1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/js/src/devtools/jint/v8/crypto.js Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,2135 @@ 1.4 +// Copyright 2008 the V8 project authors. All rights reserved. 1.5 +// Redistribution and use in source and binary forms, with or without 1.6 +// modification, are permitted provided that the following conditions are 1.7 +// met: 1.8 +// 1.9 +// * Redistributions of source code must retain the above copyright 1.10 +// notice, this list of conditions and the following disclaimer. 1.11 +// * Redistributions in binary form must reproduce the above 1.12 +// copyright notice, this list of conditions and the following 1.13 +// disclaimer in the documentation and/or other materials provided 1.14 +// with the distribution. 1.15 +// * Neither the name of Google Inc. nor the names of its 1.16 +// contributors may be used to endorse or promote products derived 1.17 +// from this software without specific prior written permission. 1.18 +// 1.19 +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1.20 +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1.21 +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1.22 +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 1.23 +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 1.24 +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1.25 +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1.26 +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1.27 +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1.28 +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1.29 +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1.30 + 1.31 + 1.32 +// Simple framework for running the benchmark suites and 1.33 +// computing a score based on the timing measurements. 1.34 + 1.35 + 1.36 +// A benchmark has a name (string) and a function that will be run to 1.37 +// do the performance measurement. The optional setup and tearDown 1.38 +// arguments are functions that will be invoked before and after 1.39 +// running the benchmark, but the running time of these functions will 1.40 +// not be accounted for in the benchmark score. 1.41 +function Benchmark(name, run, setup, tearDown) { 1.42 + this.name = name; 1.43 + this.run = run; 1.44 + this.Setup = setup ? setup : function() { }; 1.45 + this.TearDown = tearDown ? tearDown : function() { }; 1.46 +} 1.47 + 1.48 + 1.49 +// Benchmark results hold the benchmark and the measured time used to 1.50 +// run the benchmark. The benchmark score is computed later once a 1.51 +// full benchmark suite has run to completion. 1.52 +function BenchmarkResult(benchmark, time) { 1.53 + this.benchmark = benchmark; 1.54 + this.time = time; 1.55 +} 1.56 + 1.57 + 1.58 +// Automatically convert results to numbers. Used by the geometric 1.59 +// mean computation. 1.60 +BenchmarkResult.prototype.valueOf = function() { 1.61 + return this.time; 1.62 +} 1.63 + 1.64 + 1.65 +// Suites of benchmarks consist of a name and the set of benchmarks in 1.66 +// addition to the reference timing that the final score will be based 1.67 +// on. This way, all scores are relative to a reference run and higher 1.68 +// scores implies better performance. 1.69 +function BenchmarkSuite(name, reference, benchmarks) { 1.70 + this.name = name; 1.71 + this.reference = reference; 1.72 + this.benchmarks = benchmarks; 1.73 + BenchmarkSuite.suites.push(this); 1.74 +} 1.75 + 1.76 + 1.77 +// Keep track of all declared benchmark suites. 1.78 +BenchmarkSuite.suites = []; 1.79 + 1.80 + 1.81 +// Scores are not comparable across versions. Bump the version if 1.82 +// you're making changes that will affect that scores, e.g. if you add 1.83 +// a new benchmark or change an existing one. 1.84 +BenchmarkSuite.version = '5'; 1.85 + 1.86 + 1.87 +// To make the benchmark results predictable, we replace Math.random 1.88 +// with a 100% deterministic alternative. 1.89 +Math.random = (function() { 1.90 + var seed = 49734321; 1.91 + return function() { 1.92 + // Robert Jenkins' 32 bit integer hash function. 1.93 + seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff; 1.94 + seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff; 1.95 + seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff; 1.96 + seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff; 1.97 + seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff; 1.98 + seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff; 1.99 + return (seed & 0xfffffff) / 0x10000000; 1.100 + }; 1.101 +})(); 1.102 + 1.103 + 1.104 +// Runs all registered benchmark suites and optionally yields between 1.105 +// each individual benchmark to avoid running for too long in the 1.106 +// context of browsers. Once done, the final score is reported to the 1.107 +// runner. 1.108 +BenchmarkSuite.RunSuites = function(runner) { 1.109 + var continuation = null; 1.110 + var suites = BenchmarkSuite.suites; 1.111 + var length = suites.length; 1.112 + BenchmarkSuite.scores = []; 1.113 + var index = 0; 1.114 + function RunStep() { 1.115 + while (continuation || index < length) { 1.116 + if (continuation) { 1.117 + continuation = continuation(); 1.118 + } else { 1.119 + var suite = suites[index++]; 1.120 + if (runner.NotifyStart) runner.NotifyStart(suite.name); 1.121 + continuation = suite.RunStep(runner); 1.122 + } 1.123 + if (continuation && typeof window != 'undefined' && window.setTimeout) { 1.124 + window.setTimeout(RunStep, 25); 1.125 + return; 1.126 + } 1.127 + } 1.128 + if (runner.NotifyScore) { 1.129 + var score = BenchmarkSuite.GeometricMean(BenchmarkSuite.scores); 1.130 + var formatted = BenchmarkSuite.FormatScore(100 * score); 1.131 + runner.NotifyScore(formatted); 1.132 + } 1.133 + } 1.134 + RunStep(); 1.135 +} 1.136 + 1.137 + 1.138 +// Counts the total number of registered benchmarks. Useful for 1.139 +// showing progress as a percentage. 1.140 +BenchmarkSuite.CountBenchmarks = function() { 1.141 + var result = 0; 1.142 + var suites = BenchmarkSuite.suites; 1.143 + for (var i = 0; i < suites.length; i++) { 1.144 + result += suites[i].benchmarks.length; 1.145 + } 1.146 + return result; 1.147 +} 1.148 + 1.149 + 1.150 +// Computes the geometric mean of a set of numbers. 1.151 +BenchmarkSuite.GeometricMean = function(numbers) { 1.152 + var log = 0; 1.153 + for (var i = 0; i < numbers.length; i++) { 1.154 + log += Math.log(numbers[i]); 1.155 + } 1.156 + return Math.pow(Math.E, log / numbers.length); 1.157 +} 1.158 + 1.159 + 1.160 +// Converts a score value to a string with at least three significant 1.161 +// digits. 1.162 +BenchmarkSuite.FormatScore = function(value) { 1.163 + if (value > 100) { 1.164 + return value.toFixed(0); 1.165 + } else { 1.166 + return value.toPrecision(3); 1.167 + } 1.168 +} 1.169 + 1.170 +// Notifies the runner that we're done running a single benchmark in 1.171 +// the benchmark suite. This can be useful to report progress. 1.172 +BenchmarkSuite.prototype.NotifyStep = function(result) { 1.173 + this.results.push(result); 1.174 + if (this.runner.NotifyStep) this.runner.NotifyStep(result.benchmark.name); 1.175 +} 1.176 + 1.177 + 1.178 +// Notifies the runner that we're done with running a suite and that 1.179 +// we have a result which can be reported to the user if needed. 1.180 +BenchmarkSuite.prototype.NotifyResult = function() { 1.181 + var mean = BenchmarkSuite.GeometricMean(this.results); 1.182 + var score = this.reference / mean; 1.183 + BenchmarkSuite.scores.push(score); 1.184 + if (this.runner.NotifyResult) { 1.185 + var formatted = BenchmarkSuite.FormatScore(100 * score); 1.186 + this.runner.NotifyResult(this.name, formatted); 1.187 + } 1.188 +} 1.189 + 1.190 + 1.191 +// Notifies the runner that running a benchmark resulted in an error. 1.192 +BenchmarkSuite.prototype.NotifyError = function(error) { 1.193 + if (this.runner.NotifyError) { 1.194 + this.runner.NotifyError(this.name, error); 1.195 + } 1.196 + if (this.runner.NotifyStep) { 1.197 + this.runner.NotifyStep(this.name); 1.198 + } 1.199 +} 1.200 + 1.201 + 1.202 +// Runs a single benchmark for at least a second and computes the 1.203 +// average time it takes to run a single iteration. 1.204 +BenchmarkSuite.prototype.RunSingleBenchmark = function(benchmark) { 1.205 + var elapsed = 0; 1.206 + var start = new Date(); 1.207 + for (var n = 0; elapsed < 20; n++) { 1.208 + benchmark.run(); 1.209 + elapsed = new Date() - start; 1.210 + } 1.211 + var usec = (elapsed * 1000) / n; 1.212 + this.NotifyStep(new BenchmarkResult(benchmark, usec)); 1.213 +} 1.214 + 1.215 + 1.216 +// This function starts running a suite, but stops between each 1.217 +// individual benchmark in the suite and returns a continuation 1.218 +// function which can be invoked to run the next benchmark. Once the 1.219 +// last benchmark has been executed, null is returned. 