1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pathops/SkOpAngle.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,435 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 +#include "SkIntersections.h" 1.11 +#include "SkOpAngle.h" 1.12 +#include "SkOpSegment.h" 1.13 +#include "SkPathOpsCurve.h" 1.14 +#include "SkTSort.h" 1.15 + 1.16 +#if DEBUG_ANGLE 1.17 +#include "SkString.h" 1.18 + 1.19 +static const char funcName[] = "SkOpSegment::operator<"; 1.20 +static const int bugChar = strlen(funcName) + 1; 1.21 +#endif 1.22 + 1.23 +/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest 1.24 + positive y. The largest angle has a positive x and a zero y. */ 1.25 + 1.26 +#if DEBUG_ANGLE 1.27 + static bool CompareResult(SkString* bugOut, const char* append, bool compare) { 1.28 + bugOut->appendf("%s", append); 1.29 + bugOut->writable_str()[bugChar] = "><"[compare]; 1.30 + SkDebugf("%s\n", bugOut->c_str()); 1.31 + return compare; 1.32 + } 1.33 + 1.34 + #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare) 1.35 +#else 1.36 + #define COMPARE_RESULT(append, compare) compare 1.37 +#endif 1.38 + 1.39 +bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const{ 1.40 + double absX = fabs(x); 1.41 + double absY = fabs(y); 1.42 + double length = absX < absY ? absX / 2 + absY : absX + absY / 2; 1.43 + int exponent; 1.44 + (void) frexp(length, &exponent); 1.45 + double epsilon = ldexp(FLT_EPSILON, exponent); 1.46 + SkPath::Verb verb = fSegment->verb(); 1.47 + SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb); 1.48 + // FIXME: the quad and cubic factors are made up ; determine actual values 1.49 + double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon; 1.50 + double xSlop = slop; 1.51 + double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ? 1.52 + double x1 = x - xSlop; 1.53 + double y1 = y + ySlop; 1.54 + double x_ry1 = x1 * ry; 1.55 + double rx_y1 = rx * y1; 1.56 + *result = x_ry1 < rx_y1; 1.57 + double x2 = x + xSlop; 1.58 + double y2 = y - ySlop; 1.59 + double x_ry2 = x2 * ry; 1.60 + double rx_y2 = rx * y2; 1.61 + bool less2 = x_ry2 < rx_y2; 1.62 + return *result == less2; 1.63 +} 1.64 + 1.65 +/* 1.66 +for quads and cubics, set up a parameterized line (e.g. LineParameters ) 1.67 +for points [0] to [1]. See if point [2] is on that line, or on one side 1.68 +or the other. If it both quads' end points are on the same side, choose 1.69 +the shorter tangent. If the tangents are equal, choose the better second 1.70 +tangent angle 1.71 + 1.72 +FIXME: maybe I could set up LineParameters lazily 1.73 +*/ 1.74 +bool SkOpAngle::operator<(const SkOpAngle& rh) const { // this/lh: left-hand; rh: right-hand 1.75 + double y = dy(); 1.76 + double ry = rh.dy(); 1.77 +#if DEBUG_ANGLE 1.78 + SkString bugOut; 1.79 + bugOut.printf("%s _ id=%d segId=%d tStart=%1.9g tEnd=%1.9g" 1.80 + " | id=%d segId=%d tStart=%1.9g tEnd=%1.9g ", funcName, 1.81 + fID, fSegment->debugID(), fSegment->t(fStart), fSegment->t(fEnd), 1.82 + rh.fID, rh.fSegment->debugID(), rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); 