalar a = src[0].fX; 1.294 + SkScalar b = src[1].fX; 1.295 + SkScalar c = src[2].fX; 1.296 + 1.297 + if (is_not_monotonic(a, b, c)) { 1.298 + SkScalar tValue; 1.299 + if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { 1.300 + SkChopQuadAt(src, dst, tValue); 1.301 + flatten_double_quad_extrema(&dst[0].fX); 1.302 + return 1; 1.303 + } 1.304 + // if we get here, we need to force dst to be monotonic, even though 1.305 + // we couldn't compute a unit_divide value (probably underflow). 1.306 + b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; 1.307 + } 1.308 + dst[0].set(a, src[0].fY); 1.309 + dst[1].set(b, src[1].fY); 1.310 + dst[2].set(c, src[2].fY); 1.311 + return 0; 1.312 +} 1.313 + 1.314 +// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 1.315 +// F'(t) = 2 (b - a) + 2 (a - 2b + c) t 1.316 +// F''(t) = 2 (a - 2b + c) 1.317 +// 1.318 +// A = 2 (b - a) 1.319 +// B = 2 (a - 2b + c) 1.320 +// 1.321 +// Maximum curvature for a quadratic means solving 1.322 +// Fx' Fx'' + Fy' Fy'' = 0 1.323 +// 1.324 +// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) 1.325 +// 1.326 +SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) { 1.327 + SkScalar Ax = src[1].fX - src[0].fX; 1.328 + SkScalar Ay = src[1].fY - src[0].fY; 1.329 + SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; 1.330 + SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; 1.331 + SkScalar t = 0; // 0 means don't chop 1.332 + 1.333 + (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); 1.334 + return t; 1.335 +} 1.336 + 1.337 +int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) { 1.338 + SkScalar t = SkFindQuadMaxCurvature(src); 1.339 + if (t == 0) { 1.340 + memcpy(dst, src, 3 * sizeof(SkPoint)); 1.341 + return 1; 1.342 + } else { 1.343 + SkChopQuadAt(src, dst, t); 1.344 + return 2; 1.345 + } 1.346 +} 1.347 + 1.348 +#define SK_ScalarTwoThirds (0.666666666f) 1.349 + 1.350 +void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) { 1.351 + const SkScalar scale = SK_ScalarTwoThirds; 1.352 + dst[0] = src[0]; 1.353 + dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale), 1.354 + src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale)); 1.355 + dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale), 1.356 + src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale)); 1.357 + dst[3] = src[2]; 1.358 +} 1.359 + 1.360 +////////////////////////////////////////////////////////////////////////////// 1.361 +///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// 1.362 +////////////////////////////////////////////////////////////////////////////// 1.363 + 1.364 +static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) { 1.365 + coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0]; 1.366 + coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]); 1.367 + coeff[2] = 3*(pt[2] - pt[0]); 1.368 + coeff[3] = pt[0]; 1.369 +} 1.370 + 1.371 +void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) { 1.372 + SkASSERT(pts); 1.373 + 1.374 + if (cx) { 1.375 + get_cubic_coeff(&pts[0].fX, cx); 1.376 + } 1.377 + if (cy) { 1.378 + get_cubic_coeff(&pts[0].fY, cy); 1.379 + } 1.380 +} 1.381 + 1.382 +static SkScalar eval_cubic(const SkScalar src[], SkScalar t) { 1.383 + SkASSERT(src); 1.384 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.385 + 1.386 + if (t == 0) { 1.387 + return src[0]; 1.388 + } 1.389 + 1.390 +#ifdef DIRECT_EVAL_OF_POLYNOMIALS 1.391 + SkScalar D = src[0]; 1.392 + SkScalar A = src[6] + 3*(src[2] - src[4]) - D; 1.393 + SkScalar B = 3*(src[4] - src[2] - src[2] + D); 1.394 + SkScalar C = 3*(src[2] - D); 1.395 + 1.396 + return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); 1.397 +#else 1.398 + SkScalar ab = SkScalarInterp(src[0], src[2], t); 1.399 + SkScalar bc = SkScalarInterp(src[2], src[4], t); 1.400 + SkScalar cd = SkScalarInterp(src[4], src[6], t); 1.401 + SkScalar abc = SkScalarInterp(ab, bc, t); 1.402 + SkScalar bcd = SkScalarInterp(bc, cd, t); 1.403 + return SkScalarInterp(abc, bcd, t); 1.404 +#endif 1.405 +} 1.406 + 1.407 +/** return At^2 + Bt + C 1.408 +*/ 1.409 +static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) { 1.410 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.411 + 1.412 + return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); 1.413 +} 1.414 + 1.415 +static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) { 1.416 + SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; 1.417 + SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); 1.418 + SkScalar C = src[2] - src[0]; 1.419 + 1.420 + return eval_quadratic(A, B, C, t); 1.421 +} 1.422 + 1.423 +static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) { 1.424 + SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; 1.425 + SkScalar B = src[4] - 2 * src[2] + src[0]; 1.426 + 1.427 + return SkScalarMulAdd(A, t, B); 1.428 +} 1.429 + 1.430 +void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, 1.431 + SkVector* tangent, SkVector* curvature) { 