gfx/skia/trunk/src/pdf/SkTSet.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/pdf/SkTSet.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,356 @@
     1.4 +/*
     1.5 + * Copyright 2012 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +
    1.11 +#ifndef SkTSet_DEFINED
    1.12 +#define SkTSet_DEFINED
    1.13 +
    1.14 +#include "SkTSort.h"
    1.15 +#include "SkTDArray.h"
    1.16 +#include "SkTypes.h"
    1.17 +
    1.18 +/** \class SkTSet<T>
    1.19 +
    1.20 +    The SkTSet template class defines a set. Elements are additionally
    1.21 +    guaranteed to be sorted by their insertion order.
    1.22 +    Main operations supported now are: add, merge, find and contains.
    1.23 +
    1.24 +    TSet<T> is mutable.
    1.25 +*/
    1.26 +
    1.27 +// TODO: Add remove, intersect and difference operations.
    1.28 +// TODO: Add bench tests.
    1.29 +template <typename T> class SkTSet {
    1.30 +public:
    1.31 +    SkTSet() {
    1.32 +        fSetArray = SkNEW(SkTDArray<T>);
    1.33 +        fOrderedArray = SkNEW(SkTDArray<T>);
    1.34 +    }
    1.35 +
    1.36 +    ~SkTSet() {
    1.37 +        SkASSERT(fSetArray);
    1.38 +        SkDELETE(fSetArray);
    1.39 +        SkASSERT(fOrderedArray);
    1.40 +        SkDELETE(fOrderedArray);
    1.41 +    }
    1.42 +
    1.43 +    SkTSet(const SkTSet<T>& src) {
    1.44 +        this->fSetArray = SkNEW_ARGS(SkTDArray<T>, (*src.fSetArray));
    1.45 +        this->fOrderedArray = SkNEW_ARGS(SkTDArray<T>, (*src.fOrderedArray));
    1.46 +#ifdef SK_DEBUG
    1.47 +        validate();
    1.48 +#endif
    1.49 +    }
    1.50 +
    1.51 +    SkTSet<T>& operator=(const SkTSet<T>& src) {
    1.52 +        *this->fSetArray = *src.fSetArray;
    1.53 +        *this->fOrderedArray = *src.fOrderedArray;
    1.54 +#ifdef SK_DEBUG
    1.55 +        validate();
    1.56 +#endif
    1.57 +        return *this;
    1.58 +    }
    1.59 +
    1.60 +    /** Merges src elements into this, and returns the number of duplicates
    1.61 +     * found. Elements from src will retain their ordering and will be ordered
    1.62 +     * after the elements currently in this set.
    1.63 +     *
    1.64 +     * Implementation note: this uses a 2-stage merge to obtain O(n log n) time.
    1.65 +     * The first stage goes through src.fOrderedArray, checking if
    1.66 +     * this->contains() is false before adding to this.fOrderedArray.
    1.67 +     * The second stage does a standard sorted list merge on the fSetArrays.
    1.68 +     */
    1.69 +    int mergeInto(const SkTSet<T>& src) {
    1.70 +        SkASSERT(fSetArray);
    1.71 +        SkASSERT(fOrderedArray);
    1.72 +
    1.73 +        // Do fOrderedArray merge.
    1.74 +        for (int i = 0; i < src.count(); ++i) {
    1.75 +            if (!contains((*src.fOrderedArray)[i])) {
    1.76 +                fOrderedArray->push((*src.fOrderedArray)[i]);
    1.77 +            }
    1.78 +        }
    1.79 +
    1.80 +        // Do fSetArray merge.
