1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/gpu/GrPathUtils.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,868 @@ 1.4 +/* 1.5 + * Copyright 2011 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#include "GrPathUtils.h" 1.12 + 1.13 +#include "GrPoint.h" 1.14 +#include "SkGeometry.h" 1.15 + 1.16 +SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol, 1.17 + const SkMatrix& viewM, 1.18 + const SkRect& pathBounds) { 1.19 + // In order to tesselate the path we get a bound on how much the matrix can 1.20 + // stretch when mapping to screen coordinates. 1.21 + SkScalar stretch = viewM.getMaxStretch(); 1.22 + SkScalar srcTol = devTol; 1.23 + 1.24 + if (stretch < 0) { 1.25 + // take worst case mapRadius amoung four corners. 1.26 + // (less than perfect) 1.27 + for (int i = 0; i < 4; ++i) { 1.28 + SkMatrix mat; 1.29 + mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, 1.30 + (i < 2) ? pathBounds.fTop : pathBounds.fBottom); 1.31 + mat.postConcat(viewM); 1.32 + stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); 1.33 + } 1.34 + } 1.35 + srcTol = SkScalarDiv(srcTol, stretch); 1.36 + return srcTol; 1.37 +} 1.38 + 1.39 +static const int MAX_POINTS_PER_CURVE = 1 << 10; 1.40 +static const SkScalar gMinCurveTol = 0.0001f; 1.41 + 1.42 +uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[], 1.43 + SkScalar tol) { 1.44 + if (tol < gMinCurveTol) { 1.45 + tol = gMinCurveTol; 1.46 + } 1.47 + SkASSERT(tol > 0); 1.48 + 1.49 + SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); 1.50 + if (d <= tol) { 1.51 + return 1; 1.52 + } else { 1.53 + // Each time we subdivide, d should be cut in 4. So we need to 1.54 + // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) 1.55 + // points. 1.56 + // 2^(log4(x)) = sqrt(x); 1.57 + int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol))); 1.58 + int pow2 = GrNextPow2(temp); 1.59 + // Because of NaNs & INFs we can wind up with a degenerate temp 1.60 + // such that pow2 comes out negative. Also, our point generator 1.61 + // will always output at least one pt. 1.62 + if (pow2 < 1) { 1.63 + pow2 = 1; 1.64 + } 1.65 + return GrMin(pow2, MAX_POINTS_PER_CURVE); 1.66 + } 1.67 +} 1.68 + 1.69 +uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0, 1.70 + const GrPoint& p1, 1.71 + const GrPoint& p2, 1.72 + SkScalar tolSqd, 1.73 + GrPoint** points, 1.74 + uint32_t pointsLeft) { 1.75 + if (pointsLeft < 2 || 1.76 + (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { 1.77 + (*points)[0] = p2; 1.78 + *points += 1; 1.79 + return 1; 1.80 + } 1.81 + 1.82 + GrPoint q[] = { 1.83 + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, 1.84 + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, 1.85 + }; 1.86 + GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; 1.87 + 1.88 + pointsLeft >>= 1; 1.89 + uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); 1.90 + uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); 1.91 + return a + b; 1.92 +} 1.93 + 1.94 +uint32_t GrPathUtils::cubicPointCount(const GrPoint points[], 1.95 + SkScalar tol) { 1.96 + if (tol < gMinCurveTol) { 1.97 + tol = gMinCurveTol; 1.98 + } 1.99 + SkASSERT(tol > 0); 1.100 + 1.101 + SkScalar d = GrMax( 1.102 + points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), 1.103 + points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); 1.104 + d = SkScalarSqrt(d); 1.105 + if (d <= tol) { 1.106 + return 1; 1.107 + } else { 1.108 + int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol))); 1.109 + int pow2 = GrNextPow2(temp); 1.110 + // Because of NaNs & INFs we can wind up with a degenerate temp 1.111 + // such that pow2 comes out negative. Also, our point generator 1.112 + // will always output