1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/gpu/SkGpuDevice.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,2047 @@ 1.4 +/* 1.5 + * Copyright 2011 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#include "SkGpuDevice.h" 1.12 + 1.13 +#include "effects/GrBicubicEffect.h" 1.14 +#include "effects/GrTextureDomain.h" 1.15 +#include "effects/GrSimpleTextureEffect.h" 1.16 + 1.17 +#include "GrContext.h" 1.18 +#include "GrBitmapTextContext.h" 1.19 +#include "GrDistanceFieldTextContext.h" 1.20 + 1.21 +#include "SkGrTexturePixelRef.h" 1.22 + 1.23 +#include "SkBounder.h" 1.24 +#include "SkColorFilter.h" 1.25 +#include "SkDeviceImageFilterProxy.h" 1.26 +#include "SkDrawProcs.h" 1.27 +#include "SkGlyphCache.h" 1.28 +#include "SkImageFilter.h" 1.29 +#include "SkMaskFilter.h" 1.30 +#include "SkPathEffect.h" 1.31 +#include "SkPicture.h" 1.32 +#include "SkRRect.h" 1.33 +#include "SkStroke.h" 1.34 +#include "SkSurface.h" 1.35 +#include "SkTLazy.h" 1.36 +#include "SkUtils.h" 1.37 +#include "SkErrorInternals.h" 1.38 + 1.39 +#define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 1.40 + 1.41 +#if 0 1.42 + extern bool (*gShouldDrawProc)(); 1.43 + #define CHECK_SHOULD_DRAW(draw, forceI) \ 1.44 + do { \ 1.45 + if (gShouldDrawProc && !gShouldDrawProc()) return; \ 1.46 + this->prepareDraw(draw, forceI); \ 1.47 + } while (0) 1.48 +#else 1.49 + #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) 1.50 +#endif 1.51 + 1.52 +// This constant represents the screen alignment criterion in texels for 1.53 +// requiring texture domain clamping to prevent color bleeding when drawing 1.54 +// a sub region of a larger source image. 1.55 +#define COLOR_BLEED_TOLERANCE 0.001f 1.56 + 1.57 +#define DO_DEFERRED_CLEAR() \ 1.58 + do { \ 1.59 + if (fNeedClear) { \ 1.60 + this->clear(SK_ColorTRANSPARENT); \ 1.61 + } \ 1.62 + } while (false) \ 1.63 + 1.64 +/////////////////////////////////////////////////////////////////////////////// 1.65 + 1.66 +#define CHECK_FOR_ANNOTATION(paint) \ 1.67 + do { if (paint.getAnnotation()) { return; } } while (0) 1.68 + 1.69 +/////////////////////////////////////////////////////////////////////////////// 1.70 + 1.71 + 1.72 +class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { 1.73 +public: 1.74 + SkAutoCachedTexture() 1.75 + : fDevice(NULL) 1.76 + , fTexture(NULL) { 1.77 + } 1.78 + 1.79 + SkAutoCachedTexture(SkGpuDevice* device, 1.80 + const SkBitmap& bitmap, 1.81 + const GrTextureParams* params, 1.82 + GrTexture** texture) 1.83 + : fDevice(NULL) 1.84 + , fTexture(NULL) { 1.85 + SkASSERT(NULL != texture); 1.86 + *texture = this->set(device, bitmap, params); 1.87 + } 1.88 + 1.89 + ~SkAutoCachedTexture() { 1.90 + if (NULL != fTexture) { 1.91 + GrUnlockAndUnrefCachedBitmapTexture(fTexture); 1.92 + } 1.93 + } 1.94 + 1.95 + GrTexture* set(SkGpuDevice* device, 1.96 + const SkBitmap& bitmap, 1.97 + const GrTextureParams* params) { 1.98 + if (NULL != fTexture) { 1.99 + GrUnlockAndUnrefCachedBitmapTexture(fTexture); 1.100 + fTexture = NULL; 1.101 + } 1.102 + fDevice = device; 1.103 + GrTexture* result = (GrTexture*)bitmap.getTexture(); 1.104 + if (NULL == result) { 1.105 + // Cannot return the native texture so look it up in our cache 1.106 + fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params); 1.107 + result = fTexture; 1.108 + } 1.109 + return result; 1.110 + } 1.111 + 1.112 +private: 1.113 + SkGpuDevice* fDevice; 1.114 + GrTexture* fTexture; 1.115 +}; 1.116 + 1.117 +/////////////////////////////////////////////////////////////////////////////// 1.118 + 1.119 +struct GrSkDrawProcs : public SkDrawProcs { 1.120 +public: 1.121 + GrContext* fContext; 1.122 + GrTextContext* fTextContext; 1.123 + GrFontScaler* fFontScaler; // cached in the skia glyphcache 1.124 +}; 1.125 + 1.126 +/////////////////////////////////////////////////////////////////////////////// 1.127 + 1.128 +static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) { 1.129 + switch (config) { 1.130 + case kAlpha_8_GrPixelConfig: 1.131 + *isOpaque = false; 1.132 + return SkBitmap::kA8_Config; 1.133 + case kRGB_565_GrPixelConfig: 1.134 + *isOpaque = true; 1.135 + return SkBitmap::kRGB_565_Config; 1.136 + case kRGBA_4444_GrPixelConfig: 1.137 + *isOpaque = false; 1.138 + return SkBitmap::kARGB_4444_Config; 1.139 + case kSkia8888_GrPixelConfig: 1.140 + // we don't currently have a way of knowing whether 1.141 + // a 8888 is opaque based on the config. 1.142 + *isOpaque = false; 1.143 + return SkBitmap::kARGB_8888_Config; 1.144 + default: 1.145 + *isOpaque = false; 1.146 + return SkBitmap::kNo_Config; 1.147 + } 1.148 +} 1.149 + 1.150 +/* 1.151 + * GrRenderTarget does not know its opaqueness, only its config, so we have 1.152 + * to make conservative guesses when we return an "equivalent" bitmap. 1.153 + */ 1.154 +static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { 1.155 + bool isOpaque; 1.156 + SkBitmap::Config config = grConfig2skConfig(renderTarget->config(), &isOpaque); 1.157 + 1.158 + SkBitmap bitmap; 1.159 + bitmap.setConfig(config, renderTarget->width(), renderTarget->height(), 0, 1.160 + isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); 1.161 + return bitmap; 1.162 +} 1.163 + 1.164 +SkGpuDevice* SkGpuDevice::Create(GrSurface* surface) { 1.165 + SkASSERT(NULL != surface); 1.166 + if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) { 1.167 + return NULL; 1.168 + } 1.169 + if (surface->asTexture()) { 1.170 + return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture())); 1.171 + } else { 1.172 + return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget())); 1.173 + } 1.174 +} 1.175 + 1.176 +SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture) 1.177 + : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) { 1.178 + this->initFromRenderTarget(context, texture->asRenderTarget(), false); 1.179 +} 1.180 + 1.181 +SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget) 1.182 + : SkBitmapDevice(make_bitmap(context, renderTarget)) { 1.183 + this->initFromRenderTarget(context, renderTarget, false); 1.184 +} 1.185 + 1.186 +void SkGpuDevice::initFromRenderTarget(GrContext* context, 1.187 + GrRenderTarget* renderTarget, 1.188 + bool cached) { 1.189 + fDrawProcs = NULL; 1.190 + 1.191 + fContext = context; 1.192 + fContext->ref(); 1.193 + 1.194 + fMainTextContext = SkNEW_ARGS(GrDistanceFieldTextContext, (fContext, fLeakyProperties)); 1.195 + fFallbackTextContext = SkNEW_ARGS(GrBitmapTextContext, (fContext, fLeakyProperties)); 1.196 + 1.197 + fRenderTarget = NULL; 1.198 + fNeedClear = false; 1.199 + 1.200 + SkASSERT(NULL != renderTarget); 1.201 + fRenderTarget = renderTarget; 1.202 + fRenderTarget->ref(); 1.203 + 1.204 + // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref 1.205 + // on the RT but not vice-versa. 1.206 + // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without 1.207 + // busting chrome (for a currently unknown reason). 1.208 + GrSurface* surface = fRenderTarget->asTexture(); 1.209 + if (NULL == surface) { 1.210 + surface = fRenderTarget; 1.211 + } 1.212 + 1.213 + SkImageInfo info; 1.214 + surface->asImageInfo(&info); 1.215 + SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, surface, cached)); 1.216 + 1.217 + this->setPixelRef(pr)->unref(); 1.218 +} 1.219 + 1.220 +SkGpuDevice* SkGpuDevice::Create(GrContext* context, const SkImageInfo& origInfo, 1.221 + int sampleCount) { 1.222 + if (kUnknown_SkColorType == origInfo.colorType() || 1.223 + origInfo.width() < 0 || origInfo.height() < 0) { 1.224 + return NULL; 1.225 + } 1.226 + 1.227 + SkImageInfo info = origInfo; 1.228 + // TODO: perhas we can loosen this check now that colortype is more detailed 1.229 + // e.g. can we support both RGBA and BGRA here? 1.230 + if (kRGB_565_SkColorType == info.colorType()) { 1.231 + info.fAlphaType = kOpaque_SkAlphaType; // force this setting 1.232 + } else { 1.233 + info.fColorType = kPMColor_SkColorType; 1.234 + if (kOpaque_SkAlphaType != info.alphaType()) { 1.235 + info.fAlphaType = kPremul_SkAlphaType; // force this setting 1.236 + } 1.237 + } 1.238 + 1.239 + GrTextureDesc desc; 1.240 + desc.fFlags = kRenderTarget_GrTextureFlagBit; 1.241 + desc.fWidth = info.width(); 1.242 + desc.fHeight = info.height(); 1.243 + desc.fConfig = SkImageInfo2GrPixelConfig(info.colorType(), info.alphaType()); 1.244 + desc.fSampleCnt = sampleCount; 1.245 + 1.246 + SkAutoTUnref<GrTexture> texture(context->createUncachedTexture(desc, NULL, 0)); 1.247 + if (!texture.get()) { 1.248 + return NULL; 1.249 + } 1.250 + 1.251 + return SkNEW_ARGS(SkGpuDevice, (context, texture.get())); 1.252 +} 1.253 + 1.254 +#ifdef SK_SUPPORT_LEGACY_COMPATIBLEDEVICE_CONFIG 1.255 +static SkBitmap make_bitmap(SkBitmap::Config config, int width, int height) { 1.256 + SkBitmap bm; 1.257 + bm.setConfig(SkImageInfo::Make(width, height, 1.258 + SkBitmapConfigToColorType(config), 1.259 + kPremul_SkAlphaType)); 1.260 + return bm; 1.261 +} 1.262 +SkGpuDevice::SkGpuDevice(GrContext* context, 1.263 + SkBitmap::Config config, 1.264 + int width, 1.265 + int height, 1.266 + int sampleCount) 1.267 + : SkBitmapDevice(make_bitmap(config, width, height)) 1.268 +{ 1.269 + fDrawProcs = NULL; 1.270 + 1.271 + fContext = context; 1.272 + fContext->ref(); 1.273 + 1.274 + fMainTextContext = SkNEW_ARGS(GrDistanceFieldTextContext, (fContext, fLeakyProperties)); 1.275 + fFallbackTextContext = SkNEW_ARGS(GrBitmapTextContext, (fContext, fLeakyProperties)); 1.276 + 1.277 + fRenderTarget = NULL; 1.278 + fNeedClear = false; 1.279 + 1.280 + if (config != SkBitmap::kRGB_565_Config) { 1.281 + config = SkBitmap::kARGB_8888_Config; 1.282 + } 1.283 + 1.284 + GrTextureDesc desc; 1.285 + desc.fFlags = kRenderTarget_GrTextureFlagBit; 1.286 + desc.fWidth = width; 1.287 + desc.fHeight = height; 1.288 + desc.fConfig = SkBitmapConfig2GrPixelConfig(config); 1.289 + desc.fSampleCnt = sampleCount; 1.290 + 1.291 + SkImageInfo info; 1.292 + if (!GrPixelConfig2ColorType(desc.fConfig, &info.fColorType)) { 1.293 + sk_throw(); 1.294 + } 1.295 + info.fWidth = width; 1.296 + info.fHeight = height; 1.297 + info.fAlphaType = kPremul_SkAlphaType; 1.298 + 1.299 + SkAutoTUnref<GrTexture> texture(fContext->createUncachedTexture(desc, NULL, 0)); 1.300 + 1.301 + if (NULL != texture) { 1.302 + fRenderTarget = texture->asRenderTarget(); 1.303 + fRenderTarget->ref(); 1.304 + 1.305 + SkASSERT(NULL != fRenderTarget); 1.306 + 1.307 + // wrap the bitmap with a pixelref to expose our texture 1.308 + SkGrPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, texture)); 1.309 + this->setPixelRef(pr)->unref(); 1.310 + } else { 1.311 + GrPrintf("--- failed to create gpu-offscreen [%d %d]\n", 1.312 + width, height); 1.313 + SkASSERT(false); 1.314 + } 1.315 +} 1.316 +#endif 1.317 + 1.318 +SkGpuDevice::~SkGpuDevice() { 1.319 + if (fDrawProcs) { 1.320 + delete fDrawProcs; 1.321 + } 1.322 + 1.323 + delete fMainTextContext; 1.324 + delete fFallbackTextContext; 1.325 + 1.326 + // The GrContext takes a ref on the target. We don't want to cause the render 1.327 + // target to be unnecessarily kept alive. 1.328 + if (fContext->getRenderTarget() == fRenderTarget) { 1.329 + fContext->setRenderTarget(NULL); 1.330 + } 1.331 + 1.332 + if (fContext->getClip() == &fClipData) { 1.333 + fContext->setClip(NULL); 1.334 + } 1.335 + 1.336 + SkSafeUnref(fRenderTarget); 1.337 + fContext->unref(); 1.338 +} 1.339 + 1.340 +/////////////////////////////////////////////////////////////////////////////// 1.341 + 1.342 +void SkGpuDevice::makeRenderTargetCurrent() { 1.343 + DO_DEFERRED_CLEAR(); 1.344 + fContext->setRenderTarget(fRenderTarget); 1.345 +} 1.346 + 1.347 +/////////////////////////////////////////////////////////////////////////////// 1.348 + 1.349 +namespace { 1.350 +GrPixelConfig config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888, uint32_t* flags) { 1.351 + switch (config8888) { 1.352 + case SkCanvas::kNative_Premul_Config8888: 1.353 + *flags = 0; 1.354 + return kSkia8888_GrPixelConfig; 1.355 + case SkCanvas::kNative_Unpremul_Config8888: 1.356 + *flags = GrContext::kUnpremul_PixelOpsFlag; 1.357 + return kSkia8888_GrPixelConfig; 1.358 + case SkCanvas::kBGRA_Premul_Config8888: 1.359 + *flags = 0; 1.360 + return kBGRA_8888_GrPixelConfig; 1.361 + case SkCanvas::kBGRA_Unpremul_Config8888: 1.362 + *flags = GrContext::kUnpremul_PixelOpsFlag; 1.363 + return kBGRA_8888_GrPixelConfig; 1.364 + case SkCanvas::kRGBA_Premul_Config8888: 1.365 + *flags = 0; 1.366 + return kRGBA_8888_GrPixelConfig; 1.367 + case SkCanvas::kRGBA_Unpremul_Config8888: 1.368 + *flags = GrContext::kUnpremul_PixelOpsFlag; 1.369 + return kRGBA_8888_GrPixelConfig; 1.370 + default: 1.371 + GrCrash("Unexpected Config8888."); 1.372 + *flags = 0; // suppress warning 1.373 + return kSkia8888_GrPixelConfig; 1.374 + } 1.375 +} 1.376 +} 1.377 + 1.378 +bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap, 1.379 + int x, int y, 1.380 + SkCanvas::Config8888 config8888) { 1.381 + DO_DEFERRED_CLEAR(); 1.382 + SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config()); 1.383 + SkASSERT(!bitmap.isNull()); 1.384 + SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()))); 1.385 + 1.386 + SkAutoLockPixels alp(bitmap); 1.387 + GrPixelConfig config; 1.388 + uint32_t flags; 1.389 + config = config8888_to_grconfig_and_flags(config8888, &flags); 1.390 + return fContext->readRenderTargetPixels(fRenderTarget, 1.391 + x, y, 1.392 + bitmap.width(), 1.393 + bitmap.height(), 1.394 + config, 1.395 + bitmap.getPixels(), 1.396 + bitmap.rowBytes(), 1.397 + flags); 1.398 +} 1.399 + 1.400 +#ifdef SK_SUPPORT_LEGACY_WRITEPIXELSCONFIG 1.401 +void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y, 1.402 + SkCanvas::Config8888 config8888) { 1.403 + SkAutoLockPixels alp(bitmap); 1.404 + if (!bitmap.readyToDraw()) { 1.405 + return; 1.406 + } 1.407 + 1.408 + GrPixelConfig config; 1.409 + uint32_t flags; 1.410 + if (SkBitmap::kARGB_8888_Config == bitmap.config()) { 1.411 + config = config8888_to_grconfig_and_flags(config8888, &flags); 1.412 + } else { 1.413 + flags = 0; 1.414 + config= SkBitmapConfig2GrPixelConfig(bitmap.config()); 1.415 + } 1.416 + 1.417 + fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(), 1.418 + config, bitmap.getPixels(), bitmap.rowBytes(), flags); 1.419 +} 1.420 +#endif 1.421 + 1.422 +bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, 1.423 + int x, int y) { 1.424 + // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels 1.425 + GrPixelConfig config = SkImageInfo2GrPixelConfig(info.colorType(), info.alphaType()); 1.426 + if (kUnknown_GrPixelConfig == config) { 1.427 + return false; 1.428 + } 1.429 + uint32_t flags = 0; 1.430 + if (kUnpremul_SkAlphaType == info.alphaType()) { 1.431 + flags = GrContext::kUnpremul_PixelOpsFlag; 1.432 + } 1.433 + fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); 1.434 + 1.435 + // need to bump our genID for compatibility with clients that "know" we have a bitmap 1.436 + this->onAccessBitmap().notifyPixelsChanged(); 1.437 + 1.438 + return true; 1.439 +} 1.440 + 1.441 +void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { 1.442 + INHERITED::onAttachToCanvas(canvas); 1.443 + 1.444 + // Canvas promises that this ptr is valid until onDetachFromCanvas is called 1.445 + fClipData.fClipStack = canvas->getClipStack(); 1.446 +} 1.447 + 1.448 +void SkGpuDevice::onDetachFromCanvas() { 1.449 + INHERITED::onDetachFromCanvas(); 1.450 + fClipData.fClipStack = NULL; 1.451 +} 1.452 + 1.453 +// call this every draw call, to ensure that the context reflects our state, 1.454 +// and not the state from some other canvas/device 1.455 +void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { 1.456 + SkASSERT(NULL != fClipData.fClipStack); 1.457 + 1.458 + fContext->setRenderTarget(fRenderTarget); 1.459 + 1.460 + SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); 1.461 + 1.462 + if (forceIdentity) { 1.463 + fContext->setIdentityMatrix(); 1.464 + } else { 1.465 + fContext->setMatrix(*draw.fMatrix); 1.466 + } 1.467 + fClipData.fOrigin = this->getOrigin(); 1.468 + 1.469 + fContext->setClip(&fClipData); 1.470 + 1.471 + DO_DEFERRED_CLEAR(); 1.472 +} 1.473 + 1.474 +GrRenderTarget* SkGpuDevice::accessRenderTarget() { 1.475 + DO_DEFERRED_CLEAR(); 1.476 + return fRenderTarget; 1.477 +} 1.478 + 1.479 +/////////////////////////////////////////////////////////////////////////////// 1.480 + 1.481 +SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); 1.482 +SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); 1.483 +SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); 1.484 +SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); 1.485 +SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, 1.486 + shader_type_mismatch); 1.487 +SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, 1.488 + shader_type_mismatch); 1.489 +SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); 1.490 +SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); 1.491 + 1.492 +namespace { 1.493 + 1.494 +// converts a SkPaint to a GrPaint, ignoring the skPaint's shader 1.495 +// justAlpha indicates that skPaint's alpha should be used rather than the color 1.496 +// Callers may subsequently modify the GrPaint. Setting constantColor indicates 1.497 +// that the final paint will draw the same color at every pixel. This allows 1.498 +// an optimization where the the color filter can be applied to the skPaint's 1.499 +// color once while converting to GrPaint and then ignored. 1.500 +inline bool skPaint2GrPaintNoShader(SkGpuDevice* dev, 1.501 + const SkPaint& skPaint, 1.502 + bool justAlpha, 1.503 + bool constantColor, 1.504 + GrPaint* grPaint) { 1.505 + 1.506 + grPaint->setDither(skPaint.isDither()); 1.507 + grPaint->setAntiAlias(skPaint.isAntiAlias()); 1.508 + 1.509 + SkXfermode::Coeff sm; 1.510 + SkXfermode::Coeff dm; 1.511 + 1.512 + SkXfermode* mode = skPaint.getXfermode(); 1.513 + GrEffectRef* xferEffect = NULL; 1.514 + if (SkXfermode::AsNewEffectOrCoeff(mode, &xferEffect, &sm, &dm)) { 1.515 + if (NULL != xferEffect) { 1.516 + grPaint->addColorEffect(xferEffect)->unref(); 1.517 + sm = SkXfermode::kOne_Coeff; 1.518 + dm = SkXfermode::kZero_Coeff; 1.519 + } 1.520 + } else { 1.521 + //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");) 1.522 +#if 0 1.523 + return false; 1.524 +#else 1.525 + // Fall back to src-over 1.526 + sm = SkXfermode::kOne_Coeff; 1.527 + dm = SkXfermode::kISA_Coeff; 1.528 +#endif 1.529 + } 1.530 + grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm)); 1.531 + 1.532 + if (justAlpha) { 1.533 + uint8_t alpha = skPaint.getAlpha(); 1.534 + grPaint->setColor(GrColorPackRGBA(alpha, alpha, alpha, alpha)); 1.535 + // justAlpha is currently set to true only if there is a texture, 1.536 + // so constantColor should not also be true. 1.537 + SkASSERT(!constantColor); 1.538 + } else { 1.539 + grPaint->setColor(SkColor2GrColor(skPaint.getColor())); 1.540 + } 1.541 + 1.542 + SkColorFilter* colorFilter = skPaint.getColorFilter(); 1.543 + if (NULL != colorFilter) { 1.544 + // if the source color is a constant then apply the filter here once rather than per pixel 1.545 + // in a shader. 