1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/core/SkRTree.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,201 @@ 1.4 + 1.5 +/* 1.6 + * Copyright 2012 Google Inc. 1.7 + * 1.8 + * Use of this source code is governed by a BSD-style license that can be 1.9 + * found in the LICENSE file. 1.10 + */ 1.11 + 1.12 +#ifndef SkRTree_DEFINED 1.13 +#define SkRTree_DEFINED 1.14 + 1.15 +#include "SkRect.h" 1.16 +#include "SkTDArray.h" 1.17 +#include "SkChunkAlloc.h" 1.18 +#include "SkBBoxHierarchy.h" 1.19 + 1.20 +/** 1.21 + * An R-Tree implementation. In short, it is a balanced n-ary tree containing a hierarchy of 1.22 + * bounding rectangles. 1.23 + * 1.24 + * Much like a B-Tree it maintains balance by enforcing minimum and maximum child counts, and 1.25 + * splitting nodes when they become overfull. Unlike B-trees, however, we're using spatial data; so 1.26 + * there isn't a canonical ordering to use when choosing insertion locations and splitting 1.27 + * distributions. A variety of heuristics have been proposed for these problems; here, we're using 1.28 + * something resembling an R*-tree, which attempts to minimize area and overlap during insertion, 1.29 + * and aims to minimize a combination of margin, overlap, and area when splitting. 1.30 + * 1.31 + * One detail that is thus far unimplemented that may improve tree quality is attempting to remove 1.32 + * and reinsert nodes when they become full, instead of immediately splitting (nodes that may have 1.33 + * been placed well early on may hurt the tree later when more nodes have been added; removing 1.34 + * and reinserting nodes generally helps reduce overlap and make a better tree). Deletion of nodes 1.35 + * is also unimplemented. 1.36 + * 1.37 + * For more details see: 1.38 + * 1.39 + * Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990). "The R*-tree: 1.40 + * an efficient and robust access method for points and rectangles" 1.41 + * 1.42 + * It also supports bulk-loading from a batch of bounds and values; if you don't require the tree 1.43 + * to be usable in its intermediate states while it is being constructed, this is significantly 1.44 + * quicker than individual insertions and produces more consistent trees. 1.45 + */ 1.46 +class SkRTree : public SkBBoxHierarchy { 1.47 +public: 1.48 + SK_DECLARE_INST_COUNT(SkRTree) 1.49 + 1.50 + /** 1.51 + * Create a new R-Tree with specified min/max child counts. 1.52 + * The child counts are valid iff: 1.53 + * - (max + 1) / 2 >= min (splitting an overfull node must be enough to populate 2 nodes) 1.54 + * - min < max 1.55 + * - min > 0 1.56 + * - max < SK_MaxU16 1.57 + * If you have some prior information about the distribution of bounds you're expecting, you 1.58 + * can provide an optional aspect ratio parameter. This allows the bulk-load algorithm to create 1.59 + * better proportioned tiles of rectangles. 1.60 + */ 1.61 + static SkRTree* Create(int minChildren, int maxChildren, SkScalar aspectRatio = 1, 1.62 + bool orderWhenBulkLoading = true); 1.63 + virtual ~SkRTree(); 1.64 + 1.65 + /** 1.66 + * Insert a node, consisting of bounds and a data value into the tree, if we don't immediately 1.67 + * need to use the tree; we may allow the insert to be deferred (this can allow us to bulk-load 1.68 + * a large batch of nodes at once, which tends to be faster and produce a better tree). 1.69 + * @param data The data value 1.70 + * @param bounds The corresponding bounding box 1.71 + * @param defer Can this insert be deferred? (this may be ignored) 1.72 + */ 1.73 + virtual void insert(void* data, const SkIRect& bounds, bool defer = false) SK_OVERRIDE; 1.74 + 1.75 + /** 1.76 + * If any inserts have been deferred, this will add them into the tree 1.77 + */ 1.78 + virtual void flushDeferredInserts() SK_OVERRIDE; 1.79 + 1.80 + /** 1.81 + * Given a query rectangle, populates the passed-in array with the elements it intersects 1.82 + */ 1.83 + virtual void search(const SkIRect& query, SkTDArray<void*>* results) SK_OVERRIDE; 1.84 + 1.85 + virtual void clear() SK_OVERRIDE; 1.86 + bool isEmpty() const { return 0 == fCount; } 1.87 + 1.88 + /** 1.89 + * Gets the depth of the tree structure 1.90 + */ 1.91 + virtual int getDepth() const SK_OVERRIDE { 1.92 + return this->isEmpty() ? 