gfx/thebes/gfxUtils.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/thebes/gfxUtils.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1082 @@
     1.4 +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +#include "gfxUtils.h"
    1.10 +#include "gfxContext.h"
    1.11 +#include "gfxPlatform.h"
    1.12 +#include "gfxDrawable.h"
    1.13 +#include "mozilla/gfx/2D.h"
    1.14 +#include "mozilla/RefPtr.h"
    1.15 +#include "nsRegion.h"
    1.16 +#include "yuv_convert.h"
    1.17 +#include "ycbcr_to_rgb565.h"
    1.18 +#include "GeckoProfiler.h"
    1.19 +#include "ImageContainer.h"
    1.20 +#include "gfx2DGlue.h"
    1.21 +
    1.22 +#ifdef XP_WIN
    1.23 +#include "gfxWindowsPlatform.h"
    1.24 +#endif
    1.25 +
    1.26 +using namespace mozilla;
    1.27 +using namespace mozilla::layers;
    1.28 +using namespace mozilla::gfx;
    1.29 +
    1.30 +#include "DeprecatedPremultiplyTables.h"
    1.31 +
    1.32 +static const uint8_t PremultiplyValue(uint8_t a, uint8_t v) {
    1.33 +    return gfxUtils::sPremultiplyTable[a*256+v];
    1.34 +}
    1.35 +
    1.36 +static const uint8_t UnpremultiplyValue(uint8_t a, uint8_t v) {
    1.37 +    return gfxUtils::sUnpremultiplyTable[a*256+v];
    1.38 +}
    1.39 +
    1.40 +void
    1.41 +gfxUtils::PremultiplyImageSurface(gfxImageSurface *aSourceSurface,
    1.42 +                                  gfxImageSurface *aDestSurface)
    1.43 +{
    1.44 +    if (!aDestSurface)
    1.45 +        aDestSurface = aSourceSurface;
    1.46 +
    1.47 +    MOZ_ASSERT(aSourceSurface->Format() == aDestSurface->Format() &&
    1.48 +               aSourceSurface->Width()  == aDestSurface->Width() &&
    1.49 +               aSourceSurface->Height() == aDestSurface->Height() &&
    1.50 +               aSourceSurface->Stride() == aDestSurface->Stride(),
    1.51 +               "Source and destination surfaces don't have identical characteristics");
    1.52 +
    1.53 +    MOZ_ASSERT(aSourceSurface->Stride() == aSourceSurface->Width() * 4,
    1.54 +               "Source surface stride isn't tightly packed");
    1.55 +
    1.56 +    // Only premultiply ARGB32
    1.57 +    if (aSourceSurface->Format() != gfxImageFormat::ARGB32) {
    1.58 +        if (aDestSurface != aSourceSurface) {
    1.59 +            memcpy(aDestSurface->Data(), aSourceSurface->Data(),
    1.60 +                   aSourceSurface->Stride() * aSourceSurface->Height());
    1.61 +        }
    1.62 +        return;
    1.63 +    }
    1.64 +
    1.65 +    uint8_t *src = aSourceSurface->Data();
    1.66 +    uint8_t *dst = aDestSurface->Data();
    1.67 +
    1.68 +    uint32_t dim = aSourceSurface->Width() * aSourceSurface->Height();
    1.69 +    for (uint32_t i = 0; i < dim; ++i) {
    1.70 +#ifdef IS_LITTLE_ENDIAN
    1.71 +        uint8_t b = *src++;
    1.72 +        uint8_t g = *src++;
    1.73 +        uint8_t r = *src++;
    1.74 +        uint8_t a = *src++;
    1.75 +
    1.76 +        *dst++ = PremultiplyValue(a, b);
    1.77 +        *dst++ = PremultiplyValue(a, g);
    1.78 +        *dst++ = PremultiplyValue(a, r);
    1.79 +        *dst++ = a;
    1.80 +#else
    1.81 +        uint8_t a = *src++;
    1.82 +        uint8_t r = *src++;
    1.83 +        uint8_t g = *src++;
    1.84 +        uint8_t b = *src++;
    1.85 +
    1.86 +        *dst++ = a;
    1.87 +        *dst++ = PremultiplyValue(a, r);
    1.88 +        *dst++ = PremultiplyValue(a, g);
    1.89 +        *dst++ = PremultiplyValue(a, b);
    1.90 +#endif
    1.91 +    }
    1.92 +}
    1.93 +
    1.94 +void
    1.95 +gfxUtils::UnpremultiplyImageSurface(gfxImageSurface *aSourceSurface,
    1.96 +                                    gfxImageSurface *aDestSurface)
    1.97 +{
    1.98 +    if (!aDestSurface)
    1.99 +        aDestSurface = aSourceSurface;
   1.100 +
   1.101 +    MOZ_ASSERT(aSourceSurface->Format() == aDestSurface->Format() &&
   1.102 +               aSourceSurface->Width()  == aDestSurface->Width() &&
   1.103 +               aSourceSurface->Height() == aDestSurface->Height(),
   1.104 +               "Source and destination surfaces don't have identical characteristics");
   1.105 +
   1.106 +    // Only premultiply ARGB32
   1.107 +    if (aSourceSurface->Format() != gfxImageFormat::ARGB32) {
   1.108 +        if (aDestSurface != aSourceSurface) {
   1.109 +            aDestSurface->CopyFrom(aSourceSurface);
   1.110 +        }
   1.111 +        return;
   1.112 +    }
   1.113 +
   1.114 +    uint8_t *src = aSourceSurface->Data();
   1.115 +    uint8_t *dst = aDestSurface->Data();
   1.116 +
   1.117 +    for (int32_t i = 0; i < aSourceSurface->Height(); ++i) {
   1.118 +        uint8_t *srcRow = src + (i * aSourceSurface->Stride());
   1.119 +        uint8_t *dstRow = dst + (i * aDestSurface->Stride());
   1.120 +
   1.121 +        for (int32_t j = 0; j < aSourceSurface->Width(); ++j) {
   1.122 +#ifdef IS_LITTLE_ENDIAN
   1.123 +          uint8_t b = *srcRow++;
   1.124 +          uint8_t g = *srcRow++;
   1.125 +          uint8_t r = *srcRow++;
   1.126 +          uint8_t a = *srcRow++;
   1.127 +
   1.128 +          *dstRow++ = UnpremultiplyValue(a, b);
   1.129 +          *dstRow++ = UnpremultiplyValue(a, g);
   1.130 +          *dstRow++ = UnpremultiplyValue(a, r);
   1.131 +          *dstRow++ = a;
   1.132 +#else
   1.133 +          uint8_t a = *srcRow++;
   1.134 +          uint8_t r = *srcRow++;
   1.135 +          uint8_t g = *srcRow++;
   1.136 +          uint8_t b = *srcRow++;
   1.137 +
   1.138 +          *dstRow++ = a;
   1.139 +          *dstRow++ = UnpremultiplyValue(a, r);
   1.140 +          *dstRow++ = UnpremultiplyValue(a, g);
   1.141 +          *dstRow++ = UnpremultiplyValue(a, b);
   1.142 +#endif
   1.143 +        }
   1.144 +    }
   1.145 +}
   1.146 +
   1.147 +TemporaryRef<DataSourceSurface>
   1.148 +gfxUtils::UnpremultiplyDataSurface(DataSourceSurface* aSurface)
   1.149 +{
   1.150 +    // Only premultiply ARGB32
