1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/intl/icu/source/i18n/decNumberLocal.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,723 @@ 1.4 +/* ------------------------------------------------------------------ */ 1.5 +/* decNumber package local type, tuning, and macro definitions */ 1.6 +/* ------------------------------------------------------------------ */ 1.7 +/* Copyright (c) IBM Corporation, 2000-2012. All rights reserved. */ 1.8 +/* */ 1.9 +/* This software is made available under the terms of the */ 1.10 +/* ICU License -- ICU 1.8.1 and later. */ 1.11 +/* */ 1.12 +/* The description and User's Guide ("The decNumber C Library") for */ 1.13 +/* this software is called decNumber.pdf. This document is */ 1.14 +/* available, together with arithmetic and format specifications, */ 1.15 +/* testcases, and Web links, on the General Decimal Arithmetic page. */ 1.16 +/* */ 1.17 +/* Please send comments, suggestions, and corrections to the author: */ 1.18 +/* mfc@uk.ibm.com */ 1.19 +/* Mike Cowlishaw, IBM Fellow */ 1.20 +/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ 1.21 +/* ------------------------------------------------------------------ */ 1.22 +/* This header file is included by all modules in the decNumber */ 1.23 +/* library, and contains local type definitions, tuning parameters, */ 1.24 +/* etc. It should not need to be used by application programs. */ 1.25 +/* decNumber.h or one of decDouble (etc.) must be included first. */ 1.26 +/* ------------------------------------------------------------------ */ 1.27 + 1.28 +#if !defined(DECNUMBERLOC) 1.29 + #define DECNUMBERLOC 1.30 + #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ 1.31 + #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ 1.32 + 1.33 + #include <stdlib.h> /* for abs */ 1.34 + #include <string.h> /* for memset, strcpy */ 1.35 + 1.36 + /* Conditional code flag -- set this to match hardware platform */ 1.37 + #if !defined(DECLITEND) 1.38 + #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ 1.39 + #endif 1.40 + 1.41 + /* Conditional code flag -- set this to 1 for best performance */ 1.42 + #if !defined(DECUSE64) 1.43 + #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ 1.44 + #endif 1.45 + 1.46 + /* Conditional check flags -- set these to 0 for best performance */ 1.47 + #if !defined(DECCHECK) 1.48 + #define DECCHECK 0 /* 1 to enable robust checking */ 1.49 + #endif 1.50 + #if !defined(DECALLOC) 1.51 + #define DECALLOC 0 /* 1 to enable memory accounting */ 1.52 + #endif 1.53 + #if !defined(DECTRACE) 1.54 + #define DECTRACE 0 /* 1 to trace certain internals, etc. */ 1.55 + #endif 1.56 + 1.57 + /* Tuning parameter for decNumber (arbitrary precision) module */ 1.58 + #if !defined(DECBUFFER) 1.59 + #define DECBUFFER 36 /* Size basis for local buffers. This */ 1.60 + /* should be a common maximum precision */ 1.61 + /* rounded up to a multiple of 4; must */ 1.62 + /* be zero or positive. */ 1.63 + #endif 1.64 + 1.65 + /* ---------------------------------------------------------------- */ 1.66 + /* Definitions for all modules (general-purpose) */ 1.67 + /* ---------------------------------------------------------------- */ 1.68 + 1.69 + /* Local names for common types -- for safety, decNumber modules do */ 1.70 + /* not use int or long directly. */ 1.71 + #define Flag uint8_t 1.72 + #define Byte int8_t 1.73 + #define uByte uint8_t 1.74 + #define Short int16_t 1.75 + #define uShort uint16_t 1.76 + #define Int int32_t 1.77 + #define uInt uint32_t 1.78 + #define Unit decNumberUnit 1.79 + #if DECUSE64 1.80 + #define Long int64_t 1.81 + #define uLong uint64_t 1.82 + #endif 1.83 + 1.84 + /* Development-use definitions */ 1.85 + typedef long int LI; /* for printf arguments only */ 1.86 + #define DECNOINT 0 /* 1 to check no internal use of 'int' */ 1.87 + /* or stdint types */ 1.88 + #if DECNOINT 1.89 + /* if these interfere with your C includes, do not set DECNOINT */ 1.90 + #define int ? /* enable to ensure that plain C 'int' */ 1.91 + #define long ?? /* .. or 'long' types are not used */ 1.92 + #endif 1.93 + 1.94 + /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ 1.95 + /* (that is, sets w to be the high-order word of the 64-bit result; */ 1.96 + /* the low-order word is simply u*v.) */ 1.97 + /* This version is derived from Knuth via Hacker's Delight; */ 1.98 + /* it seems to optimize better than some others tried */ 1.99 + #define LONGMUL32HI(w, u, v) { \ 1.100 + uInt u0, u1, v0, v1, w0, w1, w2, t; \ 1.101 + u0=u & 0xffff; u1=u>>16; \ 1.102 + v0=v & 0xffff; v1=v>>16; \ 1.103 + w0=u0*v0; \ 1.104 + t=u1*v0 + (w0>>16); \ 1.105 + w1=t & 0xffff; w2=t>>16; \ 1.106 + w1=u0*v1 + w1; \ 1.107 + (w)=u1*v1 + w2 + (w1>>16);} 1.108 + 1.109 + /* ROUNDUP -- round an integer up to a multiple of n */ 1.110 + #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) 1.111 + #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ 1.112 + 1.113 + /* ROUNDDOWN -- round an integer down to a multiple of n */ 1.114 + #define ROUNDDOWN(i, n) (((i)/n)*n) 1.115 + #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ 1.116 + 1.117 + /* References to multi-byte sequences under different sizes; these */ 1.118 + /* require locally declared variables, but do not violate strict */ 1.119 + /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ 1.120 + /* Variables needed are uswork, uiwork, etc. [so do not use at same */ 1.121 + /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ 1.122 + 1.123 + /* Return a uInt, etc., from bytes starting at a char* or uByte* */ 1.124 + #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) 1.125 + #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) 1.126 + 1.127 + /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ 1.128 + /* Returns i, evaluated, for convenience; has to use uiwork because */ 1.129 + /* i may be an expression. */ 1.130 + #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) 1.131 + #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) 1.132 + 1.133 + /* X10 and X100 -- multiply integer i by 10 or 100 */ 1.134 + /* [shifts are usually faster than multiply; could be conditional] */ 1.135 + #define X10(i) (((i)<<1)+((i)<<3)) 1.136 + #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) 1.137 + 1.138 + /* MAXI and MINI -- general max & min (not in ANSI) for integers */ 1.139 + #define MAXI(x,y) ((x)<(y)?(y):(x)) 1.140 + #define MINI(x,y) ((x)>(y)?(y):(x)) 1.141 + 1.142 + /* Useful constants */ 1.143 + #define BILLION 1000000000 /* 10**9 */ 1.144 + /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ 1.145 + #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') 1.146 + 1.147 + 1.148 + /* ---------------------------------------------------------------- */ 1.149 + /* Definitions for arbitary-precision modules (only valid after */ 1.150 + /* decNumber.h has been included) */ 1.151 + /* ---------------------------------------------------------------- */ 1.152 + 1.153 + /* Limits and constants */ 1.154 + #define DECNUMMAXP 999999999 /* maximum precision code can handle */ 1.155 + #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ 1.156 + #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ 1.157 + #if (DECNUMMAXP != DEC_MAX_DIGITS) 1.158 + #error Maximum digits mismatch 1.159 + #endif 1.160 + #if (DECNUMMAXE != DEC_MAX_EMAX) 1.161 + #error Maximum exponent mismatch 1.162 + #endif 1.163 + #if (DECNUMMINE != DEC_MIN_EMIN) 1.164 + #error Minimum exponent mismatch 1.165 + #endif 1.166 + 1.167 + /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ 1.168 + /* digits, and D2UTABLE -- the initializer for the D2U table */ 1.169 + #if DECDPUN==1 1.170 + #define DECDPUNMAX 9 1.171 + #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ 1.172 + 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ 1.173 + 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ 1.174 + 48,49} 1.175 + #elif DECDPUN==2 1.176 + #define DECDPUNMAX 99 1.177 + #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ 1.178 + 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ 1.179 + 18,19,19,20,20,21,21,22,22,23,23,24,24,25} 1.180 + #elif DECDPUN==3 1.181 + #define DECDPUNMAX 999 1.182 + #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ 1.183 + 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ 1.184 + 13,14,14,14,15,15,15,16,16,16,17} 