1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/ipc/chromium/src/base/string16.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,173 @@ 1.4 +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. 1.5 +// Use of this source code is governed by a BSD-style license that can be 1.6 +// found in the LICENSE file. 1.7 + 1.8 +#ifndef BASE_STRING16_H_ 1.9 +#define BASE_STRING16_H_ 1.10 + 1.11 +// WHAT: 1.12 +// A version of std::basic_string that provides 2-byte characters even when 1.13 +// wchar_t is not implemented as a 2-byte type. You can access this class as 1.14 +// string16. We also define char16, which string16 is based upon. 1.15 +// 1.16 +// WHY: 1.17 +// On Windows, wchar_t is 2 bytes, and it can conveniently handle UTF-16/UCS-2 1.18 +// data. Plenty of existing code operates on strings encoded as UTF-16. 1.19 +// 1.20 +// On many other platforms, sizeof(wchar_t) is 4 bytes by default. We can make 1.21 +// it 2 bytes by using the GCC flag -fshort-wchar. But then std::wstring fails 1.22 +// at run time, because it calls some functions (like wcslen) that come from 1.23 +// the system's native C library -- which was built with a 4-byte wchar_t! 1.24 +// It's wasteful to use 4-byte wchar_t strings to carry UTF-16 data, and it's 1.25 +// entirely improper on those systems where the encoding of wchar_t is defined 1.26 +// as UTF-32. 1.27 +// 1.28 +// Here, we define string16, which is similar to std::wstring but replaces all 1.29 +// libc functions with custom, 2-byte-char compatible routines. It is capable 1.30 +// of carrying UTF-16-encoded data. 1.31 + 1.32 +#include <stdio.h> 1.33 +#include <string> 1.34 + 1.35 +#include "base/basictypes.h" 1.36 + 1.37 +#if defined(WCHAR_T_IS_UTF16) 1.38 + 1.39 +typedef wchar_t char16; 1.40 +typedef std::wstring string16; 1.41 + 1.42 +#elif defined(WCHAR_T_IS_UTF32) 1.43 + 1.44 +typedef uint16_t char16; 1.45 + 1.46 +namespace base { 1.47 + 1.48 +// char16 versions of the functions required by string16_char_traits; these 1.49 +// are based on the wide character functions of similar names ("w" or "wcs" 1.50 +// instead of "c16"). 1.51 +int c16memcmp(const char16* s1, const char16* s2, size_t n); 1.52 +size_t c16len(const char16* s); 1.53 +const char16* c16memchr(const char16* s, char16 c, size_t n); 1.54 +char16* c16memmove(char16* s1, const char16* s2, size_t n); 1.55 +char16* c16memcpy(char16* s1, const char16* s2, size_t n); 1.56 +char16* c16memset(char16* s, char16 c, size_t n); 1.57 + 1.58 +struct string16_char_traits { 1.59 + typedef char16 char_type; 1.60 + typedef int int_type; 1.61 + 1.62 + // int_type needs to be able to hold each possible value of char_type, and in 1.63 + // addition, the distinct value of eof(). 1.64 + COMPILE_ASSERT(sizeof(int_type) > sizeof(char_type), unexpected_type_width); 1.65 + 1.66 + typedef std::streamoff off_type; 1.67 + typedef mbstate_t state_type; 1.68 + typedef std::fpos<state_type> pos_type; 1.69 + 1.70 + static void assign(char_type& c1, const char_type& c2) { 1.71 + c1 = c2; 1.72 + } 1.73 + 1.74 + static bool eq(const char_type& c1, const char_type& c2) { 1.75 + return c1 == c2; 1.76 + } 1.77 + static bool lt(const char_type& c1, const char_type& c2) { 1.78 + return c1 < c2; 1.79 + } 1.80 + 1.81 + static int compare(const char_type* s1, const char_type* s2, size_t n) { 1.82 + return c16memcmp(s1, s2, n); 1.83 + } 1.84 + 1.85 + static size_t length(const char_type* s) { 1.86 + return c16len(s); 1.87 + } 1.88 + 1.89 + static const char_type* find(const char_type* s, size_t n, 1.90 + const char_type& a) { 1.91 + return c16memchr(s, a, n); 1.92 + } 1.93 + 1.94 + static char_type* move(char_type* s1, const char_type* s2, int_type n) { 1.95 + return c16memmove(s1, s2, n); 1.96 + } 1.97 + 1.98 + static char_type* copy(char_type* s1, const char_type* s2, size_t n) { 1.99 + return c16memcpy(s1, s2, n); 1.100 + } 1.101 + 1.102 + static char_type* assign(char_type* s, size_t n, char_type a) { 1.103 + return c16memset(s, a, n); 1.104 + } 1.105 + 1.106 + static int_type not_eof(const int_type& c) { 1.107 + return eq_int_type(c, eof()) ? 