   1.151 +    if (aSurface->GetFormat() != SurfaceFormat::B8G8R8A8) {
   1.152 +        return aSurface;
   1.153 +    }
   1.154 +
   1.155 +    DataSourceSurface::MappedSurface map;
   1.156 +    if (!aSurface->Map(DataSourceSurface::MapType::READ, &map)) {
   1.157 +        return nullptr;
   1.158 +    }
   1.159 +
   1.160 +    RefPtr<DataSourceSurface> dest = Factory::CreateDataSourceSurfaceWithStride(aSurface->GetSize(),
   1.161 +                                                                                aSurface->GetFormat(),
   1.162 +                                                                                map.mStride);
   1.163 +
   1.164 +    DataSourceSurface::MappedSurface destMap;
   1.165 +    if (!dest->Map(DataSourceSurface::MapType::WRITE, &destMap)) {
   1.166 +        aSurface->Unmap();
   1.167 +        return nullptr;
   1.168 +    }
   1.169 +
   1.170 +    uint8_t *src = map.mData;
   1.171 +    uint8_t *dst = destMap.mData;
   1.172 +
   1.173 +    for (int32_t i = 0; i < aSurface->GetSize().height; ++i) {
   1.174 +        uint8_t *srcRow = src + (i * map.mStride);
   1.175 +        uint8_t *dstRow = dst + (i * destMap.mStride);
   1.176 +
   1.177 +        for (int32_t j = 0; j < aSurface->GetSize().width; ++j) {
   1.178 +#ifdef IS_LITTLE_ENDIAN
   1.179 +          uint8_t b = *srcRow++;
   1.180 +          uint8_t g = *srcRow++;
   1.181 +          uint8_t r = *srcRow++;
   1.182 +          uint8_t a = *srcRow++;
   1.183 +
   1.184 +          *dstRow++ = UnpremultiplyValue(a, b);
   1.185 +          *dstRow++ = UnpremultiplyValue(a, g);
   1.186 +          *dstRow++ = UnpremultiplyValue(a, r);
   1.187 +          *dstRow++ = a;
   1.188 +#else
   1.189 +          uint8_t a = *srcRow++;
   1.190 +          uint8_t r = *srcRow++;
   1.191 +          uint8_t g = *srcRow++;
   1.192 +          uint8_t b = *srcRow++;
   1.193 +
   1.194 +          *dstRow++ = a;
   1.195 +          *dstRow++ = UnpremultiplyValue(a, r);
   1.196 +          *dstRow++ = UnpremultiplyValue(a, g);
   1.197 +          *dstRow++ = UnpremultiplyValue(a, b);
   1.198 +#endif
   1.199 +        }
   1.200 +    }
   1.201 +
   1.202 +    aSurface->Unmap();
   1.203 +    dest->Unmap();
   1.204 +    return dest;
   1.205 +}
   1.206 +
   1.207 +void
   1.208 +gfxUtils::ConvertBGRAtoRGBA(gfxImageSurface *aSourceSurface,
   1.209 +                            gfxImageSurface *aDestSurface) {
   1.210 +    if (!aDestSurface)
   1.211 +        aDestSurface = aSourceSurface;
   1.212 +
   1.213 +    MOZ_ASSERT(aSourceSurface->Format() == aDestSurface->Format() &&
   1.214 +               aSourceSurface->Width()  == aDestSurface->Width() &&
   1.215 +               aSourceSurface->Height() == aDestSurface->Height() &&
   1.216 +               aSourceSurface->Stride() == aDestSurface->Stride(),
   1.217 +               "Source and destination surfaces don't have identical characteristics");
   1.218 +
   1.219 +    MOZ_ASSERT(aSourceSurface->Stride() == aSourceSurface->Width() * 4,
   1.220 +               "Source surface stride isn't tightly packed");
   1.221 +
   1.222 +    MOZ_ASSERT(aSourceSurface->Format() == gfxImageFormat::ARGB32 || aSourceSurface->Format() == gfxImageFormat::RGB24,
   1.223 +               "Surfaces must be ARGB32 or RGB24");
   1.224 +
   1.225 +    uint8_t *src = aSourceSurface->Data();
   1.226 +    uint8_t *dst = aDestSurface->Data();
   1.227 +
   1.228 +    uint32_t dim = aSourceSurface->Width() * aSourceSurface->Height();
   1.229 +    uint8_t *srcEnd = src + 4*dim;
   1.230 +
   1.231 +    if (src == dst) {
   1.232 +        uint8_t buffer[4];
   1.233 +        for (; src != srcEnd; src += 4) {
   1.234 +            buffer[0] = src[2];
   1.235 +            buffer[1] = src[1];
   1.236 +            buffer[2] = src[0];
   1.237 +
   1.238 +            src[0] = buffer[0];
   1.239 +            src[1] = buffer[1];
   1.240 +            src[2] = buffer[2];
   1.241 +        }
   1.242 +    } else {
   1.243 +        for (; src != srcEnd; src += 4, dst += 4) {
   1.244 +            dst[0] = src[2];
   1.245 +            dst[1] = src[1];
   1.246 +            dst[2] = src[0];
   1.247 +            dst[3] = src[3];
   1.248 +        }
   1.249 +    }
   1.250 +}
   1.251 +
   1.252 +void
   1.253 +gfxUtils::ConvertBGRAtoRGBA(uint8_t* aData, uint32_t aLength)
   1.254 +{
   1.255 +    uint8_t *src = aData;
   1.256 +    uint8_t *srcEnd = src + aLength;
   1.257 +
   1.258 +    uint8_t buffer[4];
   1.259 +    for (; src != srcEnd; src += 4) {
   1.260 +        buffer[0] = src[2];
   1.261 +        buffer[1] = src[1];
   1.262 +        buffer[2] = src[0];
   1.263 +
   1.264 +        src[0] = buffer[0];
   1.265 +        src[1] = buffer[1];
   1.266 +        src[2] = buffer[2];
   1.267 +    }
   1.268 +}
   1.269 +
   1.270 +static bool
   1.271 +IsSafeImageTransformComponent(gfxFloat aValue)
   1.272 +{
   1.273 +  return aValue >= -32768 && aValue <= 32767;
   1.274 +}
   1.275 +
   1.276 +#ifndef MOZ_GFX_OPTIMIZE_MOBILE
   1.277 +/**
   1.278 + * This returns the fastest operator to use for solid surfaces which have no
   1.279 + * alpha channel or their alpha channel is uniformly opaque.
   1.280 + * This differs per render mode.
   1.281 + */
   1.282 +static gfxContext::GraphicsOperator
   1.283 +OptimalFillOperator()
   1.284 +{
   1.285 +#ifdef XP_WIN
   1.286 +    if (gfxWindowsPlatform::GetPlatform()->GetRenderMode() ==
   1.287 +        gfxWindowsPlatform::RENDER_DIRECT2D) {
   1.288 +        // D2D -really- hates operator source.
   1.289 +        return gfxContext::OPERATOR_OVER;
   1.290 +    } else {
   1.291 +#endif
   1.292 +        return gfxContext::OPERATOR_SOURCE;
   1.293 +#ifdef XP_WIN
   1.294 +    }
   1.295 +#endif
   1.296 +}
   1.297 +
   1.298 +// EXTEND_PAD won't help us here; we have to create a temporary surface to hold
   1.299 +// the subimage of pixels we're allowed to sample.
