gfx/skia/trunk/src/core/SkWriteBuffer.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/core/SkWriteBuffer.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,322 @@
     1.4 +
     1.5 +/*
     1.6 + * Copyright 2012 Google Inc.
     1.7 + *
     1.8 + * Use of this source code is governed by a BSD-style license that can be
     1.9 + * found in the LICENSE file.
    1.10 + */
    1.11 +
    1.12 +#include "SkWriteBuffer.h"
    1.13 +#include "SkBitmap.h"
    1.14 +#include "SkData.h"
    1.15 +#include "SkPixelRef.h"
    1.16 +#include "SkPtrRecorder.h"
    1.17 +#include "SkStream.h"
    1.18 +#include "SkTypeface.h"
    1.19 +
    1.20 +SkWriteBuffer::SkWriteBuffer(uint32_t flags)
    1.21 +    : fFlags(flags)
    1.22 +    , fFactorySet(NULL)
    1.23 +    , fNamedFactorySet(NULL)
    1.24 +    , fBitmapHeap(NULL)
    1.25 +    , fTFSet(NULL)
    1.26 +    , fBitmapEncoder(NULL) {
    1.27 +}
    1.28 +
    1.29 +SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
    1.30 +    : fFlags(flags)
    1.31 +    , fFactorySet(NULL)
    1.32 +    , fNamedFactorySet(NULL)
    1.33 +    , fWriter(storage, storageSize)
    1.34 +    , fBitmapHeap(NULL)
    1.35 +    , fTFSet(NULL)
    1.36 +    , fBitmapEncoder(NULL) {
    1.37 +}
    1.38 +
    1.39 +SkWriteBuffer::~SkWriteBuffer() {
    1.40 +    SkSafeUnref(fFactorySet);
    1.41 +    SkSafeUnref(fNamedFactorySet);
    1.42 +    SkSafeUnref(fBitmapHeap);
    1.43 +    SkSafeUnref(fTFSet);
    1.44 +}
    1.45 +
    1.46 +void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
    1.47 +    fWriter.write32(SkToU32(size));
    1.48 +    fWriter.writePad(data, size);
    1.49 +}
    1.50 +
    1.51 +void SkWriteBuffer::writeBool(bool value) {
    1.52 +    fWriter.writeBool(value);
    1.53 +}
    1.54 +
    1.55 +void SkWriteBuffer::writeFixed(SkFixed value) {
    1.56 +    fWriter.write32(value);
    1.57 +}
    1.58 +
    1.59 +void SkWriteBuffer::writeScalar(SkScalar value) {
    1.60 +    fWriter.writeScalar(value);
    1.61 +}
    1.62 +
    1.63 +void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
    1.64 +    fWriter.write32(count);
    1.65 +    fWriter.write(value, count * sizeof(SkScalar));
    1.66 +}
    1.67 +
    1.68 +void SkWriteBuffer::writeInt(int32_t value) {
    1.69 +    fWriter.write32(value);
    1.70 +}
    1.71 +
    1.72 +void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
    1.73 +    fWriter.write32(count);
    1.74 +    fWriter.write(value, count * sizeof(int32_t));
    1.75 +}
    1.76 +
    1.77 +void SkWriteBuffer::writeUInt(uint32_t value) {
    1.78 +    fWriter.write32(value);
    1.79 +}
    1.80 +
    1.81 +void SkWriteBuffer::write32(int32_t value) {
    1.82 +    fWriter.write32(value);
    1.83 +}
    1.84 +
    1.85 +void SkWriteBuffer::writeString(const char* value) {
    1.86 +    fWriter.writeString(value);
    1.87 +}
    1.88 +
    1.89 +void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
    1.90 +                                              SkPaint::TextEncoding encoding) {
    1.91 +    fWriter.writeInt(encoding);
    1.92 +    fWriter.writeInt(SkToU32(byteLength));
    1.93 +    fWriter.write(value, byteLength);
    1.94 +}
    1.95 +
    1.96 +
    1.97 +void SkWriteBuffer::writeColor(const SkColor& color) {
    1.98 +    fWriter.write32(color);
    1.99 +}
   1.100 +
   1.101 +void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
   1.102 +    fWriter.write32(count);
   1.103 +    fWriter.write(color, count * sizeof(SkColor));
   1.104 +}
   1.105 +
   1.106 +void SkWriteBuffer::writePoint(const SkPoint& point) {
   1.107 +    fWriter.writeScalar(point.fX);
   1.108 +    fWriter.writeScalar(point.fY);
   1.109 +}
   1.110 +
   1.111 +void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
   1.112 +    fWriter.write32(count);
   1.113 +    fWriter.write(point, count * sizeof(SkPoint));
   1.114 +}
   1.115 +
   1.116 +void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
   1.117 +    fWriter.writeMatrix(matrix);
   1.118 +}
   1.119 +
   1.120 +void SkWriteBuffer::writeIRect(const SkIRect& rect) {
   1.121 +    fWriter.write(&rect, sizeof(SkIRect));
   1.122 +}
   1.123 +
   1.124 +void SkWriteBuffer::writeRect(const SkRect& rect) {
   1.125 +    fWriter.writeRect(rect);
   1.126 +}
   1.127 +
