1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pdf/SkTSet.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,356 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#ifndef SkTSet_DEFINED 1.12 +#define SkTSet_DEFINED 1.13 + 1.14 +#include "SkTSort.h" 1.15 +#include "SkTDArray.h" 1.16 +#include "SkTypes.h" 1.17 + 1.18 +/** \class SkTSet<T> 1.19 + 1.20 + The SkTSet template class defines a set. Elements are additionally 1.21 + guaranteed to be sorted by their insertion order. 1.22 + Main operations supported now are: add, merge, find and contains. 1.23 + 1.24 + TSet<T> is mutable. 1.25 +*/ 1.26 + 1.27 +// TODO: Add remove, intersect and difference operations. 1.28 +// TODO: Add bench tests. 1.29 +template <typename T> class SkTSet { 1.30 +public: 1.31 + SkTSet() { 1.32 + fSetArray = SkNEW(SkTDArray<T>); 1.33 + fOrderedArray = SkNEW(SkTDArray<T>); 1.34 + } 1.35 + 1.36 + ~SkTSet() { 1.37 + SkASSERT(fSetArray); 1.38 + SkDELETE(fSetArray); 1.39 + SkASSERT(fOrderedArray); 1.40 + SkDELETE(fOrderedArray); 1.41 + } 1.42 + 1.43 + SkTSet(const SkTSet<T>& src) { 1.44 + this->fSetArray = SkNEW_ARGS(SkTDArray<T>, (*src.fSetArray)); 1.45 + this->fOrderedArray = SkNEW_ARGS(SkTDArray<T>, (*src.fOrderedArray)); 1.46 +#ifdef SK_DEBUG 1.47 + validate(); 1.48 +#endif 1.49 + } 1.50 + 1.51 + SkTSet<T>& operator=(const SkTSet<T>& src) { 1.52 + *this->fSetArray = *src.fSetArray; 1.53 + *this->fOrderedArray = *src.fOrderedArray; 1.54 +#ifdef SK_DEBUG 1.55 + validate(); 1.56 +#endif 1.57 + return *this; 1.58 + } 1.59 + 1.60 + /** Merges src elements into this, and returns the number of duplicates 1.61 + * found. Elements from src will retain their ordering and will be ordered 1.62 + * after the elements currently in this set. 1.63 + * 1.64 + * Implementation note: this uses a 2-stage merge to obtain O(n log n) time. 1.65 + * The first stage goes through src.fOrderedArray, checking if 1.66 + * this->contains() is false before adding to this.fOrderedArray. 1.67 + * The second stage does a standard sorted list merge on the fSetArrays. 1.68 + */ 1.69 + int mergeInto(const SkTSet<T>& src) { 1.70 + SkASSERT(fSetArray); 1.71 + SkASSERT(fOrderedArray); 1.72 + 1.73 + // Do fOrderedArray merge. 1.74 + for (int i = 0; i < src.count(); ++i) { 1.75 + if (!contains((*src.fOrderedArray)[i])) { 1.76 + fOrderedArray->push((*src.fOrderedArray)[i]); 1.77 + } 1.78 + } 1.79 + 1.80 + // Do fSetArray merge. 1.81 + int duplicates = 0; 1.82 + 1.83 + SkTDArray<T>* fArrayNew = new SkTDArray<T>(); 1.84 + fArrayNew->setReserve(fOrderedArray->count()); 1.85 + int i = 0; 1.86 + int j = 0; 1.87 + 1.88 + while (i < fSetArray->count() && j < src.count()) { 1.89 + if ((*fSetArray)[i] < (*src.fSetArray)[j]) { 1.90 + fArrayNew->push((*fSetArray)[i]); 1.91 + i++; 1.92 + } else if ((*fSetArray)[i] > (*src.fSetArray)[j]) { 1.93 + fArrayNew->push((*src.fSetArray)[j]); 1.94 + j++; 1.95 + } else { 1.96 + duplicates++; 1.97 + j++; // Skip one of the duplicates. 