1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/intl/icu/source/i18n/rbt_pars.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,1738 @@ 1.4 +/* 1.5 + ********************************************************************** 1.6 + * Copyright (C) 1999-2011, International Business Machines 1.7 + * Corporation and others. All Rights Reserved. 1.8 + ********************************************************************** 1.9 + * Date Name Description 1.10 + * 11/17/99 aliu Creation. 1.11 + ********************************************************************** 1.12 + */ 1.13 + 1.14 +#include "unicode/utypes.h" 1.15 + 1.16 +#if !UCONFIG_NO_TRANSLITERATION 1.17 + 1.18 +#include "unicode/uobject.h" 1.19 +#include "unicode/parseerr.h" 1.20 +#include "unicode/parsepos.h" 1.21 +#include "unicode/putil.h" 1.22 +#include "unicode/uchar.h" 1.23 +#include "unicode/ustring.h" 1.24 +#include "unicode/uniset.h" 1.25 +#include "unicode/utf16.h" 1.26 +#include "cstring.h" 1.27 +#include "funcrepl.h" 1.28 +#include "hash.h" 1.29 +#include "quant.h" 1.30 +#include "rbt.h" 1.31 +#include "rbt_data.h" 1.32 +#include "rbt_pars.h" 1.33 +#include "rbt_rule.h" 1.34 +#include "strmatch.h" 1.35 +#include "strrepl.h" 1.36 +#include "unicode/symtable.h" 1.37 +#include "tridpars.h" 1.38 +#include "uvector.h" 1.39 +#include "hash.h" 1.40 +#include "patternprops.h" 1.41 +#include "util.h" 1.42 +#include "cmemory.h" 1.43 +#include "uprops.h" 1.44 +#include "putilimp.h" 1.45 + 1.46 +// Operators 1.47 +#define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ 1.48 +#define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ 1.49 +#define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ 1.50 +#define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op 1.51 + 1.52 +// Other special characters 1.53 +#define QUOTE ((UChar)0x0027) /*'*/ 1.54 +#define ESCAPE ((UChar)0x005C) /*\*/ 1.55 +#define END_OF_RULE ((UChar)0x003B) /*;*/ 1.56 +#define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ 1.57 + 1.58 +#define SEGMENT_OPEN ((UChar)0x0028) /*(*/ 1.59 +#define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ 1.60 +#define CONTEXT_ANTE ((UChar)0x007B) /*{*/ 1.61 +#define CONTEXT_POST ((UChar)0x007D) /*}*/ 1.62 +#define CURSOR_POS ((UChar)0x007C) /*|*/ 1.63 +#define CURSOR_OFFSET ((UChar)0x0040) /*@*/ 1.64 +#define ANCHOR_START ((UChar)0x005E) /*^*/ 1.65 +#define KLEENE_STAR ((UChar)0x002A) /***/ 1.66 +#define ONE_OR_MORE ((UChar)0x002B) /*+*/ 1.67 +#define ZERO_OR_ONE ((UChar)0x003F) /*?*/ 1.68 + 1.69 +#define DOT ((UChar)46) /*.*/ 1.70 + 1.71 +static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; 1.72 + 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, 1.73 + 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 1.74 +}; 1.75 + 1.76 +// A function is denoted &Source-Target/Variant(text) 1.77 +#define FUNCTION ((UChar)38) /*&*/ 1.78 + 1.79 +// Aliases for some of the syntax characters. These are provided so 1.80 +// transliteration rules can be expressed in XML without clashing with 1.81 +// XML syntax characters '<', '>', and '&'. 1.82 +#define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow 1.83 +#define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow 1.84 +#define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow 1.85 +#define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) 1.86 + 1.87 +// Special characters disallowed at the top level 1.88 +static const UChar ILLEGAL_TOP[] = {41,0}; // ")" 1.89 + 1.90 +// Special characters disallowed within a segment 1.91 +static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" 1.92 + 1.93 +// Special characters disallowed within a function argument 1.94 +static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" 1.95 + 1.96 +// By definition, the ANCHOR_END special character is a 1.97 +// trailing SymbolTable.SYMBOL_REF character. 1.98 +// private static final char ANCHOR_END = '$'; 1.99 + 1.100 +static const UChar gOPERATORS[] = { // "=><" 1.101 + VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, 1.102 + ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, 1.103 + 0 1.104 +}; 1.105 + 1.106 +static const UChar HALF_ENDERS[] = { // "=><;" 1.107 + VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, 1.108 + ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, 1.109 + END_OF_RULE, 1.110 + 0 1.111 +}; 1.112 + 1.113 +// These are also used in Transliterator::toRules() 1.114 +static const int32_t ID_TOKEN_LEN = 2; 1.115 +static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' 1.116 + 1.117 +/* 1.118 +commented out until we do real ::BEGIN/::END functionality 1.119 +static const int32_t BEGIN_TOKEN_LEN = 5; 1.120 +static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' 1.121 + 1.122 +static const int32_t END_TOKEN_LEN = 3; 1.123 +static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' 1.124 +*/ 1.125 + 1.126 +U_NAMESPACE_BEGIN 1.127 + 1.128 +//---------------------------------------------------------------------- 1.129 +// BEGIN ParseData 1.130 +//---------------------------------------------------------------------- 1.131 + 1.132 +/** 1.133 + * This class implements the SymbolTable interface. It is used 1.134 + * during parsing to give UnicodeSet access to variables that 1.135 + * have been defined so far. Note that it uses variablesVector, 1.136 + * _not_ data.setVariables. 1.137 + */ 1.138 +class ParseData : public UMemory, public SymbolTable { 1.139 +public: 1.140 + const TransliterationRuleData* data; // alias 1.141 + 1.142 + const UVector* variablesVector; // alias 1.143 + 1.144 + const Hashtable* variableNames; // alias 1.145 + 1.146 + ParseData(const TransliterationRuleData* data = 0, 1.147 + const UVector* variablesVector = 0, 1.148 + const Hashtable* variableNames = 0); 1.149 + 1.150 + virtual ~ParseData(); 1.151 + 1.152 + virtual const UnicodeString* lookup(const UnicodeString& s) const; 1.153 + 1.154 + virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; 1.155 + 1.156 + virtual UnicodeString parseReference(const UnicodeString& text, 1.157 + ParsePosition& pos, int32_t limit) const; 1.158 + /** 1.159 + * Return true if the given character is a matcher standin or a plain 1.160 + * character (non standin). 1.161 + */ 1.162 + UBool isMatcher(UChar32 ch); 1.163 + 1.164 + /** 1.165 + * Return true if the given character is a replacer standin or a plain 1.166 + * character (non standin). 1.167 + */ 1.168 + UBool isReplacer(UChar32 ch); 1.169 + 1.170 +private: 1.171 + ParseData(const ParseData &other); // forbid copying of this class 1.172 + ParseData &operator=(const ParseData &other); // forbid copying of this class 1.173 +}; 1.174 + 1.175 +ParseData::ParseData(const TransliterationRuleData* d, 1.176 + const UVector* sets, 1.177 + const Hashtable* vNames) : 1.178 + data(d), variablesVector(sets), variableNames(vNames) {} 1.179 + 1.180 +ParseData::~ParseData() {} 1.181 + 1.182 +/** 1.183 + * Implement SymbolTable API. 1.184 + */ 1.185 +const UnicodeString* ParseData::lookup(const UnicodeString& name) const { 1.186 + return (const UnicodeString*) variableNames->get(name); 1.187 +} 1.188 + 1.189 +/** 1.190 + * Implement SymbolTable API. 1.191 + */ 1.192 +const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { 1.193 + // Note that we cannot use data.lookupSet() because the 1.194 + // set array has not been constructed yet. 1.195 + const UnicodeFunctor* set = NULL; 1.196 + int32_t i = ch - data->variablesBase; 1.197 + if (i >= 0 && i < variablesVector->size()) { 1.198 + int32_t i = ch - data->variablesBase; 1.199 + set = (i < variablesVector->size()) ? 