1.220 +BenchmarkSuite.prototype.RunStep = function(runner) { 1.221 + this.results = []; 1.222 + this.runner = runner; 1.223 + var length = this.benchmarks.length; 1.224 + var index = 0; 1.225 + var suite = this; 1.226 + 1.227 + // Run the setup, the actual benchmark, and the tear down in three 1.228 + // separate steps to allow the framework to yield between any of the 1.229 + // steps. 1.230 + 1.231 + function RunNextSetup() { 1.232 + if (index < length) { 1.233 + try { 1.234 + suite.benchmarks[index].Setup(); 1.235 + } catch (e) { 1.236 + suite.NotifyError(e); 1.237 + return null; 1.238 + } 1.239 + return RunNextBenchmark; 1.240 + } 1.241 + suite.NotifyResult(); 1.242 + return null; 1.243 + } 1.244 + 1.245 + function RunNextBenchmark() { 1.246 + try { 1.247 + suite.RunSingleBenchmark(suite.benchmarks[index]); 1.248 + } catch (e) { 1.249 + suite.NotifyError(e); 1.250 + return null; 1.251 + } 1.252 + return RunNextTearDown; 1.253 + } 1.254 + 1.255 + function RunNextTearDown() { 1.256 + try { 1.257 + suite.benchmarks[index++].TearDown(); 1.258 + } catch (e) { 1.259 + suite.NotifyError(e); 1.260 + return null; 1.261 + } 1.262 + return RunNextSetup; 1.263 + } 1.264 + 1.265 + // Start out running the setup. 1.266 + return RunNextSetup(); 1.267 +} 1.268 + 1.269 +/* 1.270 + * Copyright (c) 2003-2005 Tom Wu 1.271 + * All Rights Reserved. 1.272 + * 1.273 + * Permission is hereby granted, free of charge, to any person obtaining 1.274 + * a copy of this software and associated documentation files (the 1.275 + * "Software"), to deal in the Software without restriction, including 1.276 + * without limitation the rights to use, copy, modify, merge, publish, 1.277 + * distribute, sublicense, and/or sell copies of the Software, and to 1.278 + * permit persons to whom the Software is furnished to do so, subject to 1.279 + * the following conditions: 1.280 + * 1.281 + * The above copyright notice and this permission notice shall be 1.282 + * included in all copies or substantial portions of the Software. 1.283 + * 1.284 + * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, 1.285 + * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY 1.286 + * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 1.287 + * 1.288 + * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, 1.289 + * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER 1.290 + * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF 1.291 + * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT 1.292 + * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 1.293 + * 1.294 + * In addition, the following condition applies: 1.295 + * 1.296 + * All redistributions must retain an intact copy of this copyright notice 1.297 + * and disclaimer. 1.298 + */ 1.299 + 1.300 + 1.301 +// The code has been adapted for use as a benchmark by Google. 1.302 +var Crypto = new BenchmarkSuite('Crypto', 203037, [ 1.303 + new Benchmark("Encrypt", encrypt), 1.304 + new Benchmark("Decrypt", decrypt) 1.305 +]); 1.306 + 1.307 + 1.308 +// Basic JavaScript BN library - subset useful for RSA encryption. 1.309 + 1.310 +// Bits per digit 1.311 +var dbits; 1.312 +var BI_DB; 1.313 +var BI_DM; 1.314 +var BI_DV; 1.315 + 1.316 +var BI_FP; 1.317 +var BI_FV; 1.318 +var BI_F1; 1.319 +var BI_F2; 1.320 + 1.321 +// JavaScript engine analysis 1.322 +var canary = 0xdeadbeefcafe; 1.323 +var j_lm = ((canary&0xffffff)==0xefcafe); 1.324 + 1.325 +// (public) Constructor 1.326 +function BigInteger(a,b,c) { 1.327 + this.array = new Array(); 1.328 + if(a != null) 1.329 + if("number" == typeof a) this.fromNumber(a,b,c); 1.330 + else if(b == null && "string" != typeof a) this.fromString(a,256); 1.331 + else this.fromString(a,b); 1.332 +} 1.333 + 1.334 +// return new, unset BigInteger 1.335 +function nbi() { return new BigInteger(null); } 1.336 + 1.337 +// am: Compute w_j += (x*this_i), propagate carries, 1.338 +// c is initial carry, returns final carry. 1.339 +// c < 3*dvalue, x < 2*dvalue, this_i < dvalue 1.340 +// We need to select the fastest one that works in this environment. 1.341 + 1.342 +// am1: use a single mult and divide to get the high bits, 1.343 +// max digit bits should be 26 because 1.344 +// max internal value = 2*dvalue^2-2*dvalue (< 2^53) 1.345 +function am1(i,x,w,j,c,n) { 1.346 + var this_array = this.array; 1.347 + var w_array = w.array; 1.348 + /* BEGIN LOOP */ 1.349 + while(--n >= 0) { 1.350 + var v = x*this_array[i++]+w_array[j]+c; 1.351 + c = Math.floor(v/0x4000000); 1.352 + w_array[j++] = v&0x3ffffff; 1.353 + } 1.354 + /* END LOOP */ 1.355 + return c; 1.356 +} 1.357 + 1.358 +// am2 avoids a big mult-and-extract completely. 1.359 +// Max digit bits should be <= 30 because we do bitwise ops 1.360 +// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) 1.361 +function am2(i,x,w,j,c,n) { 1.362 + var this_array = this.array; 1.363 + var w_array = w.array; 1.364 + var xl = x&0x7fff, xh = x>>15; 1.365 + /* BEGIN LOOP */ 1.366 + while(--n >= 0) { 1.367 + var l = this_array[i]&0x7fff; 1.368 + var h = this_array[i++]>>15; 1.369 + var m = xh*l+h*xl; 1.370 + l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); 1.371 + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); 1.372 + w_array[j++] = l&0x3fffffff; 1.373 + } 1.374 + /* END LOOP */ 1.375 + return c; 1.376 +} 1.377 + 1.378 +// Alternately, set max digit bits to 28 since some 1.379 +// browsers slow down when dealing with 32-bit numbers. 1.380 +function am3(i,x,w,j,c,n) { 1.381 + var this_array = this.array; 1.382 + var w_array = w.array; 1.383 + 1.384 + var xl = x&0x3fff, xh = x>>14; 1.385 + /* BEGIN LOOP */ 1.386 + while(--n >= 0) { 1.387 + var l = this_array[i]&0x3fff; 1.388 + var h = this_array[i++]>>14; 1.389 + var m = xh*l+h*xl; 1.390 + l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; 1.391 + c = (l>>28)+(m>>14)+xh*h; 1.392 + w_array[j++] = l&0xfffffff; 1.393 + } 1.394 + /* END LOOP */ 1.395 + return c; 1.396 +} 1.397 + 1.398 +// This is tailored to VMs with 2-bit tagging. It makes sure 1.399 +// that all the computations stay within the 29 bits available. 1.400 +function am4(i,x,w,j,c,n) { 1.401 + var this_array = this.array; 1.402 + var w_array = w.array; 1.403 + 1.404 + var xl = x&0x1fff, xh = x>>13; 1.405 + /* BEGIN LOOP */ 1.406 + while(--n >= 0) { 1.407 + var l = this_array[i]&0x1fff; 1.408 + var h = this_array[i++]>>13; 1.409 + var m = xh*l+h*xl; 1.410 + l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; 1.411 + c = (l>>26)+(m>>13)+xh*h; 1.412 + w_array[j++] = l&0x3ffffff; 1.413 + } 1.414 + /* END LOOP */ 1.415 + return c; 1.416 +} 1.417 + 1.418 +// am3/28 is best for SM, Rhino, but am4/26 is best for v8. 1.419 +// Kestrel (Opera 9.5) gets its best result with am4/26. 1.420 +// IE7 does 9% better with am3/28 than with am4/26. 1.421 +// Firefox (SM) gets 10% faster with am3/28 than with am4/26. 1.422 + 1.423 +setupEngine = function(fn, bits) { 1.424 + BigInteger.prototype.am = fn; 1.425 + dbits = bits; 1.426 + 1.427 + BI_DB = dbits; 1.428 + BI_DM = ((1<<dbits)-1); 1.429 + BI_DV = (1<<dbits); 1.430 + 1.431 + BI_FP = 52; 1.432 + BI_FV = Math.pow(2,BI_FP); 1.433 + BI_F1 = BI_FP-dbits; 1.434 + BI_F2 = 2*dbits-BI_FP; 1.435 +} 1.436 + 1.437 + 1.438 +// Digit conversions 1.439 +var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; 1.440 +var BI_RC = new Array(); 1.441 +var rr,vv; 1.442 +rr = "0".charCodeAt(0); 1.443 + /* BEGIN LOOP */ 1.444 +for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; 1.445 + /* END LOOP */ 1.446 +rr = "a".charCodeAt(0); 1.447 + /* BEGIN LOOP */ 1.448 +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 1.449 + /* END LOOP */ 1.450 +rr = "A".charCodeAt(0); 1.451 + /* BEGIN LOOP */ 1.452 +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 1.453 + /* END LOOP */ 1.454 + 1.455 +function int2char(n) { return BI_RM.charAt(n); } 1.456 +function intAt(s,i) { 1.457 + var c = BI_RC[s.charCodeAt(i)]; 1.458 + return (c==null)?-1:c; 1.459 +} 1.460 + 1.461 +// (protected) copy this to r 1.462 +function bnpCopyTo(r) { 1.463 + var this_array = this.array; 1.464 + var r_array = r.array; 1.465 + 1.466 + /* BEGIN LOOP */ 1.467 + for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; 1.468 + /* END LOOP */ 1.469 + r.t = this.t; 1.470 + r.s = this.s; 1.471 +} 1.472 + 1.473 +// (protected) set from integer value x, -DV <= x < DV 1.474 +function bnpFromInt(x) { 1.475 + var this_array = this.array; 1.476 + this.t = 1; 1.477 + this.s = (x<0)?