at least one pt. 1.113 + if (pow2 < 1) { 1.114 + pow2 = 1; 1.115 + } 1.116 + return GrMin(pow2, MAX_POINTS_PER_CURVE); 1.117 + } 1.118 +} 1.119 + 1.120 +uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0, 1.121 + const GrPoint& p1, 1.122 + const GrPoint& p2, 1.123 + const GrPoint& p3, 1.124 + SkScalar tolSqd, 1.125 + GrPoint** points, 1.126 + uint32_t pointsLeft) { 1.127 + if (pointsLeft < 2 || 1.128 + (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && 1.129 + p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { 1.130 + (*points)[0] = p3; 1.131 + *points += 1; 1.132 + return 1; 1.133 + } 1.134 + GrPoint q[] = { 1.135 + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, 1.136 + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, 1.137 + { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } 1.138 + }; 1.139 + GrPoint r[] = { 1.140 + { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, 1.141 + { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } 1.142 + }; 1.143 + GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; 1.144 + pointsLeft >>= 1; 1.145 + uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); 1.146 + uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); 1.147 + return a + b; 1.148 +} 1.149 + 1.150 +int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, 1.151 + SkScalar tol) { 1.152 + if (tol < gMinCurveTol) { 1.153 + tol = gMinCurveTol; 1.154 + } 1.155 + SkASSERT(tol > 0); 1.156 + 1.157 + int pointCount = 0; 1.158 + *subpaths = 1; 1.159 + 1.160 + bool first = true; 1.161 + 1.162 + SkPath::Iter iter(path, false); 1.163 + SkPath::Verb verb; 1.164 + 1.165 + GrPoint pts[4]; 1.166 + while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { 1.167 + 1.168 + switch (verb) { 1.169 + case SkPath::kLine_Verb: 1.170 + pointCount += 1; 1.171 + break; 1.172 + case SkPath::kQuad_Verb: 1.173 + pointCount += quadraticPointCount(pts, tol); 1.174 + break; 1.175 + case SkPath::kCubic_Verb: 1.176 + pointCount += cubicPointCount(pts, tol); 1.177 + break; 1.178 + case SkPath::kMove_Verb: 1.179 + pointCount += 1; 1.180 + if (!first) { 1.181 + ++(*subpaths); 1.182 + } 1.183 + break; 1.184 + default: 1.185 + break; 1.186 + } 1.187 + first = false; 1.188 + } 1.189 + return pointCount; 1.190 +} 1.191 + 1.192 +void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) { 1.193 + SkMatrix m; 1.194 + // We want M such that M * xy_pt = uv_pt 1.195 + // We know M * control_pts = [0 1/2 1] 1.196 + // [0 0 1] 1.197 + // [1 1 1] 1.198 + // And control_pts = [x0 x1 x2] 1.199 + // [y0 y1 y2] 1.200 + // [1 1 1 ] 1.201 + // We invert the control pt matrix and post concat to both sides to get M. 1.202 + // Using the known form of the control point matrix and the result, we can 1.203 + // optimize and improve precision. 1.204 + 1.205 + double x0 = qPts[0].fX; 1.206 + double y0 = qPts[0].fY; 1.207 + double x1 = qPts[1].fX; 1.208 + double y1 = qPts[1].fY; 1.209 + double x2 = qPts[2].fX; 1.210 + double y2 = qPts[2].fY; 1.211 + double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2; 1.212 + 1.213 + if (!sk_float_isfinite(det) 1.214 + || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { 1.215 + // The quad is degenerate. Hopefully this is rare. Find the pts that are 1.216 + // farthest apart to compute a line (unless it is really a pt). 