    1.81 +        int duplicates = 0;
    1.82 +
    1.83 +        SkTDArray<T>* fArrayNew = new SkTDArray<T>();
    1.84 +        fArrayNew->setReserve(fOrderedArray->count());
    1.85 +        int i = 0;
    1.86 +        int j = 0;
    1.87 +
    1.88 +        while (i < fSetArray->count() && j < src.count()) {
    1.89 +            if ((*fSetArray)[i] < (*src.fSetArray)[j]) {
    1.90 +                fArrayNew->push((*fSetArray)[i]);
    1.91 +                i++;
    1.92 +            } else if ((*fSetArray)[i] > (*src.fSetArray)[j]) {
    1.93 +                fArrayNew->push((*src.fSetArray)[j]);
    1.94 +                j++;
    1.95 +            } else {
    1.96 +                duplicates++;
    1.97 +                j++; // Skip one of the duplicates.
    1.98 +            }
    1.99 +        }
   1.100 +
   1.101 +        while (i < fSetArray->count()) {
   1.102 +            fArrayNew->push((*fSetArray)[i]);
   1.103 +            i++;
   1.104 +        }
   1.105 +
   1.106 +        while (j < src.count()) {
   1.107 +            fArrayNew->push((*src.fSetArray)[j]);
   1.108 +            j++;
   1.109 +        }
   1.110 +        SkDELETE(fSetArray);
   1.111 +        fSetArray = fArrayNew;
   1.112 +        fArrayNew = NULL;
   1.113 +
   1.114 +#ifdef SK_DEBUG
   1.115 +        validate();
   1.116 +#endif
   1.117 +        return duplicates;
   1.118 +    }
   1.119 +
   1.120 +    /** Adds a new element into set and returns false if the element is already
   1.121 +     * in this set.
   1.122 +    */
   1.123 +    bool add(const T& elem) {
   1.124 +        SkASSERT(fSetArray);
   1.125 +        SkASSERT(fOrderedArray);
   1.126 +
   1.127 +        int pos = 0;
   1.128 +        int i = find(elem, &pos);
   1.129 +        if (i >= 0) {
   1.130 +            return false;
   1.131 +        }
   1.132 +        *fSetArray->insert(pos) = elem;
   1.133 +        fOrderedArray->push(elem);
   1.134 +#ifdef SK_DEBUG
   1.135 +        validate();
   1.136 +#endif
   1.137 +        return true;
   1.138 +    }
   1.139 +
   1.140 +    /** Returns true if this set is empty.
   1.141 +    */
   1.142 +    bool isEmpty() const {
   1.143 +        SkASSERT(fOrderedArray);
   1.144 +        SkASSERT(fSetArray);
   1.145 +        SkASSERT(fSetArray->isEmpty() == fOrderedArray->isEmpty());
   1.146 +        return fOrderedArray->isEmpty();
   1.147 +    }
   1.148 +
   1.149 +    /** Return the number of elements in the set.
   1.150 +     */
   1.151 +    int count() const {
   1.152 +        SkASSERT(fOrderedArray);
   1.153 +        SkASSERT(fSetArray);
   1.154 +        SkASSERT(fSetArray->count() == fOrderedArray->count());
   1.155 +        return fOrderedArray->count();
   1.156 +    }
   1.157 +
   1.158 +    /** Return the number of bytes in the set: count * sizeof(T).
   1.159 +     */
   1.160 +    size_t bytes() const {
   1.161 +        SkASSERT(fOrderedArray);
   1.162 +        return fOrderedArray->bytes();
   1.163 +    }
   1.164 +
   1.165 +    /** Return the beginning of a set iterator.
   1.166 +     * Elements in the iterator will be sorted ascending.
   1.167 +     */
   1.168 +    const T*  begin() const {
   1.169 +        SkASSERT(fOrderedArray);
   1.170 +        return fOrderedArray->begin();
   1.171 +    }
   1.172 +
   1.173 +    /** Return the end of a set iterator.
   1.174 +     */
   1.175 +    const T*  end() const {
   1.176 +        SkASSERT(fOrderedArray);
   1.177 +        return fOrderedArray->end();
   1.178 +    }
   1.179 +
   1.180 +    const T&  operator[](int index) const {
   1.181 +        SkASSERT(fOrderedArray);
   1.182 +        return (*fOrderedArray)[index];
   1.183 +    }
   1.184 +
   1.185 +    /** Resets the set (deletes memory and initiates an empty set).