1.546 + if (constantColor) { 1.547 + SkColor filtered = colorFilter->filterColor(skPaint.getColor()); 1.548 + grPaint->setColor(SkColor2GrColor(filtered)); 1.549 + } else { 1.550 + SkAutoTUnref<GrEffectRef> effect(colorFilter->asNewEffect(dev->context())); 1.551 + if (NULL != effect.get()) { 1.552 + grPaint->addColorEffect(effect); 1.553 + } 1.554 + } 1.555 + } 1.556 + 1.557 + return true; 1.558 +} 1.559 + 1.560 +// This function is similar to skPaint2GrPaintNoShader but also converts 1.561 +// skPaint's shader to a GrTexture/GrEffectStage if possible. The texture to 1.562 +// be used is set on grPaint and returned in param act. constantColor has the 1.563 +// same meaning as in skPaint2GrPaintNoShader. 1.564 +inline bool skPaint2GrPaintShader(SkGpuDevice* dev, 1.565 + const SkPaint& skPaint, 1.566 + bool constantColor, 1.567 + GrPaint* grPaint) { 1.568 + SkShader* shader = skPaint.getShader(); 1.569 + if (NULL == shader) { 1.570 + return skPaint2GrPaintNoShader(dev, skPaint, false, constantColor, grPaint); 1.571 + } 1.572 + 1.573 + // SkShader::asNewEffect() may do offscreen rendering. Setup default drawing state and require 1.574 + // the shader to set a render target . 1.575 + GrContext::AutoWideOpenIdentityDraw awo(dev->context(), NULL); 1.576 + 1.577 + // setup the shader as the first color effect on the paint 1.578 + SkAutoTUnref<GrEffectRef> effect(shader->asNewEffect(dev->context(), skPaint)); 1.579 + if (NULL != effect.get()) { 1.580 + grPaint->addColorEffect(effect); 1.581 + // Now setup the rest of the paint. 1.582 + return skPaint2GrPaintNoShader(dev, skPaint, true, false, grPaint); 1.583 + } else { 1.584 + // We still don't have SkColorShader::asNewEffect() implemented. 1.585 + SkShader::GradientInfo info; 1.586 + SkColor color; 1.587 + 1.588 + info.fColors = &color; 1.589 + info.fColorOffsets = NULL; 1.590 + info.fColorCount = 1; 1.591 + if (SkShader::kColor_GradientType == shader->asAGradient(&info)) { 1.592 + SkPaint copy(skPaint); 1.593 + copy.setShader(NULL); 1.594 + // modulate the paint alpha by the shader's solid color alpha 1.595 + U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha()); 1.596 + copy.setColor(SkColorSetA(color, newA)); 1.597 + return skPaint2GrPaintNoShader(dev, copy, false, constantColor, grPaint); 1.598 + } else { 1.599 + return false; 1.600 + } 1.601 + } 1.602 +} 1.603 +} 1.604 + 1.605 +/////////////////////////////////////////////////////////////////////////////// 1.606 + 1.607 +SkBitmap::Config SkGpuDevice::config() const { 1.608 + if (NULL == fRenderTarget) { 1.609 + return SkBitmap::kNo_Config; 1.610 + } 1.611 + 1.612 + bool isOpaque; 1.613 + return grConfig2skConfig(fRenderTarget->config(), &isOpaque); 1.614 +} 1.615 + 1.616 +void SkGpuDevice::clear(SkColor color) { 1.617 + SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); 1.618 + fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget); 1.619 + fNeedClear = false; 1.620 +} 1.621 + 1.622 +void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { 1.623 + CHECK_SHOULD_DRAW(draw, false); 1.624 + 1.625 + GrPaint grPaint; 1.626 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.627 + return; 1.628 + } 1.629 + 1.630 + fContext->drawPaint(grPaint); 1.631 +} 1.632 + 1.633 +// must be in SkCanvas::PointMode order 1.634 +static const GrPrimitiveType gPointMode2PrimtiveType[] = { 1.635 + kPoints_GrPrimitiveType, 1.636 + kLines_GrPrimitiveType, 1.637 + kLineStrip_GrPrimitiveType 1.638 +}; 1.639 + 1.640 +void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, 1.641 + size_t count, const SkPoint pts[], const SkPaint& paint) { 1.642 + CHECK_FOR_ANNOTATION(paint); 1.643 + CHECK_SHOULD_DRAW(draw, false); 1.644 + 1.645 + SkScalar width = paint.getStrokeWidth(); 1.646 + if (width < 0) { 1.647 + return; 1.648 + } 1.649 + 1.650 + // we only handle hairlines and paints without path effects or mask filters, 1.651 + // else we let the SkDraw call our drawPath() 1.652 + if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { 1.653 + draw.drawPoints(mode, count, pts, paint, true); 1.654 + return; 1.655 + } 1.656 + 1.657 + GrPaint grPaint; 1.658 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.659 + return; 1.660 + } 1.661 + 1.662 + fContext->drawVertices(grPaint, 1.663 + gPointMode2PrimtiveType[mode], 1.664 + SkToS32(count), 1.665 + (GrPoint*)pts, 1.666 + NULL, 1.667 + NULL, 1.668 + NULL, 1.669 + 0); 1.670 +} 1.671 + 1.672 +/////////////////////////////////////////////////////////////////////////////// 1.673 + 1.674 +void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, 1.675 + const SkPaint& paint) { 1.676 + CHECK_FOR_ANNOTATION(paint); 1.677 + CHECK_SHOULD_DRAW(draw, false); 1.678 + 1.679 + bool doStroke = paint.getStyle() != SkPaint::kFill_Style; 1.680 + SkScalar width = paint.getStrokeWidth(); 1.681 + 1.682 + /* 1.683 + We have special code for hairline strokes, miter-strokes, bevel-stroke 1.684 + and fills. Anything else we just call our path code. 1.685 + */ 1.686 + bool usePath = doStroke && width > 0 && 1.687 + (paint.getStrokeJoin() == SkPaint::kRound_Join || 1.688 + (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); 1.689 + // another two reasons we might need to call drawPath... 1.690 + if (paint.getMaskFilter() || paint.getPathEffect()) { 1.691 + usePath = true; 1.692 + } 1.693 + if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { 1.694 +#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) 1.695 + if (doStroke) { 1.696 +#endif 1.697 + usePath = true; 1.698 +#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) 1.699 + } else { 1.700 + usePath = !fContext->getMatrix().preservesRightAngles(); 1.701 + } 1.702 +#endif 1.703 + } 1.704 + // until we can both stroke and fill rectangles 1.705 + if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { 1.706 + usePath = true; 1.707 + } 1.708 + 1.709 + if (usePath) { 1.710 + SkPath path; 1.711 + path.addRect(rect); 1.712 + this->drawPath(draw, path, paint, NULL, true); 1.713 + return; 1.714 + } 1.715 + 1.716 + GrPaint grPaint; 1.717 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.718 + return; 1.719 + } 1.720 + 1.721 + if (!doStroke) { 1.722 + fContext->drawRect(grPaint, rect); 1.723 + } else { 1.724 + SkStrokeRec stroke(paint); 1.725 + fContext->drawRect(grPaint, rect, &stroke); 1.726 + } 1.727 +} 1.728 + 1.729 +/////////////////////////////////////////////////////////////////////////////// 1.730 + 1.731 +void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, 1.732 + const SkPaint& paint) { 1.733 + CHECK_FOR_ANNOTATION(paint); 1.734 + CHECK_SHOULD_DRAW(draw, false); 1.735 + 1.736 + GrPaint grPaint; 1.737 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.738 + return; 1.739 + } 1.740 + 1.741 + SkStrokeRec stroke(paint); 1.742 + if (paint.getMaskFilter()) { 1.743 + // try to hit the fast path for drawing filtered round rects 1.744 + 1.745 + SkRRect devRRect; 1.746 + if (rect.transform(fContext->getMatrix(), &devRRect)) { 1.747 + if (devRRect.allCornersCircular()) { 1.748 + SkRect maskRect; 1.749 + if (paint.getMaskFilter()->canFilterMaskGPU(devRRect.rect(), 1.750 + draw.fClip->getBounds(), 1.751 + fContext->getMatrix(), 1.752 + &maskRect)) { 1.753 + SkIRect finalIRect; 1.754 + maskRect.roundOut(&finalIRect); 1.755 + if (draw.fClip->quickReject(finalIRect)) { 1.756 + // clipped out 1.757 + return; 1.758 + } 1.759 + if (NULL != draw.fBounder && !draw.fBounder->doIRect(finalIRect)) { 1.760 + // nothing to draw 1.761 + return; 1.762 + } 1.763 + if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext, &grPaint, 1.764 + stroke, devRRect)) { 1.765 + return; 1.766 + } 1.767 + } 1.768 + 1.769 + } 1.770 + } 1.771 + 1.772 + } 1.773 + 1.774 + bool usePath = !rect.isSimple(); 1.775 + // another two reasons we might need to call drawPath... 1.776 + if (paint.getMaskFilter() || paint.getPathEffect()) { 1.777 + usePath = true; 1.778 + } 1.779 + // until we can rotate rrects... 1.780 + if (!usePath && !fContext->getMatrix().rectStaysRect()) { 1.781 + usePath = true; 1.782 + } 1.783 + 1.784 + if (usePath) { 1.785 + SkPath path; 1.786 + path.addRRect(rect); 1.787 + this->drawPath(draw, path, paint, NULL, true); 1.788 + return; 1.789 + } 1.790 + 1.791 + fContext->drawRRect(grPaint, rect, stroke); 1.792 +} 1.793 + 1.794 +///////////////////////////////////////////////////////////////////////////// 1.795 + 1.796 +void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, 1.797 + const SkPaint& paint) { 1.798 + CHECK_FOR_ANNOTATION(paint); 1.799 + CHECK_SHOULD_DRAW(draw, false); 1.800 + 1.801 + bool usePath = false; 1.802 + // some basic reasons we might need to call drawPath... 