1.200 + (UnicodeFunctor*) variablesVector->elementAt(i) : 0; 1.201 + } 1.202 + return set; 1.203 +} 1.204 + 1.205 +/** 1.206 + * Implement SymbolTable API. Parse out a symbol reference 1.207 + * name. 1.208 + */ 1.209 +UnicodeString ParseData::parseReference(const UnicodeString& text, 1.210 + ParsePosition& pos, int32_t limit) const { 1.211 + int32_t start = pos.getIndex(); 1.212 + int32_t i = start; 1.213 + UnicodeString result; 1.214 + while (i < limit) { 1.215 + UChar c = text.charAt(i); 1.216 + if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { 1.217 + break; 1.218 + } 1.219 + ++i; 1.220 + } 1.221 + if (i == start) { // No valid name chars 1.222 + return result; // Indicate failure with empty string 1.223 + } 1.224 + pos.setIndex(i); 1.225 + text.extractBetween(start, i, result); 1.226 + return result; 1.227 +} 1.228 + 1.229 +UBool ParseData::isMatcher(UChar32 ch) { 1.230 + // Note that we cannot use data.lookup() because the 1.231 + // set array has not been constructed yet. 1.232 + int32_t i = ch - data->variablesBase; 1.233 + if (i >= 0 && i < variablesVector->size()) { 1.234 + UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); 1.235 + return f != NULL && f->toMatcher() != NULL; 1.236 + } 1.237 + return TRUE; 1.238 +} 1.239 + 1.240 +/** 1.241 + * Return true if the given character is a replacer standin or a plain 1.242 + * character (non standin). 1.243 + */ 1.244 +UBool ParseData::isReplacer(UChar32 ch) { 1.245 + // Note that we cannot use data.lookup() because the 1.246 + // set array has not been constructed yet. 1.247 + int i = ch - data->variablesBase; 1.248 + if (i >= 0 && i < variablesVector->size()) { 1.249 + UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); 1.250 + return f != NULL && f->toReplacer() != NULL; 1.251 + } 1.252 + return TRUE; 1.253 +} 1.254 + 1.255 +//---------------------------------------------------------------------- 1.256 +// BEGIN RuleHalf 1.257 +//---------------------------------------------------------------------- 1.258 + 1.259 +/** 1.260 + * A class representing one side of a rule. This class knows how to 1.261 + * parse half of a rule. It is tightly coupled to the method 1.262 + * RuleBasedTransliterator.Parser.parseRule(). 1.263 + */ 1.264 +class RuleHalf : public UMemory { 1.265 + 1.266 +public: 1.267 + 1.268 + UnicodeString text; 1.269 + 1.270 + int32_t cursor; // position of cursor in text 1.271 + int32_t ante; // position of ante context marker '{' in text 1.272 + int32_t post; // position of post context marker '}' in text 1.273 + 1.274 + // Record the offset to the cursor either to the left or to the 1.275 + // right of the key. This is indicated by characters on the output 1.276 + // side that allow the cursor to be positioned arbitrarily within 1.277 + // the matching text. For example, abc{def} > | @@@ xyz; changes 1.278 + // def to xyz and moves the cursor to before abc. Offset characters 1.279 + // must be at the start or end, and they cannot move the cursor past 1.280 + // the ante- or postcontext text. Placeholders are only valid in 1.281 + // output text. The length of the ante and post context is 1.282 + // determined at runtime, because of supplementals and quantifiers. 1.283 + int32_t cursorOffset; // only nonzero on output side 1.284 + 1.285 + // Position of first CURSOR_OFFSET on _right_. This will be -1 1.286 + // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. 1.287 + int32_t cursorOffsetPos; 1.288 + 1.289 + UBool anchorStart; 1.290 + UBool anchorEnd; 1.291 + 1.292 + /** 1.293 + * The segment number from 1..n of the next '(' we see 1.294 + * during parsing; 1-based. 1.295 + */ 1.296 + int32_t nextSegmentNumber; 1.297 + 1.298 + TransliteratorParser& parser; 1.299 + 1.300 + //-------------------------------------------------- 1.301 + // Methods 1.302 + 1.303 + RuleHalf(TransliteratorParser& parser); 1.304 + ~RuleHalf(); 1.305 + 1.306 + int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status); 1.307 + 1.308 + int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, 1.309 + UnicodeString& buf, 1.310 + const UnicodeString& illegal, 1.311 + UBool isSegment, 1.312 + UErrorCode& status); 1.313 + 1.314 + /** 1.315 + * Remove context. 1.316 + */ 1.317 + void removeContext(); 1.318 + 1.319 + /** 1.320 + * Return true if this half looks like valid output, that is, does not 1.321 + * contain quantifiers or other special input-only elements. 1.322 + */ 1.323 + UBool isValidOutput(TransliteratorParser& parser); 1.324 + 1.325 + /** 1.326 + * Return true if this half looks like valid input, that is, does not 1.327 + * contain functions or other special output-only elements. 1.328 + */ 1.329 + UBool isValidInput(TransliteratorParser& parser); 1.330 + 1.331 + int syntaxError(UErrorCode code, 1.332 + const UnicodeString& rule, 1.333 + int32_t start, 1.334 + UErrorCode& status) { 1.335 + return parser.syntaxError(code, rule, start, status); 1.336 + } 1.337 + 1.338 +private: 1.339 + // Disallowed methods; no impl. 1.340 + RuleHalf(const RuleHalf&); 1.341 + RuleHalf& operator=(const RuleHalf&); 1.342 +}; 1.343 + 1.344 +RuleHalf::RuleHalf(TransliteratorParser& p) : 1.345 + parser(p) 1.346 +{ 1.347 + cursor = -1; 1.348 + ante = -1; 1.349 + post = -1; 1.350 + cursorOffset = 0; 1.351 + cursorOffsetPos = 0; 1.352 + anchorStart = anchorEnd = FALSE; 1.353 + nextSegmentNumber = 1; 1.354 +} 1.355 + 1.356 +RuleHalf::~RuleHalf() { 1.357 +} 1.358 + 1.359 +/** 1.360 + * Parse one side of a rule, stopping at either the limit, 1.361 + * the END_OF_RULE character, or an operator. 1.362 + * @return the index after the terminating character, or 1.363 + * if limit was reached, limit 1.364 + */ 1.365 +int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { 1.366 + int32_t start = pos; 1.367 + text.truncate(0); 1.368 + pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status); 1.369 + 1.370 + if (cursorOffset > 0 && cursor != cursorOffsetPos) { 1.371 + return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 1.372 + } 1.373 + 1.374 + return pos; 1.375 +} 1.376 + 1.377 +/** 1.378 + * Parse a section of one side of a rule, stopping at either 1.379 + * the limit, the END_OF_RULE character, an operator, or a 1.380 + * segment close character. This method parses both a 1.381 + * top-level rule half and a segment within such a rule half. 1.382 + * It calls itself recursively to parse segments and nested 1.383 + * segments. 1.384 + * @param buf buffer into which to accumulate the rule pattern 1.385 + * characters, either literal characters from the rule or 1.386 + * standins for UnicodeMatcher objects including segments. 1.387 + * @param illegal the set of special characters that is illegal during 1.388 + * this parse. 1.389 + * @param isSegment if true, then we've already seen a '(' and 1.390 + * pos on entry points right after it. Accumulate everything 1.391 + * up to the closing ')', put it in a segment matcher object, 1.392 + * generate a standin for it, and add the standin to buf. As 1.393 + * a side effect, update the segments vector with a reference 1.394 + * to the segment matcher. This works recursively for nested 1.395 + * segments. If isSegment is false, just accumulate 1.396 + * characters into buf. 1.397 + * @return the index after the terminating character, or 1.398 + * if limit was reached, limit 1.399 + */ 1.400 +int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, 1.401 + UnicodeString& buf, 1.402 + const UnicodeString& illegal, 1.403 + UBool isSegment, UErrorCode& status) { 1.404 + int32_t start = pos; 1.405 + ParsePosition pp; 1.406 + UnicodeString scratch; 1.407 + UBool done = FALSE; 1.408 + int32_t quoteStart = -1; // Most recent 'single quoted string' 1.409 + int32_t quoteLimit = -1; 1.410 + int32_t varStart = -1; // Most recent $variableReference 1.411 + int32_t varLimit = -1; 1.412 + int32_t bufStart = buf.length(); 1.413 + 1.414 + while (pos < limit && !done) { 1.415 + // Since all syntax characters are in the BMP, fetching 1.416 + // 16-bit code units suffices here. 1.417 + UChar c = rule.charAt(pos++); 1.418 + if (PatternProps::isWhiteSpace(c)) { 1.419 + // Ignore whitespace. Note that this is not Unicode 1.420 + // spaces, but Java spaces -- a subset, representing 1.421 + // whitespace likely to be seen in code. 1.422 + continue; 1.423 + } 1.424 + if (u_strchr(HALF_ENDERS, c) != NULL) { 1.425 + if (isSegment) { 1.426 + // Unclosed segment 1.427 + return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); 1.428 + } 1.429 + break; 1.430 + } 1.431 + if (anchorEnd) { 1.432 + // Text after a presumed end anchor is a syntax err 1.433 + return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status); 1.434 + } 1.435 + if (UnicodeSet::resemblesPattern(rule, pos-1)) { 1.436 + pp.setIndex(pos-1); // Backup to opening '[' 1.437 + buf.append(parser.parseSet(rule, pp, status)); 1.438 + if (U_FAILURE(status)) { 1.439 + return syntaxError(U_MALFORMED_SET, rule, start, status); 1.440 + } 1.441 + pos = pp.getIndex(); 1.442 + continue; 1.443 + } 1.444 + // Handle escapes 1.445 + if (c == ESCAPE) { 1.446 + if (pos == limit) { 1.447 + return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); 1.448 + } 1.449 + UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' 1.450 + if (escaped == (UChar32) -1) { 1.451 + return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status); 1.452 + } 1.453 + if (!parser.checkVariableRange(escaped)) { 1.454 + return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); 1.455 + } 1.456 + buf.append(escaped); 1.457 + continue; 1.458 + } 1.459 + // Handle quoted matter 1.460 + if (c == QUOTE) { 1.461 + int32_t iq = rule.indexOf(QUOTE, pos); 1.462 + if (iq == pos) { 1.463 + buf.append(c); // Parse [''] outside quotes as ['] 1.464 + ++pos; 1.465 + } else { 1.466 + /* This loop picks up a run of quoted text of the 1.467 + * form 'aaaa' each time through. If this run 1.468 + * hasn't really ended ('aaaa''bbbb') then it keeps 1.469 + * looping, each time adding on a new run. When it 1.470 + * reaches the final quote it breaks. 1.471 + */ 1.472 + quoteStart = buf.length(); 1.473 + for (;;) { 1.474 + if (iq < 0) { 1.475 + return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status); 1.476 + } 1.477 + scratch.truncate(0); 1.478 + rule.extractBetween(pos, iq, scratch); 1.479 + buf.append(scratch); 1.480 + pos = iq+1; 1.481 + if (pos < limit && rule.charAt(pos) == QUOTE) { 1.482 + // Parse [''] inside quotes as ['] 1.483 + iq = rule.indexOf(QUOTE, pos+1); 1.484 + // Continue looping 1.485 + } else { 1.486 + break; 1.487 + } 1.488 + } 1.489 + quoteLimit = buf.length(); 1.490 + 1.491 + for (iq=quoteStart; iq<quoteLimit; ++iq) { 1.492 + if (!parser.checkVariableRange(buf.charAt(iq))) { 1.493 + return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); 1.494 + } 1.495 + } 1.496 + } 1.497 + continue; 1.498 + } 1.499 + 1.500 + if (!parser.checkVariableRange(c)) { 1.501 + return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); 1.502 + } 1.503 + 1.504 + if (illegal.indexOf(c) >= 0) { 1.505 + syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); 1.506 + } 1.507 + 1.508 + switch (c) { 1.509 + 1.510 + //------------------------------------------------------ 1.511 + // Elements allowed within and out of segments 1.512 + //------------------------------------------------------ 1.513 + case ANCHOR_START: 1.514 + if (buf.length() == 0 && !anchorStart) { 1.515 + anchorStart = TRUE; 1.516 + } else { 1.517 + return syntaxError(U_MISPLACED_ANCHOR_START, 1.518 + rule, start, status); 1.519 + } 1.520 + break; 1.521 + case SEGMENT_OPEN: 1.522 + { 1.523 + // bufSegStart is the offset in buf to the first 1.524 + // character of the segment we are parsing. 1.525 + int32_t bufSegStart = buf.length(); 1.526 + 1.527 + // Record segment number now, since nextSegmentNumber 1.528 + // will be incremented during the call to parseSection 1.529 + // if there are nested segments. 1.530 + int32_t segmentNumber = nextSegmentNumber++; // 1-based 1.531 + 1.532 + // Parse the segment 1.533 + pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status); 1.534 + 1.535 + // After parsing a segment, the relevant characters are 1.536 + // in buf, starting at offset bufSegStart. Extract them 1.537 + // into a string matcher, and replace them with a 1.538 + // standin for that matcher. 1.539 + StringMatcher* m = 1.540 + new StringMatcher(buf, bufSegStart, buf.length(), 1.541 + segmentNumber, *parser.curData); 1.542 + if (m == NULL) { 1.543 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.544 + } 1.545 + 1.546 + // Record and associate object and segment number 1.547 + parser.setSegmentObject(segmentNumber, m, status); 1.548 + buf.truncate(bufSegStart); 1.549 + buf.append(parser.getSegmentStandin(segmentNumber, status)); 1.550 + } 1.551 + break; 1.552 + case FUNCTION: 1.553 + case ALT_FUNCTION: 1.554 + { 1.555 + int32_t iref = pos; 1.556 + TransliteratorIDParser::SingleID* single = 1.557 + TransliteratorIDParser::parseFilterID(rule, iref); 1.558 + // The next character MUST be a segment open 1.559 + if (single == NULL || 1.560 + !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { 1.561 + return syntaxError(U_INVALID_FUNCTION, rule, start, status); 1.562 + } 1.563 + 1.564 + Transliterator *t = single->createInstance(); 1.565 + delete single; 1.566 + if (t == NULL) { 1.567 + return syntaxError(U_INVALID_FUNCTION, rule, start, status); 1.568 + } 1.569 + 1.570 + // bufSegStart is the offset in buf to the first 1.571 + // character of the segment we are parsing. 1.572 + int32_t bufSegStart = buf.length(); 1.573 + 1.574 + // Parse the segment 1.575 + pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status); 1.576 + 1.577 + // After parsing a segment, the relevant characters are 1.578 + // in buf, starting at offset bufSegStart. 1.579 + UnicodeString output; 1.580 + buf.extractBetween(bufSegStart, buf.length(), output); 1.581 + FunctionReplacer *r = 1.582 + new FunctionReplacer(t, new StringReplacer(output, parser.curData)); 1.583 + if (r == NULL) { 1.584 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.585 + } 1.586 + 1.587 + // Replace the buffer contents with a stand-in 1.588 + buf.truncate(bufSegStart); 1.589 + buf.append(parser.generateStandInFor(r, status)); 1.590 + } 1.591 + break; 1.592 + case SymbolTable::SYMBOL_REF: 1.593 + // Handle variable references and segment references "$1" .. "$9" 1.594 + { 1.595 + // A variable reference must be followed immediately 1.596 + // by a Unicode identifier start and zero or more 1.597 + // Unicode identifier part characters, or by a digit 1.598 + // 1..9 if it is a segment reference. 1.599 + if (pos == limit) { 1.600 + // A variable ref character at the end acts as 1.601 + // an anchor to the context limit, as in perl. 1.602 + anchorEnd = TRUE; 1.603 + break; 1.604 + } 1.605 + // Parse "$1" "$2" .. "$9" .. (no upper limit) 1.606 + c = rule.charAt(pos); 1.607 + int32_t r = u_digit(c, 10); 1.608 + if (r >= 1 && r <= 9) { 1.609 + r = ICU_Utility::parseNumber(rule, pos, 10); 1.610 + if (r < 0) { 1.611 + return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, 1.612 + rule, start, status); 1.613 + } 1.614 + buf.append(parser.getSegmentStandin(r, status)); 1.615 + } else { 1.616 + pp.setIndex(pos); 1.617 + UnicodeString name = parser.parseData-> 1.618 + parseReference(rule, pp, limit); 1.619 + if (name.length() == 0) { 1.620 + // This means the '$' was not followed by a 1.621 + // valid name. Try to interpret it as an 1.622 + // end anchor then. If this also doesn't work 1.623 + // (if we see a following character) then signal 1.624 + // an error. 