-1:0; 1.478 + if(x > 0) this_array[0] = x; 1.479 + else if(x < -1) this_array[0] = x+DV; 1.480 + else this.t = 0; 1.481 +} 1.482 + 1.483 +// return bigint initialized to value 1.484 +function nbv(i) { var r = nbi(); r.fromInt(i); return r; } 1.485 + 1.486 +// (protected) set from string and radix 1.487 +function bnpFromString(s,b) { 1.488 + var this_array = this.array; 1.489 + var k; 1.490 + if(b == 16) k = 4; 1.491 + else if(b == 8) k = 3; 1.492 + else if(b == 256) k = 8; // byte array 1.493 + else if(b == 2) k = 1; 1.494 + else if(b == 32) k = 5; 1.495 + else if(b == 4) k = 2; 1.496 + else { this.fromRadix(s,b); return; } 1.497 + this.t = 0; 1.498 + this.s = 0; 1.499 + var i = s.length, mi = false, sh = 0; 1.500 + /* BEGIN LOOP */ 1.501 + while(--i >= 0) { 1.502 + var x = (k==8)?s[i]&0xff:intAt(s,i); 1.503 + if(x < 0) { 1.504 + if(s.charAt(i) == "-") mi = true; 1.505 + continue; 1.506 + } 1.507 + mi = false; 1.508 + if(sh == 0) 1.509 + this_array[this.t++] = x; 1.510 + else if(sh+k > BI_DB) { 1.511 + this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; 1.512 + this_array[this.t++] = (x>>(BI_DB-sh)); 1.513 + } 1.514 + else 1.515 + this_array[this.t-1] |= x<<sh; 1.516 + sh += k; 1.517 + if(sh >= BI_DB) sh -= BI_DB; 1.518 + } 1.519 + /* END LOOP */ 1.520 + if(k == 8 && (s[0]&0x80) != 0) { 1.521 + this.s = -1; 1.522 + if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; 1.523 + } 1.524 + this.clamp(); 1.525 + if(mi) BigInteger.ZERO.subTo(this,this); 1.526 +} 1.527 + 1.528 +// (protected) clamp off excess high words 1.529 +function bnpClamp() { 1.530 + var this_array = this.array; 1.531 + var c = this.s&BI_DM; 1.532 + /* BEGIN LOOP */ 1.533 + while(this.t > 0 && this_array[this.t-1] == c) --this.t; 1.534 + /* END LOOP */ 1.535 +} 1.536 + 1.537 +// (public) return string representation in given radix 1.538 +function bnToString(b) { 1.539 + var this_array = this.array; 1.540 + if(this.s < 0) return "-"+this.negate().toString(b); 1.541 + var k; 1.542 + if(b == 16) k = 4; 1.543 + else if(b == 8) k = 3; 1.544 + else if(b == 2) k = 1; 1.545 + else if(b == 32) k = 5; 1.546 + else if(b == 4) k = 2; 1.547 + else return this.toRadix(b); 1.548 + var km = (1<<k)-1, d, m = false, r = "", i = this.t; 1.549 + var p = BI_DB-(i*BI_DB)%k; 1.550 + if(i-- > 0) { 1.551 + if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } 1.552 + /* BEGIN LOOP */ 1.553 + while(i >= 0) { 1.554 + if(p < k) { 1.555 + d = (this_array[i]&((1<<p)-1))<<(k-p); 1.556 + d |= this_array[--i]>>(p+=BI_DB-k); 1.557 + } 1.558 + else { 1.559 + d = (this_array[i]>>(p-=k))&km; 1.560 + if(p <= 0) { p += BI_DB; --i; } 1.561 + } 1.562 + if(d > 0) m = true; 1.563 + if(m) r += int2char(d); 1.564 + } 1.565 + /* END LOOP */ 1.566 + } 1.567 + return m?r:"0"; 1.568 +} 1.569 + 1.570 +// (public) -this 1.571 +function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } 1.572 + 1.573 +// (public) |this| 1.574 +function bnAbs() { return (this.s<0)?this.negate():this; } 1.575 + 1.576 +// (public) return + if this > a, - if this < a, 0 if equal 1.577 +function bnCompareTo(a) { 1.578 + var this_array = this.array; 1.579 + var a_array = a.array; 1.580 + 1.581 + var r = this.s-a.s; 1.582 + if(r != 0) return r; 1.583 + var i = this.t; 1.584 + r = i-a.t; 1.585 + if(r != 0) return r; 1.586 + /* BEGIN LOOP */ 1.587 + while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; 1.588 + /* END LOOP */ 1.589 + return 0; 1.590 +} 1.591 + 1.592 +// returns bit length of the integer x 1.593 +function nbits(x) { 1.594 + var r = 1, t; 1.595 + if((t=x>>>16) != 0) { x = t; r += 16; } 1.596 + if((t=x>>8) != 0) { x = t; r += 8; } 1.597 + if((t=x>>4) != 0) { x = t; r += 4; } 1.598 + if((t=x>>2) != 0) { x = t; r += 2; } 1.599 + if((t=x>>1) != 0) { x = t; r += 1; } 1.600 + return r; 1.601 +} 1.602 + 1.603 +// (public) return the number of bits in "this" 1.604 +function bnBitLength() { 1.605 + var this_array = this.array; 1.606 + if(this.t <= 0) return 0; 1.607 + return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); 1.608 +} 1.609 + 1.610 +// (protected) r = this << n*DB 1.611 +function bnpDLShiftTo(n,r) { 1.612 + var this_array = this.array; 1.613 + var r_array = r.array; 1.614 + var i; 1.615 + /* BEGIN LOOP */ 1.616 + for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; 1.617 + /* END LOOP */ 1.618 + /* BEGIN LOOP */ 1.619 + for(i = n-1; i >= 0; --i) r_array[i] = 0; 1.620 + /* END LOOP */ 1.621 + r.t = this.t+n; 1.622 + r.s = this.s; 1.623 +} 1.624 + 1.625 +// (protected) r = this >> n*DB 1.626 +function bnpDRShiftTo(n,r) { 1.627 + var this_array = this.array; 1.628 + var r_array = r.array; 1.629 + /* BEGIN LOOP */ 1.630 + for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; 1.631 + /* END LOOP */ 1.632 + r.t = Math.max(this.t-n,0); 1.633 + r.s = this.s; 1.634 +} 1.635 + 1.636 +// (protected) r = this << n 1.637 +function bnpLShiftTo(n,r) { 1.638 + var this_array = this.array; 1.639 + var r_array = r.array; 1.640 + var bs = n%BI_DB; 1.641 + var cbs = BI_DB-bs; 1.642 + var bm = (1<<cbs)-1; 1.643 + var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; 1.644 + /* BEGIN LOOP */ 1.645 + for(i = this.t-1; i >= 0; --i) { 1.646 + r_array[i+ds+1] = (this_array[i]>>cbs)|c; 1.647 + c = (this_array[i]&bm)<<bs; 1.648 + } 1.649 + /* END LOOP */ 1.650 + /* BEGIN LOOP */ 1.651 + for(i = ds-1; i >= 0; --i) r_array[i] = 0; 1.652 + /* END LOOP */ 1.653 + r_array[ds] = c; 1.654 + r.t = this.t+ds+1; 1.655 + r.s = this.s; 1.656 + r.clamp(); 1.657 +} 1.658 + 1.659 +// (protected) r = this >> n 1.660 +function bnpRShiftTo(n,r) { 1.661 + var this_array = this.array; 1.662 + var r_array = r.array; 1.663 + r.s = this.s; 1.664 + var ds = Math.floor(n/BI_DB); 1.665 + if(ds >= this.t) { r.t = 0; return; } 1.666 + var bs = n%BI_DB; 1.667 + var cbs = BI_DB-bs; 1.668 + var bm = (1<<bs)-1; 1.669 + r_array[0] = this_array[ds]>>bs; 1.670 + /* BEGIN LOOP */ 1.671 + for(var i = ds+1; i < this.t; ++i) { 1.672 + r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; 1.673 + r_array[i-ds] = this_array[i]>>bs; 1.674 + } 1.675 + /* END LOOP */ 1.676 + if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; 1.677 + r.t = this.t-ds; 1.678 + r.clamp(); 1.679 +} 1.680 + 1.681 +// (protected) r = this - a 1.682 +function bnpSubTo(a,r) { 1.683 + var this_array = this.array; 1.684 + var r_array = r.array; 1.685 + var a_array = a.array; 1.686 + var i = 0, c = 0, m = Math.min(a.t,this.t); 1.687 + /* BEGIN LOOP */ 1.688 + while(i < m) { 1.689 + c += this_array[i]-a_array[i]; 1.690 + r_array[i++] = c&BI_DM; 1.691 + c >>= BI_DB; 1.692 + } 1.693 + /* END LOOP */ 1.694 + if(a.t < this.t) { 1.695 + c -= a.s; 1.696 + /* BEGIN LOOP */ 1.697 + while(i < this.t) { 1.698 + c += this_array[i]; 1.699 + r_array[i++] = c&BI_DM; 1.700 + c >>= BI_DB; 1.701 + } 1.702 + /* END LOOP */ 1.703 + c += this.s; 1.704 + } 1.705 + else { 1.706 + c += this.s; 1.707 + /* BEGIN LOOP */ 1.708 + while(i < a.t) { 1.709 + c -= a_array[i]; 1.710 + r_array[i++] = c&BI_DM; 1.711 + c >>= BI_DB; 1.712 + } 1.713 + /* END LOOP */ 1.714 + c -= a.s; 1.715 + } 1.716 + r.s = (c<0)?-1:0; 1.717 + if(c < -1) r_array[i++] = BI_DV+c; 1.718 + else if(c > 0) r_array[i++] = c; 1.719 + r.t = i; 1.720 + r.clamp(); 1.721 +} 1.722 + 1.723 +// (protected) r = this * a, r != this,a (HAC 14.12) 1.724 +// "this" should be the larger one if appropriate. 1.725 +function bnpMultiplyTo(a,r) { 1.726 + var this_array = this.array; 1.727 + var r_array = r.array; 1.728 + var x = this.abs(), y = a.abs(); 1.729 + var y_array = y.array; 1.730 + 1.731 + var i = x.t; 1.732 + r.t = i+y.t; 1.733 + /* BEGIN LOOP */ 1.734 + while(--i >= 0) r_array[i] = 0; 1.735 + /* END LOOP */ 1.736 + /* BEGIN LOOP */ 1.737 + for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); 1.738 + r.s = 0; 1.739 + r.clamp(); 1.740 + if(this.s != a.s) BigInteger.ZERO.subTo(r,r); 1.741 +} 1.742 + 1.743 +// (protected) r = this^2, r != this (HAC 14.16) 1.744 +function bnpSquareTo(r) { 1.745 + var x = this.abs(); 1.746 + var x_array = x.array; 1.747 + var r_array = r.array; 1.748 + 1.749 + var i = r.t = 2*x.t; 1.750 + /* BEGIN LOOP */ 1.751 + while(--i >= 0) r_array[i] = 0; 1.752 + /* END LOOP */ 1.753 + /* BEGIN LOOP */ 1.754 + for(i = 0; i < x.t-1; ++i) { 1.755 + var c = x.am(i,x_array[i],r,2*i,0,1); 1.756 + if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { 1.757 + r_array[i+x.t] -= BI_DV; 1.758 + r_array[i+x.t+1] = 1; 1.759 + } 1.760 + } 1.761 + /* END LOOP */ 1.762 + if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); 1.763 + r.s = 0; 1.764 + r.clamp(); 1.765 +} 1.766 + 1.767 +// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) 1.768 +// r != q, this != m. q or r may be null. 1.769 +function bnpDivRemTo(m,q,r) { 1.770 + var pm = m.abs(); 1.771 + if(pm.t <= 0) return; 1.772 + var pt = this.abs(); 1.773 + if(pt.t < pm.t) { 1.774 + if(q != null) q.fromInt(0); 1.775 + if(r != null) this.copyTo(r); 1.776 + return; 1.777 + } 1.778 + if(r == null) r = nbi(); 1.779 + var y = nbi(), ts = this.s, ms = m.s; 1.780 + var pm_array = pm.array; 1.781 + var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus 1.782 + if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } 1.783 + else { pm.copyTo(y); pt.copyTo(r); } 1.784 + var ys = y.t; 1.785 + 1.786 + var y_array = y.array; 1.787 + var y0 = y_array[ys-1]; 1.788 + if(y0 == 0) return; 1.789 + var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); 1.790 + var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; 1.791 + var i = r.t, j = i-ys, t = (q==null)?nbi():q; 1.792 + y.dlShiftTo(j,t); 