   1.128 +void SkWriteBuffer::writeRegion(const SkRegion& region) {
   1.129 +    fWriter.writeRegion(region);
   1.130 +}
   1.131 +
   1.132 +void SkWriteBuffer::writePath(const SkPath& path) {
   1.133 +    fWriter.writePath(path);
   1.134 +}
   1.135 +
   1.136 +size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
   1.137 +    fWriter.write32(SkToU32(length));
   1.138 +    size_t bytesWritten = fWriter.readFromStream(stream, length);
   1.139 +    if (bytesWritten < length) {
   1.140 +        fWriter.reservePad(length - bytesWritten);
   1.141 +    }
   1.142 +    return bytesWritten;
   1.143 +}
   1.144 +
   1.145 +bool SkWriteBuffer::writeToStream(SkWStream* stream) {
   1.146 +    return fWriter.writeToStream(stream);
   1.147 +}
   1.148 +
   1.149 +static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
   1.150 +                                 const SkIPoint& origin) {
   1.151 +    buffer->writeUInt(SkToU32(data->size()));
   1.152 +    buffer->getWriter32()->writePad(data->data(), data->size());
   1.153 +    buffer->write32(origin.fX);
   1.154 +    buffer->write32(origin.fY);
   1.155 +}
   1.156 +
   1.157 +void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
   1.158 +    // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
   1.159 +    // right size.
   1.160 +    this->writeInt(bitmap.width());
   1.161 +    this->writeInt(bitmap.height());
   1.162 +
   1.163 +    // Record information about the bitmap in one of three ways, in order of priority:
   1.164 +    // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
   1.165 +    //    bitmap entirely or serialize it later as desired. A boolean value of true will be written
   1.166 +    //    to the stream to signify that a heap was used.
   1.167 +    // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
   1.168 +    //    bitmap. After writing a boolean value of false, signifying that a heap was not used, write
   1.169 +    //    the size of the encoded data. A non-zero size signifies that encoded data was written.
   1.170 +    // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
   1.171 +    //    not used, write a zero to signify that the data was not encoded.
   1.172 +    bool useBitmapHeap = fBitmapHeap != NULL;
   1.173 +    // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
   1.174 +    // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
   1.175 +    this->writeBool(useBitmapHeap);
   1.176 +    if (useBitmapHeap) {
   1.177 +        SkASSERT(NULL == fBitmapEncoder);
   1.178 +        int32_t slot = fBitmapHeap->insert(bitmap);
   1.179 +        fWriter.write32(slot);
   1.180 +        // crbug.com/155875
   1.181 +        // The generation ID is not required information. We write it to prevent collisions
   1.182 +        // in SkFlatDictionary.  It is possible to get a collision when a previously
   1.183 +        // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
   1.184 +        // and the instance currently being written is re-using the same slot from the
   1.185 +        // bitmap heap.
   1.186 +        fWriter.write32(bitmap.getGenerationID());
   1.187 +        return;
   1.188 +    }
   1.189 +
   1.190 +    // see if the pixelref already has an encoded version
   1.191 +    if (bitmap.pixelRef()) {
   1.192 +        SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData());
   1.193 +        if (data.get() != NULL) {
   1.194 +            write_encoded_bitmap(this, data, bitmap.pixelRefOrigin());
   1.195 +            return;
   1.196 +        }
   1.197 +    }
   1.198 +
   1.199 +    // see if the caller wants to manually encode
   1.200 +    if (fBitmapEncoder != NULL) {
   1.201 +        SkASSERT(NULL == fBitmapHeap);
   1.202 +        size_t offset = 0;  // this parameter is deprecated/ignored
   1.203 +        // if we have to "encode" the bitmap, then we assume there is no
   1.204 +        // offset to share, since we are effectively creating a new pixelref
   1.205 +        SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap));
   1.206 +        if (data.get() != NULL) {
   1.207 +            write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
   1.208 +            return;
   1.209 +        }
   1.210 +    }
   1.211 +
   1.212 +    // Bitmap was not encoded. Record a zero, implying that the reader need not decode.