1.217 + SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); 1.218 + int maxEdge = 0; 1.219 + SkScalar d = qPts[1].distanceToSqd(qPts[2]); 1.220 + if (d > maxD) { 1.221 + maxD = d; 1.222 + maxEdge = 1; 1.223 + } 1.224 + d = qPts[2].distanceToSqd(qPts[0]); 1.225 + if (d > maxD) { 1.226 + maxD = d; 1.227 + maxEdge = 2; 1.228 + } 1.229 + // We could have a tolerance here, not sure if it would improve anything 1.230 + if (maxD > 0) { 1.231 + // Set the matrix to give (u = 0, v = distance_to_line) 1.232 + GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; 1.233 + // when looking from the point 0 down the line we want positive 1.234 + // distances to be to the left. This matches the non-degenerate 1.235 + // case. 1.236 + lineVec.setOrthog(lineVec, GrPoint::kLeft_Side); 1.237 + lineVec.dot(qPts[0]); 1.238 + // first row 1.239 + fM[0] = 0; 1.240 + fM[1] = 0; 1.241 + fM[2] = 0; 1.242 + // second row 1.243 + fM[3] = lineVec.fX; 1.244 + fM[4] = lineVec.fY; 1.245 + fM[5] = -lineVec.dot(qPts[maxEdge]); 1.246 + } else { 1.247 + // It's a point. It should cover zero area. Just set the matrix such 1.248 + // that (u, v) will always be far away from the quad. 1.249 + fM[0] = 0; fM[1] = 0; fM[2] = 100.f; 1.250 + fM[3] = 0; fM[4] = 0; fM[5] = 100.f; 1.251 + } 1.252 + } else { 1.253 + double scale = 1.0/det; 1.254 + 1.255 + // compute adjugate matrix 1.256 + double a0, a1, a2, a3, a4, a5, a6, a7, a8; 1.257 + a0 = y1-y2; 1.258 + a1 = x2-x1; 1.259 + a2 = x1*y2-x2*y1; 1.260 + 1.261 + a3 = y2-y0; 1.262 + a4 = x0-x2; 1.263 + a5 = x2*y0-x0*y2; 1.264 + 1.265 + a6 = y0-y1; 1.266 + a7 = x1-x0; 1.267 + a8 = x0*y1-x1*y0; 1.268 + 1.269 + // this performs the uv_pts*adjugate(control_pts) multiply, 1.270 + // then does the scale by 1/det afterwards to improve precision 1.271 + m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale); 1.272 + m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale); 1.273 + m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale); 1.274 + 1.275 + m[SkMatrix::kMSkewY] = (float)(a6*scale); 1.276 + m[SkMatrix::kMScaleY] = (float)(a7*scale); 1.277 + m[SkMatrix::kMTransY] = (float)(a8*scale); 1.278 + 1.279 + m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale); 1.280 + m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale); 1.281 + m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale); 1.282 + 1.283 + // The matrix should not have perspective. 1.284 + SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f); 1.285 + SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL); 1.286 + SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL); 1.287 + 1.288 + // It may not be normalized to have 1.0 in the bottom right 1.289 + float m33 = m.get(SkMatrix::kMPersp2); 1.290 + if (1.f != m33) { 1.291 + m33 = 1.f / m33; 1.292 + fM[0] = m33 * m.get(SkMatrix::kMScaleX); 1.293 + fM[1] = m33 * m.get(SkMatrix::kMSkewX); 1.294 + fM[2] = m33 * m.get(SkMatrix::kMTransX); 1.295 + fM[3] = m33 * m.get(SkMatrix::kMSkewY); 1.296 + fM[4] = m33 * m.get(SkMatrix::kMScaleY); 1.297 + fM[5] = m33 * m.get(SkMatrix::kMTransY); 1.298 + } else { 1.299 + fM[0] = m.get(SkMatrix::kMScaleX); 1.300 + fM[1] = m.get(SkMatrix::kMSkewX); 1.301 + fM[2] = m.get(SkMatrix::kMTransX); 1.302 + fM[3] = m.get(SkMatrix::kMSkewY); 1.303 + fM[4] = m.get(SkMatrix::kMScaleY); 1.304 + fM[5] = m.get(SkMatrix::kMTransY); 1.305 + } 1.306 + } 1.307 +} 1.308 + 1.309 +//////////////////////////////////////////////////////////////////////////////// 1.310 + 1.311 +// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 ) 1.312 +// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1)) 1.313 +// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2)) 1.314 +void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) { 1.315 + const SkScalar w2 = 2.f * weight; 1.316 + klm[0] = p[2].fY - p[0].fY; 1.317 + klm[1] = p[0].fX - p[2].fX; 1.318 + klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX; 1.319 + 1.320 + klm[3] = w2 * (p[1].fY - p[0].fY); 1.321 + klm[4] = w2 * (p[0].fX - p[1].fX); 1.322 + klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY); 