1.432 + SkASSERT(src); 1.433 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.434 + 1.435 + if (loc) { 1.436 + loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); 1.437 + } 1.438 + if (tangent) { 1.439 + tangent->set(eval_cubic_derivative(&src[0].fX, t), 1.440 + eval_cubic_derivative(&src[0].fY, t)); 1.441 + } 1.442 + if (curvature) { 1.443 + curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), 1.444 + eval_cubic_2ndDerivative(&src[0].fY, t)); 1.445 + } 1.446 +} 1.447 + 1.448 +/** Cubic'(t) = At^2 + Bt + C, where 1.449 + A = 3(-a + 3(b - c) + d) 1.450 + B = 6(a - 2b + c) 1.451 + C = 3(b - a) 1.452 + Solve for t, keeping only those that fit betwee 0 < t < 1 1.453 +*/ 1.454 +int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, 1.455 + SkScalar tValues[2]) { 1.456 + // we divide A,B,C by 3 to simplify 1.457 + SkScalar A = d - a + 3*(b - c); 1.458 + SkScalar B = 2*(a - b - b + c); 1.459 + SkScalar C = b - a; 1.460 + 1.461 + return SkFindUnitQuadRoots(A, B, C, tValues); 1.462 +} 1.463 + 1.464 +static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, 1.465 + SkScalar t) { 1.466 + SkScalar ab = SkScalarInterp(src[0], src[2], t); 1.467 + SkScalar bc = SkScalarInterp(src[2], src[4], t); 1.468 + SkScalar cd = SkScalarInterp(src[4], src[6], t); 1.469 + SkScalar abc = SkScalarInterp(ab, bc, t); 1.470 + SkScalar bcd = SkScalarInterp(bc, cd, t); 1.471 + SkScalar abcd = SkScalarInterp(abc, bcd, t); 1.472 + 1.473 + dst[0] = src[0]; 1.474 + dst[2] = ab; 1.475 + dst[4] = abc; 1.476 + dst[6] = abcd; 1.477 + dst[8] = bcd; 1.478 + dst[10] = cd; 1.479 + dst[12] = src[6]; 1.480 +} 1.481 + 1.482 +void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) { 1.483 + SkASSERT(t > 0 && t < SK_Scalar1); 1.484 + 1.485 + interp_cubic_coords(&src[0].fX, &dst[0].fX, t); 1.486 + interp_cubic_coords(&src[0].fY, &dst[0].fY, t); 1.487 +} 1.488 + 1.489 +/* http://code.google.com/p/skia/issues/detail?id=32 1.490 + 1.491 + This test code would fail when we didn't check the return result of 1.492 + valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is 1.493 + that after the first chop, the parameters to valid_unit_divide are equal 1.494 + (thanks to finite float precision and rounding in the subtracts). Thus 1.495 + even though the 2nd tValue looks < 1.0, after we renormalize it, we end 1.496 + up with 1.0, hence the need to check and just return the last cubic as 1.497 + a degenerate clump of 4 points in the sampe place. 1.498 + 1.499 + static void test_cubic() { 1.500 + SkPoint src[4] = { 1.501 + { 556.25000, 523.03003 }, 1.502 + { 556.23999, 522.96002 }, 1.503 + { 556.21997, 522.89001 }, 1.504 + { 556.21997, 522.82001 } 1.505 + }; 1.506 + SkPoint dst[10]; 1.507 + SkScalar tval[] = { 0.33333334f, 0.99999994f }; 1.508 + SkChopCubicAt(src, dst, tval, 2); 1.509 + } 1.510 + */ 1.511 + 1.512 +void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], 1.513 + const SkScalar tValues[], int roots) { 1.514 +#ifdef SK_DEBUG 1.515 + { 1.516 + for (int i = 0; i < roots - 1; i++) 1.517 + { 1.518 + SkASSERT(is_unit_interval(tValues[i])); 1.519 + SkASSERT(is_unit_interval(tValues[i+1])); 1.520 + SkASSERT(tValues[i] < tValues[i+1]); 1.521 + } 1.522 + } 1.523 +#endif 1.524 + 1.525 + if (dst) { 1.526 + if (roots == 0) { // nothing to chop 1.527 + memcpy(dst, src, 4*sizeof(SkPoint)); 1.528 + } else { 1.529 + SkScalar t = tValues[0]; 1.530 + SkPoint tmp[4]; 1.531 + 1.532 + for (int i = 0; i < roots; i++) { 1.533 + SkChopCubicAt(src, dst, t); 1.534 + if (i == roots - 1) { 1.535 + break; 1.536 + } 1.537 + 1.538 + dst += 3; 1.539 + // have src point to the remaining cubic (after the chop) 1.540 + memcpy(tmp, dst, 4 * sizeof(SkPoint)); 1.541 + src = tmp; 1.542 + 1.543 + // watch out in case the renormalized t isn't in range 1.544 + if (!valid_unit_divide(tValues[i+1] - tValues[i], 1.545 + SK_Scalar1 - tValues[i], &t)) { 1.546 + // if we can't, just create a degenerate cubic 1.547 + dst[4] = dst[5] = dst[6] = src[3]; 1.548 + break; 1.549 + } 1.550 + } 1.551 + } 1.552 + } 1.553 +} 1.554 + 1.555 +void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) { 1.556 + SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); 1.557 + SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); 1.558 + SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); 1.559 + SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); 1.560 + SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX); 1.561 + SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY); 1.562 + 1.563 + SkScalar x012 = SkScalarAve(x01, x12); 1.564 + SkScalar y012 = SkScalarAve(y01, y12); 1.565 + SkScalar x123 = SkScalarAve(x12, x23); 1.566 + SkScalar y123 = SkScalarAve(y12, y23); 1.567 + 1.568 + dst[0] = src[0]; 1.569 + dst[1].set(x01, y01); 1.570 + dst[2].set(x012, y012); 1.571 + dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123)); 1.572 + dst[4].set(x123, y123); 1.573 + dst[5].set(x23, y23); 1.574 + dst[6] = src[3]; 1.575 +} 1.576 + 1.577 +static void flatten_double_cubic_extrema(SkScalar coords[14]) { 1.578 + coords[4] = coords[8] = coords[6]; 1.579 +} 1.580 + 1.581 +/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that 1.582 + the resulting beziers are monotonic in Y. This is called by the scan 1.583 + converter. Depending on what is returned, dst[] is treated as follows: 1.584 + 0 dst[0..3] is the original cubic 1.585 + 1 dst[0..3] and dst[3..6] are the two new cubics 1.586 + 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics 1.587 + If dst == null, it is ignored and only the count is returned. 