gfx/skia/trunk/src/pathops/SkDQuadLineIntersection.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/pathops/SkDQuadLineIntersection.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,413 @@
     1.4 +/*
     1.5 + * Copyright 2012 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +#include "SkIntersections.h"
    1.11 +#include "SkPathOpsLine.h"
    1.12 +#include "SkPathOpsQuad.h"
    1.13 +
    1.14 +/*
    1.15 +Find the interection of a line and quadratic by solving for valid t values.
    1.16 +
    1.17 +From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
    1.18 +
    1.19 +"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
    1.20 +control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
    1.21 +A, B and C are points and t goes from zero to one.
    1.22 +
    1.23 +This will give you two equations:
    1.24 +
    1.25 +  x = a(1 - t)^2 + b(1 - t)t + ct^2
    1.26 +  y = d(1 - t)^2 + e(1 - t)t + ft^2
    1.27 +
    1.28 +If you add for instance the line equation (y = kx + m) to that, you'll end up
    1.29 +with three equations and three unknowns (x, y and t)."
    1.30 +
    1.31 +Similar to above, the quadratic is represented as
    1.32 +  x = a(1-t)^2 + 2b(1-t)t + ct^2
    1.33 +  y = d(1-t)^2 + 2e(1-t)t + ft^2
    1.34 +and the line as
    1.35 +  y = g*x + h
    1.36 +
    1.37 +Using Mathematica, solve for the values of t where the quadratic intersects the
    1.38 +line:
    1.39 +
    1.40 +  (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
    1.41 +                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
    1.42 +  (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
    1.43 +         g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
    1.44 +  (in)  Solve[t1 == 0, t]
    1.45 +  (out) {
    1.46 +    {t -> (-2 d + 2 e +   2 a g - 2 b g    -
    1.47 +      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
    1.48 +          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
    1.49 +         (2 (-d + 2 e - f + a g - 2 b g    + c g))
    1.50 +         },
    1.51 +    {t -> (-2 d + 2 e +   2 a g - 2 b g    +
    1.52 +      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
    1.53 +          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
    1.54 +         (2 (-d + 2 e - f + a g - 2 b g    + c g))
    1.55 +         }
    1.56 +        }
    1.57 +
    1.58 +Using the results above (when the line tends towards horizontal)
    1.59 +       A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
    1.60 +       B = 2*( (d -   e    ) - g*(a -   b    )     )
    1.61 +       C =   (-(d          ) + g*(a          ) + h )
    1.62 +
    1.63 +If g goes to infinity, we can rewrite the line in terms of x.
    1.64 +  x = g'*y + h'
    1.65 +
    1.66 +And solve accordingly in Mathematica:
    1.67 +
    1.68 +  (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
    1.69 +                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
    1.70 +  (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
    1.71 +         g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
    1.72 +  (in)  Solve[t2 == 0, t]
    1.73 +  (out) {
    1.74 +    {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
    1.75 +    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
    1.76 +          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
    1.77 +         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
    1.78 +         },
    1.79 +    {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
    1.80 +    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
    1.81 +          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
    1.82 +         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
    1.83 +         }
    1.84 +        }
    1.85 +
    1.86 +Thus, if the slope of the line tends towards vertical, we use:
    1.87 +       A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
    1.88 +       B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
    1.89 +       C =   ( (a          ) - g'*(d           ) - h' )
    1.90 + */
    1.91 +
    1.92 +
    1.93 +class LineQuadraticIntersections {
    1.94 +public:
    1.95 +    enum PinTPoint {
    1.96 +        kPointUninitialized,
    1.97 +        kPointInitialized
    1.98 +    };
    1.99 +
   1.100 +    LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
   1.101 +        : fQuad(q)
   1.102 +        , fLine(l)
   1.103 +        , fIntersections(i)
   1.104 +        , fAllowNear(true) {
   1.105 +        i->setMax(2);
   1.106 +    }
   1.107 +