1.83 +#endif 1.84 + double y_ry = y * ry; 1.85 + if (y_ry < 0) { // if y's are opposite signs, we can do a quick return 1.86 + return COMPARE_RESULT("1 y * ry < 0", y < 0); 1.87 + } 1.88 + // at this point, both y's must be the same sign, or one (or both) is zero 1.89 + double x = dx(); 1.90 + double rx = rh.dx(); 1.91 + if (x * rx < 0) { // if x's are opposite signs, use y to determine first or second half 1.92 + if (y < 0 && ry < 0) { // if y's are negative, lh x is smaller if positive 1.93 + return COMPARE_RESULT("2 x_rx < 0 && y < 0 ...", x > 0); 1.94 + } 1.95 + if (y >= 0 && ry >= 0) { // if y's are zero or positive, lh x is smaller if negative 1.96 + return COMPARE_RESULT("3 x_rx < 0 && y >= 0 ...", x < 0); 1.97 + } 1.98 + SkASSERT((y == 0) ^ (ry == 0)); // if one y is zero and one is negative, neg y is smaller 1.99 + return COMPARE_RESULT("4 x_rx < 0 && y == 0 ...", y < 0); 1.100 + } 1.101 + // at this point, both x's must be the same sign, or one (or both) is zero 1.102 + if (y_ry == 0) { // if either y is zero 1.103 + if (y + ry < 0) { // if the other y is less than zero, it must be smaller 1.104 + return COMPARE_RESULT("5 y_ry == 0 && y + ry < 0", y < 0); 1.105 + } 1.106 + if (y + ry > 0) { // if a y is greater than zero and an x is positive, non zero is smaller 1.107 + return COMPARE_RESULT("6 y_ry == 0 && y + ry > 0", (x + rx > 0) ^ (y == 0)); 1.108 + } 1.109 + // at this point, both y's are zero, so lines are coincident or one is degenerate 1.110 + SkASSERT(x * rx != 0); // and a degenerate line should haven't gotten this far 1.111 + } 1.112 + // see if either curve can be lengthened before trying the tangent 1.113 + if (fSegment->other(fEnd) != rh.fSegment // tangents not absolutely identical 1.114 + && rh.fSegment->other(rh.fEnd) != fSegment 1.115 + && y != -DBL_EPSILON 1.116 + && ry != -DBL_EPSILON) { // and not intersecting 1.117 + SkOpAngle longer = *this; 1.118 + SkOpAngle rhLonger = rh; 1.119 + if ((longer.lengthen(rh) | rhLonger.lengthen(*this)) // lengthen both 1.120 + && (fUnorderable || !longer.fUnorderable) 1.121 + && (rh.fUnorderable || !rhLonger.fUnorderable)) { 1.122 +#if DEBUG_ANGLE 1.123 + bugOut.prepend(" "); 1.124 +#endif 1.125 + return COMPARE_RESULT("10 longer.lengthen(rh) ...", longer < rhLonger); 1.126 + } 1.127 + } 1.128 + SkPath::Verb verb = fSegment->verb(); 1.129 + SkPath::Verb rVerb = rh.fSegment->verb(); 1.130 + if (y_ry != 0) { // if they aren't coincident, look for a stable cross product 1.131 + // at this point, y's are the same sign, neither is zero 1.132 + // and x's are the same sign, or one (or both) is zero 1.133 + double x_ry = x * ry; 1.134 + double rx_y = rx * y; 1.135 + if (!fComputed && !rh.fComputed) { 1.136 + if (!SkDLine::NearRay(x, y, rx, ry) && x_ry != rx_y) { 1.137 + return COMPARE_RESULT("7 !fComputed && !rh.fComputed", x_ry < rx_y); 1.138 + } 1.139 + if (fSide2 == 0 && rh.fSide2 == 0) { 1.140 + return COMPARE_RESULT("7a !fComputed && !rh.fComputed", x_ry < rx_y); 1.141 + } 1.142 + } else { 1.143 + // if