1.185 + #elif DECDPUN==4 1.186 + #define DECDPUNMAX 9999 1.187 + #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ 1.188 + 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ 1.189 + 11,11,11,12,12,12,12,13} 1.190 + #elif DECDPUN==5 1.191 + #define DECDPUNMAX 99999 1.192 + #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ 1.193 + 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ 1.194 + 9,9,10,10,10,10} 1.195 + #elif DECDPUN==6 1.196 + #define DECDPUNMAX 999999 1.197 + #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ 1.198 + 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ 1.199 + 8,8,8,8,8,9} 1.200 + #elif DECDPUN==7 1.201 + #define DECDPUNMAX 9999999 1.202 + #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ 1.203 + 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ 1.204 + 7,7,7,7,7,7} 1.205 + #elif DECDPUN==8 1.206 + #define DECDPUNMAX 99999999 1.207 + #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ 1.208 + 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ 1.209 + 6,6,6,6,6,7} 1.210 + #elif DECDPUN==9 1.211 + #define DECDPUNMAX 999999999 1.212 + #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ 1.213 + 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ 1.214 + 5,5,6,6,6,6} 1.215 + #elif defined(DECDPUN) 1.216 + #error DECDPUN must be in the range 1-9 1.217 + #endif 1.218 + 1.219 + /* ----- Shared data (in decNumber.c) ----- */ 1.220 + /* Public lookup table used by the D2U macro (see below) */ 1.221 + #define DECMAXD2U 49 1.222 + /*extern const uByte d2utable[DECMAXD2U+1];*/ 1.223 + 1.224 + /* ----- Macros ----- */ 1.225 + /* ISZERO -- return true if decNumber dn is a zero */ 1.226 + /* [performance-critical in some situations] */ 1.227 + #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ 1.228 + 1.229 + /* D2U -- return the number of Units needed to hold d digits */ 1.230 + /* (runtime version, with table lookaside for small d) */ 1.231 + #if DECDPUN==8 1.232 + #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) 1.233 + #elif DECDPUN==4 1.234 + #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) 1.235 + #else 1.236 + #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) 1.237 + #endif 1.238 + /* SD2U -- static D2U macro (for compile-time calculation) */ 1.239 + #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) 1.240 + 1.241 + /* MSUDIGITS -- returns digits in msu, from digits, calculated */ 1.242 + /* using D2U */ 1.243 + #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) 1.244 + 1.245 + /* D2N -- return the number of decNumber structs that would be */ 1.246 + /* needed to contain that number of digits (and the initial */ 1.247 + /* decNumber struct) safely. Note that one Unit is included in the */ 1.248 + /* initial structure. Used for allocating space that is aligned on */ 1.249 + /* a decNumber struct boundary. */ 1.250 + #define D2N(d) \ 1.251 + ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) 1.252 + 1.253 + /* TODIGIT -- macro to remove the leading digit from the unsigned */ 1.254 + /* integer u at column cut (counting from the right, LSD=0) and */ 1.255 + /* place it as an ASCII character into the character pointed to by */ 1.256 + /* c. Note that cut must be <= 9, and the maximum value for u is */ 1.257 + /* 2,000,000,000 (as is needed for negative exponents of */ 1.258 + /* subnormals). The unsigned integer pow is used as a temporary */ 1.259 + /* variable. */ 1.260 + #define TODIGIT(u, cut, c, pow) { \ 1.261 + *(c)='0'; \ 1.262 + pow=DECPOWERS[cut]*2; \ 1.263 + if ((u)>pow) { \ 1.264 + pow*=4; \ 1.265 + if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ 1.266 + pow/=2; \ 1.267 + if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ 1.268 + pow/=2; \ 1.269 + } \ 1.270 + if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ 1.271 + pow/=2; \ 1.272 + if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ 1.273 + } 1.274 + 1.275 + /* ---------------------------------------------------------------- */ 1.276 + /* Definitions for fixed-precision modules (only valid after */ 1.277 + /* decSingle.h, decDouble.h, or decQuad.h has been included) */ 1.278 + /* ---------------------------------------------------------------- */ 1.279 + 1.280 + /* bcdnum -- a structure describing a format-independent finite */ 1.281 + /* number, whose coefficient is a string of bcd8 uBytes */ 1.282 + typedef struct { 1.283 + uByte *msd; /* -> most significant digit */ 1.284 + uByte *lsd; /* -> least ditto */ 1.285 + uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ 1.286 + Int exponent; /* Unadjusted signed exponent (q), or */ 1.287 + /* DECFLOAT_NaN etc. for a special */ 1.288 + } bcdnum; 1.289 + 1.290 + /* Test if exponent or bcdnum exponent must be a special, etc. */ 1.291 + #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) 1.292 + #define EXPISINF(exp) (exp==DECFLOAT_Inf) 1.293 + #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) 1.294 + #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) 1.295 + 1.296 + /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ 1.297 + /* (array) notation (the 0 word or byte contains the sign bit), */ 1.298 + /* automatically adjusting for endianness; similarly address a word */ 1.299 + /* in the next-wider format (decFloatWider, or dfw) */ 1.300 + #define DECWORDS (DECBYTES/4) 1.301 + #define DECWWORDS (DECWBYTES/4) 1.302 + #if DECLITEND 1.303 + #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) 1.304 + #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) 1.305 + #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) 1.306 + #else 1.307 + #define DFBYTE(df, off) ((df)->bytes[off]) 1.308 + #define DFWORD(df, off) ((df)->words[off]) 1.309 + #define DFWWORD(dfw, off) ((dfw)->words[off]) 1.310 + #endif 1.311 + 1.312 + /* Tests for sign or specials, directly on DECFLOATs */ 1.313 + #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) 1.314 + #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) 1.315 + #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) 1.316 + #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) 1.317 + #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) 1.318 + #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) 1.319 + 1.320 + /* Shared lookup tables */ 1.321 + extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ 1.322 + extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ 1.323 + 1.324 + /* Private generic (utility) routine */ 1.325 + #if DECCHECK || DECTRACE 1.326 + extern void decShowNum(const bcdnum *, const char *); 1.327 + #endif 1.328 + 1.329 + /* Format-dependent macros and constants */ 1.330 + #if defined(DECPMAX) 1.331 + 1.332 + /* Useful constants */ 1.333 + #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ 1.334 + /* Top words for a zero */ 1.335 + #define SINGLEZERO 0x22500000 1.336 + #define DOUBLEZERO 0x22380000 1.337 + #define QUADZERO 0x22080000 1.338 + /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ 1.339 + 1.340 + /* Format-dependent common tests: */ 1.341 + /* DFISZERO -- test for (any) zero */ 1.342 + /* DFISCCZERO -- test for coefficient continuation being zero */ 1.343 + /* DFISCC01 -- test for coefficient contains only 0s and 1s */ 1.344 + /* DFISINT -- test for finite and exponent q=0 */ 1.345 + /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ 1.346 + /* MSD=0 or 1 */ 1.347 + /* ZEROWORD is also defined here. */ 1.348 + /* In DFISZERO the first test checks the least-significant word */ 1.349 + /* (most likely to be non-zero); the penultimate tests MSD and */ 1.350 + /* DPDs in the signword, and the final test excludes specials and */ 1.351 + /* MSD>7. DFISINT similarly has to allow for the two forms of */ 1.352 + /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ 1.353 + /* code. */ 1.354 + #if DECPMAX==7 1.355 + #define ZEROWORD SINGLEZERO 1.356 + /* [test macros not needed except for Zero] */ 1.357 + #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ 1.358 + && (DFWORD(df, 0)&0x60000000)!