   1.300 +static already_AddRefed<gfxDrawable>
   1.301 +CreateSamplingRestrictedDrawable(gfxDrawable* aDrawable,
   1.302 +                                 gfxContext* aContext,
   1.303 +                                 const gfxMatrix& aUserSpaceToImageSpace,
   1.304 +                                 const gfxRect& aSourceRect,
   1.305 +                                 const gfxRect& aSubimage,
   1.306 +                                 const gfxImageFormat aFormat)
   1.307 +{
   1.308 +    PROFILER_LABEL("gfxUtils", "CreateSamplingRestricedDrawable");
   1.309 +    gfxRect userSpaceClipExtents = aContext->GetClipExtents();
   1.310 +    // This isn't optimal --- if aContext has a rotation then GetClipExtents
   1.311 +    // will have to do a bounding-box computation, and TransformBounds might
   1.312 +    // too, so we could get a better result if we computed image space clip
   1.313 +    // extents in one go --- but it doesn't really matter and this is easier
   1.314 +    // to understand.
   1.315 +    gfxRect imageSpaceClipExtents =
   1.316 +        aUserSpaceToImageSpace.TransformBounds(userSpaceClipExtents);
   1.317 +    // Inflate by one pixel because bilinear filtering will sample at most
   1.318 +    // one pixel beyond the computed image pixel coordinate.
   1.319 +    imageSpaceClipExtents.Inflate(1.0);
   1.320 +
   1.321 +    gfxRect needed = imageSpaceClipExtents.Intersect(aSourceRect);
   1.322 +    needed = needed.Intersect(aSubimage);
   1.323 +    needed.RoundOut();
   1.324 +
   1.325 +    // if 'needed' is empty, nothing will be drawn since aFill
   1.326 +    // must be entirely outside the clip region, so it doesn't
   1.327 +    // matter what we do here, but we should avoid trying to
   1.328 +    // create a zero-size surface.
   1.329 +    if (needed.IsEmpty())
   1.330 +        return nullptr;
   1.331 +
   1.332 +    nsRefPtr<gfxDrawable> drawable;
   1.333 +    gfxIntSize size(int32_t(needed.Width()), int32_t(needed.Height()));
   1.334 +
   1.335 +    nsRefPtr<gfxImageSurface> image = aDrawable->GetAsImageSurface();
   1.336 +    if (image && gfxRect(0, 0, image->GetSize().width, image->GetSize().height).Contains(needed)) {
   1.337 +      nsRefPtr<gfxASurface> temp = image->GetSubimage(needed);
   1.338 +      drawable = new gfxSurfaceDrawable(temp, size, gfxMatrix().Translate(-needed.TopLeft()));
   1.339 +    } else {
   1.340 +      mozilla::RefPtr<mozilla::gfx::DrawTarget> target =
   1.341 +        gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(ToIntSize(size),
   1.342 +                                                                     ImageFormatToSurfaceFormat(aFormat));
   1.343 +      if (!target) {
   1.344 +        return nullptr;
   1.345 +      }
   1.346 +
   1.347 +      nsRefPtr<gfxContext> tmpCtx = new gfxContext(target);
   1.348 +      tmpCtx->SetOperator(OptimalFillOperator());
   1.349 +      aDrawable->Draw(tmpCtx, needed - needed.TopLeft(), true,
   1.350 +                      GraphicsFilter::FILTER_FAST, gfxMatrix().Translate(needed.TopLeft()));
   1.351 +      drawable = new gfxSurfaceDrawable(target, size, gfxMatrix().Translate(-needed.TopLeft()));
   1.352 +    }
   1.353 +
   1.354 +    return drawable.forget();
   1.355 +}
   1.356 +#endif // !MOZ_GFX_OPTIMIZE_MOBILE
   1.357 +
   1.358 +// working around cairo/pixman bug (bug 364968)
   1.359 +// Our device-space-to-image-space transform may not be acceptable to pixman.
   1.360 +struct MOZ_STACK_CLASS AutoCairoPixmanBugWorkaround
   1.361 +{
   1.362 +    AutoCairoPixmanBugWorkaround(gfxContext*      aContext,
   1.363 +                                 const gfxMatrix& aDeviceSpaceToImageSpace,
   1.364 +                                 const gfxRect&   aFill,
   1.365 +                                 const gfxASurface* aSurface)
   1.366 +     : mContext(aContext), mSucceeded(true), mPushedGroup(false)
   1.367 +    {
   1.368 +        // Quartz's limits for matrix are much larger than pixman
   1.369 +        if (!aSurface || aSurface->GetType() == gfxSurfaceType::Quartz)
   1.370 +            return;
   1.371 +
   1.372 +        if (!IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.xx) ||
   1.373 +            !IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.xy) ||
   1.374 +            !IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.yx) ||
   1.375 +            !IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.yy)) {
   1.376 +            NS_WARNING("Scaling up too much, bailing out");
   1.377 +            mSucceeded = false;
   1.378 +            return;
   1.379 +        }
   1.380 +
   1.381 +        if (IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.x0) &&
   1.382 +            IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.y0))
   1.383 +            return;
   1.384 +
   1.385 +        // We'll push a group, which will hopefully reduce our transform's
   1.386 +        // translation so it's in bounds.
   1.387 +        gfxMatrix currentMatrix = mContext->CurrentMatrix();
   1.388 +        mContext->Save();
   1.389 +
   1.390 +        // Clip the rounded-out-to-device-pixels bounds of the
   1.391 +        // transformed fill area. This is the area for the group we
   1.392 +        // want to push.
   1.393 +        mContext->IdentityMatrix();
   1.394 +        gfxRect bounds = currentMatrix.TransformBounds(aFill);
   1.395 +        bounds.RoundOut();
   1.396 +        mContext->Clip(bounds);
   1.397 +        mContext->SetMatrix(currentMatrix);
   1.398 +        mContext->PushGroup(gfxContentType::COLOR_ALPHA);
   1.399 +        mContext->SetOperator(gfxContext::OPERATOR_OVER);
   1.400 +
   1.401 +        mPushedGroup = true;
   1.402 +    }
   1.403 +
   1.404 +    ~AutoCairoPixmanBugWorkaround()
   1.405 +    {
   1.406 +        if (mPushedGroup) {
   1.407 +            mContext->PopGroupToSource();
   1.408 +            mContext->Paint();
   1.409 +            mContext->Restore();
   1.410 +        }
   1.411 +    }
   1.412 +
   1.413 +    bool PushedGroup() { return mPushedGroup; }
   1.414 +    bool Succeeded() { return mSucceeded; }
   1.415 +
   1.416 +private:
   1.417 +    gfxContext* mContext;
   1.418 +    bool mSucceeded;
   1.419 +    bool mPushedGroup;
   1.420 +};
   1.421 +
   1.422 +static gfxMatrix
   1.423 +DeviceToImageTransform(gfxContext* aContext,
   1.424 +                       const gfxMatrix& aUserSpaceToImageSpace)
   1.425 +{
   1.426 +    gfxFloat deviceX, deviceY;
   1.427 +    nsRefPtr<gfxASurface> currentTarget =
   1.428 +        aContext->CurrentSurface(&deviceX, &deviceY);
   1.429 +    gfxMatrix currentMatrix = aContext->CurrentMatrix();
   1.430 +    gfxMatrix deviceToUser = gfxMatrix(currentMatrix).Invert();
   1.431 +    deviceToUser.Translate(-gfxPoint(-deviceX, -deviceY));
   1.432 +    return gfxMatrix(deviceToUser).Multiply(aUserSpaceToImageSpace);
   1.433 +}
   1.434 +
   1.435 +/* These heuristics are based on Source/WebCore/platform/graphics/skia/ImageSkia.cpp:computeResamplingMode() */
   1.436 +#ifdef MOZ_GFX_OPTIMIZE_MOBILE
   1.437 +static GraphicsFilter ReduceResamplingFilter(GraphicsFilter aFilter,
   1.438 +                                             int aImgWidth, int aImgHeight,
   1.439 +                                             float aSourceWidth, float aSourceHeight)
   1.440 +{
   1.441 +    // Images smaller than this in either direction are considered "small" and
   1.442 +    // are not resampled ever (see below).
