1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/core/SkRegionPriv.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,233 @@ 1.4 + 1.5 +/* 1.6 + * Copyright 2006 The Android Open Source Project 1.7 + * 1.8 + * Use of this source code is governed by a BSD-style license that can be 1.9 + * found in the LICENSE file. 1.10 + */ 1.11 + 1.12 + 1.13 +#ifndef SkRegionPriv_DEFINED 1.14 +#define SkRegionPriv_DEFINED 1.15 + 1.16 +#include "SkRegion.h" 1.17 +#include "SkThread.h" 1.18 + 1.19 +#define assert_sentinel(value, isSentinel) \ 1.20 + SkASSERT(((value) == SkRegion::kRunTypeSentinel) == isSentinel) 1.21 + 1.22 +//SkDEBUGCODE(extern int32_t gRgnAllocCounter;) 1.23 + 1.24 +#ifdef SK_DEBUG 1.25 +// Given the first interval (just past the interval-count), compute the 1.26 +// interval count, by search for the x-sentinel 1.27 +// 1.28 +static int compute_intervalcount(const SkRegion::RunType runs[]) { 1.29 + const SkRegion::RunType* curr = runs; 1.30 + while (*curr < SkRegion::kRunTypeSentinel) { 1.31 + SkASSERT(curr[0] < curr[1]); 1.32 + SkASSERT(curr[1] < SkRegion::kRunTypeSentinel); 1.33 + curr += 2; 1.34 + } 1.35 + return (curr - runs) >> 1; 1.36 +} 1.37 +#endif 1.38 + 1.39 +struct SkRegion::RunHead { 1.40 +private: 1.41 + 1.42 +public: 1.43 + int32_t fRefCnt; 1.44 + int32_t fRunCount; 1.45 + 1.46 + /** 1.47 + * Number of spans with different Y values. This does not count the initial 1.48 + * Top value, nor does it count the final Y-Sentinel value. In the logical 1.49 + * case of a rectangle, this would return 1, and an empty region would 1.50 + * return 0. 1.51 + */ 1.52 + int getYSpanCount() const { 1.53 + return fYSpanCount; 1.54 + } 1.55 + 1.56 + /** 1.57 + * Number of intervals in the entire region. This equals the number of 1.58 + * rects that would be returned by the Iterator. In the logical case of 1.59 + * a rect, this would return 1, and an empty region would return 0. 1.60 + */ 1.61 + int getIntervalCount() const { 1.62 + return fIntervalCount; 1.63 + } 1.64 + 1.65 + static RunHead* Alloc(int count) { 1.66 + //SkDEBUGCODE(sk_atomic_inc(&gRgnAllocCounter);) 1.67 + //SkDEBUGF(("************** gRgnAllocCounter::alloc %d\n", gRgnAllocCounter)); 1.68 + 1.69 + SkASSERT(count >= SkRegion::kRectRegionRuns); 1.70 + 1.71 + RunHead* head = (RunHead*)sk_malloc_throw(sizeof(RunHead) + count * sizeof(RunType)); 1.72 + head->fRefCnt = 1; 1.73 + head->fRunCount = count; 1.74 + // these must be filled in later, otherwise we will be invalid 1.75 + head->fYSpanCount = 0; 1.76 + head->fIntervalCount = 0; 1.77 + return head; 1.78 + } 1.79 + 1.80 + static RunHead* Alloc(int count, int yspancount, int intervalCount) { 1.81 + SkASSERT(yspancount > 0); 1.82 + SkASSERT(intervalCount > 1); 1.83 + 1.84 + RunHead* head = Alloc(count); 1.85 + head->fYSpanCount = yspancount; 1.86 + head->fIntervalCount = intervalCount; 1.87 + return head; 1.88 + } 1.89 + 1.90 + SkRegion::RunType* writable_runs() { 1.91 + SkASSERT(fRefCnt == 1); 1.92 + return (SkRegion::RunType*)(this + 1); 1.93 + } 1.94 + 1.95 + const SkRegion::RunType* readonly_runs() const { 1.96 + return (const SkRegion::RunType*)(this + 1); 1.97 + } 1.98 + 1.99 + RunHead* ensureWritable() { 1.100 + RunHead* writable = this; 1.101 + if (fRefCnt > 1) { 1.102 + // We need to alloc & copy the current region before we call 1.103 + // sk_atomic_dec because it could be freed in the meantime, 1.104 + // otherwise. 1.105 + writable = Alloc(fRunCount, fYSpanCount, fIntervalCount); 1.106 + memcpy(writable->writable_runs(), this->readonly_runs(), 1.107 + fRunCount * sizeof(RunType)); 1.108 + 1.109 + // fRefCount might have changed since we last checked. 1.110 + // If we own the last reference at this point, we need to 1.111 + // free the memory. 