=0x60000000) 1.359 + #elif DECPMAX==16 1.360 + #define ZEROWORD DOUBLEZERO 1.361 + #define DFISZERO(df) ((DFWORD(df, 1)==0 \ 1.362 + && (DFWORD(df, 0)&0x1c03ffff)==0 \ 1.363 + && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 1.364 + #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ 1.365 + ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) 1.366 + #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) 1.367 + #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ 1.368 + && (DFWORD(df, 0)&0x0003ffff)==0) 1.369 + #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ 1.370 + && (DFWORD(df, 1)&~0x49124491)==0) 1.371 + #elif DECPMAX==34 1.372 + #define ZEROWORD QUADZERO 1.373 + #define DFISZERO(df) ((DFWORD(df, 3)==0 \ 1.374 + && DFWORD(df, 2)==0 \ 1.375 + && DFWORD(df, 1)==0 \ 1.376 + && (DFWORD(df, 0)&0x1c003fff)==0 \ 1.377 + && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 1.378 + #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ 1.379 + ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) 1.380 + #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) 1.381 + #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ 1.382 + && DFWORD(df, 2)==0 \ 1.383 + && DFWORD(df, 1)==0 \ 1.384 + && (DFWORD(df, 0)&0x00003fff)==0) 1.385 + 1.386 + #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ 1.387 + && (DFWORD(df, 1)&~0x44912449)==0 \ 1.388 + && (DFWORD(df, 2)&~0x12449124)==0 \ 1.389 + && (DFWORD(df, 3)&~0x49124491)==0) 1.390 + #endif 1.391 + 1.392 + /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ 1.393 + /* are a canonical declet [higher or lower bits are ignored]. */ 1.394 + /* declet is at offset 0 (from the right) in a uInt: */ 1.395 + #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) 1.396 + /* declet is at offset k (a multiple of 2) in a uInt: */ 1.397 + #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ 1.398 + || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 1.399 + /* declet is at offset k (a multiple of 2) in a pair of uInts: */ 1.400 + /* [the top 2 bits will always be in the more-significant uInt] */ 1.401 + #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ 1.402 + || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ 1.403 + || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 1.404 + 1.405 + /* Macro to test whether a full-length (length DECPMAX) BCD8 */ 1.406 + /* coefficient, starting at uByte u, is all zeros */ 1.407 + /* Test just the LSWord first, then the remainder as a sequence */ 1.408 + /* of tests in order to avoid same-level use of UBTOUI */ 1.409 + #if DECPMAX==7 1.410 + #define ISCOEFFZERO(u) ( \ 1.411 + UBTOUI((u)+DECPMAX-4)==0 \ 1.412 + && UBTOUS((u)+DECPMAX-6)==0 \ 1.413 + && *(u)==0) 1.414 + #elif DECPMAX==16 1.415 + #define ISCOEFFZERO(u) ( \ 1.416 + UBTOUI((u)+DECPMAX-4)==0 \ 1.417 + && UBTOUI((u)+DECPMAX-8)==0 \ 1.418 + && UBTOUI((u)+DECPMAX-12)==0 \ 1.419 + && UBTOUI(u)==0) 1.420 + #elif DECPMAX==34 1.421 + #define ISCOEFFZERO(u) ( \ 1.422 + UBTOUI((u)+DECPMAX-4)==0 \ 1.423 + && UBTOUI((u)+DECPMAX-8)==0 \ 1.424 + && UBTOUI((u)+DECPMAX-12)==0 \ 1.425 + && UBTOUI((u)+DECPMAX-16)==0 \ 1.426 + && UBTOUI((u)+DECPMAX-20)==0 \ 1.427 + && UBTOUI((u)+DECPMAX-24)==0 \ 1.428 + && UBTOUI((u)+DECPMAX-28)==0 \ 1.429 + && UBTOUI((u)+DECPMAX-32)==0 \ 1.430 + && UBTOUS(u)==0) 1.431 + #endif 1.432 + 1.433 + /* Macros and masks for the exponent continuation field and MSD */ 1.434 + /* Get the exponent continuation from a decFloat *df as an Int */ 1.435 + #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) 1.436 + /* Ditto, from the next-wider format */ 1.437 + #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) 1.438 + /* Get the biased exponent similarly */ 1.439 + #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) 1.440 + /* Get the unbiased exponent similarly */ 1.441 + #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) 1.442 + /* Get the MSD similarly (as uInt) */ 1.443 + #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) 1.444 + 1.445 + /* Compile-time computes of the exponent continuation field masks */ 1.446 + /* full exponent continuation field: */ 1.447 + #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 1.448 + /* same, not including its first digit (the qNaN/sNaN selector): */ 1.449 + #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 1.450 + 1.451 + /* Macros to decode the coefficient in a finite decFloat *df into */ 1.452 + /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ 1.453 + 1.454 + /* In-line sequence to convert least significant 10 bits of uInt */ 1.455 + /* dpd to three BCD8 digits starting at uByte u. Note that an */ 1.456 + /* extra byte is written to the right of the three digits because */ 1.457 + /* four bytes are moved at a time for speed; the alternative */ 1.458 + /* macro moves exactly three bytes (usually slower). */ 1.459 + #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) 1.460 + #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) 1.461 + 1.462 + /* Decode the declets. After extracting each one, it is decoded */ 1.463 + /* to BCD8 using a table lookup (also used for variable-length */ 1.464 + /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ 1.465 + /* length which is not used, here). Fixed-length 4-byte moves */ 1.466 + /* are fast, however, almost everywhere, and so are used except */ 1.467 + /* for the final three bytes (to avoid overrun). The code below */ 1.468 + /* is 36 instructions for Doubles and about 70 for Quads, even */ 1.469 + /* on IA32. */ 1.470 + 1.471 + /* Two macros are defined for each format: */ 1.472 + /* GETCOEFF extracts the coefficient of the current format */ 1.473 + /* GETWCOEFF extracts the coefficient of the next-wider format. */ 1.474 + /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ 1.475 + 1.476 + #if DECPMAX==7 1.477 + #define GETCOEFF(df, bcd) { \ 1.478 + uInt sourhi=DFWORD(df, 0); \ 1.479 + *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 1.480 + dpd2bcd8(bcd+1, sourhi>>10); \ 1.481 + dpd2bcd83(bcd+4, sourhi);} 1.482 + #define GETWCOEFF(df, bcd) { \ 1.483 + uInt sourhi=DFWWORD(df, 0); \ 1.484 + uInt sourlo=DFWWORD(df, 1); \ 1.485 + *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 1.486 + dpd2bcd8(bcd+1, sourhi>>8); \ 1.487 + dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 1.488 + dpd2bcd8(bcd+7, sourlo>>20); \ 1.489 + dpd2bcd8(bcd+10, sourlo>>10); \ 1.490 + dpd2bcd83(bcd+13, sourlo);} 1.491 + 1.492 + #elif DECPMAX==16 1.493 + #define GETCOEFF(df, bcd) { \ 1.494 + uInt sourhi=DFWORD(df, 0); \ 1.495 + uInt sourlo=DFWORD(df, 1); \ 1.496 + *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 1.497 + dpd2bcd8(bcd+1, sourhi>>8); \ 1.498 + dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 1.499 + dpd2bcd8(bcd+7, sourlo>>20); \ 1.500 + dpd2bcd8(bcd+10, sourlo>>10); \ 1.501 + dpd2bcd83(bcd+13, sourlo);} 1.502 + #define GETWCOEFF(df, bcd) { \ 1.503 + uInt sourhi=DFWWORD(df, 0); \ 1.504 + uInt sourmh=DFWWORD(df, 1); \ 1.505 + uInt sourml=DFWWORD(df, 2); \ 1.506 + uInt sourlo=DFWWORD(df, 3); \ 1.507 + *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 1.508 + dpd2bcd8(bcd+1, sourhi>>4); \ 1.509 + dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 1.510 + dpd2bcd8(bcd+7, sourmh>>16); \ 1.511 + dpd2bcd8(bcd+10, sourmh>>6); \ 1.512 + dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 1.513 + dpd2bcd8(bcd+16, sourml>>18); \ 1.514 + dpd2bcd8(bcd+19, sourml>>8); \ 1.515 + dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 1.516 + dpd2bcd8(bcd+25, sourlo>>20); \ 1.517 + dpd2bcd8(bcd+28, sourlo>>10); \ 1.518 + dpd2bcd83(bcd+31, sourlo);} 1.519 + 1.520 + #elif DECPMAX==34 1.521 + #define GETCOEFF(df, bcd) { \ 1.522 + uInt sourhi=DFWORD(df, 0); \ 1.523 + uInt sourmh=DFWORD(df, 1); \ 1.524 + uInt sourml=DFWORD(df, 2); \ 1.525 + uInt sourlo=DFWORD(df, 3); \ 1.526 + *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 1.527 + dpd2bcd8(bcd+1, sourhi>>4); \ 1.528 + dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 1.529 + dpd2bcd8(bcd+7, sourmh>>16); \ 1.530 + dpd2bcd8(bcd+10, sourmh>>6); \ 1.531 + dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 1.532 + dpd2bcd8(bcd+16, sourml>>18); \ 1.533 + dpd2bcd8(bcd+19, sourml>>8); \ 1.534 + dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 1.535 + dpd2bcd8(bcd+25, sourlo>>20); \ 1.536 + dpd2bcd8(bcd+28, sourlo>>10); \ 1.537 + dpd2bcd83(bcd+31, sourlo);} 1.538 + 1.539 + #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ 1.540 + #endif 1.541 + 1.542 + /* Macros to decode the coefficient in a finite decFloat *df into */ 1.543 + /* a base-billion uInt array, with the