1.803 + if (paint.getMaskFilter() || paint.getPathEffect()) { 1.804 + usePath = true; 1.805 + } 1.806 + 1.807 + if (usePath) { 1.808 + SkPath path; 1.809 + path.addOval(oval); 1.810 + this->drawPath(draw, path, paint, NULL, true); 1.811 + return; 1.812 + } 1.813 + 1.814 + GrPaint grPaint; 1.815 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.816 + return; 1.817 + } 1.818 + SkStrokeRec stroke(paint); 1.819 + 1.820 + fContext->drawOval(grPaint, oval, stroke); 1.821 +} 1.822 + 1.823 +#include "SkMaskFilter.h" 1.824 +#include "SkBounder.h" 1.825 + 1.826 +/////////////////////////////////////////////////////////////////////////////// 1.827 + 1.828 +// helpers for applying mask filters 1.829 +namespace { 1.830 + 1.831 +// Draw a mask using the supplied paint. Since the coverage/geometry 1.832 +// is already burnt into the mask this boils down to a rect draw. 1.833 +// Return true if the mask was successfully drawn. 1.834 +bool draw_mask(GrContext* context, const SkRect& maskRect, 1.835 + GrPaint* grp, GrTexture* mask) { 1.836 + GrContext::AutoMatrix am; 1.837 + if (!am.setIdentity(context, grp)) { 1.838 + return false; 1.839 + } 1.840 + 1.841 + SkMatrix matrix; 1.842 + matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop); 1.843 + matrix.postIDiv(mask->width(), mask->height()); 1.844 + 1.845 + grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref(); 1.846 + context->drawRect(*grp, maskRect); 1.847 + return true; 1.848 +} 1.849 + 1.850 +bool draw_with_mask_filter(GrContext* context, const SkPath& devPath, 1.851 + SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder, 1.852 + GrPaint* grp, SkPaint::Style style) { 1.853 + SkMask srcM, dstM; 1.854 + 1.855 + if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, 1.856 + SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { 1.857 + return false; 1.858 + } 1.859 + SkAutoMaskFreeImage autoSrc(srcM.fImage); 1.860 + 1.861 + if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { 1.862 + return false; 1.863 + } 1.864 + // this will free-up dstM when we're done (allocated in filterMask()) 1.865 + SkAutoMaskFreeImage autoDst(dstM.fImage); 1.866 + 1.867 + if (clip.quickReject(dstM.fBounds)) { 1.868 + return false; 1.869 + } 1.870 + if (bounder && !bounder->doIRect(dstM.fBounds)) { 1.871 + return false; 1.872 + } 1.873 + 1.874 + // we now have a device-aligned 8bit mask in dstM, ready to be drawn using 1.875 + // the current clip (and identity matrix) and GrPaint settings 1.876 + GrTextureDesc desc; 1.877 + desc.fWidth = dstM.fBounds.width(); 1.878 + desc.fHeight = dstM.fBounds.height(); 1.879 + desc.fConfig = kAlpha_8_GrPixelConfig; 1.880 + 1.881 + GrAutoScratchTexture ast(context, desc); 1.882 + GrTexture* texture = ast.texture(); 1.883 + 1.884 + if (NULL == texture) { 1.885 + return false; 1.886 + } 1.887 + texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, 1.888 + dstM.fImage, dstM.fRowBytes); 1.889 + 1.890 + SkRect maskRect = SkRect::Make(dstM.fBounds); 1.891 + 1.892 + return draw_mask(context, maskRect, grp, texture); 1.893 +} 1.894 + 1.895 +// Create a mask of 'devPath' and place the result in 'mask'. Return true on 1.896 +// success; false otherwise. 1.897 +bool create_mask_GPU(GrContext* context, 1.898 + const SkRect& maskRect, 1.899 + const SkPath& devPath, 1.900 + const SkStrokeRec& stroke, 1.901 + bool doAA, 1.902 + GrAutoScratchTexture* mask) { 1.903 + GrTextureDesc desc; 1.904 + desc.fFlags = kRenderTarget_GrTextureFlagBit; 1.905 + desc.fWidth = SkScalarCeilToInt(maskRect.width()); 1.906 + desc.fHeight = SkScalarCeilToInt(maskRect.height()); 1.907 + // We actually only need A8, but it often isn't supported as a 1.908 + // render target so default to RGBA_8888 1.909 + desc.fConfig = kRGBA_8888_GrPixelConfig; 1.910 + if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { 1.911 + desc.fConfig = kAlpha_8_GrPixelConfig; 1.912 + } 1.913 + 1.914 + mask->set(context, desc); 1.915 + if (NULL == mask->texture()) { 1.916 + return false; 1.917 + } 1.918 + 1.919 + GrTexture* maskTexture = mask->texture(); 1.920 + SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); 1.921 + 1.922 + GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget()); 1.923 + GrContext::AutoClip ac(context, clipRect); 1.924 + 1.925 + context->clear(NULL, 0x0, true); 1.926 + 1.927 + GrPaint tempPaint; 1.928 + if (doAA) { 1.929 + tempPaint.setAntiAlias(true); 1.930 + // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst 1.931 + // blend coeff of zero requires dual source blending support in order 1.932 + // to properly blend partially covered pixels. This means the AA 1.933 + // code path may not be taken. So we use a dst blend coeff of ISA. We 1.934 + // could special case AA draws to a dst surface with known alpha=0 to 1.935 + // use a zero dst coeff when dual source blending isn't available. 1.936 + tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); 1.937 + } 1.938 + 1.939 + GrContext::AutoMatrix am; 1.940 + 1.941 + // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint. 1.942 + SkMatrix translate; 1.943 + translate.setTranslate(-maskRect.fLeft, -maskRect.fTop); 1.944 + am.set(context, translate); 1.945 + context->drawPath(tempPaint, devPath, stroke); 1.946 + return true; 1.947 +} 1.948 + 1.949 +SkBitmap wrap_texture(GrTexture* texture) { 1.950 + SkImageInfo info; 1.951 + texture->asImageInfo(&info); 1.952 + 1.953 + SkBitmap result; 1.954 + result.setConfig(info); 1.955 + result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref(); 1.956 + return result; 1.957 +} 1.958 + 1.959 +}; 1.960 + 1.961 +void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, 1.962 + const SkPaint& paint, const SkMatrix* prePathMatrix, 1.963 + bool pathIsMutable) { 1.964 + CHECK_FOR_ANNOTATION(paint); 1.965 + CHECK_SHOULD_DRAW(draw, false); 1.966 + 1.967 + GrPaint grPaint; 1.968 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.969 + return; 1.970 + } 1.971 + 1.972 + // If we have a prematrix, apply it to the path, optimizing for the case 1.973 + // where the original path can in fact be modified in place (even though 1.974 + // its parameter type is const). 1.975 + SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); 1.976 + SkTLazy<SkPath> tmpPath; 1.977 + SkTLazy<SkPath> effectPath; 1.978 + 1.979 + if (prePathMatrix) { 1.980 + SkPath* result = pathPtr; 1.981 + 1.982 + if (!pathIsMutable) { 1.983 + result = tmpPath.init(); 1.984 + pathIsMutable = true; 1.985 + } 1.986 + // should I push prePathMatrix on our MV stack temporarily, instead 1.987 + // of applying it here? See SkDraw.cpp 1.988 + pathPtr->transform(*prePathMatrix, result); 1.989 + pathPtr = result; 1.990 + } 1.991 + // at this point we're done with prePathMatrix 1.992 + SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) 1.993 + 1.994 + SkStrokeRec stroke(paint); 1.995 + SkPathEffect* pathEffect = paint.getPathEffect(); 1.996 + const SkRect* cullRect = NULL; // TODO: what is our bounds? 1.997 + if (pathEffect && pathEffect->filterPath(effectPath.init(), *pathPtr, &stroke, 1.998 + cullRect)) { 1.999 + pathPtr = effectPath.get(); 1.1000 + pathIsMutable = true; 1.1001 + } 1.1002 + 1.1003 + if (paint.getMaskFilter()) { 1.1004 + if (!stroke.isHairlineStyle()) { 1.1005 + SkPath* strokedPath = pathIsMutable ? pathPtr : tmpPath.init(); 1.1006 + if (stroke.applyToPath(strokedPath, *pathPtr)) { 1.1007 + pathPtr = strokedPath; 1.1008 + pathIsMutable = true; 1.1009 + stroke.setFillStyle(); 1.1010 + } 1.1011 + } 1.1012 + 1.1013 + // avoid possibly allocating a new path in transform if we can 1.1014 + SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath.init(); 1.1015 + 1.1016 + // transform the path into device space 1.1017 + pathPtr->transform(fContext->getMatrix(), devPathPtr); 1.1018 + 1.1019 + SkRect maskRect; 1.1020 + if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(), 1.1021 + draw.fClip->getBounds(), 1.1022 + fContext->getMatrix(), 1.1023 + &maskRect)) { 1.1024 + // The context's matrix may change while creating the mask, so save the CTM here to 1.1025 + // pass to filterMaskGPU. 1.1026 + const SkMatrix ctm = fContext->getMatrix(); 1.1027 + 1.1028 + SkIRect finalIRect; 1.1029 + maskRect.roundOut(&finalIRect); 1.1030 + if (draw.fClip->quickReject(finalIRect)) { 1.1031 + // clipped out 1.1032 + return; 1.1033 + } 1.1034 + if (NULL != draw.fBounder && !draw.fBounder->doIRect(finalIRect)) { 1.1035 + // nothing to draw 1.1036 + return; 1.1037 + } 1.1038 + 1.1039 + if (paint.getMaskFilter()->directFilterMaskGPU(fContext, &grPaint, 1.1040 + stroke, *devPathPtr)) { 1.1041 + // the mask filter was able to draw itself directly, so there's nothing 1.1042 + // left to do. 1.1043 + return; 1.1044 + } 1.1045 + 1.1046 + GrAutoScratchTexture mask; 1.1047 + 1.1048 + if (create_mask_GPU(fContext, maskRect, *devPathPtr, stroke, 1.1049 + grPaint.isAntiAlias(), &mask)) { 1.1050 + GrTexture* filtered; 1.1051 + 1.1052 + if (paint.getMaskFilter()->filterMaskGPU(mask.texture(), 1.1053 + ctm, maskRect, &filtered, true)) { 1.1054 + // filterMaskGPU gives us ownership of a ref to the result 1.1055 + SkAutoTUnref<GrTexture> atu(filtered); 1.1056 + 1.1057 + // If the scratch texture that we used as the filter src also holds the filter 1.1058 + // result then we must detach so that this texture isn't recycled for a later 1.1059 + // draw. 1.1060 + if (filtered == mask.texture()) { 1.1061 + mask.detach(); 1.1062 + filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us. 1.1063 + } 1.1064 + 1.1065 + if (draw_mask(fContext, maskRect, &grPaint, filtered)) { 1.1066 + // This path is completely drawn 1.1067 + return; 1.1068 + } 1.1069 + } 1.1070 + } 1.1071 + } 1.1072 + 1.1073 + // draw the mask on the CPU - this is a fallthrough path in case the 1.1074 + // GPU path fails 1.1075 + SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : 1.1076 + SkPaint::kFill_Style; 1.1077 + draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(), 1.1078 + *draw.fClip, draw.fBounder, &grPaint, style); 1.1079 + return; 1.1080 + } 1.1081 + 1.1082 + fContext->drawPath(grPaint, *pathPtr, stroke); 1.1083 +} 1.1084 + 1.1085 +static const int kBmpSmallTileSize = 1 << 10; 1.1086 + 1.1087 +static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { 1.1088 + int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; 1.1089 + int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; 1.1090 + return tilesX * tilesY; 1.1091 +} 1.1092 + 1.1093 +static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) { 1.1094 + if (maxTileSize <= kBmpSmallTileSize) { 1.1095 + return maxTileSize; 1.1096 + } 1.1097 + 1.1098 + size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); 1.1099 + size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); 1.1100 + 1.1101 + maxTileTotalTileSize *= maxTileSize * maxTileSize; 1.1102 + smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; 1.1103 + 1.1104 + if (maxTileTotalTileSize > 2 * smallTotalTileSize) { 1.1105 + return kBmpSmallTileSize; 1.1106 + } else { 1.1107 + return maxTileSize; 1.1108 + } 1.1109 +} 1.1110 + 1.1111 +// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what 1.1112 +// pixels from the bitmap are necessary. 1.1113 +static void determine_clipped_src_rect(const GrContext* context, 1.1114 + const SkBitmap& bitmap, 1.1115 + const SkRect* srcRectPtr, 1.1116 + SkIRect* clippedSrcIRect) { 1.1117 + const GrClipData* clip = context->getClip(); 1.1118 + clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL); 1.1119 + SkMatrix inv; 1.1120 + if (!context->getMatrix().invert(&inv)) { 1.1121 + clippedSrcIRect->setEmpty(); 1.1122 + return; 1.1123 + } 1.1124 + SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); 1.1125 + inv.mapRect(&clippedSrcRect); 1.1126 + if (NULL != srcRectPtr) { 1.1127 + // we've setup src space 0,0 to map to the top left of the src rect. 1.1128 + clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); 1.1129 + if (!clippedSrcRect.intersect(*srcRectPtr)) { 1.1130 + clippedSrcIRect->setEmpty(); 1.1131 + return; 1.1132 + } 1.1133 + } 1.1134 + clippedSrcRect.roundOut(clippedSrcIRect); 1.1135 + SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); 1.1136 + if (!clippedSrcIRect->intersect(bmpBounds)) { 1.1137 + clippedSrcIRect->setEmpty(); 1.1138 + } 1.1139 +} 1.1140 + 1.1141 +bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, 1.1142 + const GrTextureParams& params, 1.1143 + const SkRect* srcRectPtr, 1.1144 + int maxTileSize, 1.1145 + int* tileSize, 1.1146 + SkIRect* clippedSrcRect) const { 1.1147 + // if bitmap is explictly texture backed then just use the texture 1.1148 + if (NULL != bitmap.getTexture()) { 1.1149 + return false; 1.1150 + } 1.1151 + 1.1152 + // if it's larger than the max tile size, then we have no choice but tiling. 1.1153 + if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) { 1.1154 + determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); 1.1155 + *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize); 1.1156 + return true; 1.1157 + } 1.1158 + 1.1159 + if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { 1.1160 + return false; 1.1161 + } 1.1162 + 1.1163 + // if the entire texture is already in our cache then no reason to tile it 1.1164 + if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { 1.1165 + return false; 1.1166 + } 1.1167 + 1.1168 + // At this point we know we could do the draw by uploading the entire bitmap 1.1169 + // as a texture. However, if the texture would be large compared to the 1.1170 + // cache size and we don't require most of it for this draw then tile to 1.1171 + // reduce the amount of upload and cache spill. 1.1172 + 1.1173 + // assumption here is that sw bitmap size is a good proxy for its size as 1.1174 + // a texture 1.1175 + size_t bmpSize = bitmap.getSize(); 1.1176 + size_t cacheSize; 1.1177 + fContext->getTextureCacheLimits(NULL, &cacheSize); 1.1178 + if (bmpSize < cacheSize / 2) { 1.1179 + return false; 1.1180 + } 1.1181 + 1.1182 + // Figure out how much of the src we will need based on the src rect and clipping. 1.1183 + determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); 1.1184 + *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. 1.1185 + size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) * 1.1186 + kBmpSmallTileSize * kBmpSmallTileSize; 1.1187 + 1.1188 + return usedTileBytes < 2 * bmpSize; 1.1189 +} 1.1190 + 1.1191 +void SkGpuDevice::drawBitmap(const SkDraw& origDraw, 1.1192 + const SkBitmap& bitmap, 1.1193 + const SkMatrix& m, 1.1194 + const SkPaint& paint) { 1.1195 + SkMatrix concat; 1.1196 + SkTCopyOnFirstWrite<SkDraw> draw(origDraw); 1.1197 + if (!m.isIdentity()) { 1.1198 + concat.setConcat(*draw->fMatrix, m); 1.1199 + draw.writable()->fMatrix = &concat; 1.1200 + } 1.1201 + this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kNone_DrawBitmapRectFlag); 1.1202 +} 1.1203 + 1.1204 +// This method outsets 'iRect' by 'outset' all around and then clamps its extents to 1.1205 +// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner 1.1206 +// of 'iRect' for all possible outsets/clamps. 1.1207 +static inline void clamped_outset_with_offset(SkIRect* iRect, 1.1208 + int outset, 1.1209 + SkPoint* offset, 1.1210 + const SkIRect& clamp) { 1.1211 + iRect->outset(outset, outset); 1.1212 + 1.1213 + int leftClampDelta = clamp.fLeft - iRect->fLeft; 1.1214 + if (leftClampDelta > 0) { 1.1215 + offset->fX -= outset - leftClampDelta; 1.1216 + iRect->fLeft = clamp.fLeft; 1.1217 + } else { 1.1218 + offset->fX -= outset; 1.1219 + } 1.1220 + 1.1221 + int topClampDelta = clamp.fTop - iRect->fTop; 1.1222 + if (topClampDelta > 0) { 1.1223 + offset->fY -= outset - topClampDelta; 1.1224 + iRect->fTop = clamp.fTop; 1.1225 + } else { 1.1226 + offset->fY -= outset; 1.1227 + } 1.1228 + 1.1229 + if (iRect->fRight > clamp.fRight) { 1.1230 + iRect->fRight = clamp.fRight; 1.1231 + } 1.1232 + if (iRect->fBottom > clamp.fBottom) { 1.1233 + iRect->fBottom = clamp.fBottom; 1.1234 + } 1.1235 +} 1.1236 + 1.1237 +void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, 1.1238 + const SkBitmap& bitmap, 1.1239 + const SkRect* srcRectPtr, 1.1240 + const SkSize* dstSizePtr, 1.1241 + const SkPaint& paint, 1.1242 + SkCanvas::DrawBitmapRectFlags flags) { 1.1243 + CHECK_SHOULD_DRAW(draw, false); 1.1244 + 1.1245 + SkRect srcRect; 1.1246 + SkSize dstSize; 1.1247 + // If there is no src rect, or the src rect contains the entire bitmap then we're effectively 1.1248 + // in the (easier) bleed case, so update flags. 1.1249 + if (NULL == srcRectPtr) { 1.1250 + SkScalar w = SkIntToScalar(bitmap.width()); 1.1251 + SkScalar h = SkIntToScalar(bitmap.height()); 1.1252 + dstSize.fWidth = w; 1.1253 + dstSize.fHeight = h; 1.1254 + srcRect.set(0, 0, w, h); 1.1255 + flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); 1.1256 + } else { 1.1257 + SkASSERT(NULL != dstSizePtr); 1.1258 + srcRect = *srcRectPtr; 1.1259 + dstSize = *dstSizePtr; 1.1260 + if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 && 1.1261 + srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) { 1.1262 + flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); 1.1263 + } 1.1264 + } 1.1265 + 1.1266 + if (paint.getMaskFilter()){ 1.1267 + // Convert the bitmap to a shader so that the rect can be drawn 1.1268 + // through drawRect, which supports mask filters. 1.1269 + SkBitmap tmp; // subset of bitmap, if necessary 1.1270 + const SkBitmap* bitmapPtr = &bitmap; 1.1271 + SkMatrix localM; 1.1272 + if (NULL != srcRectPtr) { 1.1273 + localM.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); 1.1274 + localM.postScale(dstSize.fWidth / srcRectPtr->width(), 1.1275 + dstSize.fHeight / srcRectPtr->height()); 1.1276 + // In bleed mode we position and trim the bitmap based on the src rect which is 1.1277 + // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out 1.1278 + // the desired portion of the bitmap and then update 'm' and 'srcRect' to 1.1279 + // compensate. 1.1280 + if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) { 1.1281 + SkIRect iSrc; 1.1282 + srcRect.roundOut(&iSrc); 1.1283 + 1.1284 + SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), 1.1285 + SkIntToScalar(iSrc.fTop)); 1.1286 + 1.1287 + if (!bitmap.extractSubset(&tmp, iSrc)) { 1.1288 + return; // extraction failed 1.1289 + } 1.1290 + bitmapPtr = &tmp; 1.1291 + srcRect.offset(-offset.fX, -offset.fY); 1.1292 + 1.1293 + // The source rect has changed so update the matrix 1.1294 + localM.preTranslate(offset.fX, offset.fY); 1.1295 + } 1.1296 + } else { 1.1297 + localM.reset(); 1.1298 + } 1.1299 + 1.1300 + SkPaint paintWithShader(paint); 1.1301 + paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, 1.1302 + SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); 1.1303 + paintWithShader.getShader()->setLocalMatrix(localM); 1.1304 + SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; 1.1305 + this->drawRect(draw, dstRect, paintWithShader); 1.1306 + 1.1307 + return; 1.1308 + } 1.1309 + 1.1310 + // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using 1.1311 + // the view matrix rather than a local matrix. 