   1.443 +    const int kSmallImageSizeThreshold = 8;
   1.444 +
   1.445 +    // The amount an image can be stretched in a single direction before we
   1.446 +    // say that it is being stretched so much that it must be a line or
   1.447 +    // background that doesn't need resampling.
   1.448 +    const float kLargeStretch = 3.0f;
   1.449 +
   1.450 +    if (aImgWidth <= kSmallImageSizeThreshold
   1.451 +        || aImgHeight <= kSmallImageSizeThreshold) {
   1.452 +        // Never resample small images. These are often used for borders and
   1.453 +        // rules (think 1x1 images used to make lines).
   1.454 +        return GraphicsFilter::FILTER_NEAREST;
   1.455 +    }
   1.456 +
   1.457 +    if (aImgHeight * kLargeStretch <= aSourceHeight || aImgWidth * kLargeStretch <= aSourceWidth) {
   1.458 +        // Large image tiling detected.
   1.459 +
   1.460 +        // Don't resample if it is being tiled a lot in only one direction.
   1.461 +        // This is trying to catch cases where somebody has created a border
   1.462 +        // (which might be large) and then is stretching it to fill some part
   1.463 +        // of the page.
   1.464 +        if (fabs(aSourceWidth - aImgWidth)/aImgWidth < 0.5 || fabs(aSourceHeight - aImgHeight)/aImgHeight < 0.5)
   1.465 +            return GraphicsFilter::FILTER_NEAREST;
   1.466 +
   1.467 +        // The image is growing a lot and in more than one direction. Resampling
   1.468 +        // is slow and doesn't give us very much when growing a lot.
   1.469 +        return aFilter;
   1.470 +    }
   1.471 +
   1.472 +    /* Some notes on other heuristics:
   1.473 +       The Skia backend also uses nearest for backgrounds that are stretched by
   1.474 +       a large amount. I'm not sure this is common enough for us to worry about
   1.475 +       now. It also uses nearest for backgrounds/avoids high quality for images
   1.476 +       that are very slightly scaled.  I'm also not sure that very slightly
   1.477 +       scaled backgrounds are common enough us to worry about.
   1.478 +
   1.479 +       We don't currently have much support for doing high quality interpolation.
   1.480 +       The only place this currently happens is on Quartz and we don't have as
   1.481 +       much control over it as would be needed. Webkit avoids using high quality
   1.482 +       resampling during load. It also avoids high quality if the transformation
   1.483 +       is not just a scale and translation
   1.484 +
   1.485 +       WebKit bug #40045 added code to avoid resampling different parts
   1.486 +       of an image with different methods by using a resampling hint size.
   1.487 +       It currently looks unused in WebKit but it's something to watch out for.
   1.488 +    */
   1.489 +
   1.490 +    return aFilter;
   1.491 +}
   1.492 +#else
   1.493 +static GraphicsFilter ReduceResamplingFilter(GraphicsFilter aFilter,
   1.494 +                                             int aImgWidth, int aImgHeight,
   1.495 +                                             int aSourceWidth, int aSourceHeight)
   1.496 +{
   1.497 +    // Just pass the filter through unchanged
   1.498 +    return aFilter;
   1.499 +}
   1.500 +#endif
   1.501 +
   1.502 +/* static */ void
   1.503 +gfxUtils::DrawPixelSnapped(gfxContext*      aContext,
   1.504 +                           gfxDrawable*     aDrawable,
   1.505 +                           const gfxMatrix& aUserSpaceToImageSpace,
   1.506 +                           const gfxRect&   aSubimage,
   1.507 +                           const gfxRect&   aSourceRect,
   1.508 +                           const gfxRect&   aImageRect,
   1.509 +                           const gfxRect&   aFill,
   1.510 +                           const gfxImageFormat aFormat,
   1.511 +                           GraphicsFilter aFilter,
   1.512 +                           uint32_t         aImageFlags)
   1.513 +{
   1.514 +    PROFILER_LABEL("gfxUtils", "DrawPixelSnapped");
   1.515 +    bool doTile = !aImageRect.Contains(aSourceRect) &&
   1.516 +                  !(aImageFlags & imgIContainer::FLAG_CLAMP);
   1.517 +
   1.518 +    nsRefPtr<gfxASurface> currentTarget = aContext->CurrentSurface();
   1.519 +    gfxMatrix deviceSpaceToImageSpace =
   1.520 +        DeviceToImageTransform(aContext, aUserSpaceToImageSpace);
   1.521 +
   1.522 +    AutoCairoPixmanBugWorkaround workaround(aContext, deviceSpaceToImageSpace,
   1.523 +                                            aFill, currentTarget);
   1.524 +    if (!workaround.Succeeded())
   1.525 +        return;
   1.526 +
   1.527 +    nsRefPtr<gfxDrawable> drawable = aDrawable;
   1.528 +
   1.529 +    aFilter = ReduceResamplingFilter(aFilter, aImageRect.Width(), aImageRect.Height(), aSourceRect.Width(), aSourceRect.Height());
   1.530 +
   1.531 +    gfxMatrix userSpaceToImageSpace = aUserSpaceToImageSpace;
   1.532 +
   1.533 +    // On Mobile, we don't ever want to do this; it has the potential for
   1.534 +    // allocating very large temporary surfaces, especially since we'll
   1.535 +    // do full-page snapshots often (see bug 749426).
   1.536 +#ifdef MOZ_GFX_OPTIMIZE_MOBILE
   1.537 +    // If the pattern translation is large we can get into trouble with pixman's
   1.538 +    // 16 bit coordinate limits. For now, we only do this on platforms where
   1.539 +    // we know we have the pixman limits. 16384.0 is a somewhat arbitrary
   1.540 +    // large number to make sure we avoid the expensive fmod when we can, but
   1.541 +    // still maintain a safe margin from the actual limit
   1.542 +    if (doTile && (userSpaceToImageSpace.y0 > 16384.0 || userSpaceToImageSpace.x0 > 16384.0)) {
   1.543 +        userSpaceToImageSpace.x0 = fmod(userSpaceToImageSpace.x0, aImageRect.width);
   1.544 +        userSpaceToImageSpace.y0 = fmod(userSpaceToImageSpace.y0, aImageRect.height);
   1.545 +    }
   1.546 +#else
   1.547 +    // OK now, the hard part left is to account for the subimage sampling
   1.548 +    // restriction. If all the transforms involved are just integer
   1.549 +    // translations, then we assume no resampling will occur so there's
   1.550 +    // nothing to do.
   1.551 +    // XXX if only we had source-clipping in cairo!