1.588 +*/ 1.589 +int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) { 1.590 + SkScalar tValues[2]; 1.591 + int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, 1.592 + src[3].fY, tValues); 1.593 + 1.594 + SkChopCubicAt(src, dst, tValues, roots); 1.595 + if (dst && roots > 0) { 1.596 + // we do some cleanup to ensure our Y extrema are flat 1.597 + flatten_double_cubic_extrema(&dst[0].fY); 1.598 + if (roots == 2) { 1.599 + flatten_double_cubic_extrema(&dst[3].fY); 1.600 + } 1.601 + } 1.602 + return roots; 1.603 +} 1.604 + 1.605 +int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) { 1.606 + SkScalar tValues[2]; 1.607 + int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX, 1.608 + src[3].fX, tValues); 1.609 + 1.610 + SkChopCubicAt(src, dst, tValues, roots); 1.611 + if (dst && roots > 0) { 1.612 + // we do some cleanup to ensure our Y extrema are flat 1.613 + flatten_double_cubic_extrema(&dst[0].fX); 1.614 + if (roots == 2) { 1.615 + flatten_double_cubic_extrema(&dst[3].fX); 1.616 + } 1.617 + } 1.618 + return roots; 1.619 +} 1.620 + 1.621 +/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html 1.622 + 1.623 + Inflection means that curvature is zero. 1.624 + Curvature is [F' x F''] / [F'^3] 1.625 + So we solve F'x X F''y - F'y X F''y == 0 1.626 + After some canceling of the cubic term, we get 1.627 + A = b - a 1.628 + B = c - 2b + a 1.629 + C = d - 3c + 3b - a 1.630 + (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 1.631 +*/ 1.632 +int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) { 1.633 + SkScalar Ax = src[1].fX - src[0].fX; 1.634 + SkScalar Ay = src[1].fY - src[0].fY; 1.635 + SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; 1.636 + SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY; 1.637 + SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; 1.638 + SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; 1.639 + 1.640 + return SkFindUnitQuadRoots(Bx*Cy - By*Cx, 1.641 + Ax*Cy - Ay*Cx, 1.642 + Ax*By - Ay*Bx, 1.643 + tValues); 1.644 +} 1.645 + 1.646 +int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) { 1.647 + SkScalar tValues[2]; 1.648 + int count = SkFindCubicInflections(src, tValues); 1.649 + 1.650 + if (dst) { 1.651 + if (count == 0) { 1.652 + memcpy(dst, src, 4 * sizeof(SkPoint)); 1.653 + } else { 1.654 + SkChopCubicAt(src, dst, tValues, count); 1.655 + } 1.656 + } 1.657 + return count + 1; 1.658 +} 1.659 + 1.660 +template <typename T> void bubble_sort(T array[], int count) { 1.661 + for (int i = count - 1; i > 0; --i) 1.662 + for (int j = i; j > 0; --j) 1.663 + if (array[j] < array[j-1]) 1.664 + { 1.665 + T tmp(array[j]); 1.666 + array[j] = array[j-1]; 1.667 + array[j-1] = tmp; 1.668 + } 1.669 +} 1.670 + 1.671 +/** 1.672 + * Given an array and count, remove all pair-wise duplicates from the array, 1.673 + * keeping the existing sorting, and return the new count 1.674 + */ 1.675 +static int collaps_duplicates(SkScalar array[], int count) { 1.676 + for (int n = count; n > 1; --n) { 1.677 + if (array[0] == array[1]) { 1.678 + for (int i = 1; i < n; ++i) { 1.679 + array[i - 1] = array[i]; 1.680 + } 1.681 + count -= 1; 1.682 + } else { 1.683 + array += 1; 1.684 + } 1.685 + } 1.686 + return count; 1.687 +} 1.688 + 1.689 +#ifdef SK_DEBUG 1.690 + 1.691 +#define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array) 1.692 + 1.693 +static void test_collaps_duplicates() { 1.694 + static bool gOnce; 1.695 + if (gOnce) { return; } 1.696 + gOnce = true; 1.697 + const SkScalar src0[] = { 0 }; 1.698 + const SkScalar src1[] = { 0, 0 }; 1.699 + const SkScalar src2[] = { 0, 1 }; 1.700 + const SkScalar src3[] = { 0, 0, 0 }; 1.701 + const SkScalar src4[] = { 0, 0, 1 }; 1.702 + const SkScalar src5[] = { 0, 1, 1 }; 1.703 + const SkScalar src6[] = { 0, 1, 2 }; 1.704 + const struct { 1.705 + const SkScalar* fData; 1.706 + int fCount; 1.707 + int fCollapsedCount; 1.708 + } data[] = { 1.709 + { TEST_COLLAPS_ENTRY(src0), 1 }, 1.710 + { TEST_COLLAPS_ENTRY(src1), 1 }, 1.711 + { TEST_COLLAPS_ENTRY(src2), 2 }, 1.712 + { TEST_COLLAPS_ENTRY(src3), 1 }, 1.713 + { TEST_COLLAPS_ENTRY(src4), 2 }, 1.714 + { TEST_COLLAPS_ENTRY(src5), 2 }, 1.715 + { TEST_COLLAPS_ENTRY(src6), 3 }, 1.716 + }; 1.717 + for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) { 1.718 + SkScalar dst[3]; 1.719 + memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0])); 1.720 + int count = collaps_duplicates(dst, data[i].fCount); 1.721 + SkASSERT(data[i].fCollapsedCount == count); 1.722 + for (int j = 1; j < count; ++j) { 1.723 + SkASSERT(dst[j-1] < dst[j]); 1.724 + } 1.725 + } 1.726 +} 1.727 +#endif 1.728 + 1.729 +static SkScalar SkScalarCubeRoot(SkScalar x) { 1.730 + return SkScalarPow(x, 0.3333333f); 1.731 +} 1.732 + 1.733 +/* Solve coeff(t) == 0, returning the number of roots that 1.734 + lie withing 0 < t < 1. 