1.1312 + SkMatrix m; 1.1313 + m.setScale(dstSize.fWidth / srcRect.width(), 1.1314 + dstSize.fHeight / srcRect.height()); 1.1315 + fContext->concatMatrix(m); 1.1316 + 1.1317 + GrTextureParams params; 1.1318 + SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel(); 1.1319 + GrTextureParams::FilterMode textureFilterMode; 1.1320 + 1.1321 + int tileFilterPad; 1.1322 + bool doBicubic = false; 1.1323 + 1.1324 + switch(paintFilterLevel) { 1.1325 + case SkPaint::kNone_FilterLevel: 1.1326 + tileFilterPad = 0; 1.1327 + textureFilterMode = GrTextureParams::kNone_FilterMode; 1.1328 + break; 1.1329 + case SkPaint::kLow_FilterLevel: 1.1330 + tileFilterPad = 1; 1.1331 + textureFilterMode = GrTextureParams::kBilerp_FilterMode; 1.1332 + break; 1.1333 + case SkPaint::kMedium_FilterLevel: 1.1334 + tileFilterPad = 1; 1.1335 + if (fContext->getMatrix().getMinStretch() < SK_Scalar1) { 1.1336 + textureFilterMode = GrTextureParams::kMipMap_FilterMode; 1.1337 + } else { 1.1338 + // Don't trigger MIP level generation unnecessarily. 1.1339 + textureFilterMode = GrTextureParams::kBilerp_FilterMode; 1.1340 + } 1.1341 + break; 1.1342 + case SkPaint::kHigh_FilterLevel: 1.1343 + // Minification can look bad with the bicubic effect. 1.1344 + if (fContext->getMatrix().getMinStretch() >= SK_Scalar1) { 1.1345 + // We will install an effect that does the filtering in the shader. 1.1346 + textureFilterMode = GrTextureParams::kNone_FilterMode; 1.1347 + tileFilterPad = GrBicubicEffect::kFilterTexelPad; 1.1348 + doBicubic = true; 1.1349 + } else { 1.1350 + textureFilterMode = GrTextureParams::kMipMap_FilterMode; 1.1351 + tileFilterPad = 1; 1.1352 + } 1.1353 + break; 1.1354 + default: 1.1355 + SkErrorInternals::SetError( kInvalidPaint_SkError, 1.1356 + "Sorry, I don't understand the filtering " 1.1357 + "mode you asked for. Falling back to " 1.1358 + "MIPMaps."); 1.1359 + tileFilterPad = 1; 1.1360 + textureFilterMode = GrTextureParams::kMipMap_FilterMode; 1.1361 + break; 1.1362 + } 1.1363 + 1.1364 + params.setFilterMode(textureFilterMode); 1.1365 + 1.1366 + int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad; 1.1367 + int tileSize; 1.1368 + 1.1369 + SkIRect clippedSrcRect; 1.1370 + if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize, 1.1371 + &clippedSrcRect)) { 1.1372 + this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize, 1.1373 + doBicubic); 1.1374 + } else { 1.1375 + // take the simple case 1.1376 + this->internalDrawBitmap(bitmap, srcRect, params, paint, flags, doBicubic); 1.1377 + } 1.1378 +} 1.1379 + 1.1380 +// Break 'bitmap' into several tiles to draw it since it has already 1.1381 +// been determined to be too large to fit in VRAM 1.1382 +void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, 1.1383 + const SkRect& srcRect, 1.1384 + const SkIRect& clippedSrcIRect, 1.1385 + const GrTextureParams& params, 1.1386 + const SkPaint& paint, 1.1387 + SkCanvas::DrawBitmapRectFlags flags, 1.1388 + int tileSize, 1.1389 + bool bicubic) { 1.1390 + SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); 1.1391 + 1.1392 + int nx = bitmap.width() / tileSize; 1.1393 + int ny = bitmap.height() / tileSize; 1.1394 + for (int x = 0; x <= nx; x++) { 1.1395 + for (int y = 0; y <= ny; y++) { 1.1396 + SkRect tileR; 1.1397 + tileR.set(SkIntToScalar(x * tileSize), 1.1398 + SkIntToScalar(y * tileSize), 1.1399 + SkIntToScalar((x + 1) * tileSize), 1.1400 + SkIntToScalar((y + 1) * tileSize)); 1.1401 + 1.1402 + if (!SkRect::Intersects(tileR, clippedSrcRect)) { 1.1403 + continue; 1.1404 + } 1.1405 + 1.1406 + if (!tileR.intersect(srcRect)) { 1.1407 + continue; 1.1408 + } 1.1409 + 1.1410 + SkBitmap tmpB; 1.1411 + SkIRect iTileR; 1.1412 + tileR.roundOut(&iTileR); 1.1413 + SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), 1.1414 + SkIntToScalar(iTileR.fTop)); 1.1415 + 1.1416 + // Adjust the context matrix to draw at the right x,y in device space 1.1417 + SkMatrix tmpM; 1.1418 + GrContext::AutoMatrix am; 1.1419 + tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); 1.1420 + am.setPreConcat(fContext, tmpM); 1.1421 + 1.1422 + if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) { 1.1423 + SkIRect iClampRect; 1.1424 + 1.1425 + if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) { 1.1426 + // In bleed mode we want to always expand the tile on all edges 1.1427 + // but stay within the bitmap bounds 1.1428 + iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); 1.1429 + } else { 1.1430 + // In texture-domain/clamp mode we only want to expand the 1.1431 + // tile on edges interior to "srcRect" (i.e., we want to 1.1432 + // not bleed across the original clamped edges) 1.1433 + srcRect.roundOut(&iClampRect); 1.1434 + } 1.1435 + int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; 1.1436 + clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); 1.1437 + } 1.1438 + 1.1439 + if (bitmap.extractSubset(&tmpB, iTileR)) { 1.1440 + // now offset it to make it "local" to our tmp bitmap 1.1441 + tileR.offset(-offset.fX, -offset.fY); 1.1442 + 1.1443 + this->internalDrawBitmap(tmpB, tileR, params, paint, flags, bicubic); 1.1444 + } 1.1445 + } 1.1446 + } 1.1447 +} 1.1448 + 1.1449 +static bool has_aligned_samples(const SkRect& srcRect, 1.1450 + const SkRect& transformedRect) { 1.1451 + // detect pixel disalignment 1.1452 + if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - 1.1453 + transformedRect.left()) < COLOR_BLEED_TOLERANCE && 1.1454 + SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - 1.1455 + transformedRect.top()) < COLOR_BLEED_TOLERANCE && 1.1456 + SkScalarAbs(transformedRect.width() - srcRect.width()) < 1.1457 + COLOR_BLEED_TOLERANCE && 1.1458 + SkScalarAbs(transformedRect.height() - srcRect.height()) < 1.1459 + COLOR_BLEED_TOLERANCE) { 1.1460 + return true; 1.1461 + } 1.1462 + return false; 1.1463 +} 1.1464 + 1.1465 +static bool may_color_bleed(const SkRect& srcRect, 1.1466 + const SkRect& transformedRect, 1.1467 + const SkMatrix& m) { 1.1468 + // Only gets called if has_aligned_samples returned false. 1.1469 + // So we can assume that sampling is axis aligned but not texel aligned. 1.1470 + SkASSERT(!has_aligned_samples(srcRect, transformedRect)); 1.1471 + SkRect innerSrcRect(srcRect), innerTransformedRect, 1.1472 + outerTransformedRect(transformedRect); 1.1473 + innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); 1.1474 + m.mapRect(&innerTransformedRect, innerSrcRect); 1.1475 + 1.1476 + // The gap between outerTransformedRect and innerTransformedRect 1.1477 + // represents the projection of the source border area, which is 1.1478 + // problematic for color bleeding. We must check whether any 1.1479 + // destination pixels sample the border area. 1.1480 + outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); 1.1481 + innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); 1.1482 + SkIRect outer, inner; 1.1483 + outerTransformedRect.round(&outer); 1.1484 + innerTransformedRect.round(&inner); 1.1485 + // If the inner and outer rects round to the same result, it means the 1.1486 + // border does not overlap any pixel centers. Yay! 1.1487 + return inner != outer; 1.1488 +} 1.1489 + 1.1490 + 1.1491 +/* 1.1492 + * This is called by drawBitmap(), which has to handle images that may be too 1.1493 + * large to be represented by a single texture. 1.1494 + * 1.1495 + * internalDrawBitmap assumes that the specified bitmap will fit in a texture 1.1496 + * and that non-texture portion of the GrPaint has already been setup. 1.1497 + */ 1.1498 +void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, 1.1499 + const SkRect& srcRect, 1.1500 + const GrTextureParams& params, 1.1501 + const SkPaint& paint, 1.1502 + SkCanvas::DrawBitmapRectFlags flags, 1.1503 + bool bicubic) { 1.1504 + SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && 1.1505 + bitmap.height() <= fContext->getMaxTextureSize()); 1.1506 + 1.1507 + GrTexture* texture; 1.1508 + SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); 1.1509 + if (NULL == texture) { 1.1510 + return; 1.1511 + } 1.1512 + 1.1513 + SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; 1.1514 + SkRect paintRect; 1.1515 + SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); 1.1516 + SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); 1.1517 + paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), 1.1518 + SkScalarMul(srcRect.fTop, hInv), 1.1519 + SkScalarMul(srcRect.fRight, wInv), 1.1520 + SkScalarMul(srcRect.fBottom, hInv)); 1.1521 + 1.1522 + bool needsTextureDomain = false; 1.1523 + if (!(flags & SkCanvas::kBleed_DrawBitmapRectFlag) && 1.1524 + (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode)) { 1.1525 + // Need texture domain if drawing a sub rect 1.1526 + needsTextureDomain = srcRect.width() < bitmap.width() || 1.1527 + srcRect.height() < bitmap.height(); 1.1528 + if (!bicubic && needsTextureDomain && fContext->getMatrix().rectStaysRect()) { 1.1529 + const SkMatrix& matrix = fContext->getMatrix(); 1.1530 + // sampling is axis-aligned 1.1531 + SkRect transformedRect; 1.1532 + matrix.mapRect(&transformedRect, srcRect); 1.1533 + 1.1534 + if (has_aligned_samples(srcRect, transformedRect)) { 1.1535 + // We could also turn off filtering here (but we already did a cache lookup with 1.1536 + // params). 