1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pathops/SkDCubicLineIntersection.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,358 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 +#include "SkIntersections.h" 1.11 +#include "SkPathOpsCubic.h" 1.12 +#include "SkPathOpsLine.h" 1.13 + 1.14 +/* 1.15 +Find the interection of a line and cubic by solving for valid t values. 1.16 + 1.17 +Analogous to line-quadratic intersection, solve line-cubic intersection by 1.18 +representing the cubic as: 1.19 + x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 1.20 + y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 1.21 +and the line as: 1.22 + y = i*x + j (if the line is more horizontal) 1.23 +or: 1.24 + x = i*y + j (if the line is more vertical) 1.25 + 1.26 +Then using Mathematica, solve for the values of t where the cubic intersects the 1.27 +line: 1.28 + 1.29 + (in) Resultant[ 1.30 + a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, 1.31 + e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] 1.32 + (out) -e + j + 1.33 + 3 e t - 3 f t - 1.34 + 3 e t^2 + 6 f t^2 - 3 g t^2 + 1.35 + e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + 1.36 + i ( a - 1.37 + 3 a t + 3 b t + 1.38 + 3 a t^2 - 6 b t^2 + 3 c t^2 - 1.39 + a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) 1.40 + 1.41 +if i goes to infinity, we can rewrite the line in terms of x. Mathematica: 1.42 + 1.43 + (in) Resultant[ 1.44 + a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, 1.45 + e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] 1.46 + (out) a - j - 1.47 + 3 a t + 3 b t + 1.48 + 3 a t^2 - 6 b t^2 + 3 c t^2 - 1.49 + a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - 1.50 + i ( e - 1.51 + 3 e t + 3 f t + 1.52 + 3 e t^2 - 6 f t^2 + 3 g t^2 - 1.53 + e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) 1.54 + 1.55 +Solving this with Mathematica produces an expression with hundreds of terms; 1.56 +instead, use Numeric Solutions recipe to solve the cubic. 1.57 + 1.58 +The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 1.59 + A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) 1.60 + B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) 1.61 + C = 3*(-(-e + f ) + i*(-a + b ) ) 1.62 + D = (-( e ) + i*( a ) + j ) 1.63 + 1.64 +The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 1.65 + A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) 1.66 + B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) 1.67 + C = 3*( (-a + b ) - i*(-e + f ) ) 1.68 + D = ( ( a ) - i*( e ) - j ) 1.69 + 1.70 +For horizontal lines: 1.71 +(in) Resultant[ 1.72 + a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, 1.73 + e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] 1.74 +(out) e - j - 1.75 + 3 e t + 3 f t + 1.76 + 3 e t^2 - 6 f t^2 + 3 g t^2 - 1.77 + e t^3 + 3 f t^3 - 3 g t^3 + h t^3 1.78 + */ 1.79 + 1.80 +class LineCubicIntersections { 1.81 +public: 1.82 + enum PinTPoint { 1.83 + kPointUninitialized, 1.84 + kPointInitialized 1.85 + }; 1.86 + 1.87 + LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i) 1.88 + : fCubic(c) 1.89 + , fLine(l) 1.90 + , fIntersections(i) 1.91 + , fAllowNear(true) { 1.92 + i->setMax(3); 1.93 + } 1.94 + 1.95 + void allowNear(bool allow) { 1.96 + fAllowNear = allow; 1.97 + } 1.98 + 1.99 + // see parallel routine in line quadratic intersections 1.100 + int intersectRay(double roots[3]) { 1.101 + double adj = fLine[1].fX - fLine[0].fX; 1.102 + double opp = fLine[1].fY - fLine[0].fY; 1.103 + SkDCubic r; 1.104 + for (int n = 0; n < 4; ++n) { 1.105 + r[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp; 1.106 + } 1.107 + double A, B, C, D; 1.108 + SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D); 1.109 + return SkDCubic::RootsValidT(A, B, C, D, roots); 1.110 + } 1.111 + 1.112 + int intersect() { 1.113 + addExactEndPoints(); 1.114 + if (fAllowNear) { 1.115 + addNearEndPoints(); 1.116 + } 1.117 + double rootVals[3]; 1.118 + int roots = intersectRay(rootVals); 1.119 + for (int index = 0; index < roots; ++index) { 1.120 + double cubicT = rootVals[index]; 1.121 + double lineT = findLineT(cubicT); 1.122 + SkDPoint pt; 1.123 + if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized)) { 1.124 + #if ONE_OFF_DEBUG 1.125 + SkDPoint cPt = fCubic.ptAtT(cubicT); 1.126 + SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, 1.127 + cPt.fX, cPt.fY); 1.128 + #endif 1.129 + for (int inner = 0; inner < fIntersections->used(); ++inner) { 1.130 + if (fIntersections->pt(inner) != pt) { 1.131 + continue; 1.132 + } 1.133 + double existingCubicT = (*fIntersections)[0][inner]; 1.134 + if (cubicT == existingCubicT) { 1.135 + goto skipInsert; 1.136 + } 1.137 + // check if midway on cubic is also same point. If so, discard this 1.138 + double cubicMidT = (existingCubicT + cubicT) / 2; 1.139 + SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); 1.140 + if (cubicMidPt.approximatelyEqual(pt)) { 1.141 + goto skipInsert; 1.142 + } 1.143 + } 1.144 + fIntersections->insert(cubicT, lineT, pt); 1.145 + skipInsert: 1.146 + ; 1.147 + } 1.148 + } 1.149 + return fIntersections->used(); 1.150 + } 1.151 + 1.152 + int horizontalIntersect(double axisIntercept, double roots[3]) { 1.153 + double A, B, C, D; 1.154 + SkDCubic::Coefficients(&fCubic[0].fY, &A, &B, &C, &D); 1.155 + D -= axisIntercept; 1.156 + return SkDCubic::RootsValidT(A, B, C, D, roots); 1.157 + } 1.158 + 1.159 + int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { 1.160 + addExactHorizontalEndPoints(left, right, axisIntercept); 1.161 + if (fAllowNear) { 1.162 + addNearHorizontalEndPoints(left, right, axisIntercept); 1.163 + } 1.164 + double rootVals[3]; 1.165 + int roots = horizontalIntersect(axisIntercept, rootVals); 1.166 + for (int index = 0; index < roots; ++index) { 1.167 + double cubicT = rootVals[index]; 1.168 + SkDPoint pt = fCubic.ptAtT(cubicT); 1.169 + double lineT = (pt.fX - left) / (right - left); 1.170 + if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) { 1.171 + fIntersections->insert(cubicT, lineT, pt); 1.172 + } 1.173 + } 1.174 + if (flipped) { 1.175 + fIntersections->flip(); 1.176 + } 1.177 + return fIntersections->used(); 1.178 + } 1.179 + 1.180 + int verticalIntersect(double axisIntercept, double roots[3]) { 1.181 + double A, B, C, D; 1.182 + SkDCubic::Coefficients(&fCubic[0].fX, &A, &B, &C, &D); 1.183 + D -= axisIntercept; 1.184 + return SkDCubic::RootsValidT(A, B, C, D, roots); 1.185 + } 1.186 + 1.187 + int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { 1.188 + addExactVerticalEndPoints(top, bottom, axisIntercept); 1.189 + if (fAllowNear) { 1.190 + addNearVerticalEndPoints(top, bottom, axisIntercept); 1.191 + } 1.192 + double rootVals[3]; 1.193 + int roots = verticalIntersect(axisIntercept, rootVals); 1.194 + for (int index = 0; index < roots; ++index) { 1.195 + double cubicT = rootVals[index]; 1.196 + SkDPoint pt = fCubic.ptAtT(cubicT); 1.197 + double lineT = (pt.fY - top) / (bottom - top); 1.198 + if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) { 1.199 + fIntersections->insert(cubicT, lineT, pt); 1.200 + } 1.201 + } 1.202 + if (flipped) { 1.203 + fIntersections->flip(); 1.204 + } 1.205 + return fIntersections->used(); 1.206 + } 1.207 + 1.208 + protected: 1.209 + 1.210 + void addExactEndPoints() { 1.211 + for (int cIndex = 0; cIndex < 4; cIndex += 3) { 1.212 + double lineT = fLine.exactPoint(fCubic[cIndex]); 1.213 + if (lineT < 0) { 1.214 + continue; 1.215 + } 1.216 + double cubicT = (double) (cIndex >> 1); 1.217 + fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 1.218 + } 1.219 + } 1.220 + 1.221 + /* Note that this does not look for endpoints of the line that are near the cubic. 1.222 + These points are found later when check ends looks for missing points */ 1.223 + void addNearEndPoints() { 1.224 + for (int cIndex = 0; cIndex < 4; cIndex += 3) { 1.225 + double cubicT = (double) (cIndex >> 1); 1.226 + if (fIntersections->hasT(cubicT)) { 1.227 + continue; 1.228 + } 1.229 + double lineT = fLine.nearPoint(fCubic[cIndex]); 1.230 + if (lineT < 0) { 1.231 + continue; 1.232 + } 1.233 + fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 1.234 + } 1.235 + } 1.236 + 1.237 + void addExactHorizontalEndPoints(double left, double right, double y) { 1.238 + for (int cIndex = 0; cIndex < 4; cIndex += 3) { 1.239 + double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y); 1.240 + if (lineT < 0) { 1.241 + continue; 1.242 + } 1.243 + double cubicT = (double) (cIndex >> 1); 1.244 + fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 1.245 + } 1.246 + } 1.247 + 1.248 + void addNearHorizontalEndPoints(double left, double right, double y) { 1.249 + for (int cIndex = 0; cIndex < 4; cIndex += 3) { 1.250 + double cubicT = (double) (cIndex >> 1); 1.251 + if (fIntersections->hasT(cubicT)) { 1.252 + continue; 1.253 + } 1.254 + double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y); 1.255 + if (lineT < 0) { 1.256 + continue; 1.257 + } 1.258 + fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 1.259 + } 1.260 + // FIXME: see if line end is nearly on cubic 1.261 + } 1.262 + 1.263 + void addExactVerticalEndPoints(double top, double bottom, double x) { 1.264 + for (int cIndex = 0; cIndex < 4; cIndex += 3) { 1.265 + double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x); 1.266 + if (lineT < 0) { 1.267 + continue; 1.268 + } 1.269 + double cubicT = (double) (cIndex >> 1); 1.270 + fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 1.271 + } 1.272 + } 1.273 + 1.274 + void addNearVerticalEndPoints(double top, double bottom, double x) { 1.275 + for (int cIndex = 0; cIndex < 4; cIndex += 3) { 1.276 + double cubicT = (double) (cIndex >> 1); 1.277 + if (fIntersections->hasT(cubicT)) { 1.278 + continue; 1.279 + } 1.280 + double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x); 1.281 + if (lineT < 0) { 1.282 + continue; 1.283 + } 1.284 + fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 1.285 + } 1.286 + // FIXME: see if line end is nearly on cubic 1.287 + } 1.288 + 1.289 + double findLineT(double t) { 1.290 + SkDPoint xy = fCubic.ptAtT(t); 1.291 + double dx = fLine[1].fX - fLine[0].fX; 1.292 + double dy = fLine[1].fY - fLine[0].fY; 1.293 + if (fabs(dx) > fabs(dy)) { 1.294 + return (xy.fX - fLine[0].fX) / dx; 1.295 + } 1.296 + return (xy.fY - fLine[0].fY) / dy; 1.297 + } 1.298 + 1.299 + bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { 1.300 + if (!approximately_one_or_less(*lineT)) { 1.301 + return false; 1.302 + } 1.303 + if (!approximately_zero_or_more(*lineT)) { 1.304 + return false; 1.305 + } 1.306 + double cT = *cubicT = SkPinT(*cubicT); 1.307 + double lT = *lineT = SkPinT(*lineT); 1.308 + if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) { 1.309 + *pt = fLine.ptAtT(lT); 1.310 + } else if (ptSet == kPointUninitialized) { 1.311 + *pt = fCubic.ptAtT(cT); 1.312 + } 1.313 + SkPoint gridPt = pt->asSkPoint(); 1.314 + if (gridPt == fLine[0].asSkPoint()) { 1.315 + *lineT = 0; 1.316 + } else if (gridPt == fLine[1].asSkPoint()) { 1.317 + *lineT = 1; 1.318 + } 1.319 + if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) { 1.320 + *cubicT = 0; 1.321 + } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) { 1.322 + *cubicT = 1; 1.323 + } 1.324 + return true; 1.325 + } 1.326 + 1.327 +private: 1.328 + const SkDCubic& fCubic; 1.329 + const SkDLine& fLine; 1.330 + SkIntersections* fIntersections; 1.331 + bool fAllowNear; 1.332 +}; 1.333 + 1.334 +int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, 1.335 + bool flipped) { 1.336 + SkDLine line = {{{ left, y }, { right, y }}}; 1.337 + LineCubicIntersections c(cubic, line, this); 1.338 + return c.horizontalIntersect(y, left, right, flipped); 1.339 +} 1.340 + 1.341 +int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, 1.342 + bool flipped) { 1.343 + SkDLine line = {{{ x, top }, { x, bottom }}}; 1.344 + LineCubicIntersections c(cubic, line, this); 1.345 + return c.verticalIntersect(x, top, bottom, flipped); 1.346 +} 1.347 + 1.348 +int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { 1.349 + LineCubicIntersections c(cubic, line, this); 1.350 + c.allowNear(fAllowNear); 1.351 + return c.intersect(); 1.352 +} 1.353 + 1.354 +int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { 1.355 + LineCubicIntersections c(cubic, line, this); 1.356 + fUsed = c.intersectRay(fT[0]); 1.357 + for (int index = 0; index < fUsed; ++index) { 1.358 + fPt[index] = cubic.ptAtT(fT[0][index]); 1.359 + } 1.360 + return fUsed; 1.361 +}