ipc/chromium/src/base/stack_container.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/ipc/chromium/src/base/stack_container.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,253 @@
     1.4 +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     1.5 +// Use of this source code is governed by a BSD-style license that can be
     1.6 +// found in the LICENSE file.
     1.7 +
     1.8 +#ifndef BASE_STACK_CONTAINER_H_
     1.9 +#define BASE_STACK_CONTAINER_H_
    1.10 +
    1.11 +#include <string>
    1.12 +#include <vector>
    1.13 +
    1.14 +#include "base/basictypes.h"
    1.15 +
    1.16 +// This allocator can be used with STL containers to provide a stack buffer
    1.17 +// from which to allocate memory and overflows onto the heap. This stack buffer
    1.18 +// would be allocated on the stack and allows us to avoid heap operations in
    1.19 +// some situations.
    1.20 +//
    1.21 +// STL likes to make copies of allocators, so the allocator itself can't hold
    1.22 +// the data. Instead, we make the creator responsible for creating a
    1.23 +// StackAllocator::Source which contains the data. Copying the allocator
    1.24 +// merely copies the pointer to this shared source, so all allocators created
    1.25 +// based on our allocator will share the same stack buffer.
    1.26 +//
    1.27 +// This stack buffer implementation is very simple. The first allocation that
    1.28 +// fits in the stack buffer will use the stack buffer. Any subsequent
    1.29 +// allocations will not use the stack buffer, even if there is unused room.
    1.30 +// This makes it appropriate for array-like containers, but the caller should
    1.31 +// be sure to reserve() in the container up to the stack buffer size. Otherwise
    1.32 +// the container will allocate a small array which will "use up" the stack
    1.33 +// buffer.
    1.34 +template<typename T, size_t stack_capacity>
    1.35 +class StackAllocator : public std::allocator<T> {
    1.36 + public:
    1.37 +  typedef typename std::allocator<T>::pointer pointer;
    1.38 +  typedef typename std::allocator<T>::size_type size_type;
    1.39 +
    1.40 +  // Backing store for the allocator. The container owner is responsible for
    1.41 +  // maintaining this for as long as any containers using this allocator are
    1.42 +  // live.
    1.43 +  struct Source {
    1.44 +    Source() : used_stack_buffer_(false) {
    1.45 +    }
    1.46 +
    1.47 +    // Casts the buffer in its right type.
    1.48 +    T* stack_buffer() { return reinterpret_cast<T*>(stack_buffer_); }
    1.49 +    const T* stack_buffer() const {
    1.50 +      return reinterpret_cast<const T*>(stack_buffer_);
    1.51 +    }
    1.52 +
    1.53 +    //
    1.54 +    // IMPORTANT: Take care to ensure that stack_buffer_ is aligned
    1.55 +    // since it is used to mimic an array of T.
    1.56 +    // Be careful while declaring any unaligned types (like bool)
    1.57 +    // before stack_buffer_.
    1.58 +    //
    1.59 +
    1.60 +    // The buffer itself. It is not of type T because we don't want the
    1.61 +    // constructors and destructors to be automatically called. Define a POD
    1.62 +    // buffer of the right size instead.
    1.63 +    char stack_buffer_[sizeof(T[stack_capacity])];
    1.64 +
    1.65 +    // Set when the stack buffer is used for an allocation. We do not track
    1.66 +    // how much of the buffer is used, only that somebody is using it.
    1.67 +    bool used_stack_buffer_;
    1.68 +  };
    1.69 +
    1.70 +  // Used by containers when they want to refer to an allocator of type U.
    1.71 +  template<typename U>
    1.72 +  struct rebind {
    1.73 +    typedef StackAllocator<U, stack_capacity> other;
    1.74 +  };
    1.75 +
    1.76 +  // For the straight up copy c-tor, we can share storage.
    1.77 +  StackAllocator(const StackAllocator<T, stack_capacity>& rhs)
    1.78 +      : source_(rhs.source_) {
    1.79 +  }
    1.80 +
    1.81 +  // ISO C++ requires the following constructor to be defined,
    1.82 +  // and std::vector in VC++2008SP1 Release fails with an error
    1.83 +  // in the class _Container_base_aux_alloc_real (from <xutility>)
    1.84 +  // if the constructor does not exist.