1.98 + } 1.99 + } 1.100 + 1.101 + while (i < fSetArray->count()) { 1.102 + fArrayNew->push((*fSetArray)[i]); 1.103 + i++; 1.104 + } 1.105 + 1.106 + while (j < src.count()) { 1.107 + fArrayNew->push((*src.fSetArray)[j]); 1.108 + j++; 1.109 + } 1.110 + SkDELETE(fSetArray); 1.111 + fSetArray = fArrayNew; 1.112 + fArrayNew = NULL; 1.113 + 1.114 +#ifdef SK_DEBUG 1.115 + validate(); 1.116 +#endif 1.117 + return duplicates; 1.118 + } 1.119 + 1.120 + /** Adds a new element into set and returns false if the element is already 1.121 + * in this set. 1.122 + */ 1.123 + bool add(const T& elem) { 1.124 + SkASSERT(fSetArray); 1.125 + SkASSERT(fOrderedArray); 1.126 + 1.127 + int pos = 0; 1.128 + int i = find(elem, &pos); 1.129 + if (i >= 0) { 1.130 + return false; 1.131 + } 1.132 + *fSetArray->insert(pos) = elem; 1.133 + fOrderedArray->push(elem); 1.134 +#ifdef SK_DEBUG 1.135 + validate(); 1.136 +#endif 1.137 + return true; 1.138 + } 1.139 + 1.140 + /** Returns true if this set is empty. 1.141 + */ 1.142 + bool isEmpty() const { 1.143 + SkASSERT(fOrderedArray); 1.144 + SkASSERT(fSetArray); 1.145 + SkASSERT(fSetArray->isEmpty() == fOrderedArray->isEmpty()); 1.146 + return fOrderedArray->isEmpty(); 1.147 + } 1.148 + 1.149 + /** Return the number of elements in the set. 1.150 + */ 1.151 + int count() const { 1.152 + SkASSERT(fOrderedArray); 1.153 + SkASSERT(fSetArray); 1.154 + SkASSERT(fSetArray->count() == fOrderedArray->count()); 1.155 + return fOrderedArray->count(); 1.156 + } 1.157 + 1.158 + /** Return the number of bytes in the set: count * sizeof(T). 1.159 + */ 1.160 + size_t bytes() const { 1.161 + SkASSERT(fOrderedArray); 1.162 + return fOrderedArray->bytes(); 1.163 + } 1.164 + 1.165 + /** Return the beginning of a set iterator. 1.166 + * Elements in the iterator will be sorted ascending. 1.167 + */ 1.168 + const T* begin() const { 1.169 + SkASSERT(fOrderedArray); 1.170 + return fOrderedArray->begin(); 1.171 + } 1.172 + 1.173 + /** Return the end of a set iterator. 1.174 + */ 1.175 + const T* end() const { 1.176 + SkASSERT(fOrderedArray); 1.177 + return fOrderedArray->end(); 1.178 + } 1.179 + 1.180 + const T& operator[](int index) const { 1.181 + SkASSERT(fOrderedArray); 1.182 + return (*fOrderedArray)[index]; 1.183 + } 1.184 + 1.185 + /** Resets the set (deletes memory and initiates an empty set). 1.186 + */ 1.187 + void reset() { 1.188 + SkASSERT(fSetArray); 1.189 + SkASSERT(fOrderedArray); 1.190 + fSetArray->reset(); 1.191 + fOrderedArray->reset(); 1.192 + } 1.193 + 1.194 + /** Rewinds the set (preserves memory and initiates an empty set). 1.195 + */ 1.196 + void rewind() { 1.197 + SkASSERT(fSetArray); 1.198 + SkASSERT(fOrderedArray); 1.199 + fSetArray->rewind(); 1.200 + fOrderedArray->rewind(); 1.201 + } 1.202 + 1.203 + /** Reserves memory for the set. 1.204 + */ 1.205 + void setReserve(int reserve) { 1.206 + SkASSERT(fSetArray); 1.207 + SkASSERT(fOrderedArray); 1.208 + fSetArray->setReserve(reserve); 1.209 + fOrderedArray->setReserve(reserve); 1.210 + } 1.211 + 1.212 + /** Returns true if the array contains this element. 1.213 + */ 1.214 + bool contains(const T& elem) const { 1.215 + SkASSERT(fSetArray); 1.216 + return (this->find(elem) >= 0); 1.217 + } 1.218 + 1.219 + /** Copies internal array to destination. 1.220 + */ 1.221 + void copy(T* dst) const { 1.222 + SkASSERT(fOrderedArray); 1.223 + fOrderedArray->copyRange(dst, 0, fOrderedArray->count()); 1.224 + } 1.225 + 1.226 + /** Returns a const reference to the internal vector. 