the vector was a result of subdividing a curve, see if it is stable 1.144 + bool sloppy1 = x_ry < rx_y; 1.145 + bool sloppy2 = !sloppy1; 1.146 + if ((!fComputed || calcSlop(x, y, rx, ry, &sloppy1)) 1.147 + && (!rh.fComputed || rh.calcSlop(rx, ry, x, y, &sloppy2)) 1.148 + && sloppy1 != sloppy2) { 1.149 + return COMPARE_RESULT("8 CalcSlop(x, y ...", sloppy1); 1.150 + } 1.151 + } 1.152 + } 1.153 + if (fSide2 * rh.fSide2 == 0) { // one is zero 1.154 +#if DEBUG_ANGLE 1.155 + if (fSide2 == rh.fSide2 && y_ry) { // both is zero; coincidence was undetected 1.156 + SkDebugf("%s coincidence!\n", __FUNCTION__); 1.157 + } 1.158 +#endif 1.159 + return COMPARE_RESULT("9a fSide2 * rh.fSide2 == 0 ...", fSide2 < rh.fSide2); 1.160 + } 1.161 + // at this point, the initial tangent line is nearly coincident 1.162 + // see if edges curl away from each other 1.163 + if (fSide * rh.fSide < 0 && (!approximately_zero(fSide) || !approximately_zero(rh.fSide))) { 1.164 + return COMPARE_RESULT("9b fSide * rh.fSide < 0 ...", fSide < rh.fSide); 1.165 + } 1.166 + if (fUnsortable || rh.fUnsortable) { 1.167 + // even with no solution, return a stable sort 1.168 + return COMPARE_RESULT("11 fUnsortable || rh.fUnsortable", this < &rh); 1.169 + } 1.170 + if ((verb == SkPath::kLine_Verb && approximately_zero(y) && approximately_zero(x)) 1.171 + || (rVerb == SkPath::kLine_Verb 1.172 + && approximately_zero(ry) && approximately_zero(rx))) { 1.173 + // See general unsortable comment below. This case can happen when 1.174 + // one line has a non-zero change in t but no change in x and y. 1.175 + fUnsortable = true; 1.176 + return COMPARE_RESULT("12 verb == SkPath::kLine_Verb ...", this < &rh); 1.177 + } 1.178 + if (fSegment->isTiny(this) || rh.fSegment->isTiny(&rh)) { 1.179 + fUnsortable = true; 1.180 + return COMPARE_RESULT("13 verb == fSegment->isTiny(this) ...", this < &rh); 1.181 + } 1.182 + SkASSERT(verb >= SkPath::kQuad_Verb); 1.183 + SkASSERT(rVerb >= SkPath::kQuad_Verb); 1.184 + // FIXME: until I can think of something better, project a ray from the 1.185 + // end of the shorter tangent to midway between the end points 1.186 + // through both curves and use the resulting angle to sort 1.187 + // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive 1.188 + double len = fTangentPart.normalSquared(); 1.189 + double rlen = rh.fTangentPart.normalSquared(); 1.190 + SkDLine ray; 1.191 + SkIntersections i, ri; 1.192 + int roots, rroots; 1.193 + bool flip = false; 1.194 + bool useThis; 1.195 + bool leftLessThanRight = fSide > 0; 1.196 + do { 1.197 + useThis = (len < rlen) ^ flip; 1.198 + const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart; 1.199 + SkPath::Verb partVerb = useThis ? verb : rVerb; 1.200 + ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? 1.201 + part[2] : part[1]; 1.202 + ray[1] = SkDPoint::Mid(part[0], part[SkPathOpsVerbToPoints(partVerb)]); 1.203 + SkASSERT(ray[0] != ray[1]); 1.204 + roots = (i.*CurveRay[SkPathOpsVerbToPoints(verb)])(fSegment->pts(), ray); 1.205 + rroots = (ri.