1.793 + 1.794 + var r_array = r.array; 1.795 + if(r.compareTo(t) >= 0) { 1.796 + r_array[r.t++] = 1; 1.797 + r.subTo(t,r); 1.798 + } 1.799 + BigInteger.ONE.dlShiftTo(ys,t); 1.800 + t.subTo(y,y); // "negative" y so we can replace sub with am later 1.801 + /* BEGIN LOOP */ 1.802 + while(y.t < ys) y_array[y.t++] = 0; 1.803 + /* END LOOP */ 1.804 + /* BEGIN LOOP */ 1.805 + while(--j >= 0) { 1.806 + // Estimate quotient digit 1.807 + var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2); 1.808 + if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out 1.809 + y.dlShiftTo(j,t); 1.810 + r.subTo(t,r); 1.811 + /* BEGIN LOOP */ 1.812 + while(r_array[i] < --qd) r.subTo(t,r); 1.813 + /* END LOOP */ 1.814 + } 1.815 + } 1.816 + /* END LOOP */ 1.817 + if(q != null) { 1.818 + r.drShiftTo(ys,q); 1.819 + if(ts != ms) BigInteger.ZERO.subTo(q,q); 1.820 + } 1.821 + r.t = ys; 1.822 + r.clamp(); 1.823 + if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder 1.824 + if(ts < 0) BigInteger.ZERO.subTo(r,r); 1.825 +} 1.826 + 1.827 +// (public) this mod a 1.828 +function bnMod(a) { 1.829 + var r = nbi(); 1.830 + this.abs().divRemTo(a,null,r); 1.831 + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); 1.832 + return r; 1.833 +} 1.834 + 1.835 +// Modular reduction using "classic" algorithm 1.836 +function Classic(m) { this.m = m; } 1.837 +function cConvert(x) { 1.838 + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); 1.839 + else return x; 1.840 +} 1.841 +function cRevert(x) { return x; } 1.842 +function cReduce(x) { x.divRemTo(this.m,null,x); } 1.843 +function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 1.844 +function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 1.845 + 1.846 +Classic.prototype.convert = cConvert; 1.847 +Classic.prototype.revert = cRevert; 1.848 +Classic.prototype.reduce = cReduce; 1.849 +Classic.prototype.mulTo = cMulTo; 1.850 +Classic.prototype.sqrTo = cSqrTo; 1.851 + 1.852 +// (protected) return "-1/this % 2^DB"; useful for Mont. reduction 1.853 +// justification: 1.854 +// xy == 1 (mod m) 1.855 +// xy = 1+km 1.856 +// xy(2-xy) = (1+km)(1-km) 1.857 +// x[y(2-xy)] = 1-k^2m^2 1.858 +// x[y(2-xy)] == 1 (mod m^2) 1.859 +// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 1.860 +// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. 1.861 +// JS multiply "overflows" differently from C/C++, so care is needed here. 1.862 +function bnpInvDigit() { 1.863 + var this_array = this.array; 1.864 + if(this.t < 1) return 0; 1.865 + var x = this_array[0]; 1.866 + if((x&1) == 0) return 0; 1.867 + var y = x&3; // y == 1/x mod 2^2 1.868 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 1.869 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 1.870 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 1.871 + // last step - calculate inverse mod DV directly; 1.872 + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints 1.873 + y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits 1.874 + // we really want the negative inverse, and -DV < y < DV 1.875 + return (y>0)?BI_DV-y:-y; 1.876 +} 1.877 + 1.878 +// Montgomery reduction 1.879 +function Montgomery(m) { 1.880 + this.m = m; 1.881 + this.mp = m.invDigit(); 1.882 + this.mpl = this.mp&0x7fff; 1.883 + this.mph = this.mp>>15; 1.884 + this.um = (1<<(BI_DB-15))-1; 1.885 + this.mt2 = 2*m.t; 1.886 +} 1.887 + 1.888 +// xR mod m 1.889 +function montConvert(x) { 1.890 + var r = nbi(); 1.891 + x.abs().dlShiftTo(this.m.t,r); 1.892 + r.divRemTo(this.m,null,r); 1.893 + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); 1.894 + return r; 1.895 +} 1.896 + 1.897 +// x/R mod m 1.898 +function montRevert(x) { 1.899 + var r = nbi(); 1.900 + x.copyTo(r); 1.901 + this.reduce(r); 1.902 + return r; 1.903 +} 1.904 + 1.905 +// x = x/R mod m (HAC 14.32) 1.906 +function montReduce(x) { 1.907 + var x_array = x.array; 1.908 + /* BEGIN LOOP */ 1.909 + while(x.t <= this.mt2) // pad x so am has enough room later 1.910 + x_array[x.t++] = 0; 1.911 + /* END LOOP */ 1.912 + /* BEGIN LOOP */ 1.913 + for(var i = 0; i < this.m.t; ++i) { 1.914 + // faster way of calculating u0 = x[i]*mp mod DV 1.915 + var j = x_array[i]&0x7fff; 1.916 + var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM; 1.917 + // use am to combine the multiply-shift-add into one call 1.918 + j = i+this.m.t; 1.919 + x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); 1.920 + // propagate carry 1.921 + /* BEGIN LOOP */ 1.922 + while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } 1.923 + /* BEGIN LOOP */ 1.924 + } 1.925 + /* END LOOP */ 1.926 + x.clamp(); 1.927 + x.drShiftTo(this.m.t,x); 1.928 + if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 1.929 +} 1.930 + 1.931 +// r = "x^2/R mod m"; x != r 1.932 +function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 1.933 + 1.934 +// r = "xy/R mod m"; x,y != r 1.935 +function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 1.936 + 1.937 +Montgomery.prototype.convert = montConvert; 1.938 +Montgomery.prototype.revert = montRevert; 1.939 +Montgomery.prototype.reduce = montReduce; 1.940 +Montgomery.prototype.mulTo = montMulTo; 1.941 +Montgomery.prototype.sqrTo = montSqrTo; 1.942 + 1.943 +// (protected) true iff this is even 1.944 +function bnpIsEven() { 1.945 + var this_array = this.array; 1.946 + return ((this.t>0)?(this_array[0]&1):this.s) == 0; 1.947 +} 1.948 + 1.949 +// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) 1.950 +function bnpExp(e,z) { 1.951 + if(e > 0xffffffff || e < 1) return BigInteger.ONE; 1.952 + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; 1.953 + g.copyTo(r); 1.954 + /* BEGIN LOOP */ 1.955 + while(--i >= 0) { 1.956 + z.sqrTo(r,r2); 1.957 + if((e&(1<<i)) > 0) z.mulTo(r2,g,r); 1.958 + else { var t = r; r = r2; r2 = t; } 1.959 + } 1.960 + /* END LOOP */ 1.961 + return z.revert(r); 1.962 +} 1.963 + 1.964 +// (public) this^e % m, 0 <= e < 2^32 1.965 +function bnModPowInt(e,m) { 1.966 + var z; 1.967 + if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); 1.968 + return this.exp(e,z); 1.969 +} 1.970 + 1.971 +// protected 1.972 +BigInteger.prototype.copyTo = bnpCopyTo; 1.973 +BigInteger.prototype.fromInt = bnpFromInt; 1.974 +BigInteger.prototype.fromString = bnpFromString; 1.975 +BigInteger.prototype.clamp = bnpClamp; 1.976 +BigInteger.prototype.dlShiftTo = bnpDLShiftTo; 1.977 +BigInteger.prototype.drShiftTo = bnpDRShiftTo; 1.978 +BigInteger.prototype.lShiftTo = bnpLShiftTo; 1.979 +BigInteger.prototype.rShiftTo = bnpRShiftTo; 1.980 +BigInteger.prototype.subTo = bnpSubTo; 1.981 +BigInteger.prototype.multiplyTo = bnpMultiplyTo; 1.982 +BigInteger.prototype.squareTo = bnpSquareTo; 1.983 +BigInteger.prototype.divRemTo = bnpDivRemTo; 1.984 +BigInteger.prototype.invDigit = bnpInvDigit; 1.985 +BigInteger.prototype.isEven = bnpIsEven; 1.986 +BigInteger.prototype.exp = bnpExp; 1.987 + 1.988 +// public 1.989 +BigInteger.prototype.toString = bnToString; 1.990 +BigInteger.prototype.negate = bnNegate; 1.991 +BigInteger.prototype.abs = bnAbs; 1.992 +BigInteger.prototype.compareTo = bnCompareTo; 1.993 +BigInteger.prototype.bitLength = bnBitLength; 1.994 +BigInteger.prototype.mod = bnMod; 1.995 +BigInteger.prototype.modPowInt = bnModPowInt; 1.996 + 1.997 +// "constants" 1.998 +BigInteger.ZERO = nbv(0); 1.999 +BigInteger.ONE = nbv(1); 1.1000 +// Copyright (c) 2005 Tom Wu 1.1001 +// All Rights Reserved. 1.1002 +// See "LICENSE" for details. 1.1003 + 1.1004 +// Extended JavaScript BN functions, required for RSA private ops. 1.1005 + 1.1006 +// (public) 1.1007 +function bnClone() { var r = nbi(); this.copyTo(r); return r; } 1.1008 + 1.1009 +// (public) return value as integer 1.1010 +function bnIntValue() { 1.1011 + var this_array = this.array; 1.1012 + if(this.s < 0) { 1.1013 + if(this.t == 1) return this_array[0]-BI_DV; 1.1014 + else if(this.t == 0) return -1; 1.1015 + } 1.1016 + else if(this.t == 1) return this_array[0]; 1.1017 + else if(this.t == 0) return 0; 1.1018 + // assumes 16 < DB < 32 1.1019 + return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; 1.1020 +} 1.1021 + 1.1022 +// (public) return value as byte 1.1023 +function bnByteValue() { 1.1024 + var this_array = this.array; 1.1025 + return (this.t==0)?this.s:(this_array[0]<<24)>>24; 1.1026 +} 1.1027 + 1.1028 +// (public) return value as short (assumes DB>=16) 1.1029 +function bnShortValue() { 1.1030 + var this_array = this.array; 1.1031 + return (this.t==0)?this.s:(this_array[0]<<16)>>16; 1.1032 +} 1.1033 + 1.1034 +// (protected) return x s.t. r^x < DV 1.1035 +function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } 1.1036 + 1.1037 +// (public) 0 if this == 0, 1 if this > 0 1.1038 +function bnSigNum() { 1.1039 + var this_array = this.array; 1.1040 + if(this.s < 0) return -1; 1.1041 + else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; 1.1042 + else return 1; 1.1043 +} 1.1044 + 1.1045 +// (protected) convert to radix string 1.1046 +function bnpToRadix(b) { 1.1047 + if(b == null) b = 10; 1.1048 + if(this.signum() == 0 || b < 2 || b > 36) return "0"; 1.1049 + var cs = this.chunkSize(b); 1.1050 + var a = Math.pow(b,cs); 1.1051 + var d = nbv(a), y = nbi(), z = nbi(), r = ""; 1.1052 + this.divRemTo(d,y,z); 1.1053 + /* BEGIN LOOP */ 1.1054 + while(y.signum() > 0) { 1.1055 + r = (a+z.intValue()).toString(b).substr(1) + r; 1.1056 + y.divRemTo(d,y,z); 1.1057 + } 1.1058 + /* END LOOP */ 1.1059 + return z.intValue().toString(b) + r; 1.1060 +} 1.1061 + 1.1062 +// (protected) convert from radix string 1.1063 +function bnpFromRadix(s,b) { 1.1064 + this.fromInt(0); 1.1065 + if(b == null) b = 10; 1.1066 + var cs = this.chunkSize(b); 1.1067 + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; 1.1068 + /* BEGIN LOOP */ 1.1069 + for(var i = 0; i < s.length; ++i) { 1.1070 + var x = intAt(s,i); 1.1071 + if(x < 0) { 1.1072 + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; 1.1073 + continue; 1.1074 + } 1.1075 + w = b*w+x; 1.1076 + if(++j >= cs) { 1.1077 + this.dMultiply(d); 1.1078 + this.dAddOffset(w,0); 1.1079 + j = 0; 1.1080 + w = 0; 1.1081 + } 1.1082 + } 1.1083 + /* END LOOP */ 1.1084 + if(j > 0) { 1.1085 + this.dMultiply(Math.pow(b,j)); 1.1086 + this.dAddOffset(w,0); 1.1087 + } 1.1088 + if(mi) BigInteger.ZERO.subTo(this,this); 1.1089 +} 1.1090 + 1.1091 +// (protected) alternate constructor 1.1092 +function bnpFromNumber(a,b,c) { 1.1093 + if("number" == typeof b) { 1.1094 + // new BigInteger(int,int,RNG) 1.1095 + if(a < 2) this.fromInt(1); 1.1096 + else { 1.1097 + this.fromNumber(a,c); 1.1098 + if(!this.testBit(a-1)) // force MSB set 1.1099 + this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); 1.1100 + if(this.isEven()) this.dAddOffset(1,0); // force odd 1.1101 + /* BEGIN LOOP */ 1.1102 + while(!this.isProbablePrime(b)) { 1.1103 + this.dAddOffset(2,0); 1.1104 + if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); 1.1105 + } 1.1106 + /* END LOOP */ 1.1107 + } 1.1108 + } 1.1109 + else { 1.1110 + // new BigInteger(int,RNG) 1.1111 + var x = new Array(), t = a&7; 1.1112 + x.length = (a>>3)+1; 1.1113 + b.nextBytes(x); 1.1114 + if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; 1.1115 + this.fromString(x,256); 1.1116 + } 1.1117 +} 1.1118 + 1.1119 +// (public) convert to bigendian byte array 1.1120 +function bnToByteArray() { 1.1121 + var this_array = this.array; 1.1122 + var i = this.t, r = new Array(); 1.1123 + r[0] = this.s; 1.1124 + var p = BI_DB-(i*BI_DB)%8, d, k = 0; 1.1125 + if(i-- > 0) { 1.1126 + if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) 1.1127 + r[k++] = d|(this.s<<(BI_DB-p)); 1.1128 + /* BEGIN LOOP */ 1.1129 + while(i >= 0) { 1.1130 + if(p < 8) { 1.1131 + d = (this_array[i]&((1<<p)-1))<<(8-p); 1.1132 + d |= this_array[--i]>>(p+=BI_DB-8); 1.1133 + } 1.1134 + else { 1.1135 + d = (this_array[i]>>(p-=8))&0xff; 1.1136 + if(p <= 0) { p += BI_DB; --i; } 1.1137 + } 1.1138 + if((d&0x80) != 0) d |= -256; 1.1139 + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; 1.1140 + if(k > 0 || d != this.s) r[k++] = d; 1.1141 + } 1.1142 + /* END LOOP */ 1.1143 + } 1.1144 + return r; 1.1145 +} 1.1146 + 1.1147 +function bnEquals(a) { return(this.compareTo(a)==0); } 1.1148 +function bnMin(a) { return(this.compareTo(a)<0)?this:a; } 1.1149 +function bnMax(a) { return(this.compareTo(a)>0)?this:a; } 1.1150 + 1.1151 +// (protected) r = this op a (bitwise) 1.1152 +function bnpBitwiseTo(a,op,r) { 1.1153 + var this_array = this.array; 1.1154 + var a_array = a.array; 1.1155 + var r_array = r.array; 1.1156 + var i, f, m = Math.min(a.t,this.t); 1.1157 + /* BEGIN LOOP */ 1.1158 + for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); 1.1159 + /* END LOOP */ 1.1160 + if(a.t < this.t) { 1.1161 + f = a.s&BI_DM; 1.1162 + /* BEGIN LOOP */ 1.1163 + for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); 1.1164 + /* END LOOP */ 1.1165 + r.t = this.t; 1.1166 + } 1.1167 + else { 1.1168 + f = this.s&BI_DM; 1.1169 + /* BEGIN LOOP */ 1.1170 + for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); 1.1171 + /* END LOOP */ 1.1172 + r.t = a.t; 1.1173 + } 1.1174 + r.s = op(this.s,a.s); 1.1175 + r.clamp(); 1.1176 +} 1.1177 + 1.1178 +// (public) this & a 1.1179 +function op_and(x,y) { return x&y; } 1.1180 +function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } 1.1181 + 1.1182 +// (public) this | a 1.1183 +function op_or(x,y) { return x|y; } 1.1184 +function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } 1.1185 + 1.1186 +// (public) this ^ a 1.1187 +function op_xor(x,y) { return x^y; } 1.1188 +function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } 1.1189 + 1.1190 +// (public) this & ~a 1.1191 +function op_andnot(x,y) { return x&~y; } 1.1192 +function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } 1.1193 + 1.1194 +// (public) ~this 1.1195 +function bnNot() { 1.1196 + var this_array = this.array; 1.1197 + var r = nbi(); 1.1198 + var r_array = r.array; 1.1199 + 1.1200 + /* BEGIN LOOP */ 1.1201 + for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; 1.1202 + /* END LOOP */ 1.1203 + r.t = this.t; 1.1204 + r.s = ~this.s; 1.1205 + return r; 1.1206 +} 1.1207 + 1.1208 +// (public) this << n 1.1209 +function bnShiftLeft(n) { 1.1210 + var r = nbi(); 1.1211 + if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); 1.1212 + return r; 1.1213 +} 1.1214 + 1.1215 +// (public) this >> n 1.1216 +function bnShiftRight(n) { 1.1217 + var r = nbi(); 1.1218 + if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); 1.1219 + return r; 1.1220 +} 1.1221 + 1.1222 +// return index of lowest 1-bit in x, x < 2^31 1.1223 +function lbit(x) { 1.1224 + if(x == 0) return -1; 1.1225 + var r = 0; 1.1226 + if((x&0xffff) == 0) { x >>= 16; r += 16; } 1.1227 + if((x&0xff) == 0) { x >>= 8; r += 8; } 1.1228 + if((x&0xf) == 0) { x >>= 4; r += 4; } 1.1229 + if((x&3) == 0) { x >>= 2; r += 2; } 1.1230 + if((x&1) == 0) ++r; 1.1231 + return r; 1.1232 +} 1.1233 + 1.1234 +// (public) returns index of lowest 1-bit (or -1 if none) 1.1235 +function bnGetLowestSetBit() { 1.1236 + var this_array = this.array; 1.1237 + /* BEGIN LOOP */ 1.1238 + for(var i = 0; i < this.t; ++i) 1.1239 + if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); 1.1240 + /* END LOOP */ 1.1241 + if(this.s < 0) return this.t*BI_DB; 1.1242 + return -1; 1.1243 +} 1.1244 + 1.1245 +// return number of 1 bits in x 1.1246 +function cbit(x) { 1.1247 + var r = 0; 1.1248 + /* BEGIN LOOP */ 1.1249 + while(x != 0) { x &= x-1; ++r; } 1.1250 + /* END LOOP */ 1.1251 + return r; 1.1252 +} 1.1253 + 1.1254 +// (public) return number of set bits 1.1255 +function bnBitCount() { 1.1256 + var r = 0, x = this.s&BI_DM; 1.1257 + /* BEGIN LOOP */ 1.1258 + for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); 1.1259 + /* END LOOP */ 1.1260 + return r; 1.1261 +} 1.1262 + 1.1263 +// (public) true iff nth bit is set 1.1264 +function bnTestBit(n) { 1.1265 + var this_array = this.array; 1.1266 + var j = Math.floor(n/BI_DB); 1.1267 + if(j >= this.t) return(this.s!=0); 1.1268 + return((this_array[j]&(1<<(n%BI_DB)))!=0); 1.1269 +} 1.1270 + 1.1271 +// (protected) this op (1<<n) 1.1272 +function bnpChangeBit(n,op) { 1.1273 + var r = BigInteger.ONE.shiftLeft(n); 1.1274 + this.bitwiseTo(r,op,r); 1.1275 + return r; 1.1276 +} 1.1277 + 1.1278 +// (public) this | (1<<n) 1.1279 +function bnSetBit(n) { return this.changeBit(n,op_or); } 1.1280 + 1.1281 +// (public) this & ~(1<<n) 1.1282 +function bnClearBit(n) { return this.changeBit(n,op_andnot); } 1.1283 + 1.1284 +// (public) this ^ (1<<n) 1.1285 +function bnFlipBit(n) { return this.changeBit(n,op_xor); } 1.1286 + 1.1287 +// (protected) r = this + a 1.1288 +function bnpAddTo(a,r) { 1.1289 + var this_array = this.array; 1.1290 + var a_array = a.array; 1.1291 + var r_array = r.array; 1.1292 + var i = 0, c = 0, m = Math.min(a.t,this.t); 1.1293 + /* BEGIN LOOP */ 1.1294 + while(i < m) { 1.1295 + c += this_array[i]+a_array[i]; 1.1296 + r_array[i++] = c&BI_DM; 1.1297 + c >>= BI_DB; 1.1298 + } 1.1299 + /* END LOOP */ 1.1300 + if(a.t < this.t) { 1.1301 + c += a.s; 1.1302 + /* BEGIN LOOP */ 1.1303 + while(i < this.t) { 1.1304 + c += this_array[i]; 1.1305 + r_array[i++] = c&BI_DM; 1.1306 + c >>= BI_DB; 1.1307 + } 1.1308 + /* END LOOP */ 1.1309 + c += this.s; 1.1310 + } 1.1311 + else { 1.1312 + c += this.s; 1.1313 + /* BEGIN LOOP */ 1.1314 + while(i < a.t) { 1.1315 + c += a_array[i]; 1.1316 + r_array[i++] = c&BI_DM; 1.1317 + c >>= BI_DB; 1.1318 + } 1.1319 + /* END LOOP */ 1.1320 + c += a.s; 1.1321 + } 1.1322 + r.s = (c<0)?