1.625 + anchorEnd = TRUE; 1.626 + break; 1.627 + } 1.628 + pos = pp.getIndex(); 1.629 + // If this is a variable definition statement, 1.630 + // then the LHS variable will be undefined. In 1.631 + // that case appendVariableDef() will append the 1.632 + // special placeholder char variableLimit-1. 1.633 + varStart = buf.length(); 1.634 + parser.appendVariableDef(name, buf, status); 1.635 + varLimit = buf.length(); 1.636 + } 1.637 + } 1.638 + break; 1.639 + case DOT: 1.640 + buf.append(parser.getDotStandIn(status)); 1.641 + break; 1.642 + case KLEENE_STAR: 1.643 + case ONE_OR_MORE: 1.644 + case ZERO_OR_ONE: 1.645 + // Quantifiers. We handle single characters, quoted strings, 1.646 + // variable references, and segments. 1.647 + // a+ matches aaa 1.648 + // 'foo'+ matches foofoofoo 1.649 + // $v+ matches xyxyxy if $v == xy 1.650 + // (seg)+ matches segsegseg 1.651 + { 1.652 + if (isSegment && buf.length() == bufStart) { 1.653 + // The */+ immediately follows '(' 1.654 + return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status); 1.655 + } 1.656 + 1.657 + int32_t qstart, qlimit; 1.658 + // The */+ follows an isolated character or quote 1.659 + // or variable reference 1.660 + if (buf.length() == quoteLimit) { 1.661 + // The */+ follows a 'quoted string' 1.662 + qstart = quoteStart; 1.663 + qlimit = quoteLimit; 1.664 + } else if (buf.length() == varLimit) { 1.665 + // The */+ follows a $variableReference 1.666 + qstart = varStart; 1.667 + qlimit = varLimit; 1.668 + } else { 1.669 + // The */+ follows a single character, possibly 1.670 + // a segment standin 1.671 + qstart = buf.length() - 1; 1.672 + qlimit = qstart + 1; 1.673 + } 1.674 + 1.675 + UnicodeFunctor *m = 1.676 + new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); 1.677 + if (m == NULL) { 1.678 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.679 + } 1.680 + int32_t min = 0; 1.681 + int32_t max = Quantifier::MAX; 1.682 + switch (c) { 1.683 + case ONE_OR_MORE: 1.684 + min = 1; 1.685 + break; 1.686 + case ZERO_OR_ONE: 1.687 + min = 0; 1.688 + max = 1; 1.689 + break; 1.690 + // case KLEENE_STAR: 1.691 + // do nothing -- min, max already set 1.692 + } 1.693 + m = new Quantifier(m, min, max); 1.694 + if (m == NULL) { 1.695 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.696 + } 1.697 + buf.truncate(qstart); 1.698 + buf.append(parser.generateStandInFor(m, status)); 1.699 + } 1.700 + break; 1.701 + 1.702 + //------------------------------------------------------ 1.703 + // Elements allowed ONLY WITHIN segments 1.704 + //------------------------------------------------------ 1.705 + case SEGMENT_CLOSE: 1.706 + // assert(isSegment); 1.707 + // We're done parsing a segment. 1.708 + done = TRUE; 1.709 + break; 1.710 + 1.711 + //------------------------------------------------------ 1.712 + // Elements allowed ONLY OUTSIDE segments 1.713 + //------------------------------------------------------ 1.714 + case CONTEXT_ANTE: 1.715 + if (ante >= 0) { 1.716 + return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status); 1.717 + } 1.718 + ante = buf.length(); 1.719 + break; 1.720 + case CONTEXT_POST: 1.721 + if (post >= 0) { 1.722 + return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status); 1.723 + } 1.724 + post = buf.length(); 1.725 + break; 1.726 + case CURSOR_POS: 1.727 + if (cursor >= 0) { 1.728 + return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); 1.729 + } 1.730 + cursor = buf.length(); 1.731 + break; 1.732 + case CURSOR_OFFSET: 1.733 + if (cursorOffset < 0) { 1.734 + if (buf.length() > 0) { 1.735 + return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 1.736 + } 1.737 + --cursorOffset; 1.738 + } else if (cursorOffset > 0) { 1.739 + if (buf.length() != cursorOffsetPos || cursor >= 0) { 1.740 + return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 1.741 + } 1.742 + ++cursorOffset; 1.743 + } else { 1.744 + if (cursor == 0 && buf.length() == 0) { 1.745 + cursorOffset = -1; 1.746 + } else if (cursor < 0) { 1.747 + cursorOffsetPos = buf.length(); 1.748 + cursorOffset = 1; 1.749 + } else { 1.750 + return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 1.751 + } 1.752 + } 1.753 + break; 1.754 + 1.755 + 1.756 + //------------------------------------------------------ 1.757 + // Non-special characters 1.758 + //------------------------------------------------------ 1.759 + default: 1.760 + // Disallow unquoted characters other than [0-9A-Za-z] 1.761 + // in the printable ASCII range. These characters are 1.762 + // reserved for possible future use. 1.763 + if (c >= 0x0021 && c <= 0x007E && 1.764 + !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || 1.765 + (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || 1.766 + (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { 1.767 + return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); 1.768 + } 1.769 + buf.append(c); 1.770 + break; 1.771 + } 1.772 + } 1.773 + 1.774 + return pos; 1.775 +} 1.776 + 1.777 +/** 1.778 + * Remove context. 1.779 + */ 1.780 +void RuleHalf::removeContext() { 1.781 + //text = text.substring(ante < 0 ? 0 : ante, 1.782 + // post < 0 ? text.length() : post); 1.783 + if (post >= 0) { 1.784 + text.remove(post); 1.785 + } 1.786 + if (ante >= 0) { 1.787 + text.removeBetween(0, ante); 1.788 + } 1.789 + ante = post = -1; 1.790 + anchorStart = anchorEnd = FALSE; 1.791 +} 1.792 + 1.793 +/** 1.794 + * Return true if this half looks like valid output, that is, does not 1.795 + * contain quantifiers or other special input-only elements. 1.796 + */ 1.797 +UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { 1.798 + for (int32_t i=0; i<text.length(); ) { 1.799 + UChar32 c = text.char32At(i); 1.800 + i += U16_LENGTH(c); 1.801 + if (!transParser.parseData->isReplacer(c)) { 1.802 + return FALSE; 1.803 + } 1.804 + } 1.805 + return TRUE; 1.806 +} 1.807 + 1.808 +/** 1.809 + * Return true if this half looks like valid input, that is, does not 1.810 + * contain functions or other special output-only elements. 1.811 + */ 1.812 +UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { 1.813 + for (int32_t i=0; i<text.length(); ) { 1.814 + UChar32 c = text.char32At(i); 1.815 + i += U16_LENGTH(c); 1.816 + if (!transParser.parseData->isMatcher(c)) { 1.817 + return FALSE; 1.818 + } 1.819 + } 1.820 + return TRUE; 1.821 +} 1.822 + 1.823 +//---------------------------------------------------------------------- 1.824 +// PUBLIC API 1.825 +//---------------------------------------------------------------------- 1.826 + 1.827 +/** 1.828 + * Constructor. 1.829 + */ 1.830 +TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : 1.831 +dataVector(statusReturn), 1.832 +idBlockVector(statusReturn), 1.833 +variablesVector(statusReturn), 1.834 +segmentObjects(statusReturn) 1.835 +{ 1.836 + idBlockVector.setDeleter(uprv_deleteUObject); 1.837 + curData = NULL; 1.838 + compoundFilter = NULL; 1.839 + parseData = NULL; 1.840 + variableNames.setValueDeleter(uprv_deleteUObject); 1.841 +} 1.842 + 1.843 +/** 1.844 + * Destructor. 1.845 + */ 1.846 +TransliteratorParser::~TransliteratorParser() { 1.847 + while (!dataVector.isEmpty()) 1.848 + delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); 1.849 + delete compoundFilter; 1.850 + delete parseData; 1.851 + while (!variablesVector.isEmpty()) 1.852 + delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); 1.853 +} 1.854 + 1.855 +void 1.856 +TransliteratorParser::parse(const UnicodeString& rules, 1.857 + UTransDirection transDirection, 1.858 + UParseError& pe, 1.859 + UErrorCode& ec) { 1.860 + if (U_SUCCESS(ec)) { 1.861 + parseRules(rules, transDirection, ec); 1.862 + pe = parseError; 1.863 + } 1.864 +} 1.865 + 1.866 +/** 1.867 + * Return the compound filter parsed by parse(). Caller owns result. 