*CurveRay[SkPathOpsVerbToPoints(rVerb)])(rh.fSegment->pts(), ray); 1.206 + } while ((roots == 0 || rroots == 0) && (flip ^= true)); 1.207 + if (roots == 0 || rroots == 0) { 1.208 + // FIXME: we don't have a solution in this case. The interim solution 1.209 + // is to mark the edges as unsortable, exclude them from this and 1.210 + // future computations, and allow the returned path to be fragmented 1.211 + fUnsortable = true; 1.212 + return COMPARE_RESULT("roots == 0 || rroots == 0", this < &rh); 1.213 + } 1.214 + SkASSERT(fSide != 0 && rh.fSide != 0); 1.215 + if (fSide * rh.fSide < 0) { 1.216 + fUnsortable = true; 1.217 + return COMPARE_RESULT("14 fSide * rh.fSide < 0", this < &rh); 1.218 + } 1.219 + SkDPoint lLoc; 1.220 + double best = SK_ScalarInfinity; 1.221 +#if DEBUG_SORT 1.222 + SkDebugf("lh=%d rh=%d use-lh=%d ray={{%1.9g,%1.9g}, {%1.9g,%1.9g}} %c\n", 1.223 + fSegment->debugID(), rh.fSegment->debugID(), useThis, ray[0].fX, ray[0].fY, 1.224 + ray[1].fX, ray[1].fY, "-+"[fSide > 0]); 1.225 +#endif 1.226 + for (int index = 0; index < roots; ++index) { 1.227 + SkDPoint loc = i.pt(index); 1.228 + SkDVector dxy = loc - ray[0]; 1.229 + double dist = dxy.lengthSquared(); 1.230 +#if DEBUG_SORT 1.231 + SkDebugf("best=%1.9g dist=%1.9g loc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n", 1.232 + best, dist, loc.fX, loc.fY, dxy.fX, dxy.fY); 1.233 +#endif 1.234 + if (best > dist) { 1.235 + lLoc = loc; 1.236 + best = dist; 1.237 + } 1.238 + } 1.239 + flip = false; 1.240 + SkDPoint rLoc; 1.241 + for (int index = 0; index < rroots; ++index) { 1.242 + rLoc = ri.pt(index); 1.243 + SkDVector dxy = rLoc - ray[0]; 1.244 + double dist = dxy.lengthSquared(); 1.245 +#if DEBUG_SORT 1.246 + SkDebugf("best=%1.9g dist=%1.9g %c=(fSide < 0) rLoc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n", 1.247 + best, dist, "><"[fSide < 0], rLoc.fX, rLoc.fY, dxy.fX, dxy.fY); 1.248 +#endif 1.249 + if (best > dist) { 1.250 + flip = true; 1.251 + break; 1.252 + } 1.253 + } 1.254 + if (flip) { 1.255 + leftLessThanRight = !leftLessThanRight; 1.256 + } 1.257 + return COMPARE_RESULT("15 leftLessThanRight", leftLessThanRight); 1.258 +} 1.259 + 1.260 +bool SkOpAngle::isHorizontal() const { 1.261 + return dy() == 0 && fSegment->verb() == SkPath::kLine_Verb; 1.262 +} 1.263 + 1.264 +// lengthen cannot cross opposite angle 1.265 +bool SkOpAngle::lengthen(const SkOpAngle& opp) { 1.266 + if (fSegment->other(fEnd) == opp.fSegment) { 1.267 + return false; 1.268 + } 1.269 + // FIXME: make this a while loop instead and make it as large as possible? 1.270 + int newEnd = fEnd; 1.271 + if (fStart < fEnd ? ++newEnd < fSegment->count() : --newEnd >= 0) { 1.272 + fEnd = newEnd; 1.273 + setSpans(); 1.274 + return true; 1.275 + } 1.276 + return false; 1.277 +} 1.278 + 1.279 +void SkOpAngle::set(const SkOpSegment* segment, int start, int end) { 1.280 + fSegment = segment; 1.281 + fStart = start; 1.282 + fEnd = end; 1.283 + setSpans(); 1.284 +} 1.285 + 1.286 +void SkOpAngle::setSpans() { 1.287 + fUnorderable = fSegment->isTiny(this); 1.288 + fLastMarked = NULL; 1.289 + fUnsortable = false; 1.290 + const SkPoint* pts = fSegment->pts(); 1.291 + if (fSegment->verb() != SkPath::kLine_Verb) { 1.292 + fComputed = fSegment->subDivide(fStart, fEnd, &fCurvePart); 1.293 + fSegment->subDivide(fStart, fStart < fEnd ? fSegment->count() - 1 : 0, &fCurveHalf); 1.294 + } 1.295 + // FIXME: slight errors in subdivision cause sort trouble later on. As an experiment, try 1.296 + // rounding the curve part to float precision here 1.297 + // fCurvePart.round(fSegment->verb()); 1.298 + switch (fSegment->verb()) { 1.299 + case SkPath::kLine_Verb: { 1.300 + SkASSERT(fStart != fEnd); 1.301 + fCurvePart[0].set(pts[fStart > fEnd]); 1.302 + fCurvePart[1].set(pts[fStart < fEnd]); 1.303 + fComputed = false; 1.304 + // OPTIMIZATION: for pure line compares, we never need fTangentPart.c 1.305 + fTangentPart.lineEndPoints(*SkTCast<SkDLine*>(&fCurvePart)); 1.306 + fSide = 0; 1.307 + fSide2 = 0; 1.308 + } break; 1.309 + case SkPath::kQuad_Verb: { 1.310 + fSide2 = -fTangentHalf.quadPart(*SkTCast<SkDQuad*>(&fCurveHalf)); 1.311 + SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart); 1.312 + fTangentPart.quadEndPoints(quad); 1.313 + fSide = -fTangentPart.pointDistance(fCurvePart[2]); // not normalized -- compare sign only 1.314 + if (fComputed && dx() > 0 && approximately_zero(dy())) { 1.315 + SkDCubic origCurve; // can't use segment's curve in place since it may be flipped 1.316 + int last = fSegment->count() - 1; 1.317 + fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve); 1.318 + SkLineParameters origTan; 1.319 + origTan.quadEndPoints(*SkTCast<SkDQuad*>(&origCurve)); 1.320 + if (origTan.dx() <= 0 1.321 + || (dy() != origTan.dy() && dy() * origTan.dy() <= 0)) { // signs match? 1.322 + fUnorderable = true; 1.323 + return; 1.324 + } 1.325 + } 1.326 + } break; 1.327 + case SkPath::kCubic_Verb: { 1.328 + double startT = fSegment->t(fStart); 1.329 + fSide2 = -fTangentHalf.cubicPart(fCurveHalf); 1.330 + fTangentPart.cubicEndPoints(fCurvePart); 1.331 + double testTs[4]; 1.332 + // OPTIMIZATION: keep inflections precomputed with cubic segment? 1.333 + int testCount = SkDCubic::FindInflections(pts, testTs); 1.334 + double endT = fSegment->t(fEnd); 1.335 + double limitT = endT; 1.336 + int index; 1.337 + for (index = 0; index < testCount; ++index) { 1.338 + if (!between(startT, testTs[index], limitT)) { 1.339 + testTs[index] = -1; 1.340 + } 1.341 + } 1.342 + testTs[testCount++] = startT; 1.343 + testTs[testCount++] = endT; 1.344 + SkTQSort<double>(testTs, &testTs[testCount - 1]); 1.345 + double bestSide = 0; 1.346 + int testCases = (testCount << 1) - 1; 1.347 + index = 0; 1.348 + while (testTs[index] < 0) { 1.349 + ++index; 1.350 + } 1.351 + index <<= 1; 1.352 + for (; index < testCases; ++index) { 1.353 + int testIndex = index >> 1; 1.354 + double testT = testTs[testIndex]; 1.355 + if (index & 1) { 1.356 + testT = (testT + testTs[testIndex + 1]) / 2; 1.357 + } 1.358 + // OPTIMIZE: could avoid call for t == startT, endT 1.359 + SkDPoint pt = dcubic_xy_at_t(pts, testT); 