0 : fRoot.fChild.subtree->fLevel + 1; 1.93 + } 1.94 + 1.95 + /** 1.96 + * This gets the insertion count (rather than the node count) 1.97 + */ 1.98 + virtual int getCount() const SK_OVERRIDE { return fCount; } 1.99 + 1.100 + virtual void rewindInserts() SK_OVERRIDE; 1.101 + 1.102 +private: 1.103 + 1.104 + struct Node; 1.105 + 1.106 + /** 1.107 + * A branch of the tree, this may contain a pointer to another interior node, or a data value 1.108 + */ 1.109 + struct Branch { 1.110 + union { 1.111 + Node* subtree; 1.112 + void* data; 1.113 + } fChild; 1.114 + SkIRect fBounds; 1.115 + }; 1.116 + 1.117 + /** 1.118 + * A node in the tree, has between fMinChildren and fMaxChildren (the root is a special case) 1.119 + */ 1.120 + struct Node { 1.121 + uint16_t fNumChildren; 1.122 + uint16_t fLevel; 1.123 + bool isLeaf() { return 0 == fLevel; } 1.124 + // Since we want to be able to pick min/max child counts at runtime, we assume the creator 1.125 + // has allocated sufficient space directly after us in memory, and index into that space 1.126 + Branch* child(size_t index) { 1.127 + return reinterpret_cast<Branch*>(this + 1) + index; 1.128 + } 1.129 + }; 1.130 + 1.131 + typedef int32_t SkIRect::*SortSide; 1.132 + 1.133 + // Helper for sorting our children arrays by sides of their rects 1.134 + struct RectLessThan { 1.135 + RectLessThan(SkRTree::SortSide side) : fSide(side) { } 1.136 + bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) const { 1.137 + return lhs.fBounds.*fSide < rhs.fBounds.*fSide; 1.138 + } 1.139 + private: 1.140 + const SkRTree::SortSide fSide; 1.141 + }; 1.142 + 1.143 + struct RectLessX { 1.144 + bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) { 1.145 + return ((lhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1) < 1.146 + ((rhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1); 1.147 + } 1.148 + }; 1.149 + 1.150 + struct RectLessY { 1.151 + bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) { 1.152 + return ((lhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1) < 1.153 + ((rhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1); 1.154 + } 1.155 + }; 1.156 + 1.157 + SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio, bool orderWhenBulkLoading); 1.158 + 1.159 + /** 1.160 + * Recursively descend the tree to find an insertion position for 'branch', updates 1.161 + * bounding boxes on the way up. 1.162 + */ 1.163 + Branch* insert(Node* root, Branch* branch, uint16_t level = 0); 1.164 + 1.165 + int chooseSubtree(Node* root, Branch* branch); 1.166 + SkIRect computeBounds(Node* n); 1.167 + int distributeChildren(Branch* children); 1.168 + void search(Node* root, const SkIRect query, SkTDArray<void*>* results) const; 1.169 + 1.170 + /** 1.171 + * This performs a bottom-up bulk load using the STR (sort-tile-recursive) algorithm, this 1.172 + * seems to generally produce better, more consistent trees at significantly lower cost than 1.173 + * repeated insertions. 1.174 + * 1.175 + * This consumes the input array. 1.176 + * 1.177 + * TODO: Experiment with other bulk-load algorithms (in particular the Hilbert pack variant, 1.178 + * which groups rects by position on the Hilbert curve, is probably worth a look). There also 1.179 + * exist top-down bulk load variants (VAMSplit, TopDownGreedy, etc). 1.180 + */ 1.181 + Branch bulkLoad(SkTDArray<Branch>* branches, int level = 0); 1.182 + 1.183 + void validate(); 1.184 + int validateSubtree(Node* root, SkIRect bounds, bool isRoot = false); 1.185 + 1.186 + const int fMinChildren; 1.187 + const int fMaxChildren; 1.188 + const size_t fNodeSize; 1.189 + 1.190 + // This is the count of data elements (rather than total nodes in the tree) 1.191 + int fCount; 1.192 + 1.193 + Branch fRoot; 1.194 + SkChunkAlloc fNodes; 1.195 + SkTDArray<Branch> fDeferredInserts; 1.196 + SkScalar fAspectRatio; 1.197 + bool fSortWhenBulkLoading; 1.198 + 1.199 + Node* allocateNode(uint16_t level); 1.200 + 1.201 + typedef SkBBoxHierarchy INHERITED; 1.202 +}; 1.203 + 1.204 +#endif