1.323 + 1.324 + klm[6] = w2 * (p[2].fY - p[1].fY); 1.325 + klm[7] = w2 * (p[1].fX - p[2].fX); 1.326 + klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY); 1.327 + 1.328 + // scale the max absolute value of coeffs to 10 1.329 + SkScalar scale = 0.f; 1.330 + for (int i = 0; i < 9; ++i) { 1.331 + scale = SkMaxScalar(scale, SkScalarAbs(klm[i])); 1.332 + } 1.333 + SkASSERT(scale > 0.f); 1.334 + scale = 10.f / scale; 1.335 + for (int i = 0; i < 9; ++i) { 1.336 + klm[i] *= scale; 1.337 + } 1.338 +} 1.339 + 1.340 +//////////////////////////////////////////////////////////////////////////////// 1.341 + 1.342 +namespace { 1.343 + 1.344 +// a is the first control point of the cubic. 1.345 +// ab is the vector from a to the second control point. 1.346 +// dc is the vector from the fourth to the third control point. 1.347 +// d is the fourth control point. 1.348 +// p is the candidate quadratic control point. 1.349 +// this assumes that the cubic doesn't inflect and is simple 1.350 +bool is_point_within_cubic_tangents(const SkPoint& a, 1.351 + const SkVector& ab, 1.352 + const SkVector& dc, 1.353 + const SkPoint& d, 1.354 + SkPath::Direction dir, 1.355 + const SkPoint p) { 1.356 + SkVector ap = p - a; 1.357 + SkScalar apXab = ap.cross(ab); 1.358 + if (SkPath::kCW_Direction == dir) { 1.359 + if (apXab > 0) { 1.360 + return false; 1.361 + } 1.362 + } else { 1.363 + SkASSERT(SkPath::kCCW_Direction == dir); 1.364 + if (apXab < 0) { 1.365 + return false; 1.366 + } 1.367 + } 1.368 + 1.369 + SkVector dp = p - d; 1.370 + SkScalar dpXdc = dp.cross(dc); 1.371 + if (SkPath::kCW_Direction == dir) { 1.372 + if (dpXdc < 0) { 1.373 + return false; 1.374 + } 1.375 + } else { 1.376 + SkASSERT(SkPath::kCCW_Direction == dir); 1.377 + if (dpXdc > 0) { 1.378 + return false; 1.379 + } 1.380 + } 1.381 + return true; 1.382 +} 1.383 + 1.384 +void convert_noninflect_cubic_to_quads(const SkPoint p[4], 1.385 + SkScalar toleranceSqd, 1.386 + bool constrainWithinTangents, 1.387 + SkPath::Direction dir, 1.388 + SkTArray<SkPoint, true>* quads, 1.389 + int sublevel = 0) { 1.390 + 1.391 + // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is 1.392 + // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. 1.393 + 1.394 + SkVector ab = p[1] - p[0]; 1.395 + SkVector dc = p[2] - p[3]; 1.396 + 1.397 + if (ab.isZero()) { 1.398 + if (dc.isZero()) { 1.399 + SkPoint* degQuad = quads->push_back_n(3); 1.400 + degQuad[0] = p[0]; 1.401 + degQuad[1] = p[0]; 1.402 + degQuad[2] = p[3]; 1.403 + return; 1.404 + } 1.405 + ab = p[2] - p[0]; 1.406 + } 1.407 + if (dc.isZero()) { 1.408 + dc = p[1] - p[3]; 1.409 + } 1.410 + 1.411 + // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that 1.412 + // the quad point falls between the tangents becomes hard to enforce and we are likely to hit 1.413 + // the max subdivision count. However, in this case the cubic is approaching a line and the 1.414 + // accuracy of the quad point isn't so important. We check if the two middle cubic control 1.415 + // points are very close to the baseline vector. If so then we just pick quadratic points on the 1.416 + // control polygon. 