   1.108 +    void allowNear(bool allow) {
   1.109 +        fAllowNear = allow;
   1.110 +    }
   1.111 +
   1.112 +    int intersectRay(double roots[2]) {
   1.113 +    /*
   1.114 +        solve by rotating line+quad so line is horizontal, then finding the roots
   1.115 +        set up matrix to rotate quad to x-axis
   1.116 +        |cos(a) -sin(a)|
   1.117 +        |sin(a)  cos(a)|
   1.118 +        note that cos(a) = A(djacent) / Hypoteneuse
   1.119 +                  sin(a) = O(pposite) / Hypoteneuse
   1.120 +        since we are computing Ts, we can ignore hypoteneuse, the scale factor:
   1.121 +        |  A     -O    |
   1.122 +        |  O      A    |
   1.123 +        A = line[1].fX - line[0].fX (adjacent side of the right triangle)
   1.124 +        O = line[1].fY - line[0].fY (opposite side of the right triangle)
   1.125 +        for each of the three points (e.g. n = 0 to 2)
   1.126 +        quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
   1.127 +    */
   1.128 +        double adj = fLine[1].fX - fLine[0].fX;
   1.129 +        double opp = fLine[1].fY - fLine[0].fY;
   1.130 +        double r[3];
   1.131 +        for (int n = 0; n < 3; ++n) {
   1.132 +            r[n] = (fQuad[n].fY - fLine[0].fY) * adj - (fQuad[n].fX - fLine[0].fX) * opp;
   1.133 +        }
   1.134 +        double A = r[2];
   1.135 +        double B = r[1];
   1.136 +        double C = r[0];
   1.137 +        A += C - 2 * B;  // A = a - 2*b + c
   1.138 +        B -= C;  // B = -(b - c)
   1.139 +        return SkDQuad::RootsValidT(A, 2 * B, C, roots);
   1.140 +    }
   1.141 +
   1.142 +    int intersect() {
   1.143 +        addExactEndPoints();
   1.144 +        if (fAllowNear) {
   1.145 +            addNearEndPoints();
   1.146 +        }
   1.147 +        if (fIntersections->used() == 2) {
   1.148 +            // FIXME : need sharable code that turns spans into coincident if middle point is on
   1.149 +        } else {
   1.150 +            double rootVals[2];
   1.151 +            int roots = intersectRay(rootVals);
   1.152 +            for (int index = 0; index < roots; ++index) {
   1.153 +                double quadT = rootVals[index];
   1.154 +                double lineT = findLineT(quadT);
   1.155 +                SkDPoint pt;
   1.156 +                if (pinTs(&quadT, &lineT, &pt, kPointUninitialized)) {
   1.157 +                    fIntersections->insert(quadT, lineT, pt);
   1.158 +                }
   1.159 +            }
   1.160 +        }
   1.161 +        return fIntersections->used();
   1.162 +    }
   1.163 +
   1.164 +    int horizontalIntersect(double axisIntercept, double roots[2]) {
   1.165 +        double D = fQuad[2].fY;  // f
   1.166 +        double E = fQuad[1].fY;  // e
   1.167 +        double F = fQuad[0].fY;  // d
   1.168 +        D += F - 2 * E;         // D = d - 2*e + f
   1.169 +        E -= F;                 // E = -(d - e)
   1.170 +        F -= axisIntercept;
   1.171 +        return SkDQuad::RootsValidT(D, 2 * E, F, roots);
   1.172 +    }
   1.173 +
   1.174 +    int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
   1.175 +        addExactHorizontalEndPoints(left, right, axisIntercept);
   1.176 +        if (fAllowNear) {
   1.177 +            addNearHorizontalEndPoints(left, right, axisIntercept);
   1.178 +        }
   1.179 +        double rootVals[2];
   1.180 +        int roots = horizontalIntersect(axisIntercept, rootVals);
   1.181 +        for (int index = 0; index < roots; ++index) {
   1.182 +            double quadT = rootVals[index];
   1.183 +            SkDPoint pt = fQuad.ptAtT(quadT);
   1.184 +            double lineT = (pt.fX - left) / (right - left);
   1.185 +            if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
   1.186 +                fIntersections->insert(quadT, lineT, pt);
   1.187 +            }
   1.188 +        }
   1.189 +        if (flipped) {
   1.190 +            fIntersections->flip();
   1.191 +        }
   1.192 +        return fIntersections->used();
   1.193 +    }
   1.194 +
   1.195 +    int verticalIntersect(double axisIntercept, double roots[2]) {
   1.196 +        double D = fQuad[2].fX;  // f
   1.197 +        double E = fQuad[1].fX;  // e
   1.198 +        double F = fQuad[0].fX;  // d
   1.199 +        D += F - 2 * E;         // D = d - 2*e + f
   1.200 +        E -= F;                 // E = -(d - e)
   1.201 +        F -= axisIntercept;
   1.202 +        return SkDQuad::RootsValidT(D, 2 * E, F, roots);
   1.203 +    }
   1.204 +
   1.205 +    int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