1.1537 + needsTextureDomain = false; 1.1538 + } else { 1.1539 + needsTextureDomain = may_color_bleed(srcRect, transformedRect, matrix); 1.1540 + } 1.1541 + } 1.1542 + } 1.1543 + 1.1544 + SkRect textureDomain = SkRect::MakeEmpty(); 1.1545 + SkAutoTUnref<GrEffectRef> effect; 1.1546 + if (needsTextureDomain) { 1.1547 + // Use a constrained texture domain to avoid color bleeding 1.1548 + SkScalar left, top, right, bottom; 1.1549 + if (srcRect.width() > SK_Scalar1) { 1.1550 + SkScalar border = SK_ScalarHalf / texture->width(); 1.1551 + left = paintRect.left() + border; 1.1552 + right = paintRect.right() - border; 1.1553 + } else { 1.1554 + left = right = SkScalarHalf(paintRect.left() + paintRect.right()); 1.1555 + } 1.1556 + if (srcRect.height() > SK_Scalar1) { 1.1557 + SkScalar border = SK_ScalarHalf / texture->height(); 1.1558 + top = paintRect.top() + border; 1.1559 + bottom = paintRect.bottom() - border; 1.1560 + } else { 1.1561 + top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); 1.1562 + } 1.1563 + textureDomain.setLTRB(left, top, right, bottom); 1.1564 + if (bicubic) { 1.1565 + effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), textureDomain)); 1.1566 + } else { 1.1567 + effect.reset(GrTextureDomainEffect::Create(texture, 1.1568 + SkMatrix::I(), 1.1569 + textureDomain, 1.1570 + GrTextureDomain::kClamp_Mode, 1.1571 + params.filterMode())); 1.1572 + } 1.1573 + } else if (bicubic) { 1.1574 + SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); 1.1575 + SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; 1.1576 + effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes)); 1.1577 + } else { 1.1578 + effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); 1.1579 + } 1.1580 + 1.1581 + // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring 1.1582 + // the rest from the SkPaint. 1.1583 + GrPaint grPaint; 1.1584 + grPaint.addColorEffect(effect); 1.1585 + bool alphaOnly = !(SkBitmap::kA8_Config == bitmap.config()); 1.1586 + if (!skPaint2GrPaintNoShader(this, paint, alphaOnly, false, &grPaint)) { 1.1587 + return; 1.1588 + } 1.1589 + 1.1590 + fContext->drawRectToRect(grPaint, dstRect, paintRect, NULL); 1.1591 +} 1.1592 + 1.1593 +static bool filter_texture(SkBaseDevice* device, GrContext* context, 1.1594 + GrTexture* texture, const SkImageFilter* filter, 1.1595 + int w, int h, const SkImageFilter::Context& ctx, 1.1596 + SkBitmap* result, SkIPoint* offset) { 1.1597 + SkASSERT(filter); 1.1598 + SkDeviceImageFilterProxy proxy(device); 1.1599 + 1.1600 + if (filter->canFilterImageGPU()) { 1.1601 + // Save the render target and set it to NULL, so we don't accidentally draw to it in the 1.1602 + // filter. Also set the clip wide open and the matrix to identity. 1.1603 + GrContext::AutoWideOpenIdentityDraw awo(context, NULL); 1.1604 + return filter->filterImageGPU(&proxy, wrap_texture(texture), ctx, result, offset); 1.1605 + } else { 1.1606 + return false; 1.1607 + } 1.1608 +} 1.1609 + 1.1610 +void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, 1.1611 + int left, int top, const SkPaint& paint) { 1.1612 + // drawSprite is defined to be in device coords. 1.1613 + CHECK_SHOULD_DRAW(draw, true); 1.1614 + 1.1615 + SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); 1.1616 + if (!bitmap.getTexture() && !bitmap.readyToDraw()) { 1.1617 + return; 1.1618 + } 1.1619 + 1.1620 + int w = bitmap.width(); 1.1621 + int h = bitmap.height(); 1.1622 + 1.1623 + GrTexture* texture; 1.1624 + // draw sprite uses the default texture params 1.1625 + SkAutoCachedTexture act(this, bitmap, NULL, &texture); 1.1626 + 1.1627 + SkImageFilter* filter = paint.getImageFilter(); 1.1628 + // This bitmap will own the filtered result as a texture. 1.1629 + SkBitmap filteredBitmap; 1.1630 + 1.1631 + if (NULL != filter) { 1.1632 + SkIPoint offset = SkIPoint::Make(0, 0); 1.1633 + SkMatrix matrix(*draw.fMatrix); 1.1634 + matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); 1.1635 + SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); 1.1636 + SkImageFilter::Context ctx(matrix, clipBounds); 1.1637 + if (filter_texture(this, fContext, texture, filter, w, h, ctx, &filteredBitmap, 1.1638 + &offset)) { 1.1639 + texture = (GrTexture*) filteredBitmap.getTexture(); 1.1640 + w = filteredBitmap.width(); 1.1641 + h = filteredBitmap.height(); 1.1642 + left += offset.x(); 1.1643 + top += offset.y(); 1.1644 + } else { 1.1645 + return; 1.1646 + } 1.1647 + } 1.1648 + 1.1649 + GrPaint grPaint; 1.1650 + grPaint.addColorTextureEffect(texture, SkMatrix::I()); 1.1651 + 1.1652 + if(!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) { 1.1653 + return; 1.1654 + } 1.1655 + 1.1656 + fContext->drawRectToRect(grPaint, 1.1657 + SkRect::MakeXYWH(SkIntToScalar(left), 1.1658 + SkIntToScalar(top), 1.1659 + SkIntToScalar(w), 1.1660 + SkIntToScalar(h)), 1.1661 + SkRect::MakeXYWH(0, 1.1662 + 0, 1.1663 + SK_Scalar1 * w / texture->width(), 1.1664 + SK_Scalar1 * h / texture->height())); 1.1665 +} 1.1666 + 1.1667 +void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, 1.1668 + const SkRect* src, const SkRect& dst, 1.1669 + const SkPaint& paint, 1.1670 + SkCanvas::DrawBitmapRectFlags flags) { 1.1671 + SkMatrix matrix; 1.1672 + SkRect bitmapBounds, tmpSrc; 1.1673 + 1.1674 + bitmapBounds.set(0, 0, 1.1675 + SkIntToScalar(bitmap.width()), 1.1676 + SkIntToScalar(bitmap.height())); 1.1677 + 1.1678 + // Compute matrix from the two rectangles 1.1679 + if (NULL != src) { 1.1680 + tmpSrc = *src; 1.1681 + } else { 1.1682 + tmpSrc = bitmapBounds; 1.1683 + } 1.1684 + 1.1685 + matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); 1.1686 + 1.1687 + // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. 1.1688 + if (NULL != src) { 1.1689 + if (!bitmapBounds.contains(tmpSrc)) { 1.1690 + if (!tmpSrc.intersect(bitmapBounds)) { 1.1691 + return; // nothing to draw 1.1692 + } 1.1693 + } 1.1694 + } 1.1695 + 1.1696 + SkRect tmpDst; 1.1697 + matrix.mapRect(&tmpDst, tmpSrc); 1.1698 + 1.1699 + SkTCopyOnFirstWrite<SkDraw> draw(origDraw); 1.1700 + if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { 1.1701 + // Translate so that tempDst's top left is at the origin. 1.1702 + matrix = *origDraw.fMatrix; 1.1703 + matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); 1.1704 + draw.writable()->fMatrix = &matrix; 1.1705 + } 1.1706 + SkSize dstSize; 1.1707 + dstSize.fWidth = tmpDst.width(); 1.1708 + dstSize.fHeight = tmpDst.height(); 1.1709 + 1.1710 + this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, flags); 1.1711 +} 1.1712 + 1.1713 +void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, 1.1714 + int x, int y, const SkPaint& paint) { 1.1715 + // clear of the source device must occur before CHECK_SHOULD_DRAW 1.1716 + SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); 1.1717 + if (dev->fNeedClear) { 1.1718 + // TODO: could check here whether we really need to draw at all 1.1719 + dev->clear(0x0); 1.1720 + } 1.1721 + 1.1722 + // drawDevice is defined to be in device coords. 1.1723 + CHECK_SHOULD_DRAW(draw, true); 1.1724 + 1.1725 + GrRenderTarget* devRT = dev->accessRenderTarget(); 1.1726 + GrTexture* devTex; 1.1727 + if (NULL == (devTex = devRT->asTexture())) { 1.1728 + return; 1.1729 + } 1.1730 + 1.1731 + const SkBitmap& bm = dev->accessBitmap(false); 1.1732 + int w = bm.width(); 1.1733 + int h = bm.height(); 1.1734 + 1.1735 + SkImageFilter* filter = paint.getImageFilter(); 1.1736 + // This bitmap will own the filtered result as a texture. 1.1737 + SkBitmap filteredBitmap; 1.1738 + 1.1739 + if (NULL != filter) { 1.1740 + SkIPoint offset = SkIPoint::Make(0, 0); 1.1741 + SkMatrix matrix(*draw.fMatrix); 1.1742 + matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); 1.1743 + SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height()); 1.1744 + SkImageFilter::Context ctx(matrix, clipBounds); 1.1745 + if (filter_texture(this, fContext, devTex, filter, w, h, ctx, &filteredBitmap, 1.1746 + &offset)) { 1.1747 + devTex = filteredBitmap.getTexture(); 1.1748 + w = filteredBitmap.width(); 1.1749 + h = filteredBitmap.height(); 1.1750 + x += offset.fX; 1.1751 + y += offset.fY; 1.1752 + } else { 1.1753 + return; 1.1754 + } 1.1755 + } 1.1756 + 1.1757 + GrPaint grPaint; 1.1758 + grPaint.addColorTextureEffect(devTex, SkMatrix::I()); 1.1759 + 1.1760 + if (!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) { 1.1761 + return; 1.1762 + } 1.1763 + 1.1764 + SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), 1.1765 + SkIntToScalar(y), 1.1766 + SkIntToScalar(w), 1.1767 + SkIntToScalar(h)); 1.1768 + 1.1769 + // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate 1.1770 + // scratch texture). 1.1771 + SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), 1.1772 + SK_Scalar1 * h / devTex->height()); 1.1773 + 1.1774 + fContext->drawRectToRect(grPaint, dstRect, srcRect); 1.1775 +} 1.1776 + 1.1777 +bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) { 1.1778 + return filter->canFilterImageGPU(); 1.1779 +} 1.1780 + 1.1781 +bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, 1.1782 + const SkImageFilter::Context& ctx, 1.1783 + SkBitmap* result, SkIPoint* offset) { 1.1784 + // want explicitly our impl, so guard against a subclass of us overriding it 1.1785 + if (!this->SkGpuDevice::canHandleImageFilter(filter)) { 1.1786 + return false; 1.1787 + } 1.1788 + 1.1789 + SkAutoLockPixels alp(src, !src.getTexture()); 1.1790 + if (!src.getTexture() && !src.readyToDraw()) { 1.1791 + return false; 1.1792 + } 1.1793 + 1.1794 + GrTexture* texture; 1.1795 + // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup 1.1796 + // must be pushed upstack. 