1.417 + 1.418 + if (constrainWithinTangents) { 1.419 + SkVector da = p[0] - p[3]; 1.420 + SkScalar invDALengthSqd = da.lengthSqd(); 1.421 + if (invDALengthSqd > SK_ScalarNearlyZero) { 1.422 + invDALengthSqd = SkScalarInvert(invDALengthSqd); 1.423 + // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a. 1.424 + // same goed for point c using vector cd. 1.425 + SkScalar detABSqd = ab.cross(da); 1.426 + detABSqd = SkScalarSquare(detABSqd); 1.427 + SkScalar detDCSqd = dc.cross(da); 1.428 + detDCSqd = SkScalarSquare(detDCSqd); 1.429 + if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd && 1.430 + SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) { 1.431 + SkPoint b = p[0] + ab; 1.432 + SkPoint c = p[3] + dc; 1.433 + SkPoint mid = b + c; 1.434 + mid.scale(SK_ScalarHalf); 1.435 + // Insert two quadratics to cover the case when ab points away from d and/or dc 1.436 + // points away from a. 1.437 + if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) { 1.438 + SkPoint* qpts = quads->push_back_n(6); 1.439 + qpts[0] = p[0]; 1.440 + qpts[1] = b; 1.441 + qpts[2] = mid; 1.442 + qpts[3] = mid; 1.443 + qpts[4] = c; 1.444 + qpts[5] = p[3]; 1.445 + } else { 1.446 + SkPoint* qpts = quads->push_back_n(3); 1.447 + qpts[0] = p[0]; 1.448 + qpts[1] = mid; 1.449 + qpts[2] = p[3]; 1.450 + } 1.451 + return; 1.452 + } 1.453 + } 1.454 + } 1.455 + 1.456 + static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; 1.457 + static const int kMaxSubdivs = 10; 1.458 + 1.459 + ab.scale(kLengthScale); 1.460 + dc.scale(kLengthScale); 1.461 + 1.462 + // e0 and e1 are extrapolations along vectors ab and dc. 1.463 + SkVector c0 = p[0]; 1.464 + c0 += ab; 1.465 + SkVector c1 = p[3]; 1.466 + c1 += dc; 1.467 + 1.468 + SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1); 1.469 + if (dSqd < toleranceSqd) { 1.470 + SkPoint cAvg = c0; 1.471 + cAvg += c1; 1.472 + cAvg.scale(SK_ScalarHalf); 1.473 + 1.474 + bool subdivide = false; 1.475 + 1.476 + if (constrainWithinTangents && 1.477 + !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) { 1.478 + // choose a new cAvg that is the intersection of the two tangent lines. 1.479 + ab.setOrthog(ab); 1.480 + SkScalar z0 = -ab.dot(p[0]); 1.481 + dc.setOrthog(dc); 1.482 + SkScalar z1 = -dc.dot(p[3]); 1.483 + cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY); 1.484 + cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1); 1.485 + SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX); 1.486 + z = SkScalarInvert(z); 1.487 + cAvg.fX *= z; 1.488 + cAvg.fY *= z; 1.489 + if (sublevel <= kMaxSubdivs) { 1.490 + SkScalar d0Sqd = c0.distanceToSqd(cAvg); 1.491 + SkScalar d1Sqd = c1.distanceToSqd(cAvg); 1.492 + // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know 1.493 + // the distances and tolerance can't be negative. 1.494 + // (d0 + d1)^2 > toleranceSqd 1.495 + // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd 1.496 + SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd)); 1.497 + subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd; 1.498 + } 1.499 + } 1.500 + if (!subdivide) { 1.501 + SkPoint* pts = quads->push_back_n(3); 1.502 + pts[0] = p[0]; 1.503 + pts[1] = cAvg; 1.504 + pts[2] = p[3]; 1.505 + return; 1.506 + } 1.507 + } 1.508 + SkPoint choppedPts[7]; 1.509 + SkChopCubicAtHalf(p, choppedPts); 1.510 + convert_noninflect_cubic_to_quads(choppedPts + 0, 1.511 + toleranceSqd, 1.512 + constrainWithinTangents, 1.513 + dir, 1.514 + quads, 1.515 + sublevel + 1); 1.516 + convert_noninflect_cubic_to_quads(choppedPts + 3, 1.517 + toleranceSqd, 1.518 + constrainWithinTangents, 1.519 + dir, 1.520 + quads, 1.521 + sublevel + 1); 1.522 +} 1.523 +} 1.524 + 1.525 +void GrPathUtils::convertCubicToQuads(const GrPoint p[4], 1.526 + SkScalar tolScale, 1.527 + bool constrainWithinTangents, 1.528 + SkPath::Direction dir, 1.529 + SkTArray<SkPoint, true>* quads) { 1.530 + SkPoint chopped[10]; 1.531 + int count = SkChopCubicAtInflections(p, chopped); 1.532 + 1.533 + // base tolerance is 1 pixel. 