1.227 + */ 1.228 + const SkTDArray<T>& toArray() { 1.229 + SkASSERT(fOrderedArray); 1.230 + return *fOrderedArray; 1.231 + } 1.232 + 1.233 + /** Unref all elements in the set. 1.234 + */ 1.235 + void unrefAll() { 1.236 + SkASSERT(fSetArray); 1.237 + SkASSERT(fOrderedArray); 1.238 + fOrderedArray->unrefAll(); 1.239 + // Also reset the other array, as SkTDArray::unrefAll does an 1.240 + // implcit reset 1.241 + fSetArray->reset(); 1.242 + } 1.243 + 1.244 + /** safeUnref all elements in the set. 1.245 + */ 1.246 + void safeUnrefAll() { 1.247 + SkASSERT(fSetArray); 1.248 + SkASSERT(fOrderedArray); 1.249 + fOrderedArray->safeUnrefAll(); 1.250 + // Also reset the other array, as SkTDArray::safeUnrefAll does an 1.251 + // implcit reset 1.252 + fSetArray->reset(); 1.253 + } 1.254 + 1.255 +#ifdef SK_DEBUG 1.256 + void validate() const { 1.257 + SkASSERT(fSetArray); 1.258 + SkASSERT(fOrderedArray); 1.259 + fSetArray->validate(); 1.260 + fOrderedArray->validate(); 1.261 + SkASSERT(isSorted() && !hasDuplicates() && arraysConsistent()); 1.262 + } 1.263 + 1.264 + bool hasDuplicates() const { 1.265 + for (int i = 0; i < fSetArray->count() - 1; ++i) { 1.266 + if ((*fSetArray)[i] == (*fSetArray)[i + 1]) { 1.267 + return true; 1.268 + } 1.269 + } 1.270 + return false; 1.271 + } 1.272 + 1.273 + bool isSorted() const { 1.274 + for (int i = 0; i < fSetArray->count() - 1; ++i) { 1.275 + // Use only < operator 1.276 + if (!((*fSetArray)[i] < (*fSetArray)[i + 1])) { 1.277 + return false; 1.278 + } 1.279 + } 1.280 + return true; 1.281 + } 1.282 + 1.283 + /** Checks if fSetArray is consistent with fOrderedArray 1.284 + */ 1.285 + bool arraysConsistent() const { 1.286 + if (fSetArray->count() != fOrderedArray->count()) { 1.287 + return false; 1.288 + } 1.289 + if (fOrderedArray->count() == 0) { 1.290 + return true; 1.291 + } 1.292 + 1.293 + // Copy and sort fOrderedArray, then compare to fSetArray. 1.294 + // A O(n log n) algorithm is necessary as O(n^2) will choke some GMs. 1.295 + SkAutoMalloc sortedArray(fOrderedArray->bytes()); 1.296 + T* sortedBase = reinterpret_cast<T*>(sortedArray.get()); 1.297 + int count = fOrderedArray->count(); 1.298 + fOrderedArray->copyRange(sortedBase, 0, count); 1.299 + 1.300 + SkTQSort<T>(sortedBase, sortedBase + count - 1); 1.301 + 1.302 + for (int i = 0; i < count; ++i) { 1.303 + if (sortedBase[i] != (*fSetArray)[i]) { 1.304 + return false; 1.305 + } 1.306 + } 1.307 + 1.308 + return true; 1.309 + } 1.310 +#endif 1.311 + 1.312 +private: 1.313 + SkTDArray<T>* fSetArray; // Sorted by pointer address for fast 1.314 + // lookup. 1.315 + SkTDArray<T>* fOrderedArray; // Sorted by insertion order for 1.316 + // deterministic output. 1.317 + 1.318 + /** Returns the index in fSetArray where an element was found. 1.319 + * Returns -1 if the element was not found, and it fills *posToInsertSorted 1.320 + * with the index of the place where elem should be inserted to preserve the 1.321 + * internal array sorted. 1.322 + * If element was found, *posToInsertSorted is undefined. 1.323 + */ 1.324 + int find(const T& elem, int* posToInsertSorted = NULL) const { 1.325 + SkASSERT(fSetArray); 1.326 + 1.327 + if (fSetArray->count() == 0) { 1.328 + if (posToInsertSorted) { 1.329 + *posToInsertSorted = 0; 1.330 + } 1.331 + return -1; 1.332 + } 1.333 + int iMin = 0; 1.334 + int iMax = fSetArray->count(); 1.335 + 1.336 + while (iMin < iMax - 1) { 1.337 + int iMid = (iMin + iMax) / 2; 1.338 + if (elem < (*fSetArray)[iMid]) { 1.339 + iMax = iMid; 1.340 + } else { 1.341 + iMin = iMid; 1.342 + } 1.343 + } 1.344 + if (elem == (*fSetArray)[iMin]) { 1.345 + return iMin; 1.346 + } 1.347 + if (posToInsertSorted) { 1.348 + if (elem < (*fSetArray)[iMin]) { 1.349 + *posToInsertSorted = iMin; 1.350 + } else { 1.351 + *posToInsertSorted = iMin + 1; 1.352 + } 1.353 + } 1.354 + 1.355 + return -1; 1.356 + } 1.357 +}; 1.358 + 1.359 +#endif