   1.186 +     */
   1.187 +    void reset() {
   1.188 +        SkASSERT(fSetArray);
   1.189 +        SkASSERT(fOrderedArray);
   1.190 +        fSetArray->reset();
   1.191 +        fOrderedArray->reset();
   1.192 +    }
   1.193 +
   1.194 +    /** Rewinds the set (preserves memory and initiates an empty set).
   1.195 +     */
   1.196 +    void rewind() {
   1.197 +        SkASSERT(fSetArray);
   1.198 +        SkASSERT(fOrderedArray);
   1.199 +        fSetArray->rewind();
   1.200 +        fOrderedArray->rewind();
   1.201 +    }
   1.202 +
   1.203 +    /** Reserves memory for the set.
   1.204 +     */
   1.205 +    void setReserve(int reserve) {
   1.206 +        SkASSERT(fSetArray);
   1.207 +        SkASSERT(fOrderedArray);
   1.208 +        fSetArray->setReserve(reserve);
   1.209 +        fOrderedArray->setReserve(reserve);
   1.210 +    }
   1.211 +
   1.212 +    /** Returns true if the array contains this element.
   1.213 +     */
   1.214 +    bool contains(const T& elem) const {
   1.215 +        SkASSERT(fSetArray);
   1.216 +        return (this->find(elem) >= 0);
   1.217 +    }
   1.218 +
   1.219 +    /** Copies internal array to destination.
   1.220 +     */
   1.221 +    void copy(T* dst) const {
   1.222 +        SkASSERT(fOrderedArray);
   1.223 +        fOrderedArray->copyRange(dst, 0, fOrderedArray->count());
   1.224 +    }
   1.225 +
   1.226 +    /** Returns a const reference to the internal vector.
   1.227 +     */
   1.228 +    const SkTDArray<T>& toArray() {
   1.229 +        SkASSERT(fOrderedArray);
   1.230 +        return *fOrderedArray;
   1.231 +    }
   1.232 +
   1.233 +    /** Unref all elements in the set.
   1.234 +     */
   1.235 +    void unrefAll() {
   1.236 +        SkASSERT(fSetArray);
   1.237 +        SkASSERT(fOrderedArray);
   1.238 +        fOrderedArray->unrefAll();
   1.239 +        // Also reset the other array, as SkTDArray::unrefAll does an
   1.240 +        // implcit reset
   1.241 +        fSetArray->reset();
   1.242 +    }
   1.243 +
   1.244 +    /** safeUnref all elements in the set.
   1.245 +     */
   1.246 +    void safeUnrefAll() {
   1.247 +        SkASSERT(fSetArray);
   1.248 +        SkASSERT(fOrderedArray);
   1.249 +        fOrderedArray->safeUnrefAll();
   1.250 +        // Also reset the other array, as SkTDArray::safeUnrefAll does an
   1.251 +        // implcit reset
   1.252 +        fSetArray->reset();
   1.253 +    }
   1.254 +
   1.255 +#ifdef SK_DEBUG
   1.256 +    void validate() const {
   1.257 +        SkASSERT(fSetArray);
   1.258 +        SkASSERT(fOrderedArray);
   1.259 +        fSetArray->validate();
   1.260 +        fOrderedArray->validate();
   1.261 +        SkASSERT(isSorted() && !hasDuplicates() && arraysConsistent());
   1.262 +    }
   1.263 +
   1.264 +    bool hasDuplicates() const {
   1.265 +        for (int i = 0; i < fSetArray->count() - 1; ++i) {
   1.266 +            if ((*fSetArray)[i] == (*fSetArray)[i + 1]) {
   1.267 +                return true;
   1.268 +            }
   1.269 +        }
   1.270 +        return false;
   1.271 +    }
   1.272 +
   1.273 +    bool isSorted() const {
   1.274 +        for (int i = 0; i < fSetArray->count() - 1; ++i) {
   1.275 +            // Use only < operator
   1.276 +            if (!((*fSetArray)[i] < (*fSetArray)[i + 1])) {
   1.277 +                return false;
   1.278 +            }
   1.279 +        }
   1.280 +        return true;
   1.281 +    }
   1.282 +
   1.283 +    /** Checks if fSetArray is consistent with fOrderedArray
   1.284 +     */
   1.285 +    bool arraysConsistent() const {
   1.286 +        if (fSetArray->count() != fOrderedArray->count()) {
   1.287 +            return false;
   1.288 +        }
   1.289 +        if (fOrderedArray->count() == 0) {
   1.290 +            return true;
   1.291 +        }
   1.292 +
   1.293 +        // Copy and sort fOrderedArray, then compare to fSetArray.