1.868 + */ 1.869 +UnicodeSet* TransliteratorParser::orphanCompoundFilter() { 1.870 + UnicodeSet* f = compoundFilter; 1.871 + compoundFilter = NULL; 1.872 + return f; 1.873 +} 1.874 + 1.875 +//---------------------------------------------------------------------- 1.876 +// Private implementation 1.877 +//---------------------------------------------------------------------- 1.878 + 1.879 +/** 1.880 + * Parse the given string as a sequence of rules, separated by newline 1.881 + * characters ('\n'), and cause this object to implement those rules. Any 1.882 + * previous rules are discarded. Typically this method is called exactly 1.883 + * once, during construction. 1.884 + * @exception IllegalArgumentException if there is a syntax error in the 1.885 + * rules 1.886 + */ 1.887 +void TransliteratorParser::parseRules(const UnicodeString& rule, 1.888 + UTransDirection theDirection, 1.889 + UErrorCode& status) 1.890 +{ 1.891 + // Clear error struct 1.892 + uprv_memset(&parseError, 0, sizeof(parseError)); 1.893 + parseError.line = parseError.offset = -1; 1.894 + 1.895 + UBool parsingIDs = TRUE; 1.896 + int32_t ruleCount = 0; 1.897 + 1.898 + while (!dataVector.isEmpty()) { 1.899 + delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); 1.900 + } 1.901 + if (U_FAILURE(status)) { 1.902 + return; 1.903 + } 1.904 + 1.905 + idBlockVector.removeAllElements(); 1.906 + curData = NULL; 1.907 + direction = theDirection; 1.908 + ruleCount = 0; 1.909 + 1.910 + delete compoundFilter; 1.911 + compoundFilter = NULL; 1.912 + 1.913 + while (!variablesVector.isEmpty()) { 1.914 + delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); 1.915 + } 1.916 + variableNames.removeAll(); 1.917 + parseData = new ParseData(0, &variablesVector, &variableNames); 1.918 + if (parseData == NULL) { 1.919 + status = U_MEMORY_ALLOCATION_ERROR; 1.920 + return; 1.921 + } 1.922 + 1.923 + dotStandIn = (UChar) -1; 1.924 + 1.925 + UnicodeString *tempstr = NULL; // used for memory allocation error checking 1.926 + UnicodeString str; // scratch 1.927 + UnicodeString idBlockResult; 1.928 + int32_t pos = 0; 1.929 + int32_t limit = rule.length(); 1.930 + 1.931 + // The compound filter offset is an index into idBlockResult. 1.932 + // If it is 0, then the compound filter occurred at the start, 1.933 + // and it is the offset to the _start_ of the compound filter 1.934 + // pattern. Otherwise it is the offset to the _limit_ of the 1.935 + // compound filter pattern within idBlockResult. 1.936 + compoundFilter = NULL; 1.937 + int32_t compoundFilterOffset = -1; 1.938 + 1.939 + while (pos < limit && U_SUCCESS(status)) { 1.940 + UChar c = rule.charAt(pos++); 1.941 + if (PatternProps::isWhiteSpace(c)) { 1.942 + // Ignore leading whitespace. 1.943 + continue; 1.944 + } 1.945 + // Skip lines starting with the comment character 1.946 + if (c == RULE_COMMENT_CHAR) { 1.947 + pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; 1.948 + if (pos == 0) { 1.949 + break; // No "\n" found; rest of rule is a commnet 1.950 + } 1.951 + continue; // Either fall out or restart with next line 1.952 + } 1.953 + 1.954 + // skip empty rules 1.955 + if (c == END_OF_RULE) 1.956 + continue; 1.957 + 1.958 + // keep track of how many rules we've seen 1.959 + ++ruleCount; 1.960 + 1.961 + // We've found the start of a rule or ID. c is its first 1.962 + // character, and pos points past c. 1.963 + --pos; 1.964 + // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 1.965 + // chars left. 1.966 + if ((pos + ID_TOKEN_LEN + 1) <= limit && 1.967 + rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { 1.968 + pos += ID_TOKEN_LEN; 1.969 + c = rule.charAt(pos); 1.970 + while (PatternProps::isWhiteSpace(c) && pos < limit) { 1.971 + ++pos; 1.972 + c = rule.charAt(pos); 1.973 + } 1.974 + 1.975 + int32_t p = pos; 1.976 + 1.977 + if (!parsingIDs) { 1.978 + if (curData != NULL) { 1.979 + if (direction == UTRANS_FORWARD) 1.980 + dataVector.addElement(curData, status); 1.981 + else 1.982 + dataVector.insertElementAt(curData, 0, status); 1.983 + curData = NULL; 1.984 + } 1.985 + parsingIDs = TRUE; 1.986 + } 1.987 + 1.988 + TransliteratorIDParser::SingleID* id = 1.989 + TransliteratorIDParser::parseSingleID(rule, p, direction, status); 1.990 + if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { 1.991 + // Successful ::ID parse. 1.992 + 1.993 + if (direction == UTRANS_FORWARD) { 1.994 + idBlockResult.append(id->canonID).append(END_OF_RULE); 1.995 + } else { 1.996 + idBlockResult.insert(0, END_OF_RULE); 1.997 + idBlockResult.insert(0, id->canonID); 1.998 + } 1.999 + 1.1000 + } else { 1.1001 + // Couldn't parse an ID. Try to parse a global filter 1.1002 + int32_t withParens = -1; 1.1003 + UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL); 1.1004 + if (f != NULL) { 1.1005 + if (ICU_Utility::parseChar(rule, p, END_OF_RULE) 1.1006 + && (direction == UTRANS_FORWARD) == (withParens == 0)) 1.1007 + { 1.1008 + if (compoundFilter != NULL) { 1.1009 + // Multiple compound filters 1.1010 + syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status); 1.1011 + delete f; 1.1012 + } else { 1.1013 + compoundFilter = f; 1.1014 + compoundFilterOffset = ruleCount; 1.1015 + } 1.1016 + } else { 1.1017 + delete f; 1.1018 + } 1.1019 + } else { 1.1020 + // Invalid ::id 1.1021 + // Can be parsed as neither an ID nor a global filter 1.1022 + syntaxError(U_INVALID_ID, rule, pos, status); 1.1023 + } 1.1024 + } 1.1025 + delete id; 1.1026 + pos = p; 1.1027 + } else { 1.1028 + if (parsingIDs) { 1.1029 + tempstr = new UnicodeString(idBlockResult); 1.1030 + // NULL pointer check 1.1031 + if (tempstr == NULL) { 1.1032 + status = U_MEMORY_ALLOCATION_ERROR; 1.1033 + return; 1.1034 + } 1.1035 + if (direction == UTRANS_FORWARD) 1.1036 + idBlockVector.addElement(tempstr, status); 1.1037 + else 1.1038 + idBlockVector.insertElementAt(tempstr, 0, status); 1.1039 + idBlockResult.remove(); 1.1040 + parsingIDs = FALSE; 1.1041 + curData = new TransliterationRuleData(status); 1.1042 + // NULL pointer check 1.1043 + if (curData == NULL) { 1.1044 + status = U_MEMORY_ALLOCATION_ERROR; 1.1045 + return; 1.1046 + } 1.1047 + parseData->data = curData; 1.1048 + 1.1049 + // By default, rules use part of the private use area 1.1050 + // E000..F8FF for variables and other stand-ins. Currently 1.1051 + // the range F000..F8FF is typically sufficient. The 'use 1.1052 + // variable range' pragma allows rule sets to modify this. 1.1053 + setVariableRange(0xF000, 0xF8FF, status); 1.1054 + } 1.1055 + 1.1056 + if (resemblesPragma(rule, pos, limit)) { 1.1057 + int32_t ppp = parsePragma(rule, pos, limit, status); 1.1058 + if (ppp < 0) { 1.1059 + syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); 1.1060 + } 1.1061 + pos = ppp; 1.1062 + // Parse a rule 1.1063 + } else { 1.1064 + pos = parseRule(rule, pos, limit, status); 1.1065 + } 1.1066 + } 1.1067 + } 1.1068 + 1.1069 + if (parsingIDs && idBlockResult.length() > 0) { 1.1070 + tempstr = new UnicodeString(idBlockResult); 1.1071 + // NULL pointer check 1.1072 + if (tempstr == NULL) { 1.1073 + status = U_MEMORY_ALLOCATION_ERROR; 1.1074 + return; 1.1075 + } 1.1076 + if (direction == UTRANS_FORWARD) 1.1077 + idBlockVector.addElement(tempstr, status); 1.1078 + else 1.1079 + idBlockVector.insertElementAt(tempstr, 0, status); 1.1080 + } 1.1081 + else if (!parsingIDs && curData != NULL) { 1.1082 + if (direction == UTRANS_FORWARD) 1.1083 + dataVector.addElement(curData, status); 1.1084 + else 1.1085 + dataVector.insertElementAt(curData, 0, status); 1.1086 + } 1.1087 + 1.1088 + if (U_SUCCESS(status)) { 1.1089 + // Convert the set vector to an array 1.1090 + int32_t i, dataVectorSize = dataVector.size(); 1.1091 + for (i = 0; i < dataVectorSize; i++) { 1.1092 + TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); 1.1093 + data->variablesLength = variablesVector.size(); 1.1094 + if (data->variablesLength == 0) { 1.1095 + data->variables = 0; 1.1096 + } else { 1.1097 + data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*)); 1.1098 + // NULL pointer check 1.1099 + if (data->variables == NULL) { 1.1100 + status = U_MEMORY_ALLOCATION_ERROR; 1.1101 + return; 1.1102 + } 1.1103 + data->variablesAreOwned = (i == 0); 1.1104 + } 1.1105 + 1.1106 + for (int32_t j = 0; j < data->variablesLength; j++) { 1.1107 + data->variables[j] = 1.1108 + ((UnicodeSet*)variablesVector.elementAt(j)); 1.1109 + } 1.1110 + 1.1111 + data->variableNames.removeAll(); 1.1112 + int32_t pos = -1; 1.1113 + const UHashElement* he = variableNames.nextElement(pos); 1.1114 + while (he != NULL) { 1.1115 + UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone()); 1.1116 + if (tempus == NULL) { 1.1117 + status = U_MEMORY_ALLOCATION_ERROR; 1.1118 + return; 1.1119 + } 1.1120 + data->variableNames.put(*((UnicodeString*)(he->key.pointer)), 1.1121 + tempus, status); 1.1122 + he = variableNames.nextElement(pos); 1.1123 + } 1.1124 + } 1.1125 + variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed 1.1126 + 1.1127 + // Index the rules 1.1128 + if (compoundFilter != NULL) { 1.1129 + if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || 1.1130 + (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) { 1.1131 + status = U_MISPLACED_COMPOUND_FILTER; 1.1132 + } 1.1133 + } 1.1134 + 1.1135 + for (i = 0; i < dataVectorSize; i++) { 1.1136 + TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); 1.1137 + data->ruleSet.freeze(parseError, status); 1.1138 + } 1.1139 + if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) { 1.1140 + idBlockVector.removeElementAt(0); 1.1141 + } 1.1142 + } 1.1143 +} 1.1144 + 1.1145 +/** 1.1146 + * Set the variable range to [start, end] (inclusive). 1.1147 + */ 1.1148 +void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) { 1.1149 + if (start > end || start < 0 || end > 0xFFFF) { 1.1150 + status = U_MALFORMED_PRAGMA; 1.1151 + return; 1.1152 + } 1.1153 + 1.1154 + curData->variablesBase = (UChar) start; 1.1155 + if (dataVector.size() == 0) { 1.1156 + variableNext = (UChar) start; 1.1157 + variableLimit = (UChar) (end + 1); 1.1158 + } 1.1159 +} 1.1160 + 1.1161 +/** 1.1162 + * Assert that the given character is NOT within the variable range. 1.1163 + * If it is, return FALSE. This is neccesary to ensure that the 1.1164 + * variable range does not overlap characters used in a rule. 1.1165 + */ 1.1166 +UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { 1.1167 + return !(ch >= curData->variablesBase && ch < variableLimit); 1.1168 +} 1.1169 + 1.1170 +/** 1.1171 + * Set the maximum backup to 'backup', in response to a pragma 1.1172 + * statement. 1.1173 + */ 1.1174 +void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { 1.1175 + //TODO Finish 1.1176 +} 1.1177 + 1.1178 +/** 1.1179 + * Begin normalizing all rules using the given mode, in response 1.1180 + * to a pragma statement. 1.1181 + */ 1.1182 +void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { 1.1183 + //TODO Finish 1.1184 +} 1.1185 + 1.1186 +static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " 1.1187 + 1.1188 +static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" 1.1189 + 1.1190 +static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" 1.1191 + 1.1192 +static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" 1.1193 + 1.1194 +static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" 1.1195 + 1.1196 +/** 1.1197 + * Return true if the given rule looks like a pragma. 1.1198 + * @param pos offset to the first non-whitespace character 1.1199 + * of the rule. 1.1200 + * @param limit pointer past the last character of the rule. 1.1201 + */ 1.1202 +UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { 1.1203 + // Must start with /use\s/i 1.1204 + return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0; 1.1205 +} 1.1206 + 1.1207 +/** 1.1208 + * Parse a pragma. This method assumes resemblesPragma() has 1.1209 + * already returned true. 1.1210 + * @param pos offset to the first non-whitespace character 1.1211 + * of the rule. 1.1212 + * @param limit pointer past the last character of the rule. 1.1213 + * @return the position index after the final ';' of the pragma, 1.1214 + * or -1 on failure. 1.1215 + */ 1.1216 +int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { 1.1217 + int32_t array[2]; 1.1218 + 1.1219 + // resemblesPragma() has already returned true, so we 1.1220 + // know that pos points to /use\s/i; we can skip 4 characters 1.1221 + // immediately 1.1222 + pos += 4; 1.1223 + 1.1224 + // Here are the pragmas we recognize: 1.1225 + // use variable range 0xE000 0xEFFF; 1.1226 + // use maximum backup 16; 1.1227 + // use nfd rules; 1.1228 + // use nfc rules; 1.1229 + int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array); 1.1230 + if (p >= 0) { 1.1231 + setVariableRange(array[0], array[1], status); 1.1232 + return p; 1.1233 + } 1.1234 + 1.1235 + p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array); 1.1236 + if (p >= 0) { 1.1237 + pragmaMaximumBackup(array[0]); 1.1238 + return p; 1.1239 + } 1.1240 + 1.1241 + p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL); 1.1242 + if (p >= 0) { 1.1243 + pragmaNormalizeRules(UNORM_NFD); 1.1244 + return p; 1.1245 + } 1.1246 + 1.1247 + p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL); 1.1248 + if (p >= 0) { 1.1249 + pragmaNormalizeRules(UNORM_NFC); 1.1250 + return p; 1.1251 + } 1.1252 + 1.1253 + // Syntax error: unable to parse pragma 1.1254 + return -1; 1.1255 +} 1.1256 + 1.1257 +/** 1.1258 + * MAIN PARSER. Parse the next rule in the given rule string, starting 1.1259 + * at pos. Return the index after the last character parsed. Do not 1.1260 + * parse characters at or after limit. 1.1261 + * 1.1262 + * Important: The character at pos must be a non-whitespace character 1.1263 + * that is not the comment character. 1.1264 + * 1.1265 + * This method handles quoting, escaping, and whitespace removal. It 1.1266 + * parses the end-of-rule character. It recognizes context and cursor 1.1267 + * indicators. Once it does a lexical breakdown of the rule at pos, it 1.1268 + * creates a rule object and adds it to our rule list. 1.1269 + */ 1.1270 +int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { 1.1271 + // Locate the left side, operator, and right side 1.1272 + int32_t start = pos; 1.1273 + UChar op = 0; 1.1274 + int32_t i; 1.1275 + 1.1276 + // Set up segments data 1.1277 + segmentStandins.truncate(0); 1.1278 + segmentObjects.removeAllElements(); 1.1279 + 1.1280 + // Use pointers to automatics to make swapping possible. 1.1281 + RuleHalf _left(*this), _right(*this); 1.1282 + RuleHalf* left = &_left; 1.1283 + RuleHalf* right = &_right; 1.1284 + 1.1285 + undefinedVariableName.remove(); 1.1286 + pos = left->parse(rule, pos, limit, status); 1.1287 + if (U_FAILURE(status)) { 1.1288 + return start; 1.1289 + } 1.1290 + 1.1291 + if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { 1.1292 + return syntaxError(U_MISSING_OPERATOR, rule, start, status); 1.1293 + } 1.1294 + ++pos; 1.1295 + 1.1296 + // Found an operator char. Check for forward-reverse operator. 1.1297 + if (op == REVERSE_RULE_OP && 1.1298 + (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { 1.1299 + ++pos; 1.1300 + op = FWDREV_RULE_OP; 1.1301 + } 1.1302 + 1.1303 + // Translate alternate op characters. 