-1:0; 1.1323 + if(c > 0) r_array[i++] = c; 1.1324 + else if(c < -1) r_array[i++] = BI_DV+c; 1.1325 + r.t = i; 1.1326 + r.clamp(); 1.1327 +} 1.1328 + 1.1329 +// (public) this + a 1.1330 +function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } 1.1331 + 1.1332 +// (public) this - a 1.1333 +function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } 1.1334 + 1.1335 +// (public) this * a 1.1336 +function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } 1.1337 + 1.1338 +// (public) this / a 1.1339 +function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } 1.1340 + 1.1341 +// (public) this % a 1.1342 +function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } 1.1343 + 1.1344 +// (public) [this/a,this%a] 1.1345 +function bnDivideAndRemainder(a) { 1.1346 + var q = nbi(), r = nbi(); 1.1347 + this.divRemTo(a,q,r); 1.1348 + return new Array(q,r); 1.1349 +} 1.1350 + 1.1351 +// (protected) this *= n, this >= 0, 1 < n < DV 1.1352 +function bnpDMultiply(n) { 1.1353 + var this_array = this.array; 1.1354 + this_array[this.t] = this.am(0,n-1,this,0,0,this.t); 1.1355 + ++this.t; 1.1356 + this.clamp(); 1.1357 +} 1.1358 + 1.1359 +// (protected) this += n << w words, this >= 0 1.1360 +function bnpDAddOffset(n,w) { 1.1361 + var this_array = this.array; 1.1362 + /* BEGIN LOOP */ 1.1363 + while(this.t <= w) this_array[this.t++] = 0; 1.1364 + /* END LOOP */ 1.1365 + this_array[w] += n; 1.1366 + /* BEGIN LOOP */ 1.1367 + while(this_array[w] >= BI_DV) { 1.1368 + this_array[w] -= BI_DV; 1.1369 + if(++w >= this.t) this_array[this.t++] = 0; 1.1370 + ++this_array[w]; 1.1371 + } 1.1372 + /* END LOOP */ 1.1373 +} 1.1374 + 1.1375 +// A "null" reducer 1.1376 +function NullExp() {} 1.1377 +function nNop(x) { return x; } 1.1378 +function nMulTo(x,y,r) { x.multiplyTo(y,r); } 1.1379 +function nSqrTo(x,r) { x.squareTo(r); } 1.1380 + 1.1381 +NullExp.prototype.convert = nNop; 1.1382 +NullExp.prototype.revert = nNop; 1.1383 +NullExp.prototype.mulTo = nMulTo; 1.1384 +NullExp.prototype.sqrTo = nSqrTo; 1.1385 + 1.1386 +// (public) this^e 1.1387 +function bnPow(e) { return this.exp(e,new NullExp()); } 1.1388 + 1.1389 +// (protected) r = lower n words of "this * a", a.t <= n 1.1390 +// "this" should be the larger one if appropriate. 1.1391 +function bnpMultiplyLowerTo(a,n,r) { 1.1392 + var r_array = r.array; 1.1393 + var a_array = a.array; 1.1394 + var i = Math.min(this.t+a.t,n); 1.1395 + r.s = 0; // assumes a,this >= 0 1.1396 + r.t = i; 1.1397 + /* BEGIN LOOP */ 1.1398 + while(i > 0) r_array[--i] = 0; 1.1399 + /* END LOOP */ 1.1400 + var j; 1.1401 + /* BEGIN LOOP */ 1.1402 + for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t); 1.1403 + /* END LOOP */ 1.1404 + /* BEGIN LOOP */ 1.1405 + for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); 1.1406 + /* END LOOP */ 1.1407 + r.clamp(); 1.1408 +} 1.1409 + 1.1410 +// (protected) r = "this * a" without lower n words, n > 0 1.1411 +// "this" should be the larger one if appropriate. 1.1412 +function bnpMultiplyUpperTo(a,n,r) { 1.1413 + var r_array = r.array; 1.1414 + var a_array = a.array; 1.1415 + --n; 1.1416 + var i = r.t = this.t+a.t-n; 1.1417 + r.s = 0; // assumes a,this >= 0 1.1418 + /* BEGIN LOOP */ 1.1419 + while(--i >= 0) r_array[i] = 0; 1.1420 + /* END LOOP */ 1.1421 + /* BEGIN LOOP */ 1.1422 + for(i = Math.max(n-this.t,0); i < a.t; ++i) 1.1423 + r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); 1.1424 + /* END LOOP */ 1.1425 + r.clamp(); 1.1426 + r.drShiftTo(1,r); 1.1427 +} 1.1428 + 1.1429 +// Barrett modular reduction 1.1430 +function Barrett(m) { 1.1431 + // setup Barrett 1.1432 + this.r2 = nbi(); 1.1433 + this.q3 = nbi(); 1.1434 + BigInteger.ONE.dlShiftTo(2*m.t,this.r2); 1.1435 + this.mu = this.r2.divide(m); 1.1436 + this.m = m; 1.1437 +} 1.1438 + 1.1439 +function barrettConvert(x) { 1.1440 + if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); 1.1441 + else if(x.compareTo(this.m) < 0) return x; 1.1442 + else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } 1.1443 +} 1.1444 + 1.1445 +function barrettRevert(x) { return x; } 1.1446 + 1.1447 +// x = x mod m (HAC 14.42) 1.1448 +function barrettReduce(x) { 1.1449 + x.drShiftTo(this.m.t-1,this.r2); 1.1450 + if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } 1.1451 + this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); 1.1452 + this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); 1.1453 + /* BEGIN LOOP */ 1.1454 + while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); 1.1455 + /* END LOOP */ 1.1456 + x.subTo(this.r2,x); 1.1457 + /* BEGIN LOOP */ 1.1458 + while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 1.1459 + /* END LOOP */ 1.1460 +} 1.1461 + 1.1462 +// r = x^2 mod m; x != r 1.1463 +function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 1.1464 + 1.1465 +// r = x*y mod m; x,y != r 1.1466 +function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 1.1467 + 1.1468 +Barrett.prototype.convert = barrettConvert; 1.1469 +Barrett.prototype.revert = barrettRevert; 1.1470 +Barrett.prototype.reduce = barrettReduce; 1.1471 +Barrett.prototype.mulTo = barrettMulTo; 1.1472 +Barrett.prototype.sqrTo = barrettSqrTo; 1.1473 + 1.1474 +// (public) this^e % m (HAC 14.85) 1.1475 +function bnModPow(e,m) { 1.1476 + var e_array = e.array; 1.1477 + var i = e.bitLength(), k, r = nbv(1), z; 1.1478 + if(i <= 0) return r; 1.1479 + else if(i < 18) k = 1; 1.1480 + else if(i < 48) k = 3; 1.1481 + else if(i < 144) k = 4; 1.1482 + else if(i < 768) k = 5; 1.1483 + else k = 6; 1.1484 + if(i < 8) 1.1485 + z = new Classic(m); 1.1486 + else if(m.isEven()) 1.1487 + z = new Barrett(m); 1.1488 + else 1.1489 + z = new Montgomery(m); 1.1490 + 1.1491 + // precomputation 1.1492 + var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; 1.1493 + g[1] = z.convert(this); 1.1494 + if(k > 1) { 1.1495 + var g2 = nbi(); 1.1496 + z.sqrTo(g[1],g2); 1.1497 + /* BEGIN LOOP */ 1.1498 + while(n <= km) { 1.1499 + g[n] = nbi(); 1.1500 + z.mulTo(g2,g[n-2],g[n]); 1.1501 + n += 2; 1.1502 + } 1.1503 + /* END LOOP */ 1.1504 + } 1.1505 + 1.1506 + var j = e.t-1, w, is1 = true, r2 = nbi(), t; 1.1507 + i = nbits(e_array[j])-1; 1.1508 + /* BEGIN LOOP */ 1.1509 + while(j >= 0) { 1.1510 + if(i >= k1) w = (e_array[j]>>(i-k1))&km; 1.1511 + else { 1.1512 + w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); 1.1513 + if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); 1.1514 + } 1.1515 + 1.1516 + n = k; 1.1517 + /* BEGIN LOOP */ 1.1518 + while((w&1) == 0) { w >>= 1; --n; } 1.1519 + /* END LOOP */ 1.1520 + if((i -= n) < 0) { i += BI_DB; --j; } 1.1521 + if(is1) { // ret == 1, don't bother squaring or multiplying it 1.1522 + g[w].copyTo(r); 1.1523 + is1 = false; 1.1524 + } 1.1525 + else { 1.1526 + /* BEGIN LOOP */ 1.1527 + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } 1.1528 + /* END LOOP */ 1.1529 + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } 1.1530 + z.mulTo(r2,g[w],r); 1.1531 + } 1.1532 + 1.1533 + /* BEGIN LOOP */ 1.1534 + while(j >= 0 && (e_array[j]&(1<<i)) == 0) { 1.1535 + z.sqrTo(r,r2); t = r; r = r2; r2 = t; 1.1536 + if(--i < 0) { i = BI_DB-1; --j; } 1.1537 + } 1.1538 + /* END LOOP */ 1.1539 + } 1.1540 + /* END LOOP */ 1.1541 + return z.revert(r); 1.1542 +} 1.1543 + 1.1544 +// (public) gcd(this,a) (HAC 14.54) 1.1545 +function bnGCD(a) { 1.1546 + var x = (this.s<0)?this.negate():this.clone(); 1.1547 + var y = (a.s<0)?a.negate():a.clone(); 1.1548 + if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } 1.1549 + var i = x.getLowestSetBit(), g = y.getLowestSetBit(); 1.1550 + if(g < 0) return x; 1.1551 + if(i < g) g = i; 1.1552 + if(g > 0) { 1.1553 + x.rShiftTo(g,x); 1.1554 + y.rShiftTo(g,y); 1.1555 + } 1.1556 + /* BEGIN LOOP */ 1.1557 + while(x.signum() > 0) { 1.1558 + if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); 1.1559 + if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); 1.1560 + if(x.compareTo(y) >= 0) { 1.1561 + x.subTo(y,x); 1.1562 + x.rShiftTo(1,x); 1.1563 + } 1.1564 + else { 1.1565 + y.subTo(x,y); 1.1566 + y.rShiftTo(1,y); 1.1567 + } 1.1568 + } 1.1569 + /* END LOOP */ 1.1570 + if(g > 0) y.lShiftTo(g,y); 1.1571 + return y; 1.1572 +} 1.1573 + 1.1574 +// (protected) this % n, n < 2^26 1.1575 +function bnpModInt(n) { 1.1576 + var this_array = this.array; 1.1577 + if(n <= 0) return 0; 1.1578 + var d = BI_DV%n, r = (this.s<0)?n-1:0; 1.1579 + if(this.t > 0) 1.1580 + if(d == 0) r = this_array[0]%n; 1.1581 + else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; 1.1582 + return r; 1.1583 +} 1.1584 + 1.1585 +// (public) 1/this % m (HAC 14.61) 1.1586 +function bnModInverse(m) { 1.1587 + var ac = m.isEven(); 1.1588 + if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; 1.1589 + var u = m.clone(), v = this.clone(); 1.1590 + var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); 1.1591 + /* BEGIN LOOP */ 1.1592 + while(u.signum() != 0) { 1.1593 + /* BEGIN LOOP */ 1.1594 + while(u.isEven()) { 1.1595 + u.rShiftTo(1,u); 1.1596 + if(ac) { 1.1597 + if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } 1.1598 + a.rShiftTo(1,a); 1.1599 + } 1.1600 + else if(!b.isEven()) b.subTo(m,b); 1.1601 + b.rShiftTo(1,b); 1.1602 + } 1.1603 + /* END LOOP */ 1.1604 + /* BEGIN LOOP */ 1.1605 + while(v.isEven()) { 1.1606 + v.rShiftTo(1,v); 1.1607 + if(ac) { 1.1608 + if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } 1.1609 + c.rShiftTo(1,c); 1.1610 + } 1.1611 + else