   1.552 +    if (aContext->CurrentMatrix().HasNonIntegerTranslation() ||
   1.553 +        aUserSpaceToImageSpace.HasNonIntegerTranslation()) {
   1.554 +        if (doTile || !aSubimage.Contains(aImageRect)) {
   1.555 +            nsRefPtr<gfxDrawable> restrictedDrawable =
   1.556 +              CreateSamplingRestrictedDrawable(aDrawable, aContext,
   1.557 +                                               aUserSpaceToImageSpace, aSourceRect,
   1.558 +                                               aSubimage, aFormat);
   1.559 +            if (restrictedDrawable) {
   1.560 +                drawable.swap(restrictedDrawable);
   1.561 +            }
   1.562 +        }
   1.563 +        // We no longer need to tile: Either we never needed to, or we already
   1.564 +        // filled a surface with the tiled pattern; this surface can now be
   1.565 +        // drawn without tiling.
   1.566 +        doTile = false;
   1.567 +    }
   1.568 +#endif
   1.569 +
   1.570 +    drawable->Draw(aContext, aFill, doTile, aFilter, userSpaceToImageSpace);
   1.571 +}
   1.572 +
   1.573 +/* static */ int
   1.574 +gfxUtils::ImageFormatToDepth(gfxImageFormat aFormat)
   1.575 +{
   1.576 +    switch (aFormat) {
   1.577 +        case gfxImageFormat::ARGB32:
   1.578 +            return 32;
   1.579 +        case gfxImageFormat::RGB24:
   1.580 +            return 24;
   1.581 +        case gfxImageFormat::RGB16_565:
   1.582 +            return 16;
   1.583 +        default:
   1.584 +            break;
   1.585 +    }
   1.586 +    return 0;
   1.587 +}
   1.588 +
   1.589 +static void
   1.590 +PathFromRegionInternal(gfxContext* aContext, const nsIntRegion& aRegion,
   1.591 +                       bool aSnap)
   1.592 +{
   1.593 +  aContext->NewPath();
   1.594 +  nsIntRegionRectIterator iter(aRegion);
   1.595 +  const nsIntRect* r;
   1.596 +  while ((r = iter.Next()) != nullptr) {
   1.597 +    aContext->Rectangle(gfxRect(r->x, r->y, r->width, r->height), aSnap);
   1.598 +  }
   1.599 +}
   1.600 +
   1.601 +static void
   1.602 +ClipToRegionInternal(gfxContext* aContext, const nsIntRegion& aRegion,
   1.603 +                     bool aSnap)
   1.604 +{
   1.605 +  PathFromRegionInternal(aContext, aRegion, aSnap);
   1.606 +  aContext->Clip();
   1.607 +}
   1.608 +
   1.609 +static TemporaryRef<Path>
   1.610 +PathFromRegionInternal(DrawTarget* aTarget, const nsIntRegion& aRegion,
   1.611 +                       bool aSnap)
   1.612 +{
   1.613 +  Matrix mat = aTarget->GetTransform();
   1.614 +  const gfxFloat epsilon = 0.000001;
   1.615 +#define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon)
   1.616 +  // We're essentially duplicating the logic in UserToDevicePixelSnapped here.
   1.617 +  bool shouldNotSnap = !aSnap || (WITHIN_E(mat._11,1.0) &&
   1.618 +                                  WITHIN_E(mat._22,1.0) &&
   1.619 +                                  WITHIN_E(mat._12,0.0) &&
   1.620 +                                  WITHIN_E(mat._21,0.0));
   1.621 +#undef WITHIN_E
   1.622 +
   1.623 +  RefPtr<PathBuilder> pb = aTarget->CreatePathBuilder();
   1.624 +  nsIntRegionRectIterator iter(aRegion);
   1.625 +
   1.626 +  const nsIntRect* r;
   1.627 +  if (shouldNotSnap) {
   1.628 +    while ((r = iter.Next()) != nullptr) {
   1.629 +      pb->MoveTo(Point(r->x, r->y));
   1.630 +      pb->LineTo(Point(r->XMost(), r->y));
   1.631 +      pb->LineTo(Point(r->XMost(), r->YMost()));
   1.632 +      pb->LineTo(Point(r->x, r->YMost()));
   1.633 +      pb->Close();
   1.634 +    }
   1.635 +  } else {
   1.636 +    while ((r = iter.Next()) != nullptr) {
   1.637 +      Rect rect(r->x, r->y, r->width, r->height);
   1.638 +
   1.639 +      rect.Round();
   1.640 +      pb->MoveTo(rect.TopLeft());
   1.641 +      pb->LineTo(rect.TopRight());
   1.642 +      pb->LineTo(rect.BottomRight());
   1.643 +      pb->LineTo(rect.BottomLeft());
   1.644 +      pb->Close();
   1.645 +    }
   1.646 +  }
   1.647 +  RefPtr<Path> path = pb->Finish();
   1.648 +  return path;
   1.649 +}
   1.650 +
   1.651 +static void
   1.652 +ClipToRegionInternal(DrawTarget* aTarget, const nsIntRegion& aRegion,
   1.653 +                     bool aSnap)
   1.654 +{
   1.655 +  RefPtr<Path> path = PathFromRegionInternal(aTarget, aRegion, aSnap);
   1.656 +  aTarget->PushClip(path);
   1.657 +}
   1.658 +
   1.659 +/*static*/ void
   1.660 +gfxUtils::ClipToRegion(gfxContext* aContext, const nsIntRegion& aRegion)
   1.661 +{
   1.662 +  ClipToRegionInternal(aContext, aRegion, false);
   1.663 +}
   1.664 +
   1.665 +/*static*/ void
   1.666 +gfxUtils::ClipToRegion(DrawTarget* aTarget, const nsIntRegion& aRegion)
   1.667 +{
   1.668 +  ClipToRegionInternal(aTarget, aRegion, false);
   1.669 +}
   1.670 +
   1.671 +/*static*/ void
   1.672 +gfxUtils::ClipToRegionSnapped(gfxContext* aContext, const nsIntRegion& aRegion)
   1.673 +{
   1.674 +  ClipToRegionInternal(aContext, aRegion, true);
   1.675 +}
   1.676 +
   1.677 +/*static*/ void
   1.678 +gfxUtils::ClipToRegionSnapped(DrawTarget* aTarget, const nsIntRegion& aRegion)
   1.679 +{
   1.680 +  ClipToRegionInternal(aTarget, aRegion, true);
   1.681 +}
   1.682 +
   1.683 +/*static*/ gfxFloat
   1.684 +gfxUtils::ClampToScaleFactor(gfxFloat aVal)
   1.685 +{
   1.686 +  // Arbitary scale factor limitation. We can increase this
   1.687 +  // for better scaling performance at the cost of worse
   1.688 +  // quality.
   1.689 +  static const gfxFloat kScaleResolution = 2;
   1.690 +
   1.691 +  // Negative scaling is just a flip and irrelevant to
   1.692 +  // our resolution calculation.
   1.693 +  if (aVal < 0.0) {
   1.694 +    aVal = -aVal;
   1.695 +  }
   1.696 +
   1.697 +  bool inverse = false;
   1.698 +  if (aVal < 1.0) {
   1.699 +    inverse = true;
   1.700 +    aVal = 1 / aVal;
   1.701 +  }
   1.702 +
   1.703 +  gfxFloat power = log(aVal)/log(kScaleResolution);
   1.704 +
   1.705 +  // If power is within 1e-6 of an integer, round to nearest to
   1.706 +  // prevent floating point errors, otherwise round up to the
   1.707 +  // next integer value.
