gfx/skia/trunk/src/utils/SkSHA1.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/utils/SkSHA1.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,268 @@
     1.4 +/*
     1.5 + * Copyright 2013 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + *
    1.10 + * The following code is based on the description in RFC 3174.
    1.11 + * http://www.ietf.org/rfc/rfc3174.txt
    1.12 + */
    1.13 +
    1.14 +#include "SkTypes.h"
    1.15 +#include "SkSHA1.h"
    1.16 +#include <string.h>
    1.17 +
    1.18 +/** SHA1 basic transformation. Transforms state based on block. */
    1.19 +static void transform(uint32_t state[5], const uint8_t block[64]);
    1.20 +
    1.21 +/** Encodes input into output (5 big endian 32 bit values). */
    1.22 +static void encode(uint8_t output[20], const uint32_t input[5]);
    1.23 +
    1.24 +/** Encodes input into output (big endian 64 bit value). */
    1.25 +static void encode(uint8_t output[8], const uint64_t input);
    1.26 +
    1.27 +SkSHA1::SkSHA1() : byteCount(0) {
    1.28 +    // These are magic numbers from the specification. The first four are the same as MD5.
    1.29 +    this->state[0] = 0x67452301;
    1.30 +    this->state[1] = 0xefcdab89;
    1.31 +    this->state[2] = 0x98badcfe;
    1.32 +    this->state[3] = 0x10325476;
    1.33 +    this->state[4] = 0xc3d2e1f0;
    1.34 +}
    1.35 +
    1.36 +void SkSHA1::update(const uint8_t* input, size_t inputLength) {
    1.37 +    unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
    1.38 +    unsigned int bufferAvailable = 64 - bufferIndex;
    1.39 +
    1.40 +    unsigned int inputIndex;
    1.41 +    if (inputLength >= bufferAvailable) {
    1.42 +        if (bufferIndex) {
    1.43 +            memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
    1.44 +            transform(this->state, this->buffer);
    1.45 +            inputIndex = bufferAvailable;
    1.46 +        } else {
    1.47 +            inputIndex = 0;
    1.48 +        }
    1.49 +
    1.50 +        for (; inputIndex + 63 < inputLength; inputIndex += 64) {
    1.51 +            transform(this->state, &input[inputIndex]);
    1.52 +        }
    1.53 +
    1.54 +        bufferIndex = 0;
    1.55 +    } else {
    1.56 +        inputIndex = 0;
    1.57 +    }
    1.58 +
    1.59 +    memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
    1.60 +
    1.61 +    this->byteCount += inputLength;
    1.62 +}
    1.63 +
    1.64 +void SkSHA1::finish(Digest& digest) {
    1.65 +    // Get the number of bits before padding.
    1.66 +    uint8_t bits[8];
    1.67 +    encode(bits, this->byteCount << 3);
    1.68 +
    1.69 +    // Pad out to 56 mod 64.
    1.70 +    unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
    1.71 +    unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
    1.72 +    static uint8_t PADDING[64] = {
    1.73 +        0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1.74 +           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1.75 +           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1.76 +           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1.77 +    };
    1.78 +    this->update(PADDING, paddingLength);
    1.79 +
    1.80 +    // Append length (length before padding, will cause final update).
    1.81 +    this->update(bits, 8);
    1.82 +
    1.83 +    // Write out digest.
    1.84 +    encode(digest.data, this->state);
    1.85 +
    1.86 +#if defined(SK_SHA1_CLEAR_DATA)
    1.87 +    // Clear state.
    1.88 +    memset(this, 0, sizeof(*this));
    1.89 +#endif
    1.90 +}
    1.91 +
    1.92 +struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
    1.93 +    return (B & C) | ((~B) & D);
    1.94 +    //return D ^ (B & (C ^ D));
    1.95 +    //return (B & C) ^ ((~B) & D);
    1.96 +    //return (B & C) + ((~B) & D);
    1.97 +    //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2
    1.98 +    //return vec_sel(D, C, B); //PPC
    1.99 +}};
   1.100 +
   1.101 +struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
   1.102 +    return B ^ C ^ D;
   1.103 +}};
   1.104 +
   1.105 +struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
   1.106 +    return (B & C) | (B & D) | (C & D);
   1.107 +    //return (B & C) | (D & (B | C));
   1.108 +    //return (B & C) | (D & (B ^ C));
   1.109 +    //return (B & C) + (D & (B ^ C));
   1.110 +    //return (B & C) ^ (B & D) ^ (C & D);
   1.111 +}};
   1.112 +
   1.113 +/** Rotates x left n bits. */
   1.114 +static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
   1.115 +    return (x << n) | (x >> (32 - n));
   1.116 +}
   1.117 +
   1.118 +template <typename T>
   1.119 +static inline void operation(T operation,
   1.120 +                             uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E,
   1.121 +                             uint32_t w, uint32_t k) {
   1.122 +    E += rotate_left(A, 5) + operation(B, C, D) + w + k;
   1.123 +    B = rotate_left(B, 30);
   1.124 +}
   1.125 +
   1.126 +static void transform(uint32_t state[5], const uint8_t block[64]) {
   1.127 +    uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4];
   1.128 +
   1.129 +    // Round constants defined in SHA-1.