if(!d.isEven()) d.subTo(m,d); 1.1612 + d.rShiftTo(1,d); 1.1613 + } 1.1614 + /* END LOOP */ 1.1615 + if(u.compareTo(v) >= 0) { 1.1616 + u.subTo(v,u); 1.1617 + if(ac) a.subTo(c,a); 1.1618 + b.subTo(d,b); 1.1619 + } 1.1620 + else { 1.1621 + v.subTo(u,v); 1.1622 + if(ac) c.subTo(a,c); 1.1623 + d.subTo(b,d); 1.1624 + } 1.1625 + } 1.1626 + /* END LOOP */ 1.1627 + if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; 1.1628 + if(d.compareTo(m) >= 0) return d.subtract(m); 1.1629 + if(d.signum() < 0) d.addTo(m,d); else return d; 1.1630 + if(d.signum() < 0) return d.add(m); else return d; 1.1631 +} 1.1632 + 1.1633 +var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; 1.1634 +var lplim = (1<<26)/lowprimes[lowprimes.length-1]; 1.1635 + 1.1636 +// (public) test primality with certainty >= 1-.5^t 1.1637 +function bnIsProbablePrime(t) { 1.1638 + var i, x = this.abs(); 1.1639 + var x_array = x.array; 1.1640 + if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { 1.1641 + for(i = 0; i < lowprimes.length; ++i) 1.1642 + if(x_array[0] == lowprimes[i]) return true; 1.1643 + return false; 1.1644 + } 1.1645 + if(x.isEven()) return false; 1.1646 + i = 1; 1.1647 + /* BEGIN LOOP */ 1.1648 + while(i < lowprimes.length) { 1.1649 + var m = lowprimes[i], j = i+1; 1.1650 + /* BEGIN LOOP */ 1.1651 + while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; 1.1652 + /* END LOOP */ 1.1653 + m = x.modInt(m); 1.1654 + /* BEGIN LOOP */ 1.1655 + while(i < j) if(m%lowprimes[i++] == 0) return false; 1.1656 + /* END LOOP */ 1.1657 + } 1.1658 + /* END LOOP */ 1.1659 + return x.millerRabin(t); 1.1660 +} 1.1661 + 1.1662 +// (protected) true if probably prime (HAC 4.24, Miller-Rabin) 1.1663 +function bnpMillerRabin(t) { 1.1664 + var n1 = this.subtract(BigInteger.ONE); 1.1665 + var k = n1.getLowestSetBit(); 1.1666 + if(k <= 0) return false; 1.1667 + var r = n1.shiftRight(k); 1.1668 + t = (t+1)>>1; 1.1669 + if(t > lowprimes.length) t = lowprimes.length; 1.1670 + var a = nbi(); 1.1671 + /* BEGIN LOOP */ 1.1672 + for(var i = 0; i < t; ++i) { 1.1673 + a.fromInt(lowprimes[i]); 1.1674 + var y = a.modPow(r,this); 1.1675 + if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { 1.1676 + var j = 1; 1.1677 + /* BEGIN LOOP */ 1.1678 + while(j++ < k && y.compareTo(n1) != 0) { 1.1679 + y = y.modPowInt(2,this); 1.1680 + if(y.compareTo(BigInteger.ONE) == 0) return false; 1.1681 + } 1.1682 + /* END LOOP */ 1.1683 + if(y.compareTo(n1) != 0) return false; 1.1684 + } 1.1685 + } 1.1686 + /* END LOOP */ 1.1687 + return true; 1.1688 +} 1.1689 + 1.1690 +// protected 1.1691 +BigInteger.prototype.chunkSize = bnpChunkSize; 1.1692 +BigInteger.prototype.toRadix = bnpToRadix; 1.1693 +BigInteger.prototype.fromRadix = bnpFromRadix; 1.1694 +BigInteger.prototype.fromNumber = bnpFromNumber; 1.1695 +BigInteger.prototype.bitwiseTo = bnpBitwiseTo; 1.1696 +BigInteger.prototype.changeBit = bnpChangeBit; 1.1697 +BigInteger.prototype.addTo = bnpAddTo; 1.1698 +BigInteger.prototype.dMultiply = bnpDMultiply; 1.1699 +BigInteger.prototype.dAddOffset = bnpDAddOffset; 1.1700 +BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; 1.1701 +BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; 1.1702 +BigInteger.prototype.modInt = bnpModInt; 1.1703 +BigInteger.prototype.millerRabin = bnpMillerRabin; 1.1704 + 1.1705 +// public 1.1706 +BigInteger.prototype.clone = bnClone; 1.1707 +BigInteger.prototype.intValue = bnIntValue; 1.1708 +BigInteger.prototype.byteValue = bnByteValue; 1.1709 +BigInteger.prototype.shortValue = bnShortValue; 1.1710 +BigInteger.prototype.signum = bnSigNum; 1.1711 +BigInteger.prototype.toByteArray = bnToByteArray; 1.1712 +BigInteger.prototype.equals = bnEquals; 1.1713 +BigInteger.prototype.min = bnMin; 1.1714 +BigInteger.prototype.max = bnMax; 1.1715 +BigInteger.prototype.and = bnAnd; 1.1716 +BigInteger.prototype.or = bnOr; 1.1717 +BigInteger.prototype.xor = bnXor; 1.1718 +BigInteger.prototype.andNot = bnAndNot; 1.1719 +BigInteger.prototype.not = bnNot; 1.1720 +BigInteger.prototype.shiftLeft = bnShiftLeft; 1.1721 +BigInteger.prototype.shiftRight = bnShiftRight; 1.1722 +BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; 1.1723 +BigInteger.prototype.bitCount = bnBitCount; 1.1724 +BigInteger.prototype.testBit = bnTestBit; 1.1725 +BigInteger.prototype.setBit = bnSetBit; 1.1726 +BigInteger.prototype.clearBit = bnClearBit; 1.1727 +BigInteger.prototype.flipBit = bnFlipBit; 1.1728 +BigInteger.prototype.add = bnAdd; 1.1729 +BigInteger.prototype.subtract = bnSubtract; 1.1730 +BigInteger.prototype.multiply = bnMultiply; 1.1731 +BigInteger.prototype.divide = bnDivide; 1.1732 +BigInteger.prototype.remainder = bnRemainder; 1.1733 +BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; 1.1734 +BigInteger.prototype.modPow = bnModPow; 1.1735 +BigInteger.prototype.modInverse = bnModInverse; 1.1736 +BigInteger.prototype.pow = bnPow; 1.1737 +BigInteger.prototype.gcd = bnGCD; 1.1738 +BigInteger.prototype.isProbablePrime = bnIsProbablePrime; 1.1739 + 1.1740 +// BigInteger interfaces not implemented in jsbn: 1.1741 + 1.1742 +// BigInteger(int signum, byte[] magnitude) 1.1743 +// double doubleValue() 1.1744 +// float floatValue() 1.1745 +// int hashCode() 1.1746 +// long longValue() 1.1747 +// static BigInteger valueOf(long val) 1.1748 +// prng4.js - uses Arcfour as a PRNG 1.1749 + 1.1750 +function Arcfour() { 1.1751 + this.i = 0; 1.1752 + this.j = 0; 1.1753 + this.S = new Array(); 1.1754 +} 1.1755 + 1.1756 +// Initialize arcfour context from key, an array of ints, each from [0..255] 1.1757 +function ARC4init(key) { 1.1758 + var i, j, t; 1.1759 + /* BEGIN LOOP */ 1.1760 + for(i = 0; i < 256; ++i) 1.1761 + this.S[i] = i; 1.1762 + /* END LOOP */ 1.1763 + j = 0; 1.1764 + /* BEGIN LOOP */ 1.1765 + for(i = 0; i < 256; ++i) { 1.1766 + j = (j + this.S[i] + key[i % key.length]) & 255; 1.1767 + t = this.S[i]; 1.1768 + this.S[i] = this.S[j]; 1.1769 + this.S[j] = t; 1.1770 + } 1.1771 + /* END LOOP */ 1.1772 + this.i = 0; 1.1773 + this.j = 0; 1.1774 +} 1.1775 + 1.1776 +function ARC4next() { 1.1777 + var t; 1.1778 + this.i = (this.i + 1) & 255; 1.1779 + this.j = (this.j + this.S[this.i]) & 255; 1.1780 + t = this.S[this.i]; 1.1781 + this.S[this.i] = this.S[this.j]; 1.1782 + this.S[this.j] = t; 1.1783 + return this.S[(t + this.S[this.i]) & 255]; 1.1784 +} 1.1785 + 1.1786 +Arcfour.prototype.init = ARC4init; 1.1787 +Arcfour.prototype.next = ARC4next; 1.1788 + 1.1789 +// Plug in your RNG constructor here 1.1790 +function prng_newstate() { 1.1791 + return new Arcfour(); 1.1792 +} 1.1793 + 1.1794 +// Pool size must be a multiple of 4 and greater than 32. 1.1795 +// An array of bytes the size of the pool will be passed to init() 1.1796 +var rng_psize = 256; 1.1797 +// Random number generator - requires a PRNG backend, e.g. prng4.js 1.1798 + 1.1799 +// For best results, put code like 1.1800 +// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> 1.1801 +// in your main HTML document. 1.1802 + 1.1803 +var rng_state; 1.1804 +var rng_pool; 1.1805 +var rng_pptr; 1.1806 + 1.1807 +// Mix in a 32-bit integer into the pool 1.1808 +function rng_seed_int(x) { 1.1809 + rng_pool[rng_pptr++] ^= x & 255; 1.1810 + rng_pool[rng_pptr++] ^= (x >> 8) & 255; 1.1811 + rng_pool[rng_pptr++] ^= (x >> 16) & 255; 1.1812 + rng_pool[rng_pptr++] ^= (x >> 24) & 255; 1.1813 + if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; 1.1814 +} 1.1815 + 1.1816 +// Mix in the current time (w/milliseconds) into the pool 1.1817 +function rng_seed_time() { 1.1818 + rng_seed_int(new Date().getTime()); 1.1819 +} 1.1820 + 1.1821 +// Initialize the pool with junk if needed. 