   1.206 +        addExactVerticalEndPoints(top, bottom, axisIntercept);
   1.207 +        if (fAllowNear) {
   1.208 +            addNearVerticalEndPoints(top, bottom, axisIntercept);
   1.209 +        }
   1.210 +        double rootVals[2];
   1.211 +        int roots = verticalIntersect(axisIntercept, rootVals);
   1.212 +        for (int index = 0; index < roots; ++index) {
   1.213 +            double quadT = rootVals[index];
   1.214 +            SkDPoint pt = fQuad.ptAtT(quadT);
   1.215 +            double lineT = (pt.fY - top) / (bottom - top);
   1.216 +            if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
   1.217 +                fIntersections->insert(quadT, lineT, pt);
   1.218 +            }
   1.219 +        }
   1.220 +        if (flipped) {
   1.221 +            fIntersections->flip();
   1.222 +        }
   1.223 +        return fIntersections->used();
   1.224 +    }
   1.225 +
   1.226 +protected:
   1.227 +    // add endpoints first to get zero and one t values exactly
   1.228 +    void addExactEndPoints() {
   1.229 +        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
   1.230 +            double lineT = fLine.exactPoint(fQuad[qIndex]);
   1.231 +            if (lineT < 0) {
   1.232 +                continue;
   1.233 +            }
   1.234 +            double quadT = (double) (qIndex >> 1);
   1.235 +            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
   1.236 +        }
   1.237 +    }
   1.238 +
   1.239 +    void addNearEndPoints() {
   1.240 +        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
   1.241 +            double quadT = (double) (qIndex >> 1);
   1.242 +            if (fIntersections->hasT(quadT)) {
   1.243 +                continue;
   1.244 +            }
   1.245 +            double lineT = fLine.nearPoint(fQuad[qIndex]);
   1.246 +            if (lineT < 0) {
   1.247 +                continue;
   1.248 +            }
   1.249 +            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
   1.250 +        }
   1.251 +        // FIXME: see if line end is nearly on quad
   1.252 +    }
   1.253 +
   1.254 +    void addExactHorizontalEndPoints(double left, double right, double y) {
   1.255 +        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
   1.256 +            double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
   1.257 +            if (lineT < 0) {
   1.258 +                continue;
   1.259 +            }
   1.260 +            double quadT = (double) (qIndex >> 1);
   1.261 +            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
   1.262 +        }
   1.263 +    }
   1.264 +
   1.265 +    void addNearHorizontalEndPoints(double left, double right, double y) {
   1.266 +        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
   1.267 +            double quadT = (double) (qIndex >> 1);
   1.268 +            if (fIntersections->hasT(quadT)) {
   1.269 +                continue;
   1.270 +            }
   1.271 +            double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
   1.272 +            if (lineT < 0) {
   1.273 +                continue;
   1.274 +            }
   1.275 +            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
   1.276 +        }
   1.277 +        // FIXME: see if line end is nearly on quad
   1.278 +    }
   1.279 +
   1.280 +    void addExactVerticalEndPoints(double top, double bottom, double x) {
   1.281 +        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
   1.282 +            double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
   1.283 +            if (lineT < 0) {
   1.284 +                continue;
   1.285 +            }
   1.286 +            double quadT = (double) (qIndex >> 1);
   1.287 +            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
   1.288 +        }
   1.289 +    }
   1.290 +
   1.291 +    void addNearVerticalEndPoints(double top, double bottom, double x) {
   1.292 +        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
   1.293 +            double quadT = (double) (qIndex >> 1);
   1.294 +            if (fIntersections->hasT(quadT)) {
   1.295 +                continue;
   1.296 +            }
   1.297 +            double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
   1.298 +            if (lineT < 0) {
   1.299 +                continue;
   1.300 +            }
   1.301 +            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
   1.302 +        }
   1.303 +        // FIXME: see if line end is nearly on quad
   1.304 +    }
   1.305 +
   1.306 +    double findLineT(double t) {