1.735 + coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] 1.736 + 1.737 + Eliminates repeated roots (so that all tValues are distinct, and are always 1.738 + in increasing order. 1.739 +*/ 1.740 +static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) { 1.741 + if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic 1.742 + return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); 1.743 + } 1.744 + 1.745 + SkScalar a, b, c, Q, R; 1.746 + 1.747 + { 1.748 + SkASSERT(coeff[0] != 0); 1.749 + 1.750 + SkScalar inva = SkScalarInvert(coeff[0]); 1.751 + a = coeff[1] * inva; 1.752 + b = coeff[2] * inva; 1.753 + c = coeff[3] * inva; 1.754 + } 1.755 + Q = (a*a - b*3) / 9; 1.756 + R = (2*a*a*a - 9*a*b + 27*c) / 54; 1.757 + 1.758 + SkScalar Q3 = Q * Q * Q; 1.759 + SkScalar R2MinusQ3 = R * R - Q3; 1.760 + SkScalar adiv3 = a / 3; 1.761 + 1.762 + SkScalar* roots = tValues; 1.763 + SkScalar r; 1.764 + 1.765 + if (R2MinusQ3 < 0) { // we have 3 real roots 1.766 + SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3)); 1.767 + SkScalar neg2RootQ = -2 * SkScalarSqrt(Q); 1.768 + 1.769 + r = neg2RootQ * SkScalarCos(theta/3) - adiv3; 1.770 + if (is_unit_interval(r)) { 1.771 + *roots++ = r; 1.772 + } 1.773 + r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3; 1.774 + if (is_unit_interval(r)) { 1.775 + *roots++ = r; 1.776 + } 1.777 + r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3; 1.778 + if (is_unit_interval(r)) { 1.779 + *roots++ = r; 1.780 + } 1.781 + SkDEBUGCODE(test_collaps_duplicates();) 1.782 + 1.783 + // now sort the roots 1.784 + int count = (int)(roots - tValues); 1.785 + SkASSERT((unsigned)count <= 3); 1.786 + bubble_sort(tValues, count); 1.787 + count = collaps_duplicates(tValues, count); 1.788 + roots = tValues + count; // so we compute the proper count below 1.789 + } else { // we have 1 real root 1.790 + SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3); 1.791 + A = SkScalarCubeRoot(A); 1.792 + if (R > 0) { 1.793 + A = -A; 1.794 + } 1.795 + if (A != 0) { 1.796 + A += Q / A; 1.797 + } 1.798 + r = A - adiv3; 1.799 + if (is_unit_interval(r)) { 1.800 + *roots++ = r; 1.801 + } 1.802 + } 1.803 + 1.804 + return (int)(roots - tValues); 1.805 +} 1.806 + 1.807 +/* Looking for F' dot F'' == 0 1.808 + 1.809 + A = b - a 1.810 + B = c - 2b + a 1.811 + C = d - 3c + 3b - a 1.812 + 1.813 + F' = 3Ct^2 + 6Bt + 3A 1.814 + F'' = 6Ct + 6B 1.815 + 1.816 + F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB 1.817 +*/ 1.818 +static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) { 1.819 + SkScalar a = src[2] - src[0]; 1.820 + SkScalar b = src[4] - 2 * src[2] + src[0]; 1.821 + SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; 1.822 + 1.823 + coeff[0] = c * c; 1.824 + coeff[1] = 3 * b * c; 1.825 + coeff[2] = 2 * b * b + c * a; 1.826 + coeff[3] = a * b; 1.827 +} 1.828 + 1.829 +/* Looking for F' dot F'' == 0 1.830 + 1.831 + A = b - a 1.832 + B = c - 2b + a 1.833 + C = d - 3c + 3b - a 1.834 + 1.835 + F' = 3Ct^2 + 6Bt + 3A 1.836 + F'' = 6Ct + 6B 1.837 + 1.838 + F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB 1.839 +*/ 1.840 +int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) { 1.841 + SkScalar coeffX[4], coeffY[4]; 1.842 + int i; 1.843 + 1.844 + formulate_F1DotF2(&src[0].fX, coeffX); 1.845 + formulate_F1DotF2(&src[0].fY, coeffY); 1.846 + 1.847 + for (i = 0; i < 4; i++) { 1.848 + coeffX[i] += coeffY[i]; 1.849 + } 1.850 + 1.851 + SkScalar t[3]; 1.852 + int count = solve_cubic_poly(coeffX, t); 1.853 + int maxCount = 0; 1.854 + 1.855 + // now remove extrema where the curvature is zero (mins) 1.856 + // !!!! need a test for this !!!! 1.857 + for (i = 0; i < count; i++) { 1.858 + // if (not_min_curvature()) 1.859 + if (t[i] > 0 && t[i] < SK_Scalar1) { 1.860 + tValues[maxCount++] = t[i]; 1.861 + } 1.862 + } 1.863 + return maxCount; 1.864 +} 1.865 + 1.866 +int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], 1.867 + SkScalar tValues[3]) { 1.868 + SkScalar t_storage[3]; 1.869 + 1.870 + if (tValues == NULL) { 1.871 + tValues = t_storage; 1.872 + } 1.873 + 1.874 + int count = SkFindCubicMaxCurvature(src, tValues); 1.875 + 1.876 + if (dst) { 1.877 + if (count == 0) { 1.878 + memcpy(dst, src, 4 * sizeof(SkPoint)); 1.879 + } else { 1.880 + SkChopCubicAt(src, dst, tValues, count); 1.881 + } 1.882 + } 1.883 + return count + 1; 1.884 +} 1.885 + 1.886 +bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], 1.887 + bool* ambiguous) { 1.888 + if (ambiguous) { 1.889 + *ambiguous = false; 1.890 + } 1.891 + 1.892 + // Find the minimum and maximum y of the extrema, which are the 1.893 + // first and last points since this cubic is monotonic 1.894 + SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY); 1.895 + SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY); 1.896 + 1.897 + if (pt.fY == cubic[0].fY 1.898 + || pt.fY < min_y 1.899 + || pt.fY > max_y) { 1.900 + // The query line definitely does not cross the curve 1.901 + if (ambiguous) { 1.902 + *ambiguous = (pt.fY == cubic[0].fY); 1.903 + } 1.904 + return false; 1.905 + } 1.906 + 1.907 + bool pt_at_extremum = (pt.fY == cubic[3].fY); 1.908 + 1.909 + SkScalar min_x = 1.910 + SkMinScalar( 1.911 + SkMinScalar( 1.912 + SkMinScalar(cubic[0].fX, cubic[1].fX), 1.913 + cubic[2].fX), 1.914 + cubic[3].fX); 1.915 + if (pt.fX < min_x) { 1.916 + // The query line definitely crosses the curve 1.917 + if (ambiguous) { 1.918 + *ambiguous = pt_at_extremum; 1.919 + } 1.920 + return true; 1.921 + } 1.922 + 1.923 + SkScalar max_x = 1.924 + SkMaxScalar( 1.925 + SkMaxScalar( 1.926 + SkMaxScalar(cubic[0].fX, cubic[1].fX), 1.927 + cubic[2].fX), 1.928 + cubic[3].fX); 1.929 + if (pt.fX > max_x) { 1.930 + // The query line definitely does not cross the curve 1.931 + return false; 1.932 + } 1.933 + 1.934 + // Do a binary search to find the parameter value which makes y as 1.935 + // close as possible to the query point. See whether the query 1.936 + // line's origin is to the left of the associated x coordinate. 1.937 + 1.938 + // kMaxIter is chosen as the number of mantissa bits for a float, 1.939 + // since there's no way we are going to get more precision by 1.940 + // iterating more times than that. 1.941 + const int kMaxIter = 23; 1.942 + SkPoint eval; 1.943 + int iter = 0; 1.944 + SkScalar upper_t; 1.945 + SkScalar lower_t; 1.946 + // Need to invert direction of t parameter if cubic goes up 1.947 + // instead of down 1.948 + if (cubic[3].fY > cubic[0].fY) { 1.949 + upper_t = SK_Scalar1; 1.950 + lower_t = 0; 1.951 + } else { 1.952 + upper_t = 0; 1.953 + lower_t = SK_Scalar1; 1.954 + } 1.955 + do { 1.956 + SkScalar t = SkScalarAve(upper_t, lower_t); 1.957 + SkEvalCubicAt(cubic, t, &eval, NULL, NULL); 1.958 + if (pt.fY > eval.fY) { 1.959 + lower_t = t; 1.960 + } else { 1.961 + upper_t = t; 1.962 + } 1.963 + } while (++iter < kMaxIter 1.964 + && !SkScalarNearlyZero(eval.fY - pt.fY)); 1.965 + if (pt.fX <= eval.fX) { 1.966 + if (ambiguous) { 1.967 + *ambiguous = pt_at_extremum; 1.968 + } 1.969 + return true; 1.970 + } 1.971 + return false; 1.972 +} 1.973 + 1.974 +int SkNumXRayCrossingsForCubic(const SkXRay& pt, 1.975 + const SkPoint cubic[4], 1.976 + bool* ambiguous) { 1.977 + int num_crossings = 0; 1.978 + SkPoint monotonic_cubics[10]; 1.979 + int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics); 1.980 + if (ambiguous) { 1.981 + *ambiguous = false; 1.982 + } 1.983 + bool locally_ambiguous; 1.984 + if (SkXRayCrossesMonotonicCubic(pt, 1.985 + &monotonic_cubics[0], 1.986 + &locally_ambiguous)) 1.987 + ++num_crossings; 1.988 + if (ambiguous) { 1.989 + *ambiguous |= locally_ambiguous; 1.990 + } 1.991 + if (num_monotonic_cubics > 0) 1.992 + if (SkXRayCrossesMonotonicCubic(pt, 1.993 + &monotonic_cubics[3], 1.994 + &locally_ambiguous)) 1.995 + ++num_crossings; 1.996 + if (ambiguous) { 1.997 + *ambiguous |= locally_ambiguous; 1.998 + } 1.999 + if (num_monotonic_cubics > 1) 1.1000 + if (SkXRayCrossesMonotonicCubic(pt, 1.1001 + &monotonic_cubics[6], 1.1002 + &locally_ambiguous)) 1.1003 + ++num_crossings; 1.1004 + if (ambiguous) { 1.1005 + *ambiguous |= locally_ambiguous; 1.1006 + } 1.1007 + return num_crossings; 1.1008 +} 1.1009 + 1.1010 +/////////////////////////////////////////////////////////////////////////////// 1.1011 + 1.1012 +/* Find t value for quadratic [a, b, c] = d. 1.1013 + Return 0 if there is no solution within [0, 1) 1.1014 +*/ 1.1015 +static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { 1.1016 + // At^2 + Bt + C = d 1.1017 + SkScalar A = a - 2 * b + c; 1.1018 + SkScalar B = 2 * (b - a); 1.1019 + SkScalar C = a - d; 1.1020 + 1.1021 + SkScalar roots[2]; 1.1022 + int count = SkFindUnitQuadRoots(A, B, C, roots); 1.1023 + 1.1024 + SkASSERT(count <= 1); 1.1025 + return count == 1 ? roots[0] : 0; 1.1026 +} 1.1027 + 1.1028 +/* given a quad-curve and a point (x,y), chop the quad at that point and place 1.1029 + the new off-curve point and endpoint into 'dest'. 