0 : c; 1.108 + } 1.109 + 1.110 + static char_type to_char_type(const int_type& c) { 1.111 + return char_type(c); 1.112 + } 1.113 + 1.114 + static int_type to_int_type(const char_type& c) { 1.115 + return int_type(c); 1.116 + } 1.117 + 1.118 + static bool eq_int_type(const int_type& c1, const int_type& c2) { 1.119 + return c1 == c2; 1.120 + } 1.121 + 1.122 + static int_type eof() { 1.123 + return static_cast<int_type>(EOF); 1.124 + } 1.125 +}; 1.126 + 1.127 +} // namespace base 1.128 + 1.129 +// The string class will be explicitly instantiated only once, in string16.cc. 1.130 +// 1.131 +// std::basic_string<> in GNU libstdc++ contains a static data member, 1.132 +// _S_empty_rep_storage, to represent empty strings. When an operation such 1.133 +// as assignment or destruction is performed on a string, causing its existing 1.134 +// data member to be invalidated, it must not be freed if this static data 1.135 +// member is being used. Otherwise, it counts as an attempt to free static 1.136 +// (and not allocated) data, which is a memory error. 1.137 +// 1.138 +// Generally, due to C++ template magic, _S_empty_rep_storage will be marked 1.139 +// as a coalesced symbol, meaning that the linker will combine multiple 1.140 +// instances into a single one when generating output. 1.141 +// 1.142 +// If a string class is used by multiple shared libraries, a problem occurs. 1.143 +// Each library will get its own copy of _S_empty_rep_storage. When strings 1.144 +// are passed across a library boundary for alteration or destruction, memory 1.145 +// errors will result. GNU libstdc++ contains a configuration option, 1.146 +// --enable-fully-dynamic-string (_GLIBCXX_FULLY_DYNAMIC_STRING), which 1.147 +// disables the static data member optimization, but it's a good optimization 1.148 +// and non-STL code is generally at the mercy of the system's STL 1.149 +// configuration. Fully-dynamic strings are not the default for GNU libstdc++ 1.150 +// libstdc++ itself or for the libstdc++ installations on the systems we care 1.151 +// about, such as Mac OS X and relevant flavors of Linux. 1.152 +// 1.153 +// See also http://gcc.gnu.org/bugzilla/show_bug.cgi?id=24196 . 1.154 +// 1.155 +// To avoid problems, string classes need to be explicitly instantiated only 1.156 +// once, in exactly one library. All other string users see it via an "extern" 1.157 +// declaration. This is precisely how GNU libstdc++ handles 1.158 +// std::basic_string<char> (string) and std::basic_string<wchar_t> (wstring). 1.159 +// 1.160 +// This also works around a Mac OS X linker bug in ld64-85.2.1 (Xcode 3.1.2), 1.161 +// in which the linker does not fully coalesce symbols when dead code 1.162 +// stripping is enabled. This bug causes the memory errors described above 1.163 +// to occur even when a std::basic_string<> does not cross shared library 1.164 +// boundaries, such as in statically-linked executables. 1.165 +// 1.166 +// TODO(mark): File this bug with Apple and update this note with a bug number. 1.167 + 1.168 +extern template class std::basic_string<char16, base::string16_char_traits>; 1.169 + 1.170 +typedef std::basic_string<char16, base::string16_char_traits> string16; 1.171 + 1.172 +extern std::ostream& operator<<(std::ostream& out, const string16& str); 1.173 + 1.174 +#endif // WCHAR_T_IS_UTF32 1.175 + 1.176 +#endif // BASE_STRING16_H_