   1.294 +        // A O(n log n) algorithm is necessary as O(n^2) will choke some GMs.
   1.295 +        SkAutoMalloc sortedArray(fOrderedArray->bytes());
   1.296 +        T* sortedBase = reinterpret_cast<T*>(sortedArray.get());
   1.297 +        int count = fOrderedArray->count();
   1.298 +        fOrderedArray->copyRange(sortedBase, 0, count);
   1.299 +
   1.300 +        SkTQSort<T>(sortedBase, sortedBase + count - 1);
   1.301 +
   1.302 +        for (int i = 0; i < count; ++i) {
   1.303 +            if (sortedBase[i] != (*fSetArray)[i]) {
   1.304 +                return false;
   1.305 +            }
   1.306 +        }
   1.307 +
   1.308 +        return true;
   1.309 +    }
   1.310 +#endif
   1.311 +
   1.312 +private:
   1.313 +    SkTDArray<T>* fSetArray;        // Sorted by pointer address for fast
   1.314 +                                    // lookup.
   1.315 +    SkTDArray<T>* fOrderedArray;    // Sorted by insertion order for
   1.316 +                                    // deterministic output.
   1.317 +
   1.318 +    /** Returns the index in fSetArray where an element was found.
   1.319 +     * Returns -1 if the element was not found, and it fills *posToInsertSorted
   1.320 +     * with the index of the place where elem should be inserted to preserve the
   1.321 +     * internal array sorted.
   1.322 +     * If element was found, *posToInsertSorted is undefined.
   1.323 +     */
   1.324 +    int find(const T& elem, int* posToInsertSorted = NULL) const {
   1.325 +        SkASSERT(fSetArray);
   1.326 +
   1.327 +        if (fSetArray->count() == 0) {
   1.328 +            if (posToInsertSorted) {
   1.329 +                *posToInsertSorted = 0;
   1.330 +            }
   1.331 +            return -1;
   1.332 +        }
   1.333 +        int iMin = 0;
   1.334 +        int iMax = fSetArray->count();
   1.335 +
   1.336 +        while (iMin < iMax - 1) {
   1.337 +            int iMid = (iMin + iMax) / 2;
   1.338 +            if (elem < (*fSetArray)[iMid]) {
   1.339 +                iMax = iMid;
   1.340 +            } else {
   1.341 +                iMin = iMid;
   1.342 +            }
   1.343 +        }
   1.344 +        if (elem == (*fSetArray)[iMin]) {
   1.345 +            return iMin;
   1.346 +        }
   1.347 +        if (posToInsertSorted) {
   1.348 +            if (elem < (*fSetArray)[iMin]) {
   1.349 +                *posToInsertSorted = iMin;
   1.350 +            } else {
   1.351 +                *posToInsertSorted = iMin + 1;
   1.352 +            }
   1.353 +        }
   1.354 +
   1.355 +        return -1;
   1.356 +    }
   1.357 +};
   1.358 +
   1.359 +#endif

mercurial