   1.708 +  if (fabs(power - NS_round(power)) < 1e-6) {
   1.709 +    power = NS_round(power);
   1.710 +  } else if (inverse) {
   1.711 +    power = floor(power);
   1.712 +  } else {
   1.713 +    power = ceil(power);
   1.714 +  }
   1.715 +
   1.716 +  gfxFloat scale = pow(kScaleResolution, power);
   1.717 +
   1.718 +  if (inverse) {
   1.719 +    scale = 1 / scale;
   1.720 +  }
   1.721 +
   1.722 +  return scale;
   1.723 +}
   1.724 +
   1.725 +
   1.726 +/*static*/ void
   1.727 +gfxUtils::PathFromRegion(gfxContext* aContext, const nsIntRegion& aRegion)
   1.728 +{
   1.729 +  PathFromRegionInternal(aContext, aRegion, false);
   1.730 +}
   1.731 +
   1.732 +/*static*/ void
   1.733 +gfxUtils::PathFromRegionSnapped(gfxContext* aContext, const nsIntRegion& aRegion)
   1.734 +{
   1.735 +  PathFromRegionInternal(aContext, aRegion, true);
   1.736 +}
   1.737 +
   1.738 +gfxMatrix
   1.739 +gfxUtils::TransformRectToRect(const gfxRect& aFrom, const gfxPoint& aToTopLeft,
   1.740 +                              const gfxPoint& aToTopRight, const gfxPoint& aToBottomRight)
   1.741 +{
   1.742 +  gfxMatrix m;
   1.743 +  if (aToTopRight.y == aToTopLeft.y && aToTopRight.x == aToBottomRight.x) {
   1.744 +    // Not a rotation, so xy and yx are zero
   1.745 +    m.xy = m.yx = 0.0;
   1.746 +    m.xx = (aToBottomRight.x - aToTopLeft.x)/aFrom.width;
   1.747 +    m.yy = (aToBottomRight.y - aToTopLeft.y)/aFrom.height;
   1.748 +    m.x0 = aToTopLeft.x - m.xx*aFrom.x;
   1.749 +    m.y0 = aToTopLeft.y - m.yy*aFrom.y;
   1.750 +  } else {
   1.751 +    NS_ASSERTION(aToTopRight.y == aToBottomRight.y && aToTopRight.x == aToTopLeft.x,
   1.752 +                 "Destination rectangle not axis-aligned");
   1.753 +    m.xx = m.yy = 0.0;
   1.754 +    m.xy = (aToBottomRight.x - aToTopLeft.x)/aFrom.height;
   1.755 +    m.yx = (aToBottomRight.y - aToTopLeft.y)/aFrom.width;
   1.756 +    m.x0 = aToTopLeft.x - m.xy*aFrom.y;
   1.757 +    m.y0 = aToTopLeft.y - m.yx*aFrom.x;
   1.758 +  }
   1.759 +  return m;
   1.760 +}
   1.761 +
   1.762 +Matrix
   1.763 +gfxUtils::TransformRectToRect(const gfxRect& aFrom, const IntPoint& aToTopLeft,
   1.764 +                              const IntPoint& aToTopRight, const IntPoint& aToBottomRight)
   1.765 +{
   1.766 +  Matrix m;
   1.767 +  if (aToTopRight.y == aToTopLeft.y && aToTopRight.x == aToBottomRight.x) {
   1.768 +    // Not a rotation, so xy and yx are zero
   1.769 +    m._12 = m._21 = 0.0;
   1.770 +    m._11 = (aToBottomRight.x - aToTopLeft.x)/aFrom.width;
   1.771 +    m._22 = (aToBottomRight.y - aToTopLeft.y)/aFrom.height;
   1.772 +    m._31 = aToTopLeft.x - m._11*aFrom.x;
   1.773 +    m._32 = aToTopLeft.y - m._22*aFrom.y;
   1.774 +  } else {
   1.775 +    NS_ASSERTION(aToTopRight.y == aToBottomRight.y && aToTopRight.x == aToTopLeft.x,
   1.776 +                 "Destination rectangle not axis-aligned");
   1.777 +    m._11 = m._22 = 0.0;
   1.778 +    m._21 = (aToBottomRight.x - aToTopLeft.x)/aFrom.height;
   1.779 +    m._12 = (aToBottomRight.y - aToTopLeft.y)/aFrom.width;
   1.780 +    m._31 = aToTopLeft.x - m._21*aFrom.y;
   1.781 +    m._32 = aToTopLeft.y - m._12*aFrom.x;
   1.782 +  }
   1.783 +  return m;
   1.784 +}
   1.785 +
   1.786 +bool
   1.787 +gfxUtils::GfxRectToIntRect(const gfxRect& aIn, nsIntRect* aOut)
   1.788 +{
   1.789 +  *aOut = nsIntRect(int32_t(aIn.X()), int32_t(aIn.Y()),
   1.790 +  int32_t(aIn.Width()), int32_t(aIn.Height()));
   1.791 +  return gfxRect(aOut->x, aOut->y, aOut->width, aOut->height).IsEqualEdges(aIn);
   1.792 +}
   1.793 +
   1.794 +void
   1.795 +gfxUtils::GetYCbCrToRGBDestFormatAndSize(const PlanarYCbCrData& aData,
   1.796 +                                         gfxImageFormat& aSuggestedFormat,
   1.797 +                                         gfxIntSize& aSuggestedSize)
   1.798 +{
   1.799 +  YUVType yuvtype =
   1.800 +    TypeFromSize(aData.mYSize.width,
   1.801 +                      aData.mYSize.height,
   1.802 +                      aData.mCbCrSize.width,
   1.803 +                      aData.mCbCrSize.height);
   1.804 +
   1.805 +  // 'prescale' is true if the scaling is to be done as part of the
   1.806 +  // YCbCr to RGB conversion rather than on the RGB data when rendered.
   1.807 +  bool prescale = aSuggestedSize.width > 0 && aSuggestedSize.height > 0 &&
   1.808 +                    ToIntSize(aSuggestedSize) != aData.mPicSize;
   1.809 +
   1.810 +  if (aSuggestedFormat == gfxImageFormat::RGB16_565) {
   1.811 +#if defined(HAVE_YCBCR_TO_RGB565)
   1.812 +    if (prescale &&
   1.813 +        !IsScaleYCbCrToRGB565Fast(aData.mPicX,
   1.814 +                                       aData.mPicY,
   1.815 +                                       aData.mPicSize.width,
   1.816 +                                       aData.mPicSize.height,
   1.817 +                                       aSuggestedSize.width,
   1.818 +                                       aSuggestedSize.height,
   1.819 +                                       yuvtype,
   1.820 +                                       FILTER_BILINEAR) &&
   1.821 +        IsConvertYCbCrToRGB565Fast(aData.mPicX,
   1.822 +                                        aData.mPicY,
   1.823 +                                        aData.mPicSize.width,
   1.824 +                                        aData.mPicSize.height,
   1.825 +                                        yuvtype)) {
   1.826 +      prescale = false;
   1.827 +    }
   1.828 +#else
   1.829 +    // yuv2rgb16 function not available
   1.830 +    aSuggestedFormat = gfxImageFormat::RGB24;
   1.831 +#endif
   1.832 +  }
   1.833 +  else if (aSuggestedFormat != gfxImageFormat::RGB24) {
   1.834 +    // No other formats are currently supported.