   1.213 +    this->writeUInt(0);
   1.214 +    bitmap.flatten(*this);
   1.215 +}
   1.216 +
   1.217 +void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
   1.218 +    if (NULL == obj || NULL == fTFSet) {
   1.219 +        fWriter.write32(0);
   1.220 +    } else {
   1.221 +        fWriter.write32(fTFSet->add(obj));
   1.222 +    }
   1.223 +}
   1.224 +
   1.225 +SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
   1.226 +    SkRefCnt_SafeAssign(fFactorySet, rec);
   1.227 +    if (fNamedFactorySet != NULL) {
   1.228 +        fNamedFactorySet->unref();
   1.229 +        fNamedFactorySet = NULL;
   1.230 +    }
   1.231 +    return rec;
   1.232 +}
   1.233 +
   1.234 +SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
   1.235 +    SkRefCnt_SafeAssign(fNamedFactorySet, rec);
   1.236 +    if (fFactorySet != NULL) {
   1.237 +        fFactorySet->unref();
   1.238 +        fFactorySet = NULL;
   1.239 +    }
   1.240 +    return rec;
   1.241 +}
   1.242 +
   1.243 +SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
   1.244 +    SkRefCnt_SafeAssign(fTFSet, rec);
   1.245 +    return rec;
   1.246 +}
   1.247 +
   1.248 +void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
   1.249 +    SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
   1.250 +    if (bitmapHeap != NULL) {
   1.251 +        SkASSERT(NULL == fBitmapEncoder);
   1.252 +        fBitmapEncoder = NULL;
   1.253 +    }
   1.254 +}
   1.255 +
   1.256 +void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) {
   1.257 +    fBitmapEncoder = bitmapEncoder;
   1.258 +    if (bitmapEncoder != NULL) {
   1.259 +        SkASSERT(NULL == fBitmapHeap);
   1.260 +        SkSafeUnref(fBitmapHeap);
   1.261 +        fBitmapHeap = NULL;
   1.262 +    }
   1.263 +}
   1.264 +
   1.265 +void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
   1.266 +    /*
   1.267 +     *  If we have a factoryset, then the first 32bits tell us...
   1.268 +     *       0: failure to write the flattenable
   1.269 +     *      >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
   1.270 +     *  If we don't have a factoryset, then the first "ptr" is either the
   1.271 +     *  factory, or null for failure.
   1.272 +     *
   1.273 +     *  The distinction is important, since 0-index is 32bits (always), but a
   1.274 +     *  0-functionptr might be 32 or 64 bits.
   1.275 +     */
   1.276 +    if (NULL == flattenable) {
   1.277 +        if (this->isValidating()) {
   1.278 +            this->writeString("");
   1.279 +        } else if (fFactorySet != NULL || fNamedFactorySet != NULL) {
   1.280 +            this->write32(0);
   1.281 +        } else {
   1.282 +            this->writeFunctionPtr(NULL);
   1.283 +        }
   1.284 +        return;
   1.285 +    }
   1.286 +
   1.287 +    SkFlattenable::Factory factory = flattenable->getFactory();
   1.288 +    SkASSERT(factory != NULL);
   1.289 +
   1.290 +    /*
   1.291 +     *  We can write 1 of 3 versions of the flattenable:
   1.292 +     *  1.  function-ptr : this is the fastest for the reader, but assumes that
   1.293 +     *      the writer and reader are in the same process.
   1.294 +     *  2.  index into fFactorySet : This is assumes the writer will later
   1.295 +     *      resolve the function-ptrs into strings for its reader. SkPicture
   1.296 +     *      does exactly this, by writing a table of names (matching the indices)
   1.297 +     *      up front in its serialized form.
   1.298 +     *  3.  index into fNamedFactorySet. fNamedFactorySet will also store the
   1.299 +     *      name. SkGPipe uses this technique so it can write the name to its
   1.300 +     *      stream before writing the flattenable.
   1.301 +     */
   1.302 +    if (this->isValidating()) {
   1.303 +        this->writeString(flattenable->getTypeName());
   1.304 +    } else if (fFactorySet) {
   1.305 +        this->write32(fFactorySet->add(factory));
   1.306 +    } else if (fNamedFactorySet) {
   1.307 +        int32_t index = fNamedFactorySet->find(factory);
   1.308 +        this->write32(index);
   1.309 +        if (0 == index) {
   1.310 +            return;
   1.311 +        }
   1.312 +    } else {
   1.313 +        this->writeFunctionPtr((void*)factory);
   1.314 +    }
   1.315 +
   1.316 +    // make room for the size of the flattened object
   1.317 +    (void)fWriter.reserve(sizeof(uint32_t));
   1.318 +    // record the current size, so we can subtract after the object writes.
   1.319 +    size_t offset = fWriter.bytesWritten();
   1.320 +    // now flatten the object
   1.321 +    flattenable->flatten(*this);
   1.322 +    size_t objSize = fWriter.bytesWritten() - offset;
   1.323 +    // record the obj's size
   1.324 +    fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
   1.325 +}

mercurial