   1.130 +    static const uint32_t K[] = {
   1.131 +        0x5A827999, //sqrt(2) * 2^30
   1.132 +        0x6ED9EBA1, //sqrt(3) * 2^30
   1.133 +        0x8F1BBCDC, //sqrt(5) * 2^30
   1.134 +        0xCA62C1D6, //sqrt(10) * 2^30
   1.135 +    };
   1.136 +
   1.137 +    uint32_t W[80];
   1.138 +
   1.139 +    // Initialize the array W.
   1.140 +    size_t i = 0;
   1.141 +    for (size_t j = 0; i < 16; ++i, j += 4) {
   1.142 +        W[i] = (((uint32_t)block[j  ]) << 24) |
   1.143 +               (((uint32_t)block[j+1]) << 16) |
   1.144 +               (((uint32_t)block[j+2]) <<  8) |
   1.145 +               (((uint32_t)block[j+3])      );
   1.146 +    }
   1.147 +    for (; i < 80; ++i) {
   1.148 +       W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
   1.149 +       //The following is equivelent and speeds up SSE implementations, but slows non-SSE.
   1.150 +       //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2);
   1.151 +    }
   1.152 +
   1.153 +    // Round 1
   1.154 +    operation(F1(), A, B, C, D, E, W[ 0], K[0]);
   1.155 +    operation(F1(), E, A, B, C, D, W[ 1], K[0]);
   1.156 +    operation(F1(), D, E, A, B, C, W[ 2], K[0]);
   1.157 +    operation(F1(), C, D, E, A, B, W[ 3], K[0]);
   1.158 +    operation(F1(), B, C, D, E, A, W[ 4], K[0]);
   1.159 +    operation(F1(), A, B, C, D, E, W[ 5], K[0]);
   1.160 +    operation(F1(), E, A, B, C, D, W[ 6], K[0]);
   1.161 +    operation(F1(), D, E, A, B, C, W[ 7], K[0]);
   1.162 +    operation(F1(), C, D, E, A, B, W[ 8], K[0]);
   1.163 +    operation(F1(), B, C, D, E, A, W[ 9], K[0]);
   1.164 +    operation(F1(), A, B, C, D, E, W[10], K[0]);
   1.165 +    operation(F1(), E, A, B, C, D, W[11], K[0]);
   1.166 +    operation(F1(), D, E, A, B, C, W[12], K[0]);
   1.167 +    operation(F1(), C, D, E, A, B, W[13], K[0]);
   1.168 +    operation(F1(), B, C, D, E, A, W[14], K[0]);
   1.169 +    operation(F1(), A, B, C, D, E, W[15], K[0]);
   1.170 +    operation(F1(), E, A, B, C, D, W[16], K[0]);
   1.171 +    operation(F1(), D, E, A, B, C, W[17], K[0]);
   1.172 +    operation(F1(), C, D, E, A, B, W[18], K[0]);
   1.173 +    operation(F1(), B, C, D, E, A, W[19], K[0]);
   1.174 +
   1.175 +    // Round 2
   1.176 +    operation(F2(), A, B, C, D, E, W[20], K[1]);
   1.177 +    operation(F2(), E, A, B, C, D, W[21], K[1]);
   1.178 +    operation(F2(), D, E, A, B, C, W[22], K[1]);
   1.179 +    operation(F2(), C, D, E, A, B, W[23], K[1]);
   1.180 +    operation(F2(), B, C, D, E, A, W[24], K[1]);
   1.181 +    operation(F2(), A, B, C, D, E, W[25], K[1]);
   1.182 +    operation(F2(), E, A, B, C, D, W[26], K[1]);
   1.183 +    operation(F2(), D, E, A, B, C, W[27], K[1]);
   1.184 +    operation(F2(), C, D, E, A, B, W[28], K[1]);
   1.185 +    operation(F2(), B, C, D, E, A, W[29], K[1]);
   1.186 +    operation(F2(), A, B, C, D, E, W[30], K[1]);
   1.187 +    operation(F2(), E, A, B, C, D, W[31], K[1]);
   1.188 +    operation(F2(), D, E, A, B, C, W[32], K[1]);
   1.189 +    operation(F2(), C, D, E, A, B, W[33], K[1]);
   1.190 +    operation(F2(), B, C, D, E, A, W[34], K[1]);
   1.191 +    operation(F2(), A, B, C, D, E, W[35], K[1]);
   1.192 +    operation(F2(), E, A, B, C, D, W[36], K[1]);
   1.193 +    operation(F2(), D, E, A, B, C, W[37], K[1]);
   1.194 +    operation(F2(), C, D, E, A, B, W[38], K[1]);
   1.195 +    operation(F2(), B, C, D, E, A, W[39], K[1]);
   1.196 +
   1.197 +    // Round 3
   1.198 +    operation(F3(), A, B, C, D, E, W[40], K[2]);
   1.199 +    operation(F3(), E, A, B, C, D, W[41], K[2]);
   1.200 +    operation(F3(), D, E, A, B, C, W[42], K[2]);