   1.835 +    aSuggestedFormat = gfxImageFormat::RGB24;
   1.836 +  }
   1.837 +  if (aSuggestedFormat == gfxImageFormat::RGB24) {
   1.838 +    /* ScaleYCbCrToRGB32 does not support a picture offset, nor 4:4:4 data.
   1.839 +       See bugs 639415 and 640073. */
   1.840 +    if (aData.mPicX != 0 || aData.mPicY != 0 || yuvtype == YV24)
   1.841 +      prescale = false;
   1.842 +  }
   1.843 +  if (!prescale) {
   1.844 +    ToIntSize(aSuggestedSize) = aData.mPicSize;
   1.845 +  }
   1.846 +}
   1.847 +
   1.848 +void
   1.849 +gfxUtils::ConvertYCbCrToRGB(const PlanarYCbCrData& aData,
   1.850 +                            const gfxImageFormat& aDestFormat,
   1.851 +                            const gfxIntSize& aDestSize,
   1.852 +                            unsigned char* aDestBuffer,
   1.853 +                            int32_t aStride)
   1.854 +{
   1.855 +  // ConvertYCbCrToRGB et al. assume the chroma planes are rounded up if the
   1.856 +  // luma plane is odd sized.
   1.857 +  MOZ_ASSERT((aData.mCbCrSize.width == aData.mYSize.width ||
   1.858 +              aData.mCbCrSize.width == (aData.mYSize.width + 1) >> 1) &&
   1.859 +             (aData.mCbCrSize.height == aData.mYSize.height ||
   1.860 +              aData.mCbCrSize.height == (aData.mYSize.height + 1) >> 1));
   1.861 +  YUVType yuvtype =
   1.862 +    TypeFromSize(aData.mYSize.width,
   1.863 +                      aData.mYSize.height,
   1.864 +                      aData.mCbCrSize.width,
   1.865 +                      aData.mCbCrSize.height);
   1.866 +
   1.867 +  // Convert from YCbCr to RGB now, scaling the image if needed.
   1.868 +  if (ToIntSize(aDestSize) != aData.mPicSize) {
   1.869 +#if defined(HAVE_YCBCR_TO_RGB565)
   1.870 +    if (aDestFormat == gfxImageFormat::RGB16_565) {
   1.871 +      ScaleYCbCrToRGB565(aData.mYChannel,
   1.872 +                              aData.mCbChannel,
   1.873 +                              aData.mCrChannel,
   1.874 +                              aDestBuffer,
   1.875 +                              aData.mPicX,
   1.876 +                              aData.mPicY,
   1.877 +                              aData.mPicSize.width,
   1.878 +                              aData.mPicSize.height,
   1.879 +                              aDestSize.width,
   1.880 +                              aDestSize.height,
   1.881 +                              aData.mYStride,
   1.882 +                              aData.mCbCrStride,
   1.883 +                              aStride,
   1.884 +                              yuvtype,
   1.885 +                              FILTER_BILINEAR);
   1.886 +    } else
   1.887 +#endif
   1.888 +      ScaleYCbCrToRGB32(aData.mYChannel,
   1.889 +                             aData.mCbChannel,
   1.890 +                             aData.mCrChannel,
   1.891 +                             aDestBuffer,
   1.892 +                             aData.mPicSize.width,
   1.893 +                             aData.mPicSize.height,
   1.894 +                             aDestSize.width,
   1.895 +                             aDestSize.height,
   1.896 +                             aData.mYStride,
   1.897 +                             aData.mCbCrStride,
   1.898 +                             aStride,
   1.899 +                             yuvtype,
   1.900 +                             ROTATE_0,
   1.901 +                             FILTER_BILINEAR);
   1.902 +  } else { // no prescale
   1.903 +#if defined(HAVE_YCBCR_TO_RGB565)
   1.904 +    if (aDestFormat == gfxImageFormat::RGB16_565) {
   1.905 +      ConvertYCbCrToRGB565(aData.mYChannel,
   1.906 +                                aData.mCbChannel,
   1.907 +                                aData.mCrChannel,
   1.908 +                                aDestBuffer,
   1.909 +                                aData.mPicX,
   1.910 +                                aData.mPicY,
   1.911 +                                aData.mPicSize.width,
   1.912 +                                aData.mPicSize.height,
   1.913 +                                aData.mYStride,
   1.914 +                                aData.mCbCrStride,
   1.915 +                                aStride,
   1.916 +                                yuvtype);
   1.917 +    } else // aDestFormat != gfxImageFormat::RGB16_565
   1.918 +#endif
   1.919 +      ConvertYCbCrToRGB32(aData.mYChannel,
   1.920 +                               aData.mCbChannel,
   1.921 +                               aData.mCrChannel,
   1.922 +                               aDestBuffer,
   1.923 +                               aData.mPicX,
   1.924 +                               aData.mPicY,
   1.925 +                               aData.mPicSize.width,
   1.926 +                               aData.mPicSize.height,
   1.927 +                               aData.mYStride,
   1.928 +                               aData.mCbCrStride,
   1.929 +                               aStride,
   1.930 +                               yuvtype);
   1.931 +  }
   1.932 +}
   1.933 +
   1.934 +/* static */ TemporaryRef<DataSourceSurface>
   1.935 +gfxUtils::CopySurfaceToDataSourceSurfaceWithFormat(SourceSurface* aSurface,
   1.936 +                                                   SurfaceFormat aFormat)
   1.937 +{
   1.938 +  MOZ_ASSERT(aFormat != aSurface->GetFormat(),
   1.939 +             "Unnecessary - and very expersive - surface format conversion");
   1.940 +
   1.941 +  Rect bounds(0, 0, aSurface->GetSize().width, aSurface->GetSize().height);
   1.942 +
   1.943 +  if (aSurface->GetType() != SurfaceType::DATA) {
   1.944 +    // If the surface is NOT of type DATA then its data is not mapped into main
   1.945 +    // memory. Format conversion is probably faster on the GPU, and by doing it
   1.946 +    // there we can avoid any expensive uploads/readbacks except for (possibly)
   1.947 +    // a single readback due to the unavoidable GetDataSurface() call. Using
   1.948 +    // CreateOffscreenContentDrawTarget ensures the conversion happens on the
   1.949 +    // GPU.
   1.950 +    RefPtr<DrawTarget> dt = gfxPlatform::GetPlatform()->
   1.951 +      CreateOffscreenContentDrawTarget(aSurface->GetSize(), aFormat);
   1.952 +    // Using DrawSurface() here rather than CopySurface() because CopySurface
   1.953 +    // is optimized for memcpy and therefore isn't good for format conversion.
   1.954 +    // Using OP_OVER since in our case it's equivalent to OP_SOURCE and
   1.955 +    // generally more optimized.