1.112 + if (sk_atomic_dec(&fRefCnt) == 1) { 1.113 + sk_free(this); 1.114 + } 1.115 + } 1.116 + return writable; 1.117 + } 1.118 + 1.119 + /** 1.120 + * Given a scanline (including its Bottom value at runs[0]), return the next 1.121 + * scanline. Asserts that there is one (i.e. runs[0] < Sentinel) 1.122 + */ 1.123 + static SkRegion::RunType* SkipEntireScanline(const SkRegion::RunType runs[]) { 1.124 + // we are not the Y Sentinel 1.125 + SkASSERT(runs[0] < SkRegion::kRunTypeSentinel); 1.126 + 1.127 + const int intervals = runs[1]; 1.128 + SkASSERT(runs[2 + intervals * 2] == SkRegion::kRunTypeSentinel); 1.129 +#ifdef SK_DEBUG 1.130 + { 1.131 + int n = compute_intervalcount(&runs[2]); 1.132 + SkASSERT(n == intervals); 1.133 + } 1.134 +#endif 1.135 + 1.136 + // skip the entire line [B N [L R] S] 1.137 + runs += 1 + 1 + intervals * 2 + 1; 1.138 + return const_cast<SkRegion::RunType*>(runs); 1.139 + } 1.140 + 1.141 + 1.142 + /** 1.143 + * Return the scanline that contains the Y value. This requires that the Y 1.144 + * value is already known to be contained within the bounds of the region, 1.145 + * and so this routine never returns NULL. 1.146 + * 1.147 + * It returns the beginning of the scanline, starting with its Bottom value. 1.148 + */ 1.149 + SkRegion::RunType* findScanline(int y) const { 1.150 + const RunType* runs = this->readonly_runs(); 1.151 + 1.152 + // if the top-check fails, we didn't do a quick check on the bounds 1.153 + SkASSERT(y >= runs[0]); 1.154 + 1.155 + runs += 1; // skip top-Y 1.156 + for (;;) { 1.157 + int bottom = runs[0]; 1.158 + // If we hit this, we've walked off the region, and our bounds check 1.159 + // failed. 1.160 + SkASSERT(bottom < SkRegion::kRunTypeSentinel); 1.161 + if (y < bottom) { 1.162 + break; 1.163 + } 1.164 + runs = SkipEntireScanline(runs); 1.165 + } 1.166 + return const_cast<SkRegion::RunType*>(runs); 1.167 + } 1.168 + 1.169 + // Copy src runs into us, computing interval counts and bounds along the way 1.170 + void computeRunBounds(SkIRect* bounds) { 1.171 + RunType* runs = this->writable_runs(); 1.172 + bounds->fTop = *runs++; 1.173 + 1.174 + int bot; 1.175 + int ySpanCount = 0; 1.176 + int intervalCount = 0; 1.177 + int left = SK_MaxS32; 1.178 + int rite = SK_MinS32; 1.179 + 1.180 + do { 1.181 + bot = *runs++; 1.182 + SkASSERT(bot < SkRegion::kRunTypeSentinel); 1.183 + ySpanCount += 1; 1.184 + 1.185 + const int intervals = *runs++; 1.186 + SkASSERT(intervals >= 0); 1.187 + SkASSERT(intervals < SkRegion::kRunTypeSentinel); 1.188 + 1.189 + if (intervals > 0) { 1.190 +#ifdef SK_DEBUG 1.191 + { 1.192 + int n = compute_intervalcount(runs); 1.193 + SkASSERT(n == intervals); 1.194 + } 1.195 +#endif 1.196 + RunType L = runs[0]; 1.197 + SkASSERT(L < SkRegion::kRunTypeSentinel); 1.198 + if (left > L) { 1.199 + left = L; 1.200 + } 1.201 + 1.202 + runs += intervals * 2; 1.203 + RunType R = runs[-1]; 1.204 + SkASSERT(R < SkRegion::kRunTypeSentinel); 1.205 + if (rite < R) { 1.206 + rite = R; 1.207 + } 1.208 + 1.209 + intervalCount += intervals; 1.210 + } 1.211 + SkASSERT(SkRegion::kRunTypeSentinel == *runs); 1.212 + runs += 1; // skip x-sentinel 1.213 + 1.214 + // test Y-sentinel 1.215 + } while (SkRegion::kRunTypeSentinel > *runs); 1.216 + 1.217 +#ifdef SK_DEBUG 1.218 + // +1 to skip the last Y-sentinel 1.219 + int runCount = runs - this->writable_runs() + 1; 1.220 + SkASSERT(runCount == fRunCount); 1.221 +#endif 1.222 + 1.223 + fYSpanCount = ySpanCount; 1.224 + fIntervalCount = intervalCount; 1.225 + 1.226 + bounds->fLeft = left; 1.227 + bounds->fRight = rite; 1.228 + bounds->fBottom = bot; 1.229 + } 1.230 + 1.231 +private: 1.232 + int32_t fYSpanCount; 1.233 + int32_t fIntervalCount; 1.234 +}; 1.235 + 1.236 +#endif