1.1822 +if(rng_pool == null) { 1.1823 + rng_pool = new Array(); 1.1824 + rng_pptr = 0; 1.1825 + var t; 1.1826 + /* BEGIN LOOP */ 1.1827 + while(rng_pptr < rng_psize) { // extract some randomness from Math.random() 1.1828 + t = Math.floor(65536 * Math.random()); 1.1829 + rng_pool[rng_pptr++] = t >>> 8; 1.1830 + rng_pool[rng_pptr++] = t & 255; 1.1831 + } 1.1832 + /* END LOOP */ 1.1833 + rng_pptr = 0; 1.1834 + rng_seed_time(); 1.1835 + //rng_seed_int(window.screenX); 1.1836 + //rng_seed_int(window.screenY); 1.1837 +} 1.1838 + 1.1839 +function rng_get_byte() { 1.1840 + if(rng_state == null) { 1.1841 + rng_seed_time(); 1.1842 + rng_state = prng_newstate(); 1.1843 + rng_state.init(rng_pool); 1.1844 + /* BEGIN LOOP */ 1.1845 + for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) 1.1846 + rng_pool[rng_pptr] = 0; 1.1847 + /* END LOOP */ 1.1848 + rng_pptr = 0; 1.1849 + //rng_pool = null; 1.1850 + } 1.1851 + // TODO: allow reseeding after first request 1.1852 + return rng_state.next(); 1.1853 +} 1.1854 + 1.1855 +function rng_get_bytes(ba) { 1.1856 + var i; 1.1857 + /* BEGIN LOOP */ 1.1858 + for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); 1.1859 + /* END LOOP */ 1.1860 +} 1.1861 + 1.1862 +function SecureRandom() {} 1.1863 + 1.1864 +SecureRandom.prototype.nextBytes = rng_get_bytes; 1.1865 +// Depends on jsbn.js and rng.js 1.1866 + 1.1867 +// convert a (hex) string to a bignum object 1.1868 +function parseBigInt(str,r) { 1.1869 + return new BigInteger(str,r); 1.1870 +} 1.1871 + 1.1872 +function linebrk(s,n) { 1.1873 + var ret = ""; 1.1874 + var i = 0; 1.1875 + /* BEGIN LOOP */ 1.1876 + while(i + n < s.length) { 1.1877 + ret += s.substring(i,i+n) + "\n"; 1.1878 + i += n; 1.1879 + } 1.1880 + /* END LOOP */ 1.1881 + return ret + s.substring(i,s.length); 1.1882 +} 1.1883 + 1.1884 +function byte2Hex(b) { 1.1885 + if(b < 0x10) 1.1886 + return "0" + b.toString(16); 1.1887 + else 1.1888 + return b.toString(16); 1.1889 +} 1.1890 + 1.1891 +// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint 1.1892 +function pkcs1pad2(s,n) { 1.1893 + if(n < s.length + 11) { 1.1894 + alert("Message too long for RSA"); 1.1895 + return null; 1.1896 + } 1.1897 + var ba = new Array(); 1.1898 + var i = s.length - 1; 1.1899 + /* BEGIN LOOP */ 1.1900 + while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); 1.1901 + /* END LOOP */ 1.1902 + ba[--n] = 0; 1.1903 + var rng = new SecureRandom(); 1.1904 + var x = new Array(); 1.1905 + /* BEGIN LOOP */ 1.1906 + while(n > 2) { // random non-zero pad 1.1907 + x[0] = 0; 1.1908 + /* BEGIN LOOP */ 1.1909 + while(x[0] == 0) rng.nextBytes(x); 1.1910 + /* END LOOP */ 1.1911 + ba[--n] = x[0]; 1.1912 + } 1.1913 + /* END LOOP */ 1.1914 + ba[--n] = 2; 1.1915 + ba[--n] = 0; 1.1916 + return new BigInteger(ba); 1.1917 +} 1.1918 + 1.1919 +// "empty" RSA key constructor 1.1920 +function RSAKey() { 1.1921 + this.n = null; 1.1922 + this.e = 0; 1.1923 + this.d = null; 1.1924 + this.p = null; 1.1925 + this.q = null; 1.1926 + this.dmp1 = null; 1.1927 + this.dmq1 = null; 1.1928 + this.coeff = null; 1.1929 +} 1.1930 + 1.1931 +// Set the public key fields N and e from hex strings 1.1932 +function RSASetPublic(N,E) { 1.1933 + if(N != null && E != null && N.length > 0 && E.length > 0) { 1.1934 + this.n = parseBigInt(N,16); 1.1935 + this.e = parseInt(E,16); 1.1936 + } 1.1937 + else 1.1938 + alert("Invalid RSA public key"); 1.1939 +} 1.1940 + 1.1941 +// Perform raw public operation on "x": return x^e (mod n) 1.1942 +function RSADoPublic(x) { 1.1943 + return x.modPowInt(this.e, this.n); 1.1944 +} 1.1945 + 1.1946 +// Return the PKCS#1 RSA encryption of "text" as an even-length hex string 1.1947 +function RSAEncrypt(text) { 1.1948 + var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); 1.1949 + if(m == null) return null; 1.1950 + var c = this.doPublic(m); 1.1951 + if(c == null) return null; 1.1952 + var h = c.toString(16); 1.1953 + if((h.length & 1) == 0) return h; else return "0" + h; 1.1954 +} 1.1955 + 1.1956 +// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string 1.1957 +//function RSAEncryptB64(text) { 1.1958 +// var h = this.encrypt(text); 1.1959 +// if(h) return hex2b64(h); else return null; 1.1960 +//} 1.1961 + 1.1962 +// protected 1.1963 +RSAKey.prototype.doPublic = RSADoPublic; 1.1964 + 1.1965 +// public 1.1966 +RSAKey.prototype.setPublic = RSASetPublic; 1.1967 +RSAKey.prototype.encrypt = RSAEncrypt; 1.1968 +//RSAKey.prototype.encrypt_b64 = RSAEncryptB64; 1.1969 +// Depends on rsa.js and jsbn2.js 1.1970 + 1.1971 +// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext 1.1972 +function pkcs1unpad2(d,n) { 1.1973 + var b = d.toByteArray(); 1.1974 + var i = 0; 1.1975 + /* BEGIN LOOP */ 1.1976 + while(i < b.length && b[i] == 0) ++i; 1.1977 + /* END LOOP */ 1.1978 + if(b.length-i != n-1 || b[i] != 2) 1.1979 + return null; 1.1980 + ++i; 1.1981 + /* BEGIN LOOP */ 1.1982 + while(b[i] != 0) 1.1983 + if(++i >= b.length) return null; 1.1984 + /* END LOOP */ 1.1985 + var ret = ""; 1.1986 + /* BEGIN LOOP */ 1.1987 + while(++i < b.length) 1.1988 + ret += String.fromCharCode(b[i]); 1.1989 + /* END LOOP */ 1.1990 + return ret; 1.1991 +} 1.1992 + 1.1993 +// Set the private key fields N, e, and d from hex strings 1.1994 +function RSASetPrivate(N,E,D) { 1.1995 + if(N != null && E != null && N.length > 0 && E.length > 0) { 1.1996 + this.n = parseBigInt(N,16); 1.1997 + this.e = parseInt(E,16); 1.1998 + this.d = parseBigInt(D,16); 1.1999 + } 1.2000 + else 1.2001 + alert("Invalid RSA private key"); 1.2002 +} 1.2003 + 1.2004 +// Set the private key fields N, e, d and CRT params from hex strings 1.2005 +function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { 1.2006 + if(N != null && E != null && N.length > 0 && E.length > 0) { 1.2007 + this.n = parseBigInt(N,16); 1.2008 + this.e = parseInt(E,16); 1.2009 + this.d = parseBigInt(D,16); 1.2010 + this.p = parseBigInt(P,16); 1.2011 + this.q = parseBigInt(Q,16); 1.2012 + this.dmp1 = parseBigInt(DP,16); 1.2013 + this.dmq1 = parseBigInt(DQ,16); 1.2014 + this.coeff = parseBigInt(C,16); 1.2015 + } 1.2016 + else 1.2017 + alert("Invalid RSA private key"); 1.2018 +} 1.2019 + 1.2020 +// Generate a new random private key B bits long, using public expt E 1.2021 +function RSAGenerate(B,E) { 1.2022 + var rng = new SecureRandom(); 1.2023 + var qs = B>>1; 1.2024 + this.e = parseInt(E,16); 1.2025 + var ee = new BigInteger(E,16); 1.2026 + /* BEGIN LOOP */ 1.2027 + for(;;) { 1.2028 + /* BEGIN LOOP */ 1.2029 + for(;;) { 1.2030 + this.p = new BigInteger(B-qs,1,rng); 1.2031 + if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; 1.2032 + } 1.2033 + /* END LOOP */ 1.2034 + /* BEGIN LOOP */ 1.2035 + for(;;) { 1.2036 + this.q = new BigInteger(qs,1,rng); 1.2037 + if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; 1.2038 + } 1.2039 + /* END LOOP */ 1.2040 + if(this.p.compareTo(this.q) <= 0) { 1.2041 + var t = this.p; 1.2042 + this.p = this.q; 1.2043 + this.q = t; 1.2044 + } 1.2045 + var p1 = this.p.subtract(BigInteger.ONE); 1.2046 + var q1 = this.q.subtract(BigInteger.ONE); 1.2047 + var phi = p1.multiply(q1); 1.2048 + if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { 1.2049 + this.n = this.p.multiply(this.q); 1.2050 + this.d = ee.modInverse(phi); 1.2051 + this.dmp1 = this.d.mod(p1); 1.2052 + this.dmq1 = this.d.mod(q1); 1.2053 + this.coeff = this.q.modInverse(this.p); 1.2054 + break; 1.2055 + } 1.2056 + } 1.2057 + /* END LOOP */ 1.2058 +} 1.2059 + 1.2060 +// Perform raw private operation on "x": return x^d (mod n) 1.2061 +function RSADoPrivate(x) { 1.2062 + if(this.p == null || this.q == null) 1.2063 + return x.modPow(this.d, this.n); 1.2064 + 1.2065 + // TODO: re-calculate any missing CRT params 1.2066 + var xp = x.mod(this.p).modPow(this.dmp1, this.p); 1.2067 + var xq = x.mod(this.q).modPow(this.dmq1, this.q); 1.2068 + 1.2069 + /* BEGIN LOOP */ 1.2070 + while(xp.compareTo(xq) < 0) 1.2071 + xp = xp.add(this.p); 1.2072 + /* END LOOP */ 1.2073 + return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); 1.2074 +} 1.2075 + 1.2076 +// Return the PKCS#1 RSA decryption of "ctext". 1.2077 +// "ctext" is an even-length hex string and the output is a plain string. 1.2078 +function RSADecrypt(ctext) { 1.2079 + var c = parseBigInt(ctext, 16); 1.2080 + var m = this.doPrivate(c); 1.2081 + if(m == null) return null; 1.2082 + return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); 1.2083 +} 1.2084 + 1.2085 +// Return the PKCS#1 RSA decryption of "ctext". 1.2086 +// "ctext" is a Base64-encoded string and the output is a plain string. 1.2087 +//function RSAB64Decrypt(ctext) { 1.2088 +// var h = b64tohex(ctext); 1.2089 +// if(h) return this.decrypt(h); else return null; 1.2090 +//} 1.2091 + 1.2092 +// protected 1.2093 +RSAKey.prototype.doPrivate = RSADoPrivate; 1.2094 + 1.2095 +// public 1.2096 +RSAKey.prototype.setPrivate = RSASetPrivate; 1.2097 +RSAKey.prototype.setPrivateEx = RSASetPrivateEx; 1.2098 +RSAKey.prototype.generate = RSAGenerate; 1.2099 +RSAKey.prototype.decrypt = RSADecrypt; 1.2100 +//RSAKey.prototype.b64_decrypt = RSAB64Decrypt; 1.2101 + 1.2102 + 1.2103 +nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; 1.2104 +eValue="10001"; 1.2105 +dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161"; 1.2106 +pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; 1.2107 +qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; 1.2108 +dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; 1.2109 +dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; 1.2110 +coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; 1.2111 + 1.2112 +setupEngine(am3, 28); 1.2113 + 1.2114 +var RSA = new RSAKey(); 1.2115 +var TEXT = "The quick brown fox jumped over the extremely lazy frogs!"; 1.2116 + 1.2117 +RSA.setPublic(nValue, eValue); 1.2118 +RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); 1.2119 + 1.2120 +function encrypt() { 1.2121 + return RSA.encrypt(TEXT); 1.2122 +} 1.2123 + 1.2124 +function decrypt() { 1.2125 + return RSA.decrypt(TEXT); 1.2126 +} 1.2127 + 1.2128 +function PrintResult(name, result) { 1.2129 +} 1.2130 + 1.2131 + 1.2132 +function PrintScore(score) { 1.2133 +// print(score); 1.2134 +} 1.2135 + 1.2136 + 1.2137 +BenchmarkSuite.RunSuites({ NotifyResult: PrintResult, 1.2138 + NotifyScore: PrintScore });