   1.201 +    operation(F3(), C, D, E, A, B, W[43], K[2]);
   1.202 +    operation(F3(), B, C, D, E, A, W[44], K[2]);
   1.203 +    operation(F3(), A, B, C, D, E, W[45], K[2]);
   1.204 +    operation(F3(), E, A, B, C, D, W[46], K[2]);
   1.205 +    operation(F3(), D, E, A, B, C, W[47], K[2]);
   1.206 +    operation(F3(), C, D, E, A, B, W[48], K[2]);
   1.207 +    operation(F3(), B, C, D, E, A, W[49], K[2]);
   1.208 +    operation(F3(), A, B, C, D, E, W[50], K[2]);
   1.209 +    operation(F3(), E, A, B, C, D, W[51], K[2]);
   1.210 +    operation(F3(), D, E, A, B, C, W[52], K[2]);
   1.211 +    operation(F3(), C, D, E, A, B, W[53], K[2]);
   1.212 +    operation(F3(), B, C, D, E, A, W[54], K[2]);
   1.213 +    operation(F3(), A, B, C, D, E, W[55], K[2]);
   1.214 +    operation(F3(), E, A, B, C, D, W[56], K[2]);
   1.215 +    operation(F3(), D, E, A, B, C, W[57], K[2]);
   1.216 +    operation(F3(), C, D, E, A, B, W[58], K[2]);
   1.217 +    operation(F3(), B, C, D, E, A, W[59], K[2]);
   1.218 +
   1.219 +    // Round 4
   1.220 +    operation(F2(), A, B, C, D, E, W[60], K[3]);
   1.221 +    operation(F2(), E, A, B, C, D, W[61], K[3]);
   1.222 +    operation(F2(), D, E, A, B, C, W[62], K[3]);
   1.223 +    operation(F2(), C, D, E, A, B, W[63], K[3]);
   1.224 +    operation(F2(), B, C, D, E, A, W[64], K[3]);
   1.225 +    operation(F2(), A, B, C, D, E, W[65], K[3]);
   1.226 +    operation(F2(), E, A, B, C, D, W[66], K[3]);
   1.227 +    operation(F2(), D, E, A, B, C, W[67], K[3]);
   1.228 +    operation(F2(), C, D, E, A, B, W[68], K[3]);
   1.229 +    operation(F2(), B, C, D, E, A, W[69], K[3]);
   1.230 +    operation(F2(), A, B, C, D, E, W[70], K[3]);
   1.231 +    operation(F2(), E, A, B, C, D, W[71], K[3]);
   1.232 +    operation(F2(), D, E, A, B, C, W[72], K[3]);
   1.233 +    operation(F2(), C, D, E, A, B, W[73], K[3]);
   1.234 +    operation(F2(), B, C, D, E, A, W[74], K[3]);
   1.235 +    operation(F2(), A, B, C, D, E, W[75], K[3]);
   1.236 +    operation(F2(), E, A, B, C, D, W[76], K[3]);
   1.237 +    operation(F2(), D, E, A, B, C, W[77], K[3]);
   1.238 +    operation(F2(), C, D, E, A, B, W[78], K[3]);
   1.239 +    operation(F2(), B, C, D, E, A, W[79], K[3]);
   1.240 +
   1.241 +    state[0] += A;
   1.242 +    state[1] += B;
   1.243 +    state[2] += C;
   1.244 +    state[3] += D;
   1.245 +    state[4] += E;
   1.246 +
   1.247 +#if defined(SK_SHA1_CLEAR_DATA)
   1.248 +    // Clear sensitive information.
   1.249 +    memset(W, 0, sizeof(W));
   1.250 +#endif
   1.251 +}
   1.252 +
   1.253 +static void encode(uint8_t output[20], const uint32_t input[5]) {
   1.254 +    for (size_t i = 0, j = 0; i < 5; i++, j += 4) {
   1.255 +        output[j  ] = (uint8_t)((input[i] >> 24) & 0xff);
   1.256 +        output[j+1] = (uint8_t)((input[i] >> 16) & 0xff);
   1.257 +        output[j+2] = (uint8_t)((input[i] >>  8) & 0xff);
   1.258 +        output[j+3] = (uint8_t)((input[i]      ) & 0xff);
   1.259 +    }
   1.260 +}
   1.261 +
   1.262 +static void encode(uint8_t output[8], const uint64_t input) {
   1.263 +    output[0] = (uint8_t)((input >> 56) & 0xff);
   1.264 +    output[1] = (uint8_t)((input >> 48) & 0xff);
   1.265 +    output[2] = (uint8_t)((input >> 40) & 0xff);
   1.266 +    output[3] = (uint8_t)((input >> 32) & 0xff);
   1.267 +    output[4] = (uint8_t)((input >> 24) & 0xff);
   1.268 +    output[5] = (uint8_t)((input >> 16) & 0xff);
   1.269 +    output[6] = (uint8_t)((input >>  8) & 0xff);
   1.270 +    output[7] = (uint8_t)((input      ) & 0xff);
   1.271 +}

mercurial