1.1797 + SkAutoCachedTexture act(this, src, NULL, &texture); 1.1798 + 1.1799 + return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctx, 1.1800 + result, offset); 1.1801 +} 1.1802 + 1.1803 +/////////////////////////////////////////////////////////////////////////////// 1.1804 + 1.1805 +// must be in SkCanvas::VertexMode order 1.1806 +static const GrPrimitiveType gVertexMode2PrimitiveType[] = { 1.1807 + kTriangles_GrPrimitiveType, 1.1808 + kTriangleStrip_GrPrimitiveType, 1.1809 + kTriangleFan_GrPrimitiveType, 1.1810 +}; 1.1811 + 1.1812 +void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, 1.1813 + int vertexCount, const SkPoint vertices[], 1.1814 + const SkPoint texs[], const SkColor colors[], 1.1815 + SkXfermode* xmode, 1.1816 + const uint16_t indices[], int indexCount, 1.1817 + const SkPaint& paint) { 1.1818 + CHECK_SHOULD_DRAW(draw, false); 1.1819 + 1.1820 + GrPaint grPaint; 1.1821 + // we ignore the shader if texs is null. 1.1822 + if (NULL == texs) { 1.1823 + if (!skPaint2GrPaintNoShader(this, paint, false, NULL == colors, &grPaint)) { 1.1824 + return; 1.1825 + } 1.1826 + } else { 1.1827 + if (!skPaint2GrPaintShader(this, paint, NULL == colors, &grPaint)) { 1.1828 + return; 1.1829 + } 1.1830 + } 1.1831 + 1.1832 + if (NULL != xmode && NULL != texs && NULL != colors) { 1.1833 + if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) { 1.1834 + SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); 1.1835 +#if 0 1.1836 + return 1.1837 +#endif 1.1838 + } 1.1839 + } 1.1840 + 1.1841 + SkAutoSTMalloc<128, GrColor> convertedColors(0); 1.1842 + if (NULL != colors) { 1.1843 + // need to convert byte order and from non-PM to PM 1.1844 + convertedColors.reset(vertexCount); 1.1845 + for (int i = 0; i < vertexCount; ++i) { 1.1846 + convertedColors[i] = SkColor2GrColor(colors[i]); 1.1847 + } 1.1848 + colors = convertedColors.get(); 1.1849 + } 1.1850 + fContext->drawVertices(grPaint, 1.1851 + gVertexMode2PrimitiveType[vmode], 1.1852 + vertexCount, 1.1853 + (GrPoint*) vertices, 1.1854 + (GrPoint*) texs, 1.1855 + colors, 1.1856 + indices, 1.1857 + indexCount); 1.1858 +} 1.1859 + 1.1860 +/////////////////////////////////////////////////////////////////////////////// 1.1861 + 1.1862 +void SkGpuDevice::drawText(const SkDraw& draw, const void* text, 1.1863 + size_t byteLength, SkScalar x, SkScalar y, 1.1864 + const SkPaint& paint) { 1.1865 + CHECK_SHOULD_DRAW(draw, false); 1.1866 + 1.1867 + if (fMainTextContext->canDraw(paint)) { 1.1868 + GrPaint grPaint; 1.1869 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.1870 + return; 1.1871 + } 1.1872 + 1.1873 + SkDEBUGCODE(this->validate();) 1.1874 + 1.1875 + fMainTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); 1.1876 + } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { 1.1877 + GrPaint grPaint; 1.1878 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.1879 + return; 1.1880 + } 1.1881 + 1.1882 + SkDEBUGCODE(this->validate();) 1.1883 + 1.1884 + fFallbackTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); 1.1885 + } else { 1.1886 + // this guy will just call our drawPath() 1.1887 + draw.drawText_asPaths((const char*)text, byteLength, x, y, paint); 1.1888 + } 1.1889 +} 1.1890 + 1.1891 +void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, 1.1892 + size_t byteLength, const SkScalar pos[], 1.1893 + SkScalar constY, int scalarsPerPos, 1.1894 + const SkPaint& paint) { 1.1895 + CHECK_SHOULD_DRAW(draw, false); 1.1896 + 1.1897 + if (fMainTextContext->canDraw(paint)) { 1.1898 + GrPaint grPaint; 1.1899 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.1900 + return; 1.1901 + } 1.1902 + 1.1903 + SkDEBUGCODE(this->validate();) 1.1904 + 1.1905 + fMainTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, 1.1906 + constY, scalarsPerPos); 1.1907 + } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { 1.1908 + GrPaint grPaint; 1.1909 + if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { 1.1910 + return; 1.1911 + } 1.1912 + 1.1913 + SkDEBUGCODE(this->validate();) 1.1914 + 1.1915 + fFallbackTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, 1.1916 + constY, scalarsPerPos); 1.1917 + } else { 1.1918 + draw.drawPosText_asPaths((const char*)text, byteLength, pos, constY, 1.1919 + scalarsPerPos, paint); 1.1920 + } 1.1921 +} 1.1922 + 1.1923 +void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, 1.1924 + size_t len, const SkPath& path, 1.1925 + const SkMatrix* m, const SkPaint& paint) { 1.1926 + CHECK_SHOULD_DRAW(draw, false); 1.1927 + 1.1928 + SkASSERT(draw.fDevice == this); 1.1929 + draw.drawTextOnPath((const char*)text, len, path, m, paint); 1.1930 +} 1.1931 + 1.1932 +/////////////////////////////////////////////////////////////////////////////// 1.1933 + 1.1934 +bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { 1.1935 + if (!paint.isLCDRenderText()) { 1.1936 + // we're cool with the paint as is 1.1937 + return false; 1.1938 + } 1.1939 + 1.1940 + if (paint.getShader() || 1.1941 + paint.getXfermode() || // unless its srcover 1.1942 + paint.getMaskFilter() || 1.1943 + paint.getRasterizer() || 1.1944 + paint.getColorFilter() || 1.1945 + paint.getPathEffect() || 1.1946 + paint.isFakeBoldText() || 1.1947 + paint.getStyle() != SkPaint::kFill_Style) { 1.1948 + // turn off lcd 1.1949 + flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; 1.1950 + flags->fHinting = paint.getHinting(); 1.1951 + return true; 1.1952 + } 1.1953 + // we're cool with the paint as is 1.1954 + return false; 1.1955 +} 1.1956 + 1.1957 +void SkGpuDevice::flush() { 1.1958 + DO_DEFERRED_CLEAR(); 1.1959 + fContext->resolveRenderTarget(fRenderTarget); 1.1960 +} 1.1961 + 1.1962 +/////////////////////////////////////////////////////////////////////////////// 1.1963 + 1.1964 +SkBaseDevice* SkGpuDevice::onCreateDevice(const SkImageInfo& info, Usage usage) { 1.1965 + GrTextureDesc desc; 1.1966 + desc.fConfig = fRenderTarget->config(); 1.1967 + desc.fFlags = kRenderTarget_GrTextureFlagBit; 1.1968 + desc.fWidth = info.width(); 1.1969 + desc.fHeight = info.height(); 1.1970 + desc.fSampleCnt = fRenderTarget->numSamples(); 1.1971 + 1.1972 + SkAutoTUnref<GrTexture> texture; 1.1973 + // Skia's convention is to only clear a device if it is non-opaque. 1.1974 + bool needClear = !info.isOpaque(); 1.1975 + 1.1976 +#if CACHE_COMPATIBLE_DEVICE_TEXTURES 1.1977 + // layers are never draw in repeat modes, so we can request an approx 1.1978 + // match and ignore any padding. 1.1979 + const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? 1.1980 + GrContext::kApprox_ScratchTexMatch : 1.1981 + GrContext::kExact_ScratchTexMatch; 1.1982 + texture.reset(fContext->lockAndRefScratchTexture(desc, match)); 1.1983 +#else 1.1984 + texture.reset(fContext->createUncachedTexture(desc, NULL, 0)); 1.1985 +#endif 1.1986 + if (NULL != texture.get()) { 1.1987 + return SkNEW_ARGS(SkGpuDevice,(fContext, texture, needClear)); 1.1988 + } else { 1.1989 + GrPrintf("---- failed to create compatible device texture [%d %d]\n", 1.1990 + info.width(), info.height()); 1.1991 + return NULL; 1.1992 + } 1.1993 +} 1.1994 + 1.1995 +SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info) { 1.1996 + return SkSurface::NewRenderTarget(fContext, info, fRenderTarget->numSamples()); 1.1997 +} 1.1998 + 1.1999 +SkGpuDevice::SkGpuDevice(GrContext* context, 1.2000 + GrTexture* texture, 1.2001 + bool needClear) 1.2002 + : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) { 1.2003 + 1.2004 + SkASSERT(texture && texture->asRenderTarget()); 1.2005 + // This constructor is called from onCreateDevice. It has locked the RT in the texture 1.2006 + // cache. We pass true for the third argument so that it will get unlocked. 1.2007 + this->initFromRenderTarget(context, texture->asRenderTarget(), true); 1.2008 + fNeedClear = needClear; 1.2009 +} 1.2010 + 1.2011 +class GPUAccelData : public SkPicture::AccelData { 1.2012 +public: 1.2013 + GPUAccelData(Key key) : INHERITED(key) { } 1.2014 + 1.2015 +protected: 1.2016 + 1.2017 +private: 1.2018 + typedef SkPicture::AccelData INHERITED; 1.2019 +}; 1.2020 + 1.2021 +// In the future this may not be a static method if we need to incorporate the 1.2022 +// clip and matrix state into the key 1.2023 +SkPicture::AccelData::Key SkGpuDevice::ComputeAccelDataKey() { 1.2024 + static const SkPicture::AccelData::Key gGPUID = SkPicture::AccelData::GenerateDomain(); 1.2025 + 1.2026 + return gGPUID; 1.2027 +} 1.2028 + 1.2029 +void SkGpuDevice::EXPERIMENTAL_optimize(SkPicture* picture) { 1.2030 + SkPicture::AccelData::Key key = ComputeAccelDataKey(); 1.2031 + 1.2032 + GPUAccelData* data = SkNEW_ARGS(GPUAccelData, (key)); 1.2033 + 1.2034 + picture->EXPERIMENTAL_addAccelData(data); 1.2035 +} 1.2036 + 1.2037 +bool SkGpuDevice::EXPERIMENTAL_drawPicture(const SkPicture& picture) { 1.2038 + SkPicture::AccelData::Key key = ComputeAccelDataKey(); 1.2039 + 1.2040 + const SkPicture::AccelData* data = picture.EXPERIMENTAL_getAccelData(key); 1.2041 + if (NULL == data) { 1.2042 + return false; 1.2043 + } 1.2044 + 1.2045 +#if 0 1.2046 + const GPUAccelData *gpuData = static_cast<const GPUAccelData*>(data); 1.2047 +#endif 1.2048 + 1.2049 + return false; 1.2050 +}