    1.85 +  // For this constructor, we cannot share storage; there's
    1.86 +  // no guarantee that the Source buffer of Ts is large enough
    1.87 +  // for Us.
    1.88 +  // TODO: If we were fancy pants, perhaps we could share storage
    1.89 +  // iff sizeof(T) == sizeof(U).
    1.90 +  template<typename U, size_t other_capacity>
    1.91 +  StackAllocator(const StackAllocator<U, other_capacity>& other)
    1.92 +      : source_(NULL) {
    1.93 +  }
    1.94 +
    1.95 +  explicit StackAllocator(Source* source) : source_(source) {
    1.96 +  }
    1.97 +
    1.98 +  // Actually do the allocation. Use the stack buffer if nobody has used it yet
    1.99 +  // and the size requested fits. Otherwise, fall through to the standard
   1.100 +  // allocator.
   1.101 +  pointer allocate(size_type n, void* hint = 0) {
   1.102 +    if (source_ != NULL && !source_->used_stack_buffer_
   1.103 +        && n <= stack_capacity) {
   1.104 +      source_->used_stack_buffer_ = true;
   1.105 +      return source_->stack_buffer();
   1.106 +    } else {
   1.107 +      return std::allocator<T>::allocate(n, hint);
   1.108 +    }
   1.109 +  }
   1.110 +
   1.111 +  // Free: when trying to free the stack buffer, just mark it as free. For
   1.112 +  // non-stack-buffer pointers, just fall though to the standard allocator.
   1.113 +  void deallocate(pointer p, size_type n) {
   1.114 +    if (source_ != NULL && p == source_->stack_buffer())
   1.115 +      source_->used_stack_buffer_ = false;
   1.116 +    else
   1.117 +      std::allocator<T>::deallocate(p, n);
   1.118 +  }
   1.119 +
   1.120 + private:
   1.121 +  Source* source_;
   1.122 +};
   1.123 +
   1.124 +// A wrapper around STL containers that maintains a stack-sized buffer that the
   1.125 +// initial capacity of the vector is based on. Growing the container beyond the
   1.126 +// stack capacity will transparently overflow onto the heap. The container must
   1.127 +// support reserve().
   1.128 +//
   1.129 +// WATCH OUT: the ContainerType MUST use the proper StackAllocator for this
   1.130 +// type. This object is really intended to be used only internally. You'll want
   1.131 +// to use the wrappers below for different types.
   1.132 +template<typename TContainerType, int stack_capacity>
   1.133 +class StackContainer {
   1.134 + public:
   1.135 +  typedef TContainerType ContainerType;
   1.136 +  typedef typename ContainerType::value_type ContainedType;
   1.137 +  typedef StackAllocator<ContainedType, stack_capacity> Allocator;
   1.138 +
   1.139 +  // Allocator must be constructed before the container!
   1.140 +  StackContainer() : allocator_(&stack_data_), container_(allocator_) {
   1.141 +    // Make the container use the stack allocation by reserving our buffer size
   1.142 +    // before doing anything else.
   1.143 +    container_.reserve(stack_capacity);
   1.144 +  }
   1.145 +
   1.146 +  // Getters for the actual container.
   1.147 +  //
   1.148 +  // Danger: any copies of this made using the copy constructor must have
   1.149 +  // shorter lifetimes than the source. The copy will share the same allocator
   1.150 +  // and therefore the same stack buffer as the original. Use std::copy to
   1.151 +  // copy into a "real" container for longer-lived objects.
   1.152 +  ContainerType& container() { return container_; }
   1.153 +  const ContainerType& container() const { return container_; }
   1.154 +
   1.155 +  // Support operator-> to get to the container. This allows nicer syntax like:
   1.156 +  //   StackContainer<...> foo;
   1.157 +  //   std::sort(foo->begin(), foo->end());
   1.158 +  ContainerType* operator->() { return &container_; }
   1.159 +  const ContainerType* operator->() const { return &container_; }
   1.160 +
   1.161 +#ifdef UNIT_TEST
   1.162 +  // Retrieves the stack source so that that unit tests can verify that the
   1.163 +  // buffer is being used properly.