1.1030 + Should only return false if the computed pos is the start of the curve 1.1031 + (i.e. root == 0) 1.1032 +*/ 1.1033 +static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, 1.1034 + SkPoint* dest) { 1.1035 + const SkScalar* base; 1.1036 + SkScalar value; 1.1037 + 1.1038 + if (SkScalarAbs(x) < SkScalarAbs(y)) { 1.1039 + base = &quad[0].fX; 1.1040 + value = x; 1.1041 + } else { 1.1042 + base = &quad[0].fY; 1.1043 + value = y; 1.1044 + } 1.1045 + 1.1046 + // note: this returns 0 if it thinks value is out of range, meaning the 1.1047 + // root might return something outside of [0, 1) 1.1048 + SkScalar t = quad_solve(base[0], base[2], base[4], value); 1.1049 + 1.1050 + if (t > 0) { 1.1051 + SkPoint tmp[5]; 1.1052 + SkChopQuadAt(quad, tmp, t); 1.1053 + dest[0] = tmp[1]; 1.1054 + dest[1].set(x, y); 1.1055 + return true; 1.1056 + } else { 1.1057 + /* t == 0 means either the value triggered a root outside of [0, 1) 1.1058 + For our purposes, we can ignore the <= 0 roots, but we want to 1.1059 + catch the >= 1 roots (which given our caller, will basically mean 1.1060 + a root of 1, give-or-take numerical instability). If we are in the 1.1061 + >= 1 case, return the existing offCurve point. 1.1062 + 1.1063 + The test below checks to see if we are close to the "end" of the 1.1064 + curve (near base[4]). Rather than specifying a tolerance, I just 1.1065 + check to see if value is on to the right/left of the middle point 1.1066 + (depending on the direction/sign of the end points). 1.1067 + */ 1.1068 + if ((base[0] < base[4] && value > base[2]) || 1.1069 + (base[0] > base[4] && value < base[2])) // should root have been 1 1.1070 + { 1.1071 + dest[0] = quad[1]; 1.1072 + dest[1].set(x, y); 1.1073 + return true; 1.1074 + } 1.1075 + } 1.1076 + return false; 1.1077 +} 1.1078 + 1.1079 +static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = { 1.1080 +// The mid point of the quadratic arc approximation is half way between the two 1.1081 +// control points. The float epsilon adjustment moves the on curve point out by 1.1082 +// two bits, distributing the convex test error between the round rect 1.1083 +// approximation and the convex cross product sign equality test. 1.1084 +#define SK_MID_RRECT_OFFSET \ 1.1085 + (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2 1.1086 + { SK_Scalar1, 0 }, 1.1087 + { SK_Scalar1, SK_ScalarTanPIOver8 }, 1.1088 + { SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET }, 1.1089 + { SK_ScalarTanPIOver8, SK_Scalar1 }, 1.1090 + 1.1091 + { 0, SK_Scalar1 }, 1.1092 + { -SK_ScalarTanPIOver8, SK_Scalar1 }, 1.1093 + { -SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET }, 1.1094 + { -SK_Scalar1, SK_ScalarTanPIOver8 }, 1.1095 + 1.1096 + { -SK_Scalar1, 0 }, 1.1097 + { -SK_Scalar1, -SK_ScalarTanPIOver8 }, 1.1098 + { -SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET }, 1.1099 + { -SK_ScalarTanPIOver8, -SK_Scalar1 }, 1.1100 + 1.1101 + { 0, -SK_Scalar1 }, 1.1102 + { SK_ScalarTanPIOver8, -SK_Scalar1 }, 1.1103 + { SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET }, 1.1104 + { SK_Scalar1, -SK_ScalarTanPIOver8 }, 1.1105 + 1.1106 + { SK_Scalar1, 0 } 1.1107 +#undef SK_MID_RRECT_OFFSET 1.1108 +}; 1.1109 + 1.1110 +int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, 1.1111 + SkRotationDirection dir, const SkMatrix* userMatrix, 1.1112 + SkPoint quadPoints[]) { 1.1113 + // rotate by x,y so that uStart is (1.0) 1.1114 + SkScalar x = SkPoint::DotProduct(uStart, uStop); 1.1115 + SkScalar y = SkPoint::CrossProduct(uStart, uStop); 1.1116 + 1.1117 + SkScalar absX = SkScalarAbs(x); 1.1118 + SkScalar absY = SkScalarAbs(y); 1.1119 + 1.1120 + int pointCount; 1.1121 + 1.1122 + // check for (effectively) coincident vectors 1.1123 + // this can happen if our angle is nearly 0 or nearly 180 (y == 0) 1.1124 + // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) 1.1125 + if (absY <= SK_ScalarNearlyZero && x > 0 && 1.1126 + ((y >= 0 && kCW_SkRotationDirection == dir) || 1.1127 + (y <= 0 && kCCW_SkRotationDirection == dir))) { 1.1128 + 1.1129 + // just return the start-point 1.1130 + quadPoints[0].set(SK_Scalar1, 0); 1.1131 + pointCount = 1; 1.1132 + } else { 1.1133 + if (dir == kCCW_SkRotationDirection) { 1.1134 + y = -y; 1.1135 + } 1.1136 + // what octant (quadratic curve) is [xy] in? 1.1137 + int oct = 0; 1.1138 + bool sameSign = true; 1.1139 + 1.1140 + if (0 == y) { 1.1141 + oct = 4; // 180 1.1142 + SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); 1.1143 + } else if (0 == x) { 1.1144 + SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); 1.1145 + oct = y > 0 ? 2 : 6; // 90 : 270 1.1146 + } else { 1.1147 + if (y < 0) { 1.1148 + oct += 4; 1.1149 + } 1.1150 + if ((x < 0) != (y < 0)) { 1.1151 + oct += 2; 1.1152 + sameSign = false; 1.1153 + } 1.1154 + if ((absX < absY) == sameSign) { 1.1155 + oct += 1; 1.1156 + } 1.1157 + } 1.1158 + 1.1159 + int wholeCount = oct << 1; 1.1160 + memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint)); 1.1161 + 1.1162 + const SkPoint* arc = &gQuadCirclePts[wholeCount]; 1.1163 + if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) { 1.1164 + wholeCount += 2; 1.1165 + } 1.1166 + pointCount = wholeCount + 1; 1.1167 + } 1.1168 + 1.1169 + // now handle counter-clockwise and the initial unitStart rotation 1.1170 + SkMatrix matrix; 1.1171 + matrix.setSinCos(uStart.fY, uStart.fX); 1.1172 + if (dir == kCCW_SkRotationDirection) { 1.1173 + matrix.preScale(SK_Scalar1, -SK_Scalar1); 1.1174 + } 1.1175 + if (userMatrix) { 