least-significant */ 1.544 + /* 0-999999999 'digit' at offset 0. */ 1.545 + 1.546 + /* Decode the declets. After extracting each one, it is decoded */ 1.547 + /* to binary using a table lookup. Three tables are used; one */ 1.548 + /* the usual DPD to binary, the other two pre-multiplied by 1000 */ 1.549 + /* and 1000000 to avoid multiplication during decode. These */ 1.550 + /* tables can also be used for multiplying up the MSD as the DPD */ 1.551 + /* code for 0 through 9 is the identity. */ 1.552 + #define DPD2BIN0 DPD2BIN /* for prettier code */ 1.553 + 1.554 + #if DECPMAX==7 1.555 + #define GETCOEFFBILL(df, buf) { \ 1.556 + uInt sourhi=DFWORD(df, 0); \ 1.557 + (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ 1.558 + +DPD2BINK[(sourhi>>10)&0x3ff] \ 1.559 + +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 1.560 + 1.561 + #elif DECPMAX==16 1.562 + #define GETCOEFFBILL(df, buf) { \ 1.563 + uInt sourhi, sourlo; \ 1.564 + sourlo=DFWORD(df, 1); \ 1.565 + (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 1.566 + +DPD2BINK[(sourlo>>10)&0x3ff] \ 1.567 + +DPD2BINM[(sourlo>>20)&0x3ff]; \ 1.568 + sourhi=DFWORD(df, 0); \ 1.569 + (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ 1.570 + +DPD2BINK[(sourhi>>8)&0x3ff] \ 1.571 + +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 1.572 + 1.573 + #elif DECPMAX==34 1.574 + #define GETCOEFFBILL(df, buf) { \ 1.575 + uInt sourhi, sourmh, sourml, sourlo; \ 1.576 + sourlo=DFWORD(df, 3); \ 1.577 + (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 1.578 + +DPD2BINK[(sourlo>>10)&0x3ff] \ 1.579 + +DPD2BINM[(sourlo>>20)&0x3ff]; \ 1.580 + sourml=DFWORD(df, 2); \ 1.581 + (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ 1.582 + +DPD2BINK[(sourml>>8)&0x3ff] \ 1.583 + +DPD2BINM[(sourml>>18)&0x3ff]; \ 1.584 + sourmh=DFWORD(df, 1); \ 1.585 + (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ 1.586 + +DPD2BINK[(sourmh>>6)&0x3ff] \ 1.587 + +DPD2BINM[(sourmh>>16)&0x3ff]; \ 1.588 + sourhi=DFWORD(df, 0); \ 1.589 + (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ 1.590 + +DPD2BINK[(sourhi>>4)&0x3ff] \ 1.591 + +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 1.592 + 1.593 + #endif 1.594 + 1.595 + /* Macros to decode the coefficient in a finite decFloat *df into */ 1.596 + /* a base-thousand uInt array (of size DECLETS+1, to allow for */ 1.597 + /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ 1.598 + 1.599 + /* Decode the declets. After extracting each one, it is decoded */ 1.600 + /* to binary using a table lookup. */ 1.601 + #if DECPMAX==7 1.602 + #define GETCOEFFTHOU(df, buf) { \ 1.603 + uInt sourhi=DFWORD(df, 0); \ 1.604 + (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ 1.605 + (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ 1.606 + (buf)[2]=DECCOMBMSD[sourhi>>26];} 1.607 + 1.608 + #elif DECPMAX==16 1.609 + #define GETCOEFFTHOU(df, buf) { \ 1.610 + uInt sourhi, sourlo; \ 1.611 + sourlo=DFWORD(df, 1); \ 1.612 + (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 1.613 + (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 1.614 + (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 1.615 + sourhi=DFWORD(df, 0); \ 1.616 + (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 1.617 + (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ 1.618 + (buf)[5]=DECCOMBMSD[sourhi>>26];} 1.619 + 1.620 + #elif DECPMAX==34 1.621 + #define GETCOEFFTHOU(df, buf) { \ 1.622 + uInt sourhi, sourmh, sourml, sourlo; \ 1.623 + sourlo=DFWORD(df, 3); \ 1.624 + (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 1.625 + (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 1.626 + (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 1.627 + sourml=DFWORD(df, 2); \ 1.628 + (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 1.629 + (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ 1.630 + (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ 1.631 + sourmh=DFWORD(df, 1); \ 1.632 + (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 1.633 + (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ 1.634 + (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ 1.635 + sourhi=DFWORD(df, 