gfx/skia/trunk/src/utils/SkFloatUtils.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/utils/SkFloatUtils.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,173 @@
     1.4 +/*
     1.5 + * Copyright 2012 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +
    1.11 +#ifndef SkFloatUtils_DEFINED
    1.12 +#define SkFloatUtils_DEFINED
    1.13 +
    1.14 +#include "SkTypes.h"
    1.15 +#include <limits.h>
    1.16 +#include <float.h>
    1.17 +
    1.18 +template <size_t size>
    1.19 +class SkTypeWithSize {
    1.20 +public:
    1.21 +    // Prevents using SkTypeWithSize<N> with non-specialized N.
    1.22 +    typedef void UInt;
    1.23 +};
    1.24 +
    1.25 +template <>
    1.26 +class SkTypeWithSize<32> {
    1.27 +public:
    1.28 +    typedef uint32_t UInt;
    1.29 +};
    1.30 +
    1.31 +template <>
    1.32 +class SkTypeWithSize<64> {
    1.33 +public:
    1.34 +    typedef uint64_t UInt;
    1.35 +};
    1.36 +
    1.37 +template <typename RawType>
    1.38 +struct SkNumericLimits {
    1.39 +    static const int digits = 0;
    1.40 +};
    1.41 +
    1.42 +template <>
    1.43 +struct SkNumericLimits<double> {
    1.44 +    static const int digits = DBL_MANT_DIG;
    1.45 +};
    1.46 +
    1.47 +template <>
    1.48 +struct SkNumericLimits<float> {
    1.49 +    static const int digits = FLT_MANT_DIG;
    1.50 +};
    1.51 +
    1.52 +//See
    1.53 +//http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299
    1.54 +//http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
    1.55 +//http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
    1.56 +
    1.57 +template <typename RawType, unsigned int ULPs>
    1.58 +class SkFloatingPoint {
    1.59 +public:
    1.60 +    /** Bits is a unsigned integer the same size as the floating point number. */
    1.61 +    typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits;
    1.62 +
    1.63 +    /** # of bits in a number. */
    1.64 +    static const size_t kBitCount = CHAR_BIT * sizeof(RawType);
    1.65 +
    1.66 +    /** # of fraction bits in a number. */
    1.67 +    static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1;
    1.68 +
    1.69 +    /** # of exponent bits in a number. */
    1.70 +    static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    1.71 +
    1.72 +    /** The mask for the sign bit. */
    1.73 +    static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    1.74 +
    1.75 +    /** The mask for the fraction bits. */
    1.76 +    static const Bits kFractionBitMask =
    1.77 +        ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    1.78 +
    1.79 +    /** The mask for the exponent bits. */
    1.80 +    static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    1.81 +
    1.82 +    /** How many ULP's (Units in the Last Place) to tolerate when comparing. */
    1.83 +    static const size_t kMaxUlps = ULPs;
    1.84 +
    1.85 +    /**
    1.86 +     *  Constructs a FloatingPoint from a raw floating-point number.
    1.87 +     *
    1.88 +     *  On an Intel CPU, passing a non-normalized NAN (Not a Number)
    1.89 +     *  around may change its bits, although the new value is guaranteed
    1.90 +     *  to be also a NAN.  Therefore, don't expect this constructor to
    1.91 +     *  preserve the bits in x when x is a NAN.
    1.92 +     */
    1.93 +    explicit SkFloatingPoint(const RawType& x) { fU.value = x; }
    1.94 +
    1.95 +    /** Returns the exponent bits of this number. */
    1.96 +    Bits exponent_bits() const { return kExponentBitMask & fU.bits; }
    1.97 +
    1.98 +    /** Returns the fraction bits of this number. */
    1.99 +    Bits fraction_bits() const { return kFractionBitMask & fU.bits; }
   1.100 +
   1.101 +    /** Returns true iff this is NAN (not a number). */
   1.102 +    bool is_nan() const {
   1.103 +        // It's a NAN if both of the folloowing are true:
   1.104 +        // * the exponent bits are all ones
   1.105 +        // * the fraction bits are not all zero.
   1.106 +        return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
   1.107 +    }
   1.108 +
   1.109 +    /**
   1.110 +     *  Returns true iff this number is at most kMaxUlps ULP's away from ths.
   1.111 +     *  In particular, this function:
   1.112 +     *   - returns false if either number is (or both are) NAN.
   1.113 +     *   - treats really large numbers as almost equal to infinity.
   1.114 +     *   - thinks +0.0 and -0.0 are 0 DLP's apart.
   1.115 +     */
   1.116 +    bool AlmostEquals(const SkFloatingPoint& rhs) const {
   1.117 +        // Any comparison operation involving a NAN must return false.
   1.118 +        if (is_nan() || rhs.is_nan()) return false;
   1.119 +
   1.120 +        const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits,
   1.121 +                                                                 rhs.fU.bits);
   1.122 +        //SkDEBUGF(("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist));
   1.123 +        return dist <= kMaxUlps;
   1.124 +    }
   1.125 +
   1.126 +private:
   1.127 +    /** The data type used to store the actual floating-point number. */
   1.128 +    union FloatingPointUnion {
   1.129 +        /** The raw floating-point number. */
   1.130 +        RawType value;
   1.131 +        /** The bits that represent the number. */
   1.132 +        Bits bits;
   1.133 +    };
   1.134 +
   1.135 +    /**
   1.136 +     *  Converts an integer from the sign-and-magnitude representation to
   1.137 +     *  the biased representation. More precisely, let N be 2 to the
   1.138 +     *  power of (kBitCount - 1), an integer x is represented by the
   1.139 +     *  unsigned number x + N.
   1.140 +     *
   1.141 +     *  For instance,
   1.142 +     *
   1.143 +     *    -N + 1 (the most negative number representable using
   1.144 +     *           sign-and-magnitude) is represented by 1;
   1.145 +     *    0      is represented by N; and
   1.146 +     *    N - 1  (the biggest number representable using
   1.147 +     *           sign-and-magnitude) is represented by 2N - 1.
   1.148 +     *
   1.149 +     *  Read http://en.wikipedia.org/wiki/Signed_number_representations
   1.150 +     *  for more details on signed number representations.
   1.151 +     */
   1.152 +    static Bits SignAndMagnitudeToBiased(const Bits &sam) {
   1.153 +        if (kSignBitMask & sam) {
   1.154 +            // sam represents a negative number.
   1.155 +            return ~sam + 1;
   1.156 +        } else {
   1.157 +            // sam represents a positive number.
   1.158 +            return kSignBitMask | sam;
   1.159 +        }
   1.160 +    }
   1.161 +
   1.162 +    /**
   1.163 +     *  Given two numbers in the sign-and-magnitude representation,
   1.164 +     *  returns the distance between them as an unsigned number.
   1.165 +     */
   1.166 +    static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
   1.167 +                                                       const Bits &sam2) {
   1.168 +        const Bits biased1 = SignAndMagnitudeToBiased(sam1);
   1.169 +        const Bits biased2 = SignAndMagnitudeToBiased(sam2);
   1.170 +        return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
   1.171 +    }
   1.172 +
   1.173 +    FloatingPointUnion fU;
   1.174 +};
   1.175 +
   1.176 +#endif

mercurial