gfx/skia/trunk/src/core/SkQuadClipper.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/core/SkQuadClipper.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,114 @@
     1.4 +/*
     1.5 + * Copyright 2009 The Android Open Source Project
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +
    1.11 +#include "SkQuadClipper.h"
    1.12 +#include "SkGeometry.h"
    1.13 +
    1.14 +SkQuadClipper::SkQuadClipper() {
    1.15 +    fClip.setEmpty();
    1.16 +}
    1.17 +
    1.18 +void SkQuadClipper::setClip(const SkIRect& clip) {
    1.19 +    // conver to scalars, since that's where we'll see the points
    1.20 +    fClip.set(clip);
    1.21 +}
    1.22 +
    1.23 +///////////////////////////////////////////////////////////////////////////////
    1.24 +
    1.25 +static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2,
    1.26 +                           SkScalar target, SkScalar* t) {
    1.27 +    /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2
    1.28 +     *  We solve for t, using quadratic equation, hence we have to rearrange
    1.29 +     * our cooefficents to look like At^2 + Bt + C
    1.30 +     */
    1.31 +    SkScalar A = c0 - c1 - c1 + c2;
    1.32 +    SkScalar B = 2*(c1 - c0);
    1.33 +    SkScalar C = c0 - target;
    1.34 +
    1.35 +    SkScalar roots[2];  // we only expect one, but make room for 2 for safety
    1.36 +    int count = SkFindUnitQuadRoots(A, B, C, roots);
    1.37 +    if (count) {
    1.38 +        *t = roots[0];
    1.39 +        return true;
    1.40 +    }
    1.41 +    return false;
    1.42 +}
    1.43 +
    1.44 +static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) {
    1.45 +    return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t);
    1.46 +}
    1.47 +
    1.48 +///////////////////////////////////////////////////////////////////////////////
    1.49 +
    1.50 +/*  If we somehow returned the fact that we had to flip the pts in Y, we could
    1.51 + communicate that to setQuadratic, and then avoid having to flip it back
    1.52 + here (only to have setQuadratic do the flip again)
    1.53 + */
    1.54 +bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) {
    1.55 +    bool reverse;
    1.56 +
    1.57 +    // we need the data to be monotonically increasing in Y
    1.58 +    if (srcPts[0].fY > srcPts[2].fY) {
    1.59 +        dst[0] = srcPts[2];
    1.60 +        dst[1] = srcPts[1];
    1.61 +        dst[2] = srcPts[0];
    1.62 +        reverse = true;
    1.63 +    } else {
    1.64 +        memcpy(dst, srcPts, 3 * sizeof(SkPoint));
    1.65 +        reverse = false;
    1.66 +    }
    1.67 +
    1.68 +    // are we completely above or below
    1.69 +    const SkScalar ctop = fClip.fTop;
    1.70 +    const SkScalar cbot = fClip.fBottom;
    1.71 +    if (dst[2].fY <= ctop || dst[0].fY >= cbot) {
    1.72 +        return false;
    1.73 +    }
    1.74 +
    1.75 +    SkScalar t;
    1.76 +    SkPoint tmp[5]; // for SkChopQuadAt
    1.77 +
    1.78 +    // are we partially above
    1.79 +    if (dst[0].fY < ctop) {
    1.80 +        if (chopMonoQuadAtY(dst, ctop, &t)) {
    1.81 +            // take the 2nd chopped quad
    1.82 +            SkChopQuadAt(dst, tmp, t);
    1.83 +            dst[0] = tmp[2];
    1.84 +            dst[1] = tmp[3];
    1.85 +        } else {
    1.86 +            // if chopMonoQuadAtY failed, then we may have hit inexact numerics
    1.87 +            // so we just clamp against the top
    1.88 +            for (int i = 0; i < 3; i++) {
    1.89 +                if (dst[i].fY < ctop) {
    1.90 +                    dst[i].fY = ctop;
    1.91 +                }
    1.92 +            }
    1.93 +        }
    1.94 +    }
    1.95 +
    1.96 +    // are we partially below
    1.97 +    if (dst[2].fY > cbot) {
    1.98 +        if (chopMonoQuadAtY(dst, cbot, &t)) {
    1.99 +            SkChopQuadAt(dst, tmp, t);
   1.100 +            dst[1] = tmp[1];
   1.101 +            dst[2] = tmp[2];
   1.102 +        } else {
   1.103 +            // if chopMonoQuadAtY failed, then we may have hit inexact numerics
   1.104 +            // so we just clamp against the bottom
   1.105 +            for (int i = 0; i < 3; i++) {
   1.106 +                if (dst[i].fY > cbot) {
   1.107 +                    dst[i].fY = cbot;
   1.108 +                }
   1.109 +            }
   1.110 +        }
   1.111 +    }
   1.112 +
   1.113 +    if (reverse) {
   1.114 +        SkTSwap<SkPoint>(dst[0], dst[2]);
   1.115 +    }
   1.116 +    return true;
   1.117 +}

mercurial