0); \ 1.636 + (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 1.637 + (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ 1.638 + (buf)[11]=DECCOMBMSD[sourhi>>26];} 1.639 + #endif 1.640 + 1.641 + 1.642 + /* Macros to decode the coefficient in a finite decFloat *df and */ 1.643 + /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ 1.644 + /* After the addition then most significant 'digit' in the array */ 1.645 + /* might have a value larger then 10 (with a maximum of 19). */ 1.646 + #if DECPMAX==7 1.647 + #define ADDCOEFFTHOU(df, buf) { \ 1.648 + uInt sourhi=DFWORD(df, 0); \ 1.649 + (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ 1.650 + if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 1.651 + (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ 1.652 + if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 1.653 + (buf)[2]+=DECCOMBMSD[sourhi>>26];} 1.654 + 1.655 + #elif DECPMAX==16 1.656 + #define ADDCOEFFTHOU(df, buf) { \ 1.657 + uInt sourhi, sourlo; \ 1.658 + sourlo=DFWORD(df, 1); \ 1.659 + (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 1.660 + if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 1.661 + (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 1.662 + if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 1.663 + (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 1.664 + if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 1.665 + sourhi=DFWORD(df, 0); \ 1.666 + (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 1.667 + if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 1.668 + (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ 1.669 + if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 1.670 + (buf)[5]+=DECCOMBMSD[sourhi>>26];} 1.671 + 1.672 + #elif DECPMAX==34 1.673 + #define ADDCOEFFTHOU(df, buf) { \ 1.674 + uInt sourhi, sourmh, sourml, sourlo; \ 1.675 + sourlo=DFWORD(df, 3); \ 1.676 + (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 1.677 + if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 1.678 + (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 1.679 + if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 1.680 + (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 1.681 + if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 1.682 + sourml=DFWORD(df, 2); \ 1.683 + (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 1.684 + if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 1.685 + (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ 1.686 + if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 1.687 + (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ 1.688 + if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ 1.689 + sourmh=DFWORD(df, 1); \ 1.690 + (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 1.691 + if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ 1.692 + (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ 1.693 + if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ 1.694 + (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ 1.695 + if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ 1.696 + sourhi=DFWORD(df, 0); \ 1.697 + (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 1.698 + if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ 1.699 + (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ 1.700 + if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ 1.701 + (buf)[11]+=DECCOMBMSD[sourhi>>26];} 1.702 + #endif 1.703 + 1.704 + 1.705 + /* Set a decFloat to the maximum positive finite number (Nmax) */ 1.706 + #if DECPMAX==7 1.707 + #define DFSETNMAX(df) \ 1.708 + {DFWORD(df, 0)=0x77f3fcff;} 1.709 + #elif DECPMAX==16 1.710 + #define DFSETNMAX(df) \ 1.711 + {DFWORD(df, 0)=0x77fcff3f; \ 1.712 + DFWORD(df, 1)=0xcff3fcff;} 1.713 + #elif DECPMAX==34 1.714 + #define DFSETNMAX(df) \ 1.715 + {DFWORD(df, 0)=0x77ffcff3; \ 1.716 + DFWORD(df, 1)=0xfcff3fcf; \ 1.717 + DFWORD(df, 2)=0xf3fcff3f; \ 1.718 + DFWORD(df, 3)=0xcff3fcff;} 1.719 + #endif 1.720 + 1.721 + /* [end of format-dependent macros and constants] */ 1.722 + #endif 1.723 + 1.724 +#else 1.725 + #error decNumberLocal included more than once 1.726 +#endif