1.1176 + matrix.postConcat(*userMatrix); 1.1177 + } 1.1178 + matrix.mapPoints(quadPoints, pointCount); 1.1179 + return pointCount; 1.1180 +} 1.1181 + 1.1182 + 1.1183 +/////////////////////////////////////////////////////////////////////////////// 1.1184 +// 1.1185 +// NURB representation for conics. Helpful explanations at: 1.1186 +// 1.1187 +// http://citeseerx.ist.psu.edu/viewdoc/ 1.1188 +// download?doi=10.1.1.44.5740&rep=rep1&type=ps 1.1189 +// and 1.1190 +// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html 1.1191 +// 1.1192 +// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w) 1.1193 +// ------------------------------------------ 1.1194 +// ((1 - t)^2 + t^2 + 2 (1 - t) t w) 1.1195 +// 1.1196 +// = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0} 1.1197 +// ------------------------------------------------ 1.1198 +// {t^2 (2 - 2 w), t (-2 + 2 w), 1} 1.1199 +// 1.1200 + 1.1201 +static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) { 1.1202 + SkASSERT(src); 1.1203 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.1204 + 1.1205 + SkScalar src2w = SkScalarMul(src[2], w); 1.1206 + SkScalar C = src[0]; 1.1207 + SkScalar A = src[4] - 2 * src2w + C; 1.1208 + SkScalar B = 2 * (src2w - C); 1.1209 + SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); 1.1210 + 1.1211 + B = 2 * (w - SK_Scalar1); 1.1212 + C = SK_Scalar1; 1.1213 + A = -B; 1.1214 + SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); 1.1215 + 1.1216 + return SkScalarDiv(numer, denom); 1.1217 +} 1.1218 + 1.1219 +// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w) 1.1220 +// 1.1221 +// t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w) 1.1222 +// t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w) 1.1223 +// t^0 : -2 P0 w + 2 P1 w 1.1224 +// 1.1225 +// We disregard magnitude, so we can freely ignore the denominator of F', and 1.1226 +// divide the numerator by 2 1.1227 +// 1.1228 +// coeff[0] for t^2 1.1229 +// coeff[1] for t^1 1.1230 +// coeff[2] for t^0 1.1231 +// 1.1232 +static void conic_deriv_coeff(const SkScalar src[], 1.1233 + SkScalar w, 1.1234 + SkScalar coeff[3]) { 1.1235 + const SkScalar P20 = src[4] - src[0]; 1.1236 + const SkScalar P10 = src[2] - src[0]; 1.1237 + const SkScalar wP10 = w * P10; 1.1238 + coeff[0] = w * P20 - P20; 1.1239 + coeff[1] = P20 - 2 * wP10; 1.1240 + coeff[2] = wP10; 1.1241 +} 1.1242 + 1.1243 +static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) { 1.1244 + SkScalar coeff[3]; 1.1245 + conic_deriv_coeff(coord, w, coeff); 1.1246 + return t * (t * coeff[0] + coeff[1]) + coeff[2]; 1.1247 +} 1.1248 + 1.1249 +static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) { 1.1250 + SkScalar coeff[3]; 1.1251 + conic_deriv_coeff(src, w, coeff); 1.1252 + 1.1253 + SkScalar tValues[2]; 1.1254 + int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues); 1.1255 + SkASSERT(0 == roots || 1 == roots); 1.1256 + 1.1257 + if (1 == roots) { 1.1258 + *t = tValues[0]; 1.1259 + return true; 1.1260 + } 1.1261 + return false; 1.1262 +} 1.1263 + 1.1264 +struct SkP3D { 1.1265 + SkScalar fX, fY, fZ; 1.1266 + 1.1267 + void set(SkScalar x, SkScalar y, SkScalar z) { 1.1268 + fX = x; fY = y; fZ = z; 1.1269 + } 1.1270 + 1.1271 + void projectDown(SkPoint* dst) const { 1.1272 + dst->set(fX / fZ, fY / fZ); 1.1273 + } 1.1274 +}; 1.1275 + 1.1276 +// We only interpolate one dimension at a time (the first, at +0, +3, +6). 1.1277 +static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) { 1.1278 + SkScalar ab = SkScalarInterp(src[0], src[3], t); 1.1279 + SkScalar bc = SkScalarInterp(src[3], src[6], t); 1.1280 + dst[0] = ab; 1.1281 + dst[3] = SkScalarInterp(ab, bc, t); 1.1282 + dst[6] = bc; 1.1283 +} 1.1284 + 1.1285 +static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) { 1.1286 + dst[0].set(src[0].fX * 1, src[0].fY * 1, 1); 1.1287 + dst[1].set(src[1].fX * w, src[1].fY * w, w); 1.1288 + dst[2].set(src[2].fX * 1, src[2].fY * 1, 1); 1.1289 +} 1.1290 + 1.1291 +void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const { 1.1292 + SkASSERT(t >= 0 && t <= SK_Scalar1); 1.1293 + 1.1294 + if (pt) { 1.1295 + pt->set(conic_eval_pos(&fPts[0].fX, fW, t), 1.1296 + conic_eval_pos(&fPts[0].fY, fW, t)); 1.1297 + } 1.1298 + if (tangent) { 1.1299 + tangent->set(conic_eval_tan(&fPts[0].fX, fW, t), 1.1300 + conic_eval_tan(&fPts[0].fY, fW, t)); 1.1301 + } 1.1302 +} 1.1303 + 1.1304 +void SkConic::chopAt(SkScalar t, SkConic dst[2]) const { 1.1305 + SkP3D tmp[3], tmp2[3]; 1.1306 + 1.1307 + ratquad_mapTo3D(fPts, fW, tmp); 1.1308 + 1.1309 + p3d_interp(&tmp[0].fX, &tmp2[0].fX, t); 1.1310 + p3d_interp(&tmp[0].fY, &tmp2[0].fY, t); 1.1311 + p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t); 1.1312 + 1.1313 + dst[0].fPts[0] = fPts[0]; 1.1314 + tmp2[0].projectDown(&dst[0].fPts[1]); 1.1315 + tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2]; 1.1316 + tmp2[2].projectDown(&dst[1].fPts[1]); 1.1317 + dst[1].fPts[2] = fPts[2]; 1.1318 + 1.1319 + // to put in "standard form", where w0 and w2 are both 1, we compute the 1.1320 + // new w1 as sqrt(w1*w1/w0*w2) 1.1321 + // or 1.1322 + // w1 /= sqrt(w0*w2) 1.1323 + // 1.1324 + // However, in our case, we know that for dst[0]: 1.1325 + // w0 == 1, and for dst[1], w2 == 1 1.1326 + // 1.1327 + SkScalar root = SkScalarSqrt(tmp2[1].fZ); 1.1328 + dst[0].fW = tmp2[0].fZ / root; 1.1329 + dst[1].fW = tmp2[2].fZ / root; 1.1330 +} 1.1331 + 1.1332 +static SkScalar subdivide_w_value(SkScalar w) { 1.1333 + return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf); 1.1334 +} 1.1335 + 1.1336 +void SkConic::chop(SkConic dst[2]) const { 1.1337 + SkScalar scale = SkScalarInvert(SK_Scalar1 + fW); 1.1338 + SkScalar p1x = fW * fPts[1].fX; 1.1339 + SkScalar p1y = fW * fPts[1].fY; 1.1340 + SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf; 1.1341 + SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf; 1.1342 + 1.1343 + dst[0].fPts[0] = fPts[0]; 1.1344 + dst[0].fPts[1].set((fPts[0].fX + p1x) * scale, 1.1345 + (fPts[0].fY + p1y) * scale); 1.1346 + dst[0].fPts[2].set(mx, my); 1.1347 + 1.1348 + dst[1].fPts[0].set(mx, my); 1.1349 + dst[1].fPts[1].set((p1x + fPts[2].fX) * scale, 1.1350 + (p1y + fPts[2].fY) * scale); 1.1351 + dst[1].fPts[2] = fPts[2]; 1.1352 + 1.1353 + dst[0].fW = dst[1].fW = subdivide_w_value(fW); 1.1354 +} 1.1355 + 1.1356 +/* 1.1357 + * "High order approximation of conic sections by quadratic splines" 1.1358 + * by Michael Floater, 1993 1.1359 + */ 1.1360 +#define AS_QUAD_ERROR_SETUP \ 1.1361 + SkScalar a = fW - 1; \ 1.1362 + SkScalar k = a / (4 * (2 + a)); \ 1.1363 + SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \ 1.1364 + SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY); 1.1365 + 1.1366 +void SkConic::computeAsQuadError(SkVector* err) const { 1.1367 + AS_QUAD_ERROR_SETUP 1.1368 + err->set(x, y); 1.1369 +} 1.1370 + 1.1371 +bool SkConic::asQuadTol(SkScalar tol) const { 1.1372 + AS_QUAD_ERROR_SETUP 1.1373 + return (x * x + y * y) <= tol * tol; 1.1374 +} 1.1375 + 1.1376 +int SkConic::computeQuadPOW2(SkScalar tol) const { 1.1377 + AS_QUAD_ERROR_SETUP 1.1378 + SkScalar error = SkScalarSqrt(x * x + y * y) - tol; 1.1379 + 1.1380 + if (error <= 0) { 1.1381 + return 0; 1.1382 + } 1.1383 + uint32_t ierr = (uint32_t)error; 1.1384 + return (34 - SkCLZ(ierr)) >> 1; 1.1385 +} 1.1386 + 1.1387 +static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) { 1.1388 + SkASSERT(level >= 0); 1.1389 + 1.1390 + if (0 == level) { 1.1391 + memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint)); 1.1392 + return pts + 2; 1.1393 + } else { 1.1394 + SkConic dst[2]; 1.1395 + src.chop(dst); 1.1396 + --level; 1.1397 + pts = subdivide(dst[0], pts, level); 1.1398 + return subdivide(dst[1], pts, level); 1.1399 + } 1.1400 +} 1.1401 + 1.1402 +int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const { 1.1403 + SkASSERT(pow2 >= 0); 1.1404 + *pts = fPts[0]; 1.1405 + SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2); 1.1406 + SkASSERT(endPts - pts == (2 * (1 << pow2) + 1)); 1.1407 + return 1 << pow2; 1.1408 +} 1.1409 + 1.1410 +bool SkConic::findXExtrema(SkScalar* t) const { 1.1411 + return conic_find_extrema(&fPts[0].fX, fW, t); 1.1412 +} 1.1413 + 1.1414 +bool SkConic::findYExtrema(SkScalar* t) const { 1.1415 + return conic_find_extrema(&fPts[0].fY, fW, t); 1.1416 +} 1.1417 + 1.1418 +bool SkConic::chopAtXExtrema(SkConic dst[2]) const { 1.1419 + SkScalar t; 1.1420 + if (this->findXExtrema(&t)) { 1.1421 + this->chopAt(t, dst); 1.1422 + // now clean-up the middle, since we know t was meant to be at 1.1423 + // an X-extrema 1.1424 + SkScalar value = dst[0].fPts[2].fX; 1.1425 + dst[0].fPts[1].fX = value; 1.1426 + dst[1].fPts[0].fX = value; 1.1427 + dst[1].fPts[1].fX = value; 1.1428 + return true; 1.1429 + } 1.1430 + return false; 1.1431 +} 1.1432 + 1.1433 +bool SkConic::chopAtYExtrema(SkConic dst[2]) const { 1.1434 + SkScalar t; 1.1435 + if (this->findYExtrema(&t)) { 1.1436 + this->chopAt(t, dst); 1.1437 + // now clean-up the middle, since we know t was meant to be at 1.1438 + // an Y-extrema 1.1439 + SkScalar value = dst[0].fPts[2].fY; 1.1440 + dst[0].fPts[1].fY = value; 1.1441 + dst[1].fPts[0].fY = value; 1.1442 + dst[1].fPts[1].fY = value; 1.1443 + return true; 1.1444 + } 1.1445 + return false; 1.1446 +} 1.1447 + 1.1448 +void SkConic::computeTightBounds(SkRect* bounds) const { 1.1449 + SkPoint pts[4]; 1.1450 + pts[0] = fPts[0]; 1.1451 + pts[1] = fPts[2]; 1.1452 + int count = 2; 1.1453 + 1.1454 + SkScalar t; 1.1455 + if (this->findXExtrema(&t)) { 1.1456 + this->evalAt(t, &pts[count++]); 1.1457 + } 1.1458 + if (this->findYExtrema(&t)) { 1.1459 + this->evalAt(t, &pts[count++]); 1.1460 + } 1.1461 + bounds->set(pts, count); 1.1462 +} 1.1463 + 1.1464 +void SkConic::computeFastBounds(SkRect* bounds) const { 1.1465 + bounds->set(fPts, 3); 1.1466 +} 1.1467 + 1.1468 +bool SkConic::findMaxCurvature(SkScalar* t) const { 1.1469 + // TODO: Implement me 1.1470 + return false; 1.1471 +}