   1.164 +  const typename Allocator::Source& stack_data() const {
   1.165 +    return stack_data_;
   1.166 +  }
   1.167 +#endif
   1.168 +
   1.169 + protected:
   1.170 +  typename Allocator::Source stack_data_;
   1.171 +  Allocator allocator_;
   1.172 +  ContainerType container_;
   1.173 +
   1.174 +  DISALLOW_EVIL_CONSTRUCTORS(StackContainer);
   1.175 +};
   1.176 +
   1.177 +// StackString
   1.178 +template<size_t stack_capacity>
   1.179 +class StackString : public StackContainer<
   1.180 +    std::basic_string<char,
   1.181 +                      std::char_traits<char>,
   1.182 +                      StackAllocator<char, stack_capacity> >,
   1.183 +    stack_capacity> {
   1.184 + public:
   1.185 +  StackString() : StackContainer<
   1.186 +      std::basic_string<char,
   1.187 +                        std::char_traits<char>,
   1.188 +                        StackAllocator<char, stack_capacity> >,
   1.189 +      stack_capacity>() {
   1.190 +  }
   1.191 +
   1.192 + private:
   1.193 +  DISALLOW_EVIL_CONSTRUCTORS(StackString);
   1.194 +};
   1.195 +
   1.196 +// StackWString
   1.197 +template<size_t stack_capacity>
   1.198 +class StackWString : public StackContainer<
   1.199 +    std::basic_string<wchar_t,
   1.200 +                      std::char_traits<wchar_t>,
   1.201 +                      StackAllocator<wchar_t, stack_capacity> >,
   1.202 +    stack_capacity> {
   1.203 + public:
   1.204 +  StackWString() : StackContainer<
   1.205 +      std::basic_string<wchar_t,
   1.206 +                        std::char_traits<wchar_t>,
   1.207 +                        StackAllocator<wchar_t, stack_capacity> >,
   1.208 +      stack_capacity>() {
   1.209 +  }
   1.210 +
   1.211 + private:
   1.212 +  DISALLOW_EVIL_CONSTRUCTORS(StackWString);
   1.213 +};
   1.214 +
   1.215 +// StackVector
   1.216 +//
   1.217 +// Example:
   1.218 +//   StackVector<int, 16> foo;
   1.219 +//   foo->push_back(22);  // we have overloaded operator->
   1.220 +//   foo[0] = 10;         // as well as operator[]
   1.221 +template<typename T, size_t stack_capacity>
   1.222 +class StackVector : public StackContainer<
   1.223 +    std::vector<T, StackAllocator<T, stack_capacity> >,
   1.224 +    stack_capacity> {
   1.225 + public:
   1.226 +  StackVector() : StackContainer<
   1.227 +      std::vector<T, StackAllocator<T, stack_capacity> >,
   1.228 +      stack_capacity>() {
   1.229 +  }
   1.230 +
   1.231 +  // We need to put this in STL containers sometimes, which requires a copy
   1.232 +  // constructor. We can't call the regular copy constructor because that will
   1.233 +  // take the stack buffer from the original. Here, we create an empty object
   1.234 +  // and make a stack buffer of its own.
   1.235 +  StackVector(const StackVector<T, stack_capacity>& other)
   1.236 +      : StackContainer<
   1.237 +            std::vector<T, StackAllocator<T, stack_capacity> >,
   1.238 +            stack_capacity>() {
   1.239 +    this->container().assign(other->begin(), other->end());
   1.240 +  }
   1.241 +
   1.242 +  StackVector<T, stack_capacity>& operator=(
   1.243 +      const StackVector<T, stack_capacity>& other) {
   1.244 +    this->container().assign(other->begin(), other->end());
   1.245 +    return *this;
   1.246 +  }
   1.247 +
   1.248 +  // Vectors are commonly indexed, which isn't very convenient even with
   1.249 +  // operator-> (using "->at()" does exception stuff we don't want).
   1.250 +  T& operator[](size_t i) { return this->container().operator[](i); }
   1.251 +  const T& operator[](size_t i) const {
   1.252 +    return this->container().operator[](i);
   1.253 +  }
   1.254 +};
   1.255 +
   1.256 +#endif  // BASE_STACK_CONTAINER_H_

mercurial