1.534 + static const SkScalar kTolerance = SK_Scalar1; 1.535 + const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance)); 1.536 + 1.537 + for (int i = 0; i < count; ++i) { 1.538 + SkPoint* cubic = chopped + 3*i; 1.539 + convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads); 1.540 + } 1.541 + 1.542 +} 1.543 + 1.544 +//////////////////////////////////////////////////////////////////////////////// 1.545 + 1.546 +enum CubicType { 1.547 + kSerpentine_CubicType, 1.548 + kCusp_CubicType, 1.549 + kLoop_CubicType, 1.550 + kQuadratic_CubicType, 1.551 + kLine_CubicType, 1.552 + kPoint_CubicType 1.553 +}; 1.554 + 1.555 +// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2) 1.556 +// Classification: 1.557 +// discr(I) > 0 Serpentine 1.558 +// discr(I) = 0 Cusp 1.559 +// discr(I) < 0 Loop 1.560 +// d0 = d1 = 0 Quadratic 1.561 +// d0 = d1 = d2 = 0 Line 1.562 +// p0 = p1 = p2 = p3 Point 1.563 +static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) { 1.564 + if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) { 1.565 + return kPoint_CubicType; 1.566 + } 1.567 + const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]); 1.568 + if (discr > SK_ScalarNearlyZero) { 1.569 + return kSerpentine_CubicType; 1.570 + } else if (discr < -SK_ScalarNearlyZero) { 1.571 + return kLoop_CubicType; 1.572 + } else { 1.573 + if (0.f == d[0] && 0.f == d[1]) { 1.574 + return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType); 1.575 + } else { 1.576 + return kCusp_CubicType; 1.577 + } 1.578 + } 1.579 +} 1.580 + 1.581 +// Assumes the third component of points is 1. 1.582 +// Calcs p0 . (p1 x p2) 1.583 +static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { 1.584 + const SkScalar xComp = p0.fX * (p1.fY - p2.fY); 1.585 + const SkScalar yComp = p0.fY * (p2.fX - p1.fX); 1.586 + const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX; 1.587 + return (xComp + yComp + wComp); 1.588 +} 1.589 + 1.590 +// Solves linear system to extract klm 1.591 +// P.K = k (similarly for l, m) 1.592 +// Where P is matrix of control points 1.593 +// K is coefficients for the line K 1.594 +// k is vector of values of K evaluated at the control points 1.595 +// Solving for K, thus K = P^(-1) . k 1.596 +static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4], 1.597 + const SkScalar controlL[4], const SkScalar controlM[4], 1.598 + SkScalar k[3], SkScalar l[3], SkScalar m[3]) { 1.599 + SkMatrix matrix; 1.600 + matrix.setAll(p[0].fX, p[0].fY, 1.f, 1.601 + p[1].fX, p[1].fY, 1.f, 1.602 + p[2].fX, p[2].fY, 1.f); 1.603 + SkMatrix inverse; 1.604 + if (matrix.invert(&inverse)) { 1.605 + inverse.mapHomogeneousPoints(k, controlK, 1); 1.606 + inverse.mapHomogeneousPoints(l, controlL, 1); 1.607 + inverse.mapHomogeneousPoints(m, controlM, 1); 1.608 + } 1.609 + 1.610 +} 1.611 + 1.612 +static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { 1.613 + SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]); 1.614 + SkScalar ls = 3.f * d[1] - tempSqrt; 1.615 + SkScalar lt = 6.f * d[0]; 1.616 + SkScalar ms = 3.f * d[1] + tempSqrt; 1.617 + SkScalar mt = 6.f * d[0]; 1.618 + 1.619 + k[0] = ls * ms; 1.620 + k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f; 1.621 + k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; 1.622 + k[3] = (lt - ls) * (mt - ms); 1.623 + 1.624 + l[0] = ls * ls * ls; 1.625 + const SkScalar lt_ls = lt - ls; 1.626 + l[1] = ls * ls * lt_ls * -1.f; 1.627 + l[2] = lt_ls * lt_ls * ls; 1.628 + l[3] = -1.f * lt_ls * lt_ls * lt_ls; 1.629 + 1.630 + m[0] = ms * ms * ms; 1.631 + const SkScalar mt_ms = mt - ms; 1.632 + m[1] = ms * ms * mt_ms * -1.f; 1.633 + m[2] = mt_ms * mt_ms * ms; 1.634 + m[3] = -1.f * mt_ms * mt_ms * mt_ms; 1.635 + 1.636 + // If d0 < 0 we need to flip the orientation of our curve 1.637 + // This is done by negating the k and l values 1.638 + // We want negative distance values to be on the inside 1.639 + if ( d[0] > 0) { 1.640 + for (int i = 0; i < 