1.360 + double testSide = fTangentPart.pointDistance(pt); 1.361 + if (fabs(bestSide) < fabs(testSide)) { 1.362 + bestSide = testSide; 1.363 + } 1.364 + } 1.365 + fSide = -bestSide; // compare sign only 1.366 + SkASSERT(fSide == 0 || fSide2 != 0); 1.367 + if (fComputed && dx() > 0 && approximately_zero(dy())) { 1.368 + SkDCubic origCurve; // can't use segment's curve in place since it may be flipped 1.369 + int last = fSegment->count() - 1; 1.370 + fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve); 1.371 + SkDCubicPair split = origCurve.chopAt(startT); 1.372 + SkLineParameters splitTan; 1.373 + splitTan.cubicEndPoints(fStart < fEnd ? split.second() : split.first()); 1.374 + if (splitTan.dx() <= 0) { 1.375 + fUnorderable = true; 1.376 + fUnsortable = fSegment->isTiny(this); 1.377 + return; 1.378 + } 1.379 + // if one is < 0 and the other is >= 0 1.380 + if (dy() * splitTan.dy() < 0) { 1.381 + fUnorderable = true; 1.382 + fUnsortable = fSegment->isTiny(this); 1.383 + return; 1.384 + } 1.385 + } 1.386 + } break; 1.387 + default: 1.388 + SkASSERT(0); 1.389 + } 1.390 + if ((fUnsortable = approximately_zero(dx()) && approximately_zero(dy()))) { 1.391 + return; 1.392 + } 1.393 + if (fSegment->verb() == SkPath::kLine_Verb) { 1.394 + return; 1.395 + } 1.396 + SkASSERT(fStart != fEnd); 1.397 + int smaller = SkMin32(fStart, fEnd); 1.398 + int larger = SkMax32(fStart, fEnd); 1.399 + while (smaller < larger && fSegment->span(smaller).fTiny) { 1.400 + ++smaller; 1.401 + } 1.402 + if (precisely_equal(fSegment->span(smaller).fT, fSegment->span(larger).fT)) { 1.403 + #if DEBUG_UNSORTABLE 1.404 + SkPoint iPt = fSegment->xyAtT(fStart); 1.405 + SkPoint ePt = fSegment->xyAtT(fEnd); 1.406 + SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, 1.407 + fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); 1.408 + #endif 1.409 + fUnsortable = true; 1.410 + return; 1.411 + } 1.412 + fUnsortable = fStart < fEnd ? fSegment->span(smaller).fUnsortableStart 1.413 + : fSegment->span(larger).fUnsortableEnd; 1.414 +#if DEBUG_UNSORTABLE 1.415 + if (fUnsortable) { 1.416 + SkPoint iPt = fSegment->xyAtT(smaller); 1.417 + SkPoint ePt = fSegment->xyAtT(larger); 1.418 + SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, 1.419 + smaller, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); 1.420 + } 1.421 +#endif 1.422 + return; 1.423 +} 1.424 + 1.425 +#ifdef SK_DEBUG 1.426 +void SkOpAngle::dump() const { 1.427 + const SkOpSpan& spanStart = fSegment->span(fStart); 1.428 + const SkOpSpan& spanEnd = fSegment->span(fEnd); 1.429 + const SkOpSpan& spanMin = fStart < fEnd ? spanStart : spanEnd; 1.430 + SkDebugf("id=%d (%1.9g,%1.9g) start=%d (%1.9g) end=%d (%1.9g) sumWind=", 1.431 + fSegment->debugID(), fSegment->xAtT(fStart), fSegment->yAtT(fStart), 1.432 + fStart, spanStart.fT, fEnd, spanEnd.fT); 1.433 + SkPathOpsDebug::WindingPrintf(spanMin.fWindSum); 1.434 + SkDebugf(" oppWind="); 1.435 + SkPathOpsDebug::WindingPrintf(spanMin.fOppSum), 1.436 + SkDebugf(" done=%d\n", spanMin.fDone); 1.437 +} 1.438 +#endif