1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/utils/SkSHA1.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,268 @@ 1.4 +/* 1.5 + * Copyright 2013 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + * 1.10 + * The following code is based on the description in RFC 3174. 1.11 + * http://www.ietf.org/rfc/rfc3174.txt 1.12 + */ 1.13 + 1.14 +#include "SkTypes.h" 1.15 +#include "SkSHA1.h" 1.16 +#include <string.h> 1.17 + 1.18 +/** SHA1 basic transformation. Transforms state based on block. */ 1.19 +static void transform(uint32_t state[5], const uint8_t block[64]); 1.20 + 1.21 +/** Encodes input into output (5 big endian 32 bit values). */ 1.22 +static void encode(uint8_t output[20], const uint32_t input[5]); 1.23 + 1.24 +/** Encodes input into output (big endian 64 bit value). */ 1.25 +static void encode(uint8_t output[8], const uint64_t input); 1.26 + 1.27 +SkSHA1::SkSHA1() : byteCount(0) { 1.28 + // These are magic numbers from the specification. The first four are the same as MD5. 1.29 + this->state[0] = 0x67452301; 1.30 + this->state[1] = 0xefcdab89; 1.31 + this->state[2] = 0x98badcfe; 1.32 + this->state[3] = 0x10325476; 1.33 + this->state[4] = 0xc3d2e1f0; 1.34 +} 1.35 + 1.36 +void SkSHA1::update(const uint8_t* input, size_t inputLength) { 1.37 + unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 1.38 + unsigned int bufferAvailable = 64 - bufferIndex; 1.39 + 1.40 + unsigned int inputIndex; 1.41 + if (inputLength >= bufferAvailable) { 1.42 + if (bufferIndex) { 1.43 + memcpy(&this->buffer[bufferIndex], input, bufferAvailable); 1.44 + transform(this->state, this->buffer); 1.45 + inputIndex = bufferAvailable; 1.46 + } else { 1.47 + inputIndex = 0; 1.48 + } 1.49 + 1.50 + for (; inputIndex + 63 < inputLength; inputIndex += 64) { 1.51 + transform(this->state, &input[inputIndex]); 1.52 + } 1.53 + 1.54 + bufferIndex = 0; 1.55 + } else { 1.56 + inputIndex = 0; 1.57 + } 1.58 + 1.59 + memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); 1.60 + 1.61 + this->byteCount += inputLength; 1.62 +} 1.63 + 1.64 +void SkSHA1::finish(Digest& digest) { 1.65 + // Get the number of bits before padding. 1.66 + uint8_t bits[8]; 1.67 + encode(bits, this->byteCount << 3); 1.68 + 1.69 + // Pad out to 56 mod 64. 1.70 + unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 1.71 + unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); 1.72 + static uint8_t PADDING[64] = { 1.73 + 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.74 + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.75 + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.76 + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.77 + }; 1.78 + this->update(PADDING, paddingLength); 1.79 + 1.80 + // Append length (length before padding, will cause final update). 1.81 + this->update(bits, 8); 1.82 + 1.83 + // Write out digest. 1.84 + encode(digest.data, this->state); 1.85 + 1.86 +#if defined(SK_SHA1_CLEAR_DATA) 1.87 + // Clear state. 1.88 + memset(this, 0, sizeof(*this)); 1.89 +#endif 1.90 +} 1.91 + 1.92 +struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { 1.93 + return (B & C) | ((~B) & D); 1.94 + //return D ^ (B & (C ^ D)); 1.95 + //return (B & C) ^ ((~B) & D); 1.96 + //return (B & C) + ((~B) & D); 1.97 + //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2 1.98 + //return vec_sel(D, C, B); //PPC 1.99 +}}; 1.100 + 1.101 +struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { 1.102 + return B ^ C ^ D; 1.103 +}}; 1.104 + 1.105 +struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { 1.106 + return (B & C) | (B & D) | (C & D); 1.107 + //return (B & C) | (D & (B | C)); 1.108 + //return (B & C) | (D & (B ^ C)); 1.109 + //return (B & C) + (D & (B ^ C)); 1.110 + //return (B & C) ^ (B & D) ^ (C & D); 1.111 +}}; 1.112 + 1.113 +/** Rotates x left n bits. */ 1.114 +static inline uint32_t rotate_left(uint32_t x, uint8_t n) { 1.115 + return (x << n) | (x >> (32 - n)); 1.116 +} 1.117 + 1.118 +template <typename T> 1.119 +static inline void operation(T operation, 1.120 + uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, 1.121 + uint32_t w, uint32_t k) { 1.122 + E += rotate_left(A, 5) + operation(B, C, D) + w + k; 1.123 + B = rotate_left(B, 30); 1.124 +} 1.125 + 1.126 +static void transform(uint32_t state[5], const uint8_t block[64]) { 1.127 + uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4]; 1.128 + 1.129 + // Round constants defined in SHA-1. 1.130 + static const uint32_t K[] = { 1.131 + 0x5A827999, //sqrt(2) * 2^30 1.132 + 0x6ED9EBA1, //sqrt(3) * 2^30 1.133 + 0x8F1BBCDC, //sqrt(5) * 2^30 1.134 + 0xCA62C1D6, //sqrt(10) * 2^30 1.135 + }; 1.136 + 1.137 + uint32_t W[80]; 1.138 + 1.139 + // Initialize the array W. 1.140 + size_t i = 0; 1.141 + for (size_t j = 0; i < 16; ++i, j += 4) { 1.142 + W[i] = (((uint32_t)block[j ]) << 24) | 1.143 + (((uint32_t)block[j+1]) << 16) | 1.144 + (((uint32_t)block[j+2]) << 8) | 1.145 + (((uint32_t)block[j+3]) ); 1.146 + } 1.147 + for (; i < 80; ++i) { 1.148 + W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); 1.149 + //The following is equivelent and speeds up SSE implementations, but slows non-SSE. 1.150 + //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2); 1.151 + } 1.152 + 1.153 + // Round 1 1.154 + operation(F1(), A, B, C, D, E, W[ 0], K[0]); 1.155 + operation(F1(), E, A, B, C, D, W[ 1], K[0]); 1.156 + operation(F1(), D, E, A, B, C, W[ 2], K[0]); 1.157 + operation(F1(), C, D, E, A, B, W[ 3], K[0]); 1.158 + operation(F1(), B, C, D, E, A, W[ 4], K[0]); 1.159 + operation(F1(), A, B, C, D, E, W[ 5], K[0]); 1.160 + operation(F1(), E, A, B, C, D, W[ 6], K[0]); 1.161 + operation(F1(), D, E, A, B, C, W[ 7], K[0]); 1.162 + operation(F1(), C, D, E, A, B, W[ 8], K[0]); 1.163 + operation(F1(), B, C, D, E, A, W[ 9], K[0]); 1.164 + operation(F1(), A, B, C, D, E, W[10], K[0]); 1.165 + operation(F1(), E, A, B, C, D, W[11], K[0]); 1.166 + operation(F1(), D, E, A, B, C, W[12], K[0]); 1.167 + operation(F1(), C, D, E, A, B, W[13], K[0]); 1.168 + operation(F1(), B, C, D, E, A, W[14], K[0]); 1.169 + operation(F1(), A, B, C, D, E, W[15], K[0]); 1.170 + operation(F1(), E, A, B, C, D, W[16], K[0]); 1.171 + operation(F1(), D, E, A, B, C, W[17], K[0]); 1.172 + operation(F1(), C, D, E, A, B, W[18], K[0]); 1.173 + operation(F1(), B, C, D, E, A, W[19], K[0]); 1.174 + 1.175 + // Round 2 1.176 + operation(F2(), A, B, C, D, E, W[20], K[1]); 1.177 + operation(F2(), E, A, B, C, D, W[21], K[1]); 1.178 + operation(F2(), D, E, A, B, C, W[22], K[1]); 1.179 + operation(F2(), C, D, E, A, B, W[23], K[1]); 1.180 + operation(F2(), B, C, D, E, A, W[24], K[1]); 1.181 + operation(F2(), A, B, C, D, E, W[25], K[1]); 1.182 + operation(F2(), E, A, B, C, D, W[26], K[1]); 1.183 + operation(F2(), D, E, A, B, C, W[27], K[1]); 1.184 + operation(F2(), C, D, E, A, B, W[28], K[1]); 1.185 + operation(F2(), B, C, D, E, A, W[29], K[1]); 1.186 + operation(F2(), A, B, C, D, E, W[30], K[1]); 1.187 + operation(F2(), E, A, B, C, D, W[31], K[1]); 1.188 + operation(F2(), D, E, A, B, C, W[32], K[1]); 1.189 + operation(F2(), C, D, E, A, B, W[33], K[1]); 1.190 + operation(F2(), B, C, D, E, A, W[34], K[1]); 1.191 + operation(F2(), A, B, C, D, E, W[35], K[1]); 1.192 + operation(F2(), E, A, B, C, D, W[36], K[1]); 1.193 + operation(F2(), D, E, A, B, C, W[37], K[1]); 1.194 + operation(F2(), C, D, E, A, B, W[38], K[1]); 1.195 + operation(F2(), B, C, D, E, A, W[39], K[1]); 1.196 + 1.197 + // Round 3 1.198 + operation(F3(), A, B, C, D, E, W[40], K[2]); 1.199 + operation(F3(), E, A, B, C, D, W[41], K[2]); 1.200 + operation(F3(), D, E, A, B, C, W[42], K[2]); 1.201 + operation(F3(), C, D, E, A, B, W[43], K[2]); 1.202 + operation(F3(), B, C, D, E, A, W[44], K[2]); 1.203 + operation(F3(), A, B, C, D, E, W[45], K[2]); 1.204 + operation(F3(), E, A, B, C, D, W[46], K[2]); 1.205 + operation(F3(), D, E, A, B, C, W[47], K[2]); 1.206 + operation(F3(), C, D, E, A, B, W[48], K[2]); 1.207 + operation(F3(), B, C, D, E, A, W[49], K[2]); 1.208 + operation(F3(), A, B, C, D, E, W[50], K[2]); 1.209 + operation(F3(), E, A, B, C, D, W[51], K[2]); 1.210 + operation(F3(), D, E, A, B, C, W[52], K[2]); 1.211 + operation(F3(), C, D, E, A, B, W[53], K[2]); 1.212 + operation(F3(), B, C, D, E, A, W[54], K[2]); 1.213 + operation(F3(), A, B, C, D, E, W[55], K[2]); 1.214 + operation(F3(), E, A, B, C, D, W[56], K[2]); 1.215 + operation(F3(), D, E, A, B, C, W[57], K[2]); 1.216 + operation(F3(), C, D, E, A, B, W[58], K[2]); 1.217 + operation(F3(), B, C, D, E, A, W[59], K[2]); 1.218 + 1.219 + // Round 4 1.220 + operation(F2(), A, B, C, D, E, W[60], K[3]); 1.221 + operation(F2(), E, A, B, C, D, W[61], K[3]); 1.222 + operation(F2(), D, E, A, B, C, W[62], K[3]); 1.223 + operation(F2(), C, D, E, A, B, W[63], K[3]); 1.224 + operation(F2(), B, C, D, E, A, W[64], K[3]); 1.225 + operation(F2(), A, B, C, D, E, W[65], K[3]); 1.226 + operation(F2(), E, A, B, C, D, W[66], K[3]); 1.227 + operation(F2(), D, E, A, B, C, W[67], K[3]); 1.228 + operation(F2(), C, D, E, A, B, W[68], K[3]); 1.229 + operation(F2(), B, C, D, E, A, W[69], K[3]); 1.230 + operation(F2(), A, B, C, D, E, W[70], K[3]); 1.231 + operation(F2(), E, A, B, C, D, W[71], K[3]); 1.232 + operation(F2(), D, E, A, B, C, W[72], K[3]); 1.233 + operation(F2(), C, D, E, A, B, W[73], K[3]); 1.234 + operation(F2(), B, C, D, E, A, W[74], K[3]); 1.235 + operation(F2(), A, B, C, D, E, W[75], K[3]); 1.236 + operation(F2(), E, A, B, C, D, W[76], K[3]); 1.237 + operation(F2(), D, E, A, B, C, W[77], K[3]); 1.238 + operation(F2(), C, D, E, A, B, W[78], K[3]); 1.239 + operation(F2(), B, C, D, E, A, W[79], K[3]); 1.240 + 1.241 + state[0] += A; 1.242 + state[1] += B; 1.243 + state[2] += C; 1.244 + state[3] += D; 1.245 + state[4] += E; 1.246 + 1.247 +#if defined(SK_SHA1_CLEAR_DATA) 1.248 + // Clear sensitive information. 1.249 + memset(W, 0, sizeof(W)); 1.250 +#endif 1.251 +} 1.252 + 1.253 +static void encode(uint8_t output[20], const uint32_t input[5]) { 1.254 + for (size_t i = 0, j = 0; i < 5; i++, j += 4) { 1.255 + output[j ] = (uint8_t)((input[i] >> 24) & 0xff); 1.256 + output[j+1] = (uint8_t)((input[i] >> 16) & 0xff); 1.257 + output[j+2] = (uint8_t)((input[i] >> 8) & 0xff); 1.258 + output[j+3] = (uint8_t)((input[i] ) & 0xff); 1.259 + } 1.260 +} 1.261 + 1.262 +static void encode(uint8_t output[8], const uint64_t input) { 1.263 + output[0] = (uint8_t)((input >> 56) & 0xff); 1.264 + output[1] = (uint8_t)((input >> 48) & 0xff); 1.265 + output[2] = (uint8_t)((input >> 40) & 0xff); 1.266 + output[3] = (uint8_t)((input >> 32) & 0xff); 1.267 + output[4] = (uint8_t)((input >> 24) & 0xff); 1.268 + output[5] = (uint8_t)((input >> 16) & 0xff); 1.269 + output[6] = (uint8_t)((input >> 8) & 0xff); 1.270 + output[7] = (uint8_t)((input ) & 0xff); 1.271 +}