4; ++i) { 1.641 + k[i] = -k[i]; 1.642 + l[i] = -l[i]; 1.643 + } 1.644 + } 1.645 +} 1.646 + 1.647 +static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { 1.648 + SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); 1.649 + SkScalar ls = d[1] - tempSqrt; 1.650 + SkScalar lt = 2.f * d[0]; 1.651 + SkScalar ms = d[1] + tempSqrt; 1.652 + SkScalar mt = 2.f * d[0]; 1.653 + 1.654 + k[0] = ls * ms; 1.655 + k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f; 1.656 + k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; 1.657 + k[3] = (lt - ls) * (mt - ms); 1.658 + 1.659 + l[0] = ls * ls * ms; 1.660 + l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f; 1.661 + l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f; 1.662 + l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms); 1.663 + 1.664 + m[0] = ls * ms * ms; 1.665 + m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f; 1.666 + m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f; 1.667 + m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms); 1.668 + 1.669 + 1.670 + // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0), 1.671 + // we need to flip the orientation of our curve. 1.672 + // This is done by negating the k and l values 1.673 + if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) { 1.674 + for (int i = 0; i < 4; ++i) { 1.675 + k[i] = -k[i]; 1.676 + l[i] = -l[i]; 1.677 + } 1.678 + } 1.679 +} 1.680 + 1.681 +static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { 1.682 + const SkScalar ls = d[2]; 1.683 + const SkScalar lt = 3.f * d[1]; 1.684 + 1.685 + k[0] = ls; 1.686 + k[1] = ls - lt / 3.f; 1.687 + k[2] = ls - 2.f * lt / 3.f; 1.688 + k[3] = ls - lt; 1.689 + 1.690 + l[0] = ls * ls * ls; 1.691 + const SkScalar ls_lt = ls - lt; 1.692 + l[1] = ls * ls * ls_lt; 1.693 + l[2] = ls_lt * ls_lt * ls; 1.694 + l[3] = ls_lt * ls_lt * ls_lt; 1.695 + 1.696 + m[0] = 1.f; 1.697 + m[1] = 1.f; 1.698 + m[2] = 1.f; 1.699 + m[3] = 1.f; 1.700 +} 1.701 + 1.702 +// For the case when a cubic is actually a quadratic 1.703 +// M = 1.704 +// 0 0 0 1.705 +// 1/3 0 1/3 1.706 +// 2/3 1/3 2/3 1.707 +// 1 1 1 1.708 +static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { 1.709 + k[0] = 0.f; 1.710 + k[1] = 1.f/3.f; 1.711 + k[2] = 2.f/3.f; 1.712 + k[3] = 1.f; 1.713 + 1.714 + l[0] = 0.f; 1.715 + l[1] = 0.f; 1.716 + l[2] = 1.f/3.f; 1.717 + l[3] = 1.f; 1.718 + 1.719 + m[0] = 0.f; 1.720 + m[1] = 1.f/3.f; 1.721 + m[2] = 2.f/3.f; 1.722 + m[3] = 1.f; 1.723 + 1.724 + // If d2 < 0 we need to flip the orientation of our curve 1.725 + // This is done by negating the k and l values 1.726 + if ( d[2] > 0) { 1.727 + for (int i = 0; i < 4; ++i) { 1.728 + k[i] = -k[i]; 1.729 + l[i] = -l[i]; 1.730 + } 1.731 + } 1.732 +} 1.733 + 1.734 +// Calc coefficients of I(s,t) where roots of I are inflection points of curve 1.735 +// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2) 1.736 +// d0 = a1 - 2*a2+3*a3 1.737 +// d1 = -a2 + 3*a3 1.738 +// d2 = 3*a3 1.739 +// a1 = p0 . (p3 x p2) 1.740 +// a2 = p1 . (p0 x p3) 1.741 +// a3 = p2 . (p1 x p0) 1.742 +// Places the values of d1, d2, d3 in array d passed in 1.743 +static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) { 1.744 + SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]); 1.745 + SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]); 1.746 + SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]); 1.747 + 1.748 + // need to scale a's or values in later calculations will grow to high 1.749 + SkScalar max = SkScalarAbs(a1); 1.750 + max = SkMaxScalar(max, SkScalarAbs(a2)); 1.751 + max = SkMaxScalar(max, SkScalarAbs(a3)); 1.752 + max = 1.f/max; 1.753 + a1 = a1 * max; 1.754 + a2 = a2 * max; 1.755 + a3 = a3 * max; 1.756 + 1.757 + d[2] = 3.f * a3; 1.758 + d[1] = d[2] - a2; 1.759 + d[0] = d[1] - a2 + a1; 1.760 +} 1.761 + 1.762 +int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9], 1.763 + SkScalar klm_rev[3]) { 1.764 + // Variable to store the two parametric values at the loop double point 1.765 + SkScalar smallS = 0.f; 1.766 + SkScalar largeS = 0.f; 1.767 + 1.768 + SkScalar d[3]; 1.769 + calc_cubic_inflection_func(src, d); 1.770 + 1.771 + CubicType cType = classify_cubic(src, d); 1.772 + 1.773 + int chop_count = 0; 1.774 + if (kLoop_CubicType == cType) { 1.775 + SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); 1.776 + SkScalar ls = d[1] - tempSqrt; 1.777 + SkScalar lt = 2.f * d[0]; 1.778 + SkScalar ms = d[1] + tempSqrt; 1.779 + SkScalar mt = 2.f * d[0]; 1.780 + ls = ls / lt; 1.781 + ms = ms / mt; 1.782 + // need to have t values sorted since this is what is expected by SkChopCubicAt 1.783 + if (ls <= ms) { 1.784 + smallS = ls; 1.785 + largeS = ms; 1.786 + } else { 1.787 + smallS = ms; 1.788 + largeS = ls; 1.789 + } 1.790 + 1.791 + SkScalar chop_ts[2]; 1.792 + if (smallS > 0.f && smallS < 1.f) { 1.793 + chop_ts[chop_count++] = smallS; 1.794 + } 1.795 + if (largeS > 0.f && largeS < 1.f) { 1.796 + chop_ts[chop_count++] = largeS; 1.797 + } 1.798 + if(dst) { 1.799 + SkChopCubicAt(src, dst, chop_ts, chop_count); 1.800 + } 1.801 + } else { 1.802 + if (dst) { 1.803 + memcpy(dst, src, sizeof(SkPoint) * 4); 1.804 + } 1.805 + } 1.806 + 1.807 + if (klm && klm_rev) { 1.808 + // Set klm_rev to to match the sub_section of cubic that needs to have its orientation 1.809 + // flipped. This will always be the section that is the "loop" 1.810 + if (2 == chop_count) { 1.811 + klm_rev[0] = 1.f; 1.812 + klm_rev[1] = -1.f; 1.813 + klm_rev[2] = 1.f; 1.814 + } else if (1 == chop_count) { 1.815 + if (smallS < 0.f) { 1.816 + klm_rev[0] = -1.f; 1.817 + klm_rev[1] = 1.f; 1.818 + } else { 1.819 + klm_rev[0] = 1.f; 1.820 + klm_rev[1] = -1.f; 1.821 + } 1.822 + } else { 1.823 + if (smallS < 0.f && largeS > 1.f) { 1.824 + klm_rev[0] = -1.f; 1.825 + } else { 1.826 + klm_rev[0] = 1.f; 1.827 + } 1.828 + } 1.829 + SkScalar controlK[4]; 1.830 + SkScalar controlL[4]; 1.831 + SkScalar controlM[4]; 1.832 + 1.833 + if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) { 1.834 + set_serp_klm(d, controlK, controlL, controlM); 1.835 + } else if (kLoop_CubicType == cType) { 1.836 + set_loop_klm(d, controlK, controlL, controlM); 1.837 + } else if (kCusp_CubicType == cType) { 1.838 + SkASSERT(0.f == d[0]); 1.839 + set_cusp_klm(d, controlK, controlL, controlM); 1.840 + } else if (kQuadratic_CubicType == cType) { 1.841 + set_quadratic_klm(d, controlK, controlL, controlM); 1.842 + } 1.843 + 1.844 + calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]); 1.845 + } 1.846 + return chop_count + 1; 1.847 +} 1.848 + 1.849 +void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) { 1.850 + SkScalar d[3]; 1.851 + calc_cubic_inflection_func(p, d); 1.852 + 1.853 + CubicType cType = classify_cubic(p, d); 1.854 + 1.855 + SkScalar controlK[4]; 1.856 + SkScalar controlL[4]; 1.857 + SkScalar controlM[4]; 1.858 + 1.859 + if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) { 1.860 + set_serp_klm(d, controlK, controlL, controlM); 1.861 + } else if (kLoop_CubicType == cType) { 1.862 + set_loop_klm(d, controlK, controlL, controlM); 1.863 + } else if (kCusp_CubicType == cType) { 1.864 + SkASSERT(0.f == d[0]); 1.865 + set_cusp_klm(d, controlK, controlL, controlM); 1.866 + } else if (kQuadratic_CubicType == cType) { 1.867 + set_quadratic_klm(d, controlK, controlL, controlM); 1.868 + } 1.869 + 1.870 + calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]); 1.871 +}