1.1304 + switch (op) { 1.1305 + case ALT_FORWARD_RULE_OP: 1.1306 + op = FORWARD_RULE_OP; 1.1307 + break; 1.1308 + case ALT_REVERSE_RULE_OP: 1.1309 + op = REVERSE_RULE_OP; 1.1310 + break; 1.1311 + case ALT_FWDREV_RULE_OP: 1.1312 + op = FWDREV_RULE_OP; 1.1313 + break; 1.1314 + } 1.1315 + 1.1316 + pos = right->parse(rule, pos, limit, status); 1.1317 + if (U_FAILURE(status)) { 1.1318 + return start; 1.1319 + } 1.1320 + 1.1321 + if (pos < limit) { 1.1322 + if (rule.charAt(--pos) == END_OF_RULE) { 1.1323 + ++pos; 1.1324 + } else { 1.1325 + // RuleHalf parser must have terminated at an operator 1.1326 + return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); 1.1327 + } 1.1328 + } 1.1329 + 1.1330 + if (op == VARIABLE_DEF_OP) { 1.1331 + // LHS is the name. RHS is a single character, either a literal 1.1332 + // or a set (already parsed). If RHS is longer than one 1.1333 + // character, it is either a multi-character string, or multiple 1.1334 + // sets, or a mixture of chars and sets -- syntax error. 1.1335 + 1.1336 + // We expect to see a single undefined variable (the one being 1.1337 + // defined). 1.1338 + if (undefinedVariableName.length() == 0) { 1.1339 + // "Missing '$' or duplicate definition" 1.1340 + return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); 1.1341 + } 1.1342 + if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { 1.1343 + // "Malformed LHS" 1.1344 + return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); 1.1345 + } 1.1346 + if (left->anchorStart || left->anchorEnd || 1.1347 + right->anchorStart || right->anchorEnd) { 1.1348 + return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); 1.1349 + } 1.1350 + // We allow anything on the right, including an empty string. 1.1351 + UnicodeString* value = new UnicodeString(right->text); 1.1352 + // NULL pointer check 1.1353 + if (value == NULL) { 1.1354 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.1355 + } 1.1356 + variableNames.put(undefinedVariableName, value, status); 1.1357 + ++variableLimit; 1.1358 + return pos; 1.1359 + } 1.1360 + 1.1361 + // If this is not a variable definition rule, we shouldn't have 1.1362 + // any undefined variable names. 1.1363 + if (undefinedVariableName.length() != 0) { 1.1364 + return syntaxError(// "Undefined variable $" + undefinedVariableName, 1.1365 + U_UNDEFINED_VARIABLE, 1.1366 + rule, start, status); 1.1367 + } 1.1368 + 1.1369 + // Verify segments 1.1370 + if (segmentStandins.length() > segmentObjects.size()) { 1.1371 + syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); 1.1372 + } 1.1373 + for (i=0; i<segmentStandins.length(); ++i) { 1.1374 + if (segmentStandins.charAt(i) == 0) { 1.1375 + syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen 1.1376 + } 1.1377 + } 1.1378 + for (i=0; i<segmentObjects.size(); ++i) { 1.1379 + if (segmentObjects.elementAt(i) == NULL) { 1.1380 + syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen 1.1381 + } 1.1382 + } 1.1383 + 1.1384 + // If the direction we want doesn't match the rule 1.1385 + // direction, do nothing. 1.1386 + if (op != FWDREV_RULE_OP && 1.1387 + ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { 1.1388 + return pos; 1.1389 + } 1.1390 + 1.1391 + // Transform the rule into a forward rule by swapping the 1.1392 + // sides if necessary. 1.1393 + if (direction == UTRANS_REVERSE) { 1.1394 + left = &_right; 1.1395 + right = &_left; 1.1396 + } 1.1397 + 1.1398 + // Remove non-applicable elements in forward-reverse 1.1399 + // rules. Bidirectional rules ignore elements that do not 1.1400 + // apply. 1.1401 + if (op == FWDREV_RULE_OP) { 1.1402 + right->removeContext(); 1.1403 + left->cursor = -1; 1.1404 + left->cursorOffset = 0; 1.1405 + } 1.1406 + 1.1407 + // Normalize context 1.1408 + if (left->ante < 0) { 1.1409 + left->ante = 0; 1.1410 + } 1.1411 + if (left->post < 0) { 1.1412 + left->post = left->text.length(); 1.1413 + } 1.1414 + 1.1415 + // Context is only allowed on the input side. Cursors are only 1.1416 + // allowed on the output side. Segment delimiters can only appear 1.1417 + // on the left, and references on the right. Cursor offset 1.1418 + // cannot appear without an explicit cursor. Cursor offset 1.1419 + // cannot place the cursor outside the limits of the context. 1.1420 + // Anchors are only allowed on the input side. 1.1421 + if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || 1.1422 + (right->cursorOffset != 0 && right->cursor < 0) || 1.1423 + // - The following two checks were used to ensure that the 1.1424 + // - the cursor offset stayed within the ante- or postcontext. 1.1425 + // - However, with the addition of quantifiers, we have to 1.1426 + // - allow arbitrary cursor offsets and do runtime checking. 1.1427 + //(right->cursorOffset > (left->text.length() - left->post)) || 1.1428 + //(-right->cursorOffset > left->ante) || 1.1429 + right->anchorStart || right->anchorEnd || 1.1430 + !left->isValidInput(*this) || !right->isValidOutput(*this) || 1.1431 + left->ante > left->post) { 1.1432 + 1.1433 + return syntaxError(U_MALFORMED_RULE, rule, start, status); 1.1434 + } 1.1435 + 1.1436 + // Flatten segment objects vector to an array 1.1437 + UnicodeFunctor** segmentsArray = NULL; 1.1438 + if (segmentObjects.size() > 0) { 1.1439 + segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *)); 1.1440 + // Null pointer check 1.1441 + if (segmentsArray == NULL) { 1.1442 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.1443 + } 1.1444 + segmentObjects.toArray((void**) segmentsArray); 1.1445 + } 1.1446 + TransliterationRule* temptr = new TransliterationRule( 1.1447 + left->text, left->ante, left->post, 1.1448 + right->text, right->cursor, right->cursorOffset, 1.1449 + segmentsArray, 1.1450 + segmentObjects.size(), 1.1451 + left->anchorStart, left->anchorEnd, 1.1452 + curData, 1.1453 + status); 1.1454 + //Null pointer check 1.1455 + if (temptr == NULL) { 1.1456 + uprv_free(segmentsArray); 1.1457 + return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1.1458 + } 1.1459 + 1.1460 + curData->ruleSet.addRule(temptr, status); 1.1461 + 1.1462 + return pos; 1.1463 +} 1.1464 + 1.1465 +/** 1.1466 + * Called by main parser upon syntax error. Search the rule string 1.1467 + * for the probable end of the rule. Of course, if the error is that 1.1468 + * the end of rule marker is missing, then the rule end will not be found. 1.1469 + * In any case the rule start will be correctly reported. 1.1470 + * @param msg error description 1.1471 + * @param rule pattern string 1.1472 + * @param start position of first character of current rule 1.1473 + */ 1.1474 +int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, 1.1475 + const UnicodeString& rule, 1.1476 + int32_t pos, 1.1477 + UErrorCode& status) 1.1478 +{ 1.1479 + parseError.offset = pos; 1.1480 + parseError.line = 0 ; /* we are not using line numbers */ 1.1481 + 1.1482 + // for pre-context 1.1483 + const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; 1.1484 + int32_t start = uprv_max(pos - LEN, 0); 1.1485 + int32_t stop = pos; 1.1486 + 1.1487 + rule.extract(start,stop-start,parseError.preContext); 1.1488 + //null terminate the buffer 1.1489 + parseError.preContext[stop-start] = 0; 1.1490 + 1.1491 + //for post-context 1.1492 + start = pos; 1.1493 + stop = uprv_min(pos + LEN, rule.length()); 1.1494 + 1.1495 + rule.extract(start,stop-start,parseError.postContext); 1.1496 + //null terminate the buffer 1.1497 + parseError.postContext[stop-start]= 0; 1.1498 + 1.1499 + status = (UErrorCode)parseErrorCode; 1.1500 + return pos; 1.1501 + 1.1502 +} 1.1503 + 1.1504 +/** 1.1505 + * Parse a UnicodeSet out, store it, and return the stand-in character 1.1506 + * used to represent it. 1.1507 + */ 1.1508 +UChar TransliteratorParser::parseSet(const UnicodeString& rule, 1.1509 + ParsePosition& pos, 1.1510 + UErrorCode& status) { 1.1511 + UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); 1.1512 + // Null pointer check 1.1513 + if (set == NULL) { 1.1514 + status = U_MEMORY_ALLOCATION_ERROR; 1.1515 + return (UChar)0x0000; // Return empty character with error. 