   1.307 +        SkDPoint xy = fQuad.ptAtT(t);
   1.308 +        double dx = fLine[1].fX - fLine[0].fX;
   1.309 +        double dy = fLine[1].fY - fLine[0].fY;
   1.310 +        if (fabs(dx) > fabs(dy)) {
   1.311 +            return (xy.fX - fLine[0].fX) / dx;
   1.312 +        }
   1.313 +        return (xy.fY - fLine[0].fY) / dy;
   1.314 +    }
   1.315 +
   1.316 +    bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
   1.317 +        if (!approximately_one_or_less(*lineT)) {
   1.318 +            return false;
   1.319 +        }
   1.320 +        if (!approximately_zero_or_more(*lineT)) {
   1.321 +            return false;
   1.322 +        }
   1.323 +        double qT = *quadT = SkPinT(*quadT);
   1.324 +        double lT = *lineT = SkPinT(*lineT);
   1.325 +        if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
   1.326 +            *pt = fLine.ptAtT(lT);
   1.327 +        } else if (ptSet == kPointUninitialized) {
   1.328 +            *pt = fQuad.ptAtT(qT);
   1.329 +        }
   1.330 +        SkPoint gridPt = pt->asSkPoint();
   1.331 +        if (gridPt == fLine[0].asSkPoint()) {
   1.332 +            *lineT = 0;
   1.333 +        } else if (gridPt == fLine[1].asSkPoint()) {
   1.334 +            *lineT = 1;
   1.335 +        }
   1.336 +        if (gridPt == fQuad[0].asSkPoint()) {
   1.337 +            *quadT = 0;
   1.338 +        } else if (gridPt == fQuad[2].asSkPoint()) {
   1.339 +            *quadT = 1;
   1.340 +        }
   1.341 +        return true;
   1.342 +    }
   1.343 +
   1.344 +private:
   1.345 +    const SkDQuad& fQuad;
   1.346 +    const SkDLine& fLine;
   1.347 +    SkIntersections* fIntersections;
   1.348 +    bool fAllowNear;
   1.349 +};
   1.350 +
   1.351 +// utility for pairs of coincident quads
   1.352 +static double horizontalIntersect(const SkDQuad& quad, const SkDPoint& pt) {
   1.353 +    LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)),
   1.354 +            static_cast<SkIntersections*>(0));
   1.355 +    double rootVals[2];
   1.356 +    int roots = q.horizontalIntersect(pt.fY, rootVals);
   1.357 +    for (int index = 0; index < roots; ++index) {
   1.358 +        double t = rootVals[index];
   1.359 +        SkDPoint qPt = quad.ptAtT(t);
   1.360 +        if (AlmostEqualUlps(qPt.fX, pt.fX)) {
   1.361 +            return t;
   1.362 +        }
   1.363 +    }
   1.364 +    return -1;
   1.365 +}
   1.366 +
   1.367 +static double verticalIntersect(const SkDQuad& quad, const SkDPoint& pt) {
   1.368 +    LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)),
   1.369 +            static_cast<SkIntersections*>(0));
   1.370 +    double rootVals[2];
   1.371 +    int roots = q.verticalIntersect(pt.fX, rootVals);
   1.372 +    for (int index = 0; index < roots; ++index) {
   1.373 +        double t = rootVals[index];
   1.374 +        SkDPoint qPt = quad.ptAtT(t);
   1.375 +        if (AlmostEqualUlps(qPt.fY, pt.fY)) {
   1.376 +            return t;
   1.377 +        }
   1.378 +    }
   1.379 +    return -1;
   1.380 +}
   1.381 +
   1.382 +double SkIntersections::Axial(const SkDQuad& q1, const SkDPoint& p, bool vertical) {
   1.383 +    if (vertical) {
   1.384 +        return verticalIntersect(q1, p);
   1.385 +    }
   1.386 +    return horizontalIntersect(q1, p);
   1.387 +}
   1.388 +
   1.389 +int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
   1.390 +                                bool flipped) {
   1.391 +    SkDLine line = {{{ left, y }, { right, y }}};
   1.392 +    LineQuadraticIntersections q(quad, line, this);
   1.393 +    return q.horizontalIntersect(y, left, right, flipped);
   1.394 +}
   1.395 +
   1.396 +int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
   1.397 +                              bool flipped) {
   1.398 +    SkDLine line = {{{ x, top }, { x, bottom }}};
   1.399 +    LineQuadraticIntersections q(quad, line, this);
   1.400 +    return q.verticalIntersect(x, top, bottom, flipped);
   1.401 +}
   1.402 +
   1.403 +int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
   1.404 +    LineQuadraticIntersections q(quad, line, this);
   1.405 +    q.allowNear(fAllowNear);
   1.406 +    return q.intersect();
   1.407 +}
   1.408 +
   1.409 +int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
   1.410 +    LineQuadraticIntersections q(quad, line, this);
   1.411 +    fUsed = q.intersectRay(fT[0]);
   1.412 +    for (int index = 0; index < fUsed; ++index) {
   1.413 +        fPt[index] = quad.ptAtT(fT[0][index]);
   1.414 +    }
   1.415 +    return fUsed;
   1.416 +}

mercurial