   1.956 +    dt->DrawSurface(aSurface, bounds, bounds, DrawSurfaceOptions(),
   1.957 +                    DrawOptions(1.0f, CompositionOp::OP_OVER));
   1.958 +    RefPtr<SourceSurface> surface = dt->Snapshot();
   1.959 +    return surface->GetDataSurface();
   1.960 +  }
   1.961 +
   1.962 +  // If the surface IS of type DATA then it may or may not be in main memory
   1.963 +  // depending on whether or not it has been mapped yet. We have no way of
   1.964 +  // knowing, so we can't be sure if it's best to create a data wrapping
   1.965 +  // DrawTarget for the conversion or an offscreen content DrawTarget. We could
   1.966 +  // guess it's not mapped and create an offscreen content DrawTarget, but if
   1.967 +  // it is then we'll end up uploading the surface data, and most likely the
   1.968 +  // caller is going to be accessing the resulting surface data, resulting in a
   1.969 +  // readback (both very expensive operations). Alternatively we could guess
   1.970 +  // the data is mapped and create a data wrapping DrawTarget and, if the
   1.971 +  // surface is not in main memory, then we will incure a readback. The latter
   1.972 +  // of these two "wrong choices" is the least costly (a readback, vs an
   1.973 +  // upload and a readback), and more than likely the DATA surface that we've
   1.974 +  // been passed actually IS in main memory anyway. For these reasons it's most
   1.975 +  // likely best to create a data wrapping DrawTarget here to do the format
   1.976 +  // conversion.
   1.977 +  RefPtr<DataSourceSurface> dataSurface =
   1.978 +    Factory::CreateDataSourceSurface(aSurface->GetSize(), aFormat);
   1.979 +  DataSourceSurface::MappedSurface map;
   1.980 +  if (!dataSurface ||
   1.981 +      !dataSurface->Map(DataSourceSurface::MapType::READ_WRITE, &map)) {
   1.982 +    return nullptr;
   1.983 +  }
   1.984 +  RefPtr<DrawTarget> dt =
   1.985 +    Factory::CreateDrawTargetForData(BackendType::CAIRO,
   1.986 +                                     map.mData,
   1.987 +                                     dataSurface->GetSize(),
   1.988 +                                     map.mStride,
   1.989 +                                     aFormat);
   1.990 +  if (!dt) {
   1.991 +    dataSurface->Unmap();
   1.992 +    return nullptr;
   1.993 +  }
   1.994 +  // Using DrawSurface() here rather than CopySurface() because CopySurface
   1.995 +  // is optimized for memcpy and therefore isn't good for format conversion.
   1.996 +  // Using OP_OVER since in our case it's equivalent to OP_SOURCE and
   1.997 +  // generally more optimized.
   1.998 +  dt->DrawSurface(aSurface, bounds, bounds, DrawSurfaceOptions(),
   1.999 +                  DrawOptions(1.0f, CompositionOp::OP_OVER));
  1.1000 +  dataSurface->Unmap();
  1.1001 +  return dataSurface.forget();
  1.1002 +}
  1.1003 +
  1.1004 +#ifdef MOZ_DUMP_PAINTING
  1.1005 +/* static */ void
  1.1006 +gfxUtils::WriteAsPNG(DrawTarget* aDT, const char* aFile)
  1.1007 +{
  1.1008 +  aDT->Flush();
  1.1009 +  nsRefPtr<gfxASurface> surf = gfxPlatform::GetPlatform()->GetThebesSurfaceForDrawTarget(aDT);
  1.1010 +  if (surf) {
  1.1011 +    surf->WriteAsPNG(aFile);
  1.1012 +  } else {
  1.1013 +    NS_WARNING("Failed to get Thebes surface!");
  1.1014 +  }
  1.1015 +}
  1.1016 +
  1.1017 +/* static */ void
  1.1018 +gfxUtils::DumpAsDataURL(DrawTarget* aDT)
  1.1019 +{
  1.1020 +  aDT->Flush();
  1.1021 +  nsRefPtr<gfxASurface> surf = gfxPlatform::GetPlatform()->GetThebesSurfaceForDrawTarget(aDT);
  1.1022 +  if (surf) {
  1.1023 +    surf->DumpAsDataURL();
  1.1024 +  } else {
  1.1025 +    NS_WARNING("Failed to get Thebes surface!");
  1.1026 +  }
  1.1027 +}
  1.1028 +
  1.1029 +/* static */ void
  1.1030 +gfxUtils::CopyAsDataURL(DrawTarget* aDT)
  1.1031 +{
  1.1032 +  aDT->Flush();
  1.1033 +  nsRefPtr<gfxASurface> surf = gfxPlatform::GetPlatform()->GetThebesSurfaceForDrawTarget(aDT);
  1.1034 +  if (surf) {
  1.1035 +    surf->CopyAsDataURL();
  1.1036 +  } else {
  1.1037 +    NS_WARNING("Failed to get Thebes surface!");
  1.1038 +  }
  1.1039 +}
  1.1040 +
  1.1041 +/* static */ void
  1.1042 +gfxUtils::WriteAsPNG(RefPtr<gfx::SourceSurface> aSourceSurface, const char* aFile)
  1.1043 +{
  1.1044 +  RefPtr<gfx::DataSourceSurface> dataSurface = aSourceSurface->GetDataSurface();
  1.1045 +  RefPtr<gfx::DrawTarget> dt
  1.1046 +            = gfxPlatform::GetPlatform()
  1.1047 +                ->CreateDrawTargetForData(dataSurface->GetData(),
  1.1048 +                                          dataSurface->GetSize(),
  1.1049 +                                          dataSurface->Stride(),
  1.1050 +                                          aSourceSurface->GetFormat());
  1.1051 +  gfxUtils::WriteAsPNG(dt.get(), aFile);
  1.1052 +}
  1.1053 +
  1.1054 +/* static */ void
  1.1055 +gfxUtils::DumpAsDataURL(RefPtr<gfx::SourceSurface> aSourceSurface)
  1.1056 +{
  1.1057 +  RefPtr<gfx::DataSourceSurface> dataSurface = aSourceSurface->GetDataSurface();
  1.1058 +  RefPtr<gfx::DrawTarget> dt
  1.1059 +            = gfxPlatform::GetPlatform()
  1.1060 +                ->CreateDrawTargetForData(dataSurface->GetData(),
  1.1061 +                                          dataSurface->GetSize(),
  1.1062 +                                          dataSurface->Stride(),
  1.1063 +                                          aSourceSurface->GetFormat());
  1.1064 +  gfxUtils::DumpAsDataURL(dt.get());
  1.1065 +}
  1.1066 +
  1.1067 +/* static */ void
  1.1068 +gfxUtils::CopyAsDataURL(RefPtr<gfx::SourceSurface> aSourceSurface)
  1.1069 +{
  1.1070 +  RefPtr<gfx::DataSourceSurface> dataSurface = aSourceSurface->GetDataSurface();
  1.1071 +  RefPtr<gfx::DrawTarget> dt
  1.1072 +            = gfxPlatform::GetPlatform()
  1.1073 +                ->CreateDrawTargetForData(dataSurface->GetData(),
  1.1074 +                                          dataSurface->GetSize(),
  1.1075 +                                          dataSurface->Stride(),
  1.1076 +                                          aSourceSurface->GetFormat());
  1.1077 +
  1.1078 +  gfxUtils::CopyAsDataURL(dt.get());
  1.1079 +}
  1.1080 +
  1.1081 +bool gfxUtils::sDumpPaintList = getenv("MOZ_DUMP_PAINT_LIST") != 0;
  1.1082 +bool gfxUtils::sDumpPainting = getenv("MOZ_DUMP_PAINT") != 0;
  1.1083 +bool gfxUtils::sDumpPaintingToFile = getenv("MOZ_DUMP_PAINT_TO_FILE") != 0;
  1.1084 +FILE *gfxUtils::sDumpPaintFile = nullptr;
  1.1085 +#endif

mercurial