1.1516 + } 1.1517 + set->compact(); 1.1518 + return generateStandInFor(set, status); 1.1519 +} 1.1520 + 1.1521 +/** 1.1522 + * Generate and return a stand-in for a new UnicodeFunctor. Store 1.1523 + * the matcher (adopt it). 1.1524 + */ 1.1525 +UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) { 1.1526 + // assert(obj != null); 1.1527 + 1.1528 + // Look up previous stand-in, if any. This is a short list 1.1529 + // (typical n is 0, 1, or 2); linear search is optimal. 1.1530 + for (int32_t i=0; i<variablesVector.size(); ++i) { 1.1531 + if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison 1.1532 + return (UChar) (curData->variablesBase + i); 1.1533 + } 1.1534 + } 1.1535 + 1.1536 + if (variableNext >= variableLimit) { 1.1537 + delete adopted; 1.1538 + status = U_VARIABLE_RANGE_EXHAUSTED; 1.1539 + return 0; 1.1540 + } 1.1541 + variablesVector.addElement(adopted, status); 1.1542 + return variableNext++; 1.1543 +} 1.1544 + 1.1545 +/** 1.1546 + * Return the standin for segment seg (1-based). 1.1547 + */ 1.1548 +UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { 1.1549 + // Special character used to indicate an empty spot 1.1550 + UChar empty = curData->variablesBase - 1; 1.1551 + while (segmentStandins.length() < seg) { 1.1552 + segmentStandins.append(empty); 1.1553 + } 1.1554 + UChar c = segmentStandins.charAt(seg-1); 1.1555 + if (c == empty) { 1.1556 + if (variableNext >= variableLimit) { 1.1557 + status = U_VARIABLE_RANGE_EXHAUSTED; 1.1558 + return 0; 1.1559 + } 1.1560 + c = variableNext++; 1.1561 + // Set a placeholder in the master variables vector that will be 1.1562 + // filled in later by setSegmentObject(). We know that we will get 1.1563 + // called first because setSegmentObject() will call us. 1.1564 + variablesVector.addElement((void*) NULL, status); 1.1565 + segmentStandins.setCharAt(seg-1, c); 1.1566 + } 1.1567 + return c; 1.1568 +} 1.1569 + 1.1570 +/** 1.1571 + * Set the object for segment seg (1-based). 1.1572 + */ 1.1573 +void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) { 1.1574 + // Since we call parseSection() recursively, nested 1.1575 + // segments will result in segment i+1 getting parsed 1.1576 + // and stored before segment i; be careful with the 1.1577 + // vector handling here. 1.1578 + if (segmentObjects.size() < seg) { 1.1579 + segmentObjects.setSize(seg, status); 1.1580 + } 1.1581 + int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; 1.1582 + if (segmentObjects.elementAt(seg-1) != NULL || 1.1583 + variablesVector.elementAt(index) != NULL) { 1.1584 + // should never happen 1.1585 + status = U_INTERNAL_TRANSLITERATOR_ERROR; 1.1586 + return; 1.1587 + } 1.1588 + segmentObjects.setElementAt(adopted, seg-1); 1.1589 + variablesVector.setElementAt(adopted, index); 1.1590 +} 1.1591 + 1.1592 +/** 1.1593 + * Return the stand-in for the dot set. It is allocated the first 1.1594 + * time and reused thereafter. 1.1595 + */ 1.1596 +UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { 1.1597 + if (dotStandIn == (UChar) -1) { 1.1598 + UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status); 1.1599 + // Null pointer check. 1.1600 + if (tempus == NULL) { 1.1601 + status = U_MEMORY_ALLOCATION_ERROR; 1.1602 + return (UChar)0x0000; 1.1603 + } 1.1604 + dotStandIn = generateStandInFor(tempus, status); 1.1605 + } 1.1606 + return dotStandIn; 1.1607 +} 1.1608 + 1.1609 +/** 1.1610 + * Append the value of the given variable name to the given 1.1611 + * UnicodeString. 1.1612 + */ 1.1613 +void TransliteratorParser::appendVariableDef(const UnicodeString& name, 1.1614 + UnicodeString& buf, 1.1615 + UErrorCode& status) { 1.1616 + const UnicodeString* s = (const UnicodeString*) variableNames.get(name); 1.1617 + if (s == NULL) { 1.1618 + // We allow one undefined variable so that variable definition 1.1619 + // statements work. For the first undefined variable we return 1.1620 + // the special placeholder variableLimit-1, and save the variable 1.1621 + // name. 1.1622 + if (undefinedVariableName.length() == 0) { 1.1623 + undefinedVariableName = name; 1.1624 + if (variableNext >= variableLimit) { 1.1625 + // throw new RuntimeException("Private use variables exhausted"); 1.1626 + status = U_ILLEGAL_ARGUMENT_ERROR; 1.1627 + return; 1.1628 + } 1.1629 + buf.append((UChar) --variableLimit); 1.1630 + } else { 1.1631 + //throw new IllegalArgumentException("Undefined variable $" 1.1632 + // + name); 1.1633 + status = U_ILLEGAL_ARGUMENT_ERROR; 1.1634 + return; 1.1635 + } 1.1636 + } else { 1.1637 + buf.append(*s); 1.1638 + } 1.1639 +} 1.1640 + 1.1641 +/** 1.1642 + * Glue method to get around access restrictions in C++. 1.1643 + */ 1.1644 +/*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { 1.1645 + return Transliterator::createBasicInstance(id, canonID); 1.1646 +}*/ 1.1647 + 1.1648 +U_NAMESPACE_END 1.1649 + 1.1650 +U_CAPI int32_t 1.1651 +utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) { 1.1652 + U_NAMESPACE_USE 1.1653 + 1.1654 + //const UChar *sourceStart = source; 1.1655 + const UChar *targetStart = target; 1.1656 + const UChar *sourceLimit = source+sourceLen; 1.1657 + UChar *targetLimit = target+sourceLen; 1.1658 + UChar32 c = 0; 1.1659 + UBool quoted = FALSE; 1.1660 + int32_t index; 1.1661 + 1.1662 + uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); 1.1663 + 1.1664 + /* read the rules into the buffer */ 1.1665 + while (source < sourceLimit) 1.1666 + { 1.1667 + index=0; 1.1668 + U16_NEXT_UNSAFE(source, index, c); 1.1669 + source+=index; 1.1670 + if(c == QUOTE) { 1.1671 + quoted = (UBool)!quoted; 1.1672 + } 1.1673 + else if (!quoted) { 1.1674 + if (c == RULE_COMMENT_CHAR) { 1.1675 + /* skip comments and all preceding spaces */ 1.1676 + while (targetStart < target && *(target - 1) == 0x0020) { 1.1677 + target--; 1.1678 + } 1.1679 + do { 1.1680 + c = *(source++); 1.1681 + } 1.1682 + while (c != CR && c != LF); 1.1683 + } 1.1684 + else if (c == ESCAPE) { 1.1685 + UChar32 c2 = *source; 1.1686 + if (c2 == CR || c2 == LF) { 1.1687 + /* A backslash at the end of a line. */ 1.1688 + /* Since we're stripping lines, ignore the backslash. */ 1.1689 + source++; 1.1690 + continue; 1.1691 + } 1.1692 + if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */ 1.1693 + int32_t escapeOffset = 0; 1.1694 + UnicodeString escapedStr(source, 5); 1.1695 + c2 = escapedStr.unescapeAt(escapeOffset); 1.1696 + 1.1697 + if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) 1.1698 + { 1.1699 + *status = U_PARSE_ERROR; 1.1700 + return 0; 1.1701 + } 1.1702 + if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) { 1.1703 + /* It was escaped for a reason. Write what it was suppose to be. */ 1.1704 + source+=5; 1.1705 + c = c2; 1.1706 + } 1.1707 + } 1.1708 + else if (c2 == QUOTE) { 1.1709 + /* \' seen. Make sure we don't do anything when we see it again. */ 1.1710 + quoted = (UBool)!quoted; 1.1711 + } 1.1712 + } 1.1713 + } 1.1714 + if (c == CR || c == LF) 1.1715 + { 1.1716 + /* ignore spaces carriage returns, and all leading spaces on the next line. 1.1717 + * and line feed unless in the form \uXXXX 1.1718 + */ 1.1719 + quoted = FALSE; 1.1720 + while (source < sourceLimit) { 1.1721 + c = *(source); 1.1722 + if (c != CR && c != LF && c != 0x0020) { 1.1723 + break; 1.1724 + } 1.1725 + source++; 1.1726 + } 1.1727 + continue; 1.1728 + } 1.1729 + 1.1730 + /* Append UChar * after dissembling if c > 0xffff*/ 1.1731 + index=0; 1.1732 + U16_APPEND_UNSAFE(target, index, c); 1.1733 + target+=index; 1.1734 + } 1.1735 + if (target < targetLimit) { 1.1736 + *target = 0; 1.1737 + } 1.1738 + return (int32_t)(target-targetStart); 1.1